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By direct numerical simulation of the time-dependent Gross-Pitaevskii equation, we study different aspects
of the localization of a noninteracting ideal Bose-Einstein condensate �BEC� in a one-dimensional bichromatic
quasiperiodic optical-lattice potential. Such a quasiperiodic potential, used in a recent experiment on the
localization of a BEC �Roati et al., Nature �London� 453, 895 �2008��, can be formed by the superposition of
two standing-wave polarized laser beams with different wavelengths. We investigate the effect of the variation
of optical amplitudes and wavelengths on the localization of a noninteracting BEC. We also simulate the
nonlinear dynamics when a harmonically trapped BEC is suddenly released into a quasiperiodic potential, as
done experimentally in a laser speckle potential �Billy et al., Nature �London� 453, 891 �2008��. We finally
study the destruction of the localization in an interacting BEC due to the repulsion generated by a positive
scattering length between the bosonic atoms.
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I. INTRODUCTION

The localization of the electronic wave function in a dis-
ordered potential was predicted by Anderson 50 years ago
�1�. More recently, the phenomenon of localization due to
disorder was experimentally observed in electromagnetic
waves �2,3�, in sound waves �4�, and also in quantum matter
waves �5–8�. In the case of quantum matter waves, Billy et
al. �5� observed exponential localization of a Bose-Einstein
condensate �BEC� of 87Rb atoms released into a one-
dimensional �1D� waveguide in the presence of a controlled
disorder created by a laser speckle. Roati et al. �6� observed
localization of a noninteracting BEC of 39K atoms in a 1D
potential created by two optical-lattice �OL� potentials with
different amplitudes and wavelengths. The noninteracting
BEC of 39K atoms was created �6� by tuning the interatomic
scattering length to zero near a Feshbach resonance �9�.

In this paper, with intensive numerical simulations of the
linear Gross-Pitaevskii �GP� equation �which is just the
Schrödinger equation,�, we study different aspects of local-
ization of the BEC in a 1D bichromatic quasiperiodic OL
potential used in the experiment of Roati et al. �6�. The 1D
quasiperiodic potentials have a spatial ordering that is inter-
mediate between periodicity and disorder �10–12�. In par-
ticular, the 1D discrete Aubry-Andre model of quasiperiodic
confinement �11,12� displays a transition from extended to
localized states which resembles the Anderson localization of
random systems �13,14�. Modugno �15� recently showed that
the linear 1D Schrödinger equation with a bichromatic peri-
odic potential can be mapped in the Aubry-Andre model and
he studied the transition to localization as a function of the
parameters of the periodic potential.

To investigate the interplay between the bichromatic po-
tential and the interatomic interaction in the localization of a

BEC, we adopt the 1D nonlinear GP equation �16,17� in
place of the linear 1D Schrödinger equation used to describe
a noninteracting BEC. We find that the nonlinearity of the
GP equation, which accurately models the binary interatomic
interaction of atoms, has a strong effect on localization and a
reasonably weak repulsive nonlinear term is capable of de-
stroying the localization. Our results on the effect of nonlin-
earity in the localization are thus in qualitative agreement
with similar predictions based on the 1D discrete nonlinear
Schrödinger equation �DNLSE� with random on-site energies
�18�. First effects of a weak nonlinearity in Anderson local-
ization have been shown experimentally in light waves in
photonic crystals �6,19�.

There have already been a number of theoretical studies
on Anderson localization under the action of different poten-
tials. Sanchez-Palencia et al. and Clément et al. considered
Anderson localization in a random potential �13�. Damski et
al. and Schulte et al. considered Anderson localization in
disordered OL potential �14�. There have been studies of
Anderson localization with other types of disorder �20�. Ef-
fect of interaction on Anderson localization was also studied
�21�. Anderson localization in BEC under the action of a
disordered potential in two and three dimensions has also
been investigated �22�. In this paper, we study different as-
pects of the localization of an ideal BEC and the delocaliza-
tion of an interacting BEC in a quasiperiodic OL potential
using the linear and nonlinear 1D GP equations.

In Sec. II, we present a brief account of the nonlinear 1D
GP equation used in our study and of the variational solution
of the same under appropriate conditions. In Sec. III, we
present our numerical studies on localization using time
propagation under the Crank-Nicolson discretization scheme.
The density profiles of the tightly localized states are in
agreement with the variational results. We also study the ef-
fects of the variation of the wavelength and intensity of the
OL potentials on the localization. We study the nonequilib-
rium dynamics, as observed in the experiment of Billy et al.
�5�, when a harmonically trapped BEC is suddenly released
from the harmonic trap into a quasiperiodic OL potential. We
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also investigate the destruction of localization in the pres-
ence of a repulsive atomic interaction and it is found that a
reasonably small nonlinearity can destroy the localization of
the BEC. In Sec. IV, we present a brief discussion and con-
cluding remarks.

II. ANALYTICAL CONSIDERATION OF LOCALIZATION

In the actual experiment of Roati et al. �6�, the 1D quasi-
periodic bichromatic OL potential was produced by super-
posing two OL potentials generated by two standing-wave
polarized laser beams of slightly different wavelengths and
amplitudes, which we take here similar to those in the ex-

periment of Roati et al., e.g., with wavelengths �̂1

=1032 nm and �̂2=862 nm. This 1D quasiperiodic OL po-
tential can be written as �6�

V�ẑ� = �
i=1

2

2siEi cos2�kiẑ� , �1�

where 2si, i=1,2, are the amplitudes of the OL potentials in

units of respective recoil energies Ei=2�2�2 / �m�̂i
2�, ki

=2� /�i, i=1,2, are the respective wave numbers, � is the
reduced Planck constant, and m the mass of an atom.

With a single periodic potential of the form cos2�kẑ� with
s2=0, the linear Schrödinger equation permits only delocal-
ized states in the form of Bloch waves. Localization is pos-
sible in the linear Schrödinger equation due to the “disorder”
introduced through a second component in Eq. �1�. The lo-
calization is not intuitively obvious. The potential �1� contin-
ues to have an infinite number of finite barriers as in a simple
OL potential and it might be expected that any localized state
will decay due to tunneling.

The localized states that we study are low-lying states of
the system with potential �1�. They are quite distinct from the
so-called gap solitons in a simple OL potential appearing for
repulsive nonlinearity in the band gap of the spectrum of the
linear Schrödinger equation �23�. These gap solitons with
finite spatial extension are excited states of the system with-
out a linear counterpart.

The dynamics of a trapped BEC of N atoms in a trans-
verse harmonic potential of frequency �� plus the axial qua-
siperiodic OL potential �1� is determined by the following
GP equation �16,17�:

i
�

�t
��r,t� = �−

�2

2
+

x2 + y2

2
+ V�z� + 2�g���r,t��2���r,t� ,

�2�

V�z� = �
i=1

2
4�2si

�i
2 cos2	2�

�i
z
 , �3�

with normalization ����r , t��2dr=1 and where g=2Nâ /a� is
the dimensionless interaction strength, with â the interatomic
scattering length and a�=�� / �m��� the characteristic har-
monic length of the transverse confinement, and r�x ,y ,z�
defines the Cartesian coordinates. Here, we have considered
the harmonic trap �x2+y2� /2 in transverse directions �x ,y�

and the quasiperiodic potential V�z� in the longitudinal direc-
tion z. In Eq. �2�, length is in units of a�, time in units of ��,
and energy in units of ���. In the noninteracting case, g
=0 and Eq. �2� becomes the usual linear Schrödinger equa-
tion.

Another completely equivalent potential is the one where
the cosine term of Eq. �3� is replaced by a sine

V�z� = �
i=1

2
4�2si

�i
2 sin2	2�

�i
z
 . �4�

However, potential �4� generates a different type of localized
states compared to potential �3�. Potential �4� has a local
minimum at the center z=0, consequently, stable stationary
solutions with this potential have a maximum at z=0. How-
ever, potential �3� has a local maximum at z=0 correspond-
ing to a minimum of the stationary solution at the center. We
shall show that, starting with an initial Gaussian wave func-
tion centered at z=0, the numerical solution of the GP Eq.
�2� gives different localized eigenstates depending on the
choice of the confining potential.

For a cigar-shaped trap with strong transverse confine-
ment, it is appropriate to consider a 1D reduction of Eq. �2�
by freezing the transverse dynamics to the respective ground
state and integrating over the transverse variables. The re-
sulting three-dimensional �3D�-1D reduction of Eq. �2� for
small nonlinearity g is realized via �24,25�

i
�

�t
��z,t� = �−

�z
2

2
+ V�z� + g���z,t��2���z,t� , �5�

with normalization �−�
� dz���z , t��2=1 and where ��z , t� is the

axial wave function of the Bose condensate. Equation �5� is a
1D nonlinear Schrödinger equation with cubic nonlinearity.

Modugno used potential �4� in his study and in addition
took �1=2� and defined si�=2si and �=�1 /�22� /�2, so
that �viz. Eq. �16� of Ref. �15��

V�z� =
1

2
s1� sin2�z� +

1

2
s2��

2 sin2��z� . �6�

Equation �5� with potential �6� can be mapped �15� in a non-
linear version of the Aubry-Andre model �10,11� by expand-
ing the wave function ��z , t�=� jcj�t�Wj�z� over a set of or-
thonormal Wannier states Wj�z�, where Wj�z� is maximally
localized at the jth minimum of the primary lattice. In this
way, one finds that the complex coefficients cj�t� satisfy the
time-dependent discrete nonlinear Schrödinger equation �15�

i
d

dt
cj�t� = − J�cj+1�t� + cj−1�t�� + 	 cos�2��j�cj�t�

+ g̃�cj�t��2cj�t� , �7�

where �cj�t��2 gives the probability of occupation of the jth
site at time t. The hopping term J and the “disorder” term 	
are connected to the parameters of the bichromatic potential
�1� and can be calculated by using the Wannier functions
�15,26�. Modugno �15� showed that the linear �g=0� GP
equation �5� displays localization for a large enough 	 /J and
the localization increases as 	 /J increases for a wide range
of values of �.
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The Fourier transformation f�k� of the Anderson localized
state ��z� is defined as

f�k� = �
−�

�

exp�i2�kz���z� , �8�

and the momentum distribution of the localized state P�k�
 f2�k�.

Usually, the stationary bound states formed with quasip-
eriodic OL potentials �3� and �4� occupy many sites of the
quasiperiodic OL potential and have many local maxima and
minima. For certain values of the parameters, potential �4�
leads to bound states confined practically to the central site
of the quasiperiodic OL potential. When this happens, a
variational approximation with Gaussian ansatz leads to a
reasonable prediction for the bound state.

The stationary form of the linear Schrödinger equation �5�
�with i� /�t replaced by a chemical potential 
� with poten-
tial �4� can be derived from the following Lagrangian:

L = �
−�

�

�
�2�z� − ����z��2/2 − V�z��2�z��dz − 
 , �9�

by demanding �L /��=�L /�
=0, where the prime denotes
space derivative. To apply the variational approximation, we
use the Gaussian ansatz �27�

��z� = �−1/4�N
w

exp	−
z2

2w2
 , �10�

where variational parameters are the norm N, width w, and

. This ansatz implies that the center of the stationary state is
placed at the local minimum at z=0 of the quasiperiodic OL
potential �4�. The substitution of ansatz �10� in Lagrangian
�9� leads to

L = 
�N − 1� −
N

4w2 + �
i=1

2
AiN

2
�exp�− �i

2w2� − 1� , �11�

where Ai=4�2si /�i
2, �i=2� /�i. The first variational equation

from Eq. �11�, �L /�
=0, yields N=1, which will be used in
other variational equations. The second variational equation
�L /�w=0 yields

1 = �
i=1

2

2�i
2Aiw

4 exp�− �i
2w2� �12�

and determines the width w. The last variational equation
�L /�N=0 yields


 = 1/�4w2� − �
i=1

2

Ai�exp�− �i
2w2� − 1�/2, �13�

which defines the chemical potential. �However, some cau-
tion should be exercised in using these variational equations:
they predict a false bound state for a one-term periodic po-
tential with s2=0 �cf. Eq. �12�� and the one-term potential is
known to support no localized bound state.�

III. NUMERICAL RESULTS

To perform a systematic numerical study of localization
with potentials �3� and �4�, we vary �1 and �2 maintaining
the ratio �2 /�1=0.86 �roughly the same ratio �2 /�1 as in the
experiment of Roati et al. �6��. We consider a transverse
harmonic-oscillator length a��1 
m so that the experi-

mental wavelengths �̂1=1032 nm and �̂2=862 nm in di-
mensionless units become �1�1 and �2�0.86. In the first
part of the study, we also set scattering length â=0 corre-
sponding to ideal noninteracting bosons.

We perform the numerical simulation employing mostly
real-time propagation with Crank-Nicholson discretization
scheme, using the FORTRAN programs provided in Ref. �28�,
with space step 0.025 and time step 0.0005. Imaginary-time
propagation routine can determine the strongly localized
state confined to a single OL site or so in an efficient fashion.
However, imaginary-time propagation routine demonstrated
difficulty for weakly confined state extending over a large
number of OL sites.

Because of the oscillating nature of the potential, great
care was needed to obtain a precise localized state. The ac-
curacy of the numerical simulation was tested by varying the
space and time steps as well as the total number of space
steps. A larger value of the ratio s2 /s1 gives more binding for
the localized state. Consequently, the localized state has
smaller spatial extension.

To understand the nature of these localized states and their
behavior under the variation of different parameters, first we
consider the localized states with larger values of �1. Such
states with large s2 /s1�=1� occupy a small number of OL
sites and hence their simulation can be performed relatively
easily. The shape of the localized state then becomes a quasi-
Gaussian for potential �4� and we compare our numerical
results to the variational results in this case. In Fig. 1�a�, we
plot the results of density distribution from numerical and
variational calculations for potential �4� for different �1 for
fixed s1 ,s2 and �2 /�1. In Fig. 1�a�, real- and imaginary-time
propagation routines produced identical results. In Fig. 1�b�,
we plot the density distribution �2�z� vs z for potential �3�
for the same set of parameters as in Fig. 1�a�. In this case,
one has two peaks in the density distribution. We also calcu-
lated the energies of these states. The energies for �1=15, 10,
and 5 for the potential �4� of Fig. 1�a� are 0.264, 0.599, and
2.374 to be compared to the variational results of Eq. �13�:
0.266, 0.594, and 2.396, respectively. This agreement be-
tween the numerical and variational results of density for
potential �4� in Fig. 1�a� and of the respective energies pro-
vides assurance about the accuracy of the numerical code
used in simulation in our investigation. We also calculated
the �numerical� energies of the density profiles displayed in
Fig. 1�b� which are, respectively, 0.270, 0.603, and 2.412.
These energies for potential �3� are distinct from those of
potential �4�; but the two sets of energies are very close to
each other.

Now we present the results for the solution of Eq. �5� with
potential �3� for a small s2 /s1. The potential V�z� given by
Eq. �3� for �1=2, �2 /�1=0.86, s1=2, and s2 /s1=0.2 is plot-
ted in Fig. 2�a�. This potential is quite similar to the potential
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illustrated in Fig. 1�a� of Roati et al. �6�. The density distri-
bution �2�z� vs z corresponding to the localization for this
potential is plotted in Fig. 2�b� for s1=2, s2 /s1=0.2, �2 /�1
=0.86, and �1=2, 4, 8, and 12. It is seen that with a decrease
of �1, more attraction is created. Consequently, the states
with �1=2 and 4 are more localized in space with lesser
spatial extension. But with further increase of �1, a single
site of the quasiperiodic OL potential occupies a large region
in space. When this happens, the spatial size of the localized
bound states increases with �1, as the localized state cannot
occupy less than two sites of the quasiperiodic OL potential
�the density for potential �3� has to be symmetric around z
=0 and must have a minimum at z=0�. This happens for
�1=8 and 12. For �1=8 and 12, the localized bound states
occupy four sites of the quasiperiodic OL potential. Partially
similar feature is also exhibited by the localized states of the
quasiperiodic OL potential �4� for larger values of �1 as
shown in Fig. 2�c�, where we plot the density distribution
�2�z� vs z for s2=2, s2 /s1=0.2, �2 /�1=0.86, and �1=2, 4, 8,
and 12. As expected, the localized state with potential �3� has
a minimum at z=0, whereas the localized state of potential
�4� has a maximum at z=0. We plot in Figs. 3�a� and 3�b� the
momentum distribution P�k� vs k for the localized states—a
quantity of experimental interest �6�—shown in Figs. 3�a�
and 3�b� for potentials �3� and �4�, respectively. In general, as
expected, the central peak of momentum distribution of the
localized state is sharper for a localized state of larger spatial
extension.

Now we study how these localized states are affected by a
variation of the ratio s2 /s1 when �1, �2, and s1 are main-
tained constant. For this purpose, we plot in Figs. 4�a� and
4�b� the density distribution of the localized states for poten-
tials �4� and �3�, respectively, for �1=10, �2=8.6, s1=2, and
for different values of the fraction s2 /s1=0.2, 0.4, and 1. In
addition, we plot the quasiperiodic OL potential V�z� for
s2 /s1=0.2 in arbitrary units just to compare the position of
the maxima and minima of the potential to the position of the
minima and maxima of density. �The positions of the
maxima and minima of the potential V�z� do not change
visibly with s2 /s1.� It is found in both cases that the states
with larger values of the fraction s2 /s1 have smaller spatial
extension corresponding to larger attraction. The results re-
ported in Figs. 4�a� and 4�b� are in qualitative agreement
with a conclusion of the study of Modugno �15� that the
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FIG. 1. �Color online� �a� Typical density distribution �2�z� vs z
for a noninteracting BEC for potential �4� for �2 /�1=0.86, s1=s2

=2, and �1=15, 10, and 5. The numerical results are shown by
continuous lines. The variational results are shown by a chain of
symbols. �b� Typical density distribution �2�z� vs z for potential �3�
for same parameters as in �a�. Both �2�z� and z are in dimensionless
units.
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FIG. 2. �Color online� �a� Potential V�z� vs z given by Eq. �3�
for �1=2, �2 /�1=0.86, s1=2, and s2 /s1=0.2 and �b� density distri-
bution �2�z� vs z of a noninteracting BEC calculated with this po-
tential for s1=2, s2 /s1=0.2, �2 /�1=0.86, and �1=2, 4, 8, and 12.
�c� Density distribution �2�z� vs z of a noninteracting BEC for
potential �4� for s1=2, s2 /s1=0.2, �2 /�1=0.86, and �1=2, 4, 8, and
12. All variables are expressed in dimensionless units.
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localization appears and increases as the disorder to hopping
ratio 	 /J increases. The increase of 	 /J is related to an
increase of s2 /s1 for a fixed �1 and �2, exactly as illustrated
in Figs. 4�a� and 4�b�. However, because of the distinct
model �DNLSE� used in Ref. �15�, in contrast to the numeri-
cal solution of the GP equation in the present study, a quan-
titative comparison of the results of the two studies is not to
the point.

Next, we study the effect of including interaction in a
BEC of 39K atoms with scattering length â=33a0
=1.75 nm �29� �with a0=05292 nm, the Bohr radius� by
solving Eq. �5� with potentials �3� and �4�. In present dimen-
sionless units, this will correspond to a scattering length of
a â /a�=0.001 75. The inclusion of the repulsive nonlinear
potential term in Eq. �5� will reduce the possibility of the
appearance of localized bound states. This is illustrated in
Figs. 5�a� and 5�b� where we plot the density distribution for
�1=4, �2 /�1=0.86, s1=2, and s2 /s1=0.2 for potentials �4�
and �3�, respectively, for different g2Nâ /a�= �0,2 ,4 ,5�.
The corresponding quasiperiodic OL potentials are also plot-
ted in arbitrary units. �The advantage of using the variable g,
rather than the scattering length â and number of atoms N, in
these plots is that the present plots can easily be used to
simulate different experimental situations with different traps
and distinct bosonic atoms.� For g=0, for both potentials, the
localized states are confined between z= 10. For g=2, with
increased repulsion, the matter density is reduced in the cen-
tral peaks and new peaks appear for larger z values. For g
=4, with further increase in repulsion, the matter density is

further reduced in the central region and new peaks appear in
the form of undulating tails near the edges. With further in-
crease in the value of g, the localized states have larger and
larger spatial extension and soon the nonlinear repulsion is
so large that no localized states are possible and this happens
rapidly as g is increased beyond 6. The nonlinearity in Eq.
�5� is g=2âN /a� and for about 1800 39K atoms with a
=0.001 75 �29�, the nonlinearity has the typical numerical
value g�6. Such a small nonlinearity can have a large effect
on localization of a 39K BEC and can prohibit the localiza-
tion. However, the number of K atoms can be proportion-
ately increased if the scattering length is reduced by varying
an external background magnetic field near a Feshbach reso-
nance �9�. As g value is increased, the root mean square
�rms� size of the BEC increases before reaching a critical g
value ��6� corresponding to the destruction of localization.
�It is difficult to obtain accurately the critical value of g
needed to destroy the localization.� The increase in the rms
size of the localized state with the increase in g is illustrated
in Fig. 5�c� where we plot the rms size vs g for potentials �3�
and �4�. It should be noted that in the experiment of Roati et
al. �6�, the residual scattering length of 39K atoms near the
Feshbach resonance was 0.1a0�=0.0053 nm�, e.g., they can
vary the scattering length in such small steps. Thus, it should
be possible experimentally to obtain the curves illustrated in
Fig. 5�c� and compare them to the present investigation.

So far, we studied the stationary properties of the local-
ized state. Next we study some dynamical aspects of the
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FIG. 3. �Color online� Momentum distribution P�k� vs k of the
localized states, shown in Figs. 2�b� and 2�c�, for �a� potential �3�
and �b� potential �4�, for �2 /�1=0.86, s1=2, s2 /s1=0.2, and �1=2,
4, 8, and 12.
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FIG. 4. �Color online� Typical density distribution �2�z� vs z for
a noninteracting BEC for �a� potential �4� and �b� potential �3� for
�1=10, �2=8.6, s1=2, and s2 /s1=0.2, 0.4, and 1. The quasiperiodic
OL potential V�z� for s2 /s1=0.2 is also plotted in �a� and �b� in
arbitrary units. All variables are in dimensionless units.
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localization. One interesting feature is what happens when a
BEC is released from a harmonic trap into a quasiperiodic
OL trap as investigated in the experiment of Billy et al. �5�.
Mathematically, it means that at time t=0, the harmonic trap
is suddenly changed into a quasiperiodic OL trap. The evo-
lution of the rms size of the BEC with time is plotted in Fig.
6�a� for potential �4�. The rms size first increases with the
expansion of the BEC and after a certain amount of expan-
sion, it will be locked in an appropriate localized state. After
this happens, the system executes breathing oscillation
around a mean shape of the localized state and the rms size
remains bounded and does not increase indefinitely with
time. To compare to this behavior, we also plotted the rms
size for expansion in a pure periodic OL potential when the
disorder is removed by setting s2=0 in potential �4�. In that

case, there is no localized state and the system expands for-
ever with an ever-increasing rms size. Finally, when all OL
potentials are removed by setting s1=s2=0, the system in-
creases monotonically with a higher expansion rate. The dy-
namical density profile of the BEC during the expansion and
locking in a localized state for the quasiperiodic potential �4�
is shown in Fig. 6�b� where the initial expansion until t=80
and the consequent breathing oscillation of the BEC are
clearly illustrated.

IV. CONCLUSION

In this paper, using the numerical solution of the GP equa-
tion, we studied the localization of a noninteracting BEC in a
quasiperiodic 1D OL potential prepared by two overlapping
polarized standing-wave laser beams with different wave-
lengths and amplitudes. Specifically, we considered two ana-
lytical forms �sine and cosine� of the OL potential. We stud-
ied the effect of the variation of wavelengths and amplitudes
on the localization. We also studied the nonlinear dynamics
when a BEC is released from a 1D harmonic trap into a
quasiperiodic 1D OL trap. After release, the BEC first ex-
pands �from the tightly bound harmonic-oscillator bound
state� and then the expansion is stopped and the BEC is
found to be trapped into one of the localized states in the
quasiperiodic OL potential, as observed by Billy et al. �5�.

We also studied the effect of a repulsive atomic interac-
tion on localization. It is found that a repulsive atomic inter-
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FIG. 5. �Color online� Typical density distribution �2�z� vs z for
an interacting BEC for different g2Nâ /a� for �a� potential �4�
and �b� potential �3� for �1=4, �2 /�1=0.86, s1=2, and s2 /s1=0.2.
The quasiperiodic OL potential V�z� is plotted in arbitrary units. �c�
The rms size vs nonlinearity g of the stable condensate in the qua-
siperiodic potentials �3� �cosine� and �4� �sine� for �1=4, �2 /�1

=0.86, s1=2, and s2 /s1=0.2. All quantities plotted are in dimen-
sionless units.
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action destroys the localization. We studied the route to this
destruction of localization in some details. In particular, we
investigated the localization as the nonlinearity g2Nâ /a�

of the nonlinear 1D GP equation is increased. It is found that
as g is gradually increased, the localization is slowly weak-
ened with the localized state extending over a large space
domain. Eventually, for g greater than about 6 or so, the
localization is destroyed.

There have been previous studies of some aspects of the
localization of a BEC in a quasiperiodic potential �15� and
also its destruction �18�. �It should be noted that the present
study is mostly complimentary to these previous studies
rather than overlapping.� However, in the present study, we
consider a direct numerical solution of the GP equation as

opposed to a solution of the DNLSE used in the previous
studies. In view of the rapidly oscillating nature of the qua-
siperiodic OL potential and of the solution of the nonlinear
equation, the results of the direct numerical solution of the
GP equation, as used in the present investigation, should be
more useful for a direct comparison to the experiments.

Note added in proof. Recently, we became aware of simi-
lar works �30�.
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