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We study spectral properties of some discrete Dirac operators with nonzero potential
only at some sparse and suitably randomly distributed positions. As observed in
the corresponding Schrödinger operators, we determine the Hausdorff dimension of
its spectral measure and identify a sharp spectral transition from point to singular
continuous. C© 2011 American Institute of Physics. [doi:10.1063/1.3600536]

I. INTRODUCTION

Sparse potentials have played a special role in the context of discrete (also called “tight-
binding”) Schrödinger operators, particularly due to the possibility of rather detailed spectral
and dynamical analysis, which makes such investigations especially interesting (see, for instance,
Refs. 1, 4, 12, 16, 20, 28, and 31). Pearson21 was the first to recognize the utility of this kind
of potential on the construction of Schrödinger operators with singular continuous spectrum (see
Chapter 13 in Ref. 6 for dynamical interpretations of different spectral types). There are many works
that deal with sparse potentials, related to distinct sparseness conditions and “barriers” with distinct
growing rate (see the above mentioned references and Ref. 18 for a brief discussion and a collection
of results).

In the works,7, 8 two of the present authors have proposed a discrete version of the unidimensional
Dirac operator, now defined on l2(Z,C2), which can be considered a relativistic version of the usual
discrete Schrödinger operator (with Planck’s constant � ≡ 1),

(HSψ)n = − 1

2m
(�ψ)n + Vnψn = 1

2m
(ψn+1 + ψn−1 − 2ψn) + Vnψn, (1.1)

where (Vn) is the potential given by a real sequence and m > 0 denotes the particle mass. Explicitly,
the action of the discrete Dirac operator is given by

(HD)(m, c) = H0(m, c) + V I2 = cB + mc2σ3 + V I2, (1.2)

where c > 0 represents the speed of light,

B =
(

0 d∗

d 0

)
,

σ3 is the Pauli matrix

(
1 0
0 −1

)
, I2 is the 2 × 2 identity matrix, and d is the finite difference operator

(a discrete version of the first derivative),

(dψ)n = ψn+1 − ψn,
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with its adjoint given by (d∗ψ)n = ψn − ψn−1; thus, H0(m, c) is a bounded self-adjoint operator
with the mass parameter taking values m ≥ 0, an important difference with respect to nonrelativistic
models.

The resulting Dirac evolution equation can be written in the compact form,

i
∂�n

∂t
= (HD(m, c)�)n =

(
mc2 + Vn cd∗

cd −mc2 + Vn

)
�n, (1.3)

with the “spinorial” wave function � = (�n), with �n =
(

ψ1,n

ψ2,n

)
, where ψ1,n and ψ2,n are the

solutions associated, respectively, with positive and negative energy values (see, for instance, Chapter
3 in Refs. 25 or 29). It is possible to show7, 8 that the nonrelativistic limit (c → ∞) of such Dirac
operator is the corresponding Schrödinger operator (1.1), as one would expect.

In a previous work,22 some lower bounds of the dynamics generated by HD(m, c) with sparse
potentials have been obtained. In the present work, we continue our investigations on the discrete
Dirac operator with sparse potentials by presenting a detailed analysis of spectral properties of (1.2)
defined in l2(Z+,C2) (here Z+ represents the set of all non-negative integers n ≥ 0), satisfying the
boundary condition,

ψ2,−1 cos φ − ψ1,0 sin φ = 0 , (1.4)

with φ ∈ [0, π ], and subject to randomly sparse perturbations composed of infinitely many vertical
“barriers” whose distances from consecutive barriers are rapidly growing. These barriers may assume
distinct sizes, that grow, diminish, or remain constant. The randomness in the distribution will play a
fundamental role in the determination of the exact Hausdorff dimension of the spectral measure. We
will consider a set {a j } j≥1 of a rapidly increasing sequence of natural numbers, so that the potential
Vn = 0 if n /∈ {a j } j≥1 and nonzero Va j ; see ahead for precise statements.

We, nevertheless, emphasize the results obtained by Zlatoš31 in the context of Schrödinger
operators, who has proved the existence of a transition between pure point and singular continuous
spectra for a class of sparse operators such that {Va j }∞j=1 is a constant sequence. Depending on the
sparseness and on the intensity of the barriers, it is possible to have pure point or singular continuous
spectrum, and with an explicit determination of the Hausdorff dimension of the spectral measure.

A similar deterministic model was proposed in Ref. 20, but with off-diagonal perturbations.
Carvalho et al.1 extended this operator to the strip 	 := Z+ × {0, 1, . . . , L − 1} of width L in the
Z2

+ plane, obtaining the Hausdorff dimension associated with its spectral measure with arbitrary
precision. In Ref. 2, the same authors have dealt with a modification of the (unidimensional)
Schrödinger model proposed in Ref. 20, in which they have considered some randomness in the
position of the barriers, and this has allowed the determination of the exact Hausdorff dimension of
the spectral measure.

Hence, by taking into account our previous study,22 it is natural to try to extend these spectral
results obtained for Schrödinger operators to the Dirac model. In order to achieve our goal, we apply
and extend to this new situation the main techniques discussed in Refs. 1 and 2. This work is to be
considered a natural continuation of Ref. 22.

Despite some results obtained here are valid for a rather general class of potentials, we deal
essentially with the sequence (Vn(ω)) of barriers given by

Vn =
{

v if n = aω
j ∈ A ,

0 if n �∈ A ,
(1.5)

where v �= 0,−∞ < v < ∞ and A = (aω
j ) j≥1 is a random sequence of natural numbers written in

the form aω
j = a j + ω j such that a j satisfies

a j − a j−1 ≥ 2, j = 2, 3, . . . (1.6)

and

lim
j→∞

a j+1

a j
= β > 1;
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ω = (ω1, ω2, . . .) represents a sequence of independent random variables defined on a probability
space (�,B, ν), so that there is some η > 0 with ω j uniformly distributed over the finite set
{0, 1, 2, . . . , [ jη]}, for all j (here, [x] denotes the integer part of x ∈ R).

Condition (1.6) makes each barriers placed at a unique point, with β the “sparseness parameter.”
In order to simplify our analysis, we follow20 and restrict the separation between barriers by the
identity

a j − a j−1 = β j , j = 2, 3, . . . (1.7)

with a1 + 1 = β ≥ 2 an integer (we might have considered any real number β > 1 and rewrite
(1.7) as a j − a j−1 = [β j

]
, j = 2, 3, . . .). Summing up, the distance between (average) consecutive

nonzero potential positions grows exponentially with an additional power-law randomness; thus,
there is no superpositions among the barriers, for any η > 0 (this is an improvement with respect to
Zlatoš’s work that has considered η = 1).

Definition 1.1: Denote by Hv,φ(m, c), the Dirac operator (1.2) acting on l2(Z+,C2), with
potential (Vn(ω))n≥0 satisfying (1.5) and (1.7), and the φ-boundary condition (1.4) at n = −1. This
will be the main object of study here.

Besides the verification of a huge amount of technical details and suitable adaptations, the main
difficulties we have found in such extension to the (Dirac) relativistic framework were as follows:

• The nonlinearities in the Dirac transfer matrices entries (as functions of energy and potential
values) when compared with the Schrödinger case; see Eq. (3.2).

• In contrast to the block-Jacobi matrices in Ref. 1, the spectral matrix � in the Dirac case (see
Proposition 2.3) reflects the impossibility of decoupling the upper and lower spinor components.

• Finding explicit expressions for the Green’s function; see Eq. (2.5) (it has involved a trial and
error process while handling the exact matrix form and indices!).

• Finding a formula for variation of parameters (Lemma 4.4) was nontrivial and it also involved a
trial and error process, and this was fundamental for an appropriate version of the Jitomirskaya-
Last inequalities for Dirac operators (Theorem 4.3).

• Checking the validity of the spectral criteria of Last-Simon (see Proposition 4.5 and
Corollary 4.8 for examples of application of these criteria), whose long details are not reported
here.

We note that in the process of adaptation of known results to the relativistic setting, we will
avoid repeating the arguments and just present references when a proof turns out to be quite similar
to the corresponding one for Schrödinger operators (e.g., the spectral criteria of Last-Simon just
mentioned).

Remark 1.2: The operator Hv,φ(m, c) with φ-phase boundary condition (1.4) may be treated as
a rank-one perturbation of the same Dirac operator with Dirichlet boundary condition,

ψ2,−1 = 0. (1.8)

As a matter of fact, if Hv,0(m, c) represents the operator which satisfies (1.8), we have

Hv,φ(m, c) = Hv,0(m, c) + E0 tan φ,

where E0 is an operator on l2(Z+,C2) given by (E0�)n =
(

0
ψ2,nδn,0

)
, δn,0 = 1 if n = 0 and zero

otherwise.

A. Main results

In this subsection, we state the main results and conclusions of this work. Their proofs will
be discussed in Secs. II–IV. Such results can be shortly described as follows: determination of the
essential spectrum of Hv,φ(m, c) along with the exact Hausdorff dimension of the spectral measure
and proving the existence of a spectral transition.
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What happens with the essential spectrum of H0,0(m, c) (obtained in Proposition (2.13)) when
we consider the sparse barriers? This question is settled by the following theorem, whose proof is
presented in Subsection II B.

Theorem 1.3: Let Hv,φ(m, c) be the Dirac operator in Definition 1.1 and let

H ′
0,0(m, c) = H0,0(m, c) + vδ0I2, (1.9)

where (δ0ψ)n = δn,0ψn for any ψ ∈ l2(Z+,C). Then, σess(Hv,φ(m, c)) = σ (H ′
0,0(m, c)).

For the Hausdorff dimension, we have

Theorem 1.4: Let � be the spectral matrix measure of Hv,φ(m, c), given by Definition 1.1,
and the sparseness parameter β ≥ 2. Then � is absolutely continuous with respect to the spectral
measure ρ introduced in (2.7). Given ε > 0 and a closed interval of energies

L ⊂ I =
[
−
√

m2c4 + 4c2,−mc2
]

∪
[
mc2,

√
m2c4 + 4c2

]
, (1.10)

for almost every φ ∈ [0, π ] and almost every ω ∈ �, the spectral measure ρ restrict to L has
Hausdorff dimension

αρ(E) = max

{
0, 1 − ln r

ln β

}
, (1.11)

with r = r (v, E) given by (3.16).

With respect to the existence of spectral transitions, now we state a result parallel to
Theorem 2.4 in Ref. 2.

Theorem 1.5: Write

I1 ≡ {E ∈ σ (H0,0(m, c)) \ A : r < β
}

(1.12)

with β ∈ N, β ≥ 2 and A as in (4.13). Then, for ν-almost every ω ∈ �, there exists a set A1 of
Lebesgue measure zero such that:

(a) the spectrum of Hv,φ(m, c) restricted to the set I1\A1 is purely singular continuous;
(b) the spectrum of Hv,φ(m, c) is pure point when restricted to σ (H0,0(m, c)) \ I1 for almost

every φ ∈ [0, π ].

Theorem 1.5 shows that there exists a sharp transition between singular continuous and pure
point spectrum. Note from (1.11) that the condition for the Hausdorff dimension to be positive is the
same for the existence of singular continuous spectrum, i.e., β > r . In fact, the set of energies for
which the Hausdorff dimension is zero coincides with the set where the pure point spectrum is
supported. This result, due to Theorem 1.5 is, nevertheless, far from trivial. Note also that there is
no absolutely continuous spectrum for this class of sparse potentials.

The proofs of Theorems 1.4 and 1.5 are both presented in Subsection IV B. Despite some
obvious differences due to the intrinsic nature of the Schrödinger and Dirac tight-binding models,
if we compare the results just stated with those obtained in Refs. 1, 2, and 31 for sparse potentials
satisfying relations (1.5)–(1.7), we have got quite similar statements; this does not seem to be clear
from the actions of the corresponding operators and the different forms of their transfer matrices. In
any event, recall that only in the relativistic case it is meaningful to consider m = 0.

II. THE SPECTRUM OF Hv,φ(m, c)

A. Green function and the spectral matrix

It is well known that the spectral properties of any other self-adjoint operator are directly related
to the behavior of the Green function G(z), for z = E + iε, in the limit ε ↓ 0.
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In the case of the discrete Dirac operator, the expression of the Green function G(z) we introduce
here is nothing but the 2 × 2 matrix G(0, 0; z), whose elements are given by

Gm,n(0, 0; z) = 〈em ⊗ δ0, (Hv,0 − zI2)−1en ⊗ δ0〉, (2.1)

m, n = 1, 2, where the sequence {δn}n≥0 represents the canonical basis for l2(Z+,C), while e1

=
(

1
0

)
, e2 =

(
0
1

)
is the canonical basis forC2; thus, the sequence {e1 ⊗ δn, e2 ⊗ δn}n≥0 constitutes

a basis for l2(Z+,C2), a linear space with scalar product denoted by 〈·, ·〉.
Remark 2.1: The results presented in this subsection refer to the operator Hv,0(m, c), with

Dirichlet boundary condition (1.8). See Remark 2.7 for a discussion of the results regarding the
operator Hv,φ(m, c).

Explicitly, G(z) is given by

G(z) = 1

c

(
uD

1,0(z)χ1,0(z) uD
1,0(z)χ2,0(z)

uD
1,0(z)χ2,0(z) uD

2,0(z)χ2,0(z)

)
, (2.2)

where χn(z) =
(

χ1,n(z)
χ2,n(z)

)
= −uN

n (z) + m(z)uD
n (z) is a l2(Z+,C2) is the solution to the Dirac equa-

tion

Hv,0� = z�; (2.3)

for some fixed z, the set of all solutions to (2.3) is a linear space of dimension 2 (the Dirac equation
(2.3) is in fact a system of two differential equations of first order), whose appropriate basis is given
by the functions uD(z) and uN (z) satisfying the initial conditions,

uD
2,−1 = 0 , uD

1,0 = 1 ,

uN
2,−1 = 1 , uN

1,0 = 0 ,
(2.4)

which correspond to Dirichlet and Neumann boundary conditions, respectively; finally, m(z) is the
well-known Weyl-Titchmarsh function.3

Equation (2.1) is in fact a special case derived from the general formula

G(i, j ; z) = 1

c

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
uD

1, j (z)χ1,i (z) uD
2, j (z)χ1,i (z)

uD
1, j (z)χ2,i (z) uD

2, j (z)χ2,i (z)

)
, if j + 1 ≤ i,

(
uD

1,i (z)χ1, j (z) uD
1,i (z)χ2, j (z)

uD
2,i (z)χ1, j (z) uD

2,i (z)χ2, j (z)

)
, if j ≥ i,

(
u D

1,i (z)χ1,i (z) uD
1,i (z)χ2,i (z)

uD
1,i (z)χ2,i (z) uD

2,i (z)χ2,i (z)

)
, if j = i

(2.5)

(note that the matricial function defined above is continuous at j = i).

Remark 2.2: The matrix G(i, j ; z) is nothing but the integral kernel of the resolvent operator
(Hv,0 − zI2)−1; therefore, it must satisfy the identity( ∞∑

k=0

(
Hv,0(m, c)

)
ik G(k, j ; z)

)
lm

= δi jδlm,

i, j ∈ Z+, l, m = 1, 2. This assertion can be checked by direct substitution.

If {P�} is a family of spectral projections with respect to the Borel subsets � ⊂ R, it follows by
the spectral theorem that

G(z) =
∫ ∞

−∞

d�(λ)

λ − z
,
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where �m,n = 〈em ⊗ δ0, PE en ⊗ δ0〉, m, n = 1, 2 are the elements of the spectral matrix � of Hv,0.

Since e1 ⊗ δ0 =
(

δ0

0

)
, e2 ⊗ δ0 =

(
0
δ0

)
are cyclic vectors in l2(Z+,C2), it is sufficient to deal with

this spectral measure, since any other will be absolutely continuous with respect to (�m,n)2
m,n=1.

Explicitly, we have

G(z) = 1

c

⎛⎝ m(z) −1 + m(z) mc2−z+V0
c

−1 + m(z) mc2−z+V0
c

mc2−z+V0
c

(
−1 + m(z) mc2−z+V0

c

)⎞⎠ ,

and the imaginary part of G(z) is

�G(z) = 1

c

(
�m(z) −�z

c �m(z) + �a�m(z)

−�z
c �m(z) + �a�m(z) −�z

c + �m(z)�a2 + �m(z)�a2

)
, (2.6)

with a ≡ (mc2 − z + V0)/c. Hence, we conclude that the most important spectral properties of
Hv,0(m, c) depend on the boundary behavior of the function �m(E + iε) as ε ↓ 0 (since limε↓0 �a
= limε↓0 �z = 0).

It follows from the definition of m(z) and Theorem 3.1 in Chapter 9 of Ref. 3 that

m(z) =
∫ ∞

−∞

dρ(λ)

λ − z
, (2.7)

with ρ(λ) denoting a nondecreasing function of bounded variation, continuous to the right and
that satisfies the limits limλ→−∞ ρ(λ) = 0 and limλ→∞ ρ(λ) = 1. The next result is crucial to our
analysis.

Proposition 2.3: The spectral matrix measure � is absolutely continuous with respect to the
Borel-Stieltjes measure ρ. Furthermore, there exists a symmetric and non-negative matrix Y (E)
such that

d�(E) = Y (E)dρ(E), (2.8)

with

Y (E) = 1

c

⎛⎝ 1 mc2−E+V0
c

mc2−E+V0
c

(
mc2−E+V0

c

)2

⎞⎠ . (2.9)

Proof: By the Radon–Nikodym theorem, � is absolutely continuous with respect to ρ if, and
only if, there exists a symmetric integrable matrix Y (E) such that (2.8) is valid for every E . Moreover,
the elements of the matrix Y (E) are given by

Yi j (E) = d�i j (E)

dρ(E)
= lim

ε↓0

�Gi j (E + iε)

� m(E + iε)
, (2.10)

where the last equality comes from the Borel-Stieltjes inversion formula applied to � and ρ (see the
Appendix of Ref. 30).

We obtain (2.9) simply plugging (2.6) into (2.10). Observe that Y (E) is a symmetric integrable
matrix (i.e., Y (E) ∈ L1(R, dρ)). This concludes the proof of the proposition. �

Proposition 2.3 shows that the most important features of the spectral matrix measure �,
such as its continuity or singularity with respect to Lebesgue and Hausdorff measures, are entirely
determined by the Borel-Stieltjes measure ρ.

To deal with the spectral multiplicity issues, we need the following

Definition 2.4: The sesquilinear form

〈f, g〉 =
∫
R

2∑
i, j=1

f ∗
i (E)g j (E)d�i j (E), (2.11)

Downloaded 18 Jul 2013 to 200.130.19.215. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions



073501-7 Sparse 1D discrete Dirac operators II: Spectral J. Math. Phys. 52, 073501 (2011)

defined for fi , gi ∈ L2(R,C, dρ) is non-negative provided ‖f‖2 = 〈f, f〉 ≥ 0 holds in this
space.

Let us consider the sesquilinear form (2.11). Suppose that f is a simple function, that is,

f(E) =
n∑

l=1

χBl (E)( fl,1, fl,2), where ( fl,1, fl,2) ∈ C2 and Bl are disjoint Borel sets. For this class of

functions, (2.11) is a non-negative sesquilinear form. If f is such that fi ∈ L2(R,C, dρ), we can
approximate f by simple functions in order to obtain ‖f‖ ≥ 0. We have, as a consequence, a separable
Hilbert space L2(R,C2, d�) with scalar product (2.11).

Next, since the operator Hv,0(m, c) satisfies Weyl’s limit point case (see also Ref. 30),
there exists a unitary transformation Ũ : l2(Z+,C2) −→ L2(R,C2, d�) such that Hv,0(m, c)
= Ũ−1 H̃v,0(m, c)Ũ , where H̃v,0(m, c) : L2(R,C2, d�) −→ L2(R,C2, d�) is a multiplication op-
erator (see, e.g., Theorem 2.12 of Ref. 30).

As for Schrödinger operators, we have the following result, whose proof is a direct extension
of Lemma B.13 of Ref. 30:

Lemma 2.5: The set σ (ρ) := {E ∈ R : ρ((E − ε, E + ε)) > 0 for all ε > 0} is precisely the
spectrum σ (H̃v,0(m, c)) of the multiplication operator H̃v,0(m, c)f(E) = Ef(E), with domain
D(H̃v,0(m, c)) = {f ∈ L2(R,C2, d�) | Ef(E) ∈ L2(R,C2, d�)}.

Next, there exists a measurable unitary matrix F(E) which diagonalizes Y (E); that is,

Y (E) = F−1(E)

(
y1(E) 0

0 y2(E)

)
F(E),

where yi (E), i = 1, 2, are the integrable eigenvalues of Y (E). The matrix F(E) provides a unitary
operator

L2(R,C2, d�) → L2(R, y1dρ) ⊕ L2(R, y2dρ), f(E) �→ Ff(E),

which leaves H̃v,0(m, c) invariant (with respect to the scalar product defined in L2(R,C2, d�)). This
permits us to investigate the spectral multiplicity of H̃v,0(m, c).

Lemma 2.6: The spectral multiplicity of H̃v,0(m, c) is 1.

Proof: Evaluating y1(E) and y2(E) explicitly, we obtain y1(E) = 0 and y2(E) = (1 + a2)/c,
where a = (mc2 − E + V0)/c. Thus,

L2(R,C2, d�) = {0} ⊕ L2(R, y2dρ) = L2(R, y2dρ).

Hence, H̃v,0(m, c) is equivalent to multiplication by E on L2(R, dρ), since y2(E)dρ(E) and
dρ(E) are mutually absolutely continuous. �

Remark 2.7: It is possible to show that we obtain similar results for the operator Hv,φ(m, c), i.e.,
with boundary condition (1.4). For this problem, we must adopt as a basis of the space of solutions
the functions uφ(z) and uφ∗

(z) (with φ∗ = φ + π/2), which satisfy the initial conditions

uφ

2,−1 = sin φ , uφ

1,0 = cos φ ,

uφ∗
2,−1 = cos φ , uφ∗

1,0 = − sin φ .

The result of Lemma 2.5 extends naturally, as well as the result of Proposition 2.3, except for the
Radon–Nikodym derivative, now given by

Y (E) = 1

c

⎛⎜⎝ cos2 φ cos φ
(

mc2−E+V0
c + cos φ sin φ

)
cos φ

(
mc2−E+V0

c + cos φ sin φ
) (

mc2−E+V0
c cos φ + sin φ

)2

⎞⎟⎠ ; (2.12)

the same situation holds for Lemma 2.6, with the eigenvalues of (2.12) given now by y1 = 0 and
y2 = [cos2 φ + ((mc2 − E + V0)/c + sin φ

)2
]/c.
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B. The essential spectrum

Before we deal with the essential spectrum of Hv,φ(m, c), it would be interesting to characterize
the spectrum of the free operator H0,0(m, c) (Ref. 8) and its spectral matrix measure.

Proposition 2.8: The spectrum of the free operator is given by the intervals

σ (H0,0(m, c)) =
[
−
√

m2c4 + 4c2,−mc2
]

∪
[
mc2,

√
m2c4 + 4c2

]
. (2.13)

Moreover, the spectral matrix measure � is purely absolutely continuous (with respect to the
Lebesgue measure �) in these intervals.

Proof: In order to prove this proposition, we will determine the exact behavior of the function
m(E + iε) as ε ↓ 0.

After some manipulations, it follows by (1.3) that(
−� − m2c4 − z2

c2

)
ψ j,n = 0 , n ∈ Z+,

where ψ j , j = 1, 2, are the components of the spinor �.
Since m(z) is uniquely defined imposing that � = −uN + m(z)uD is l2(Z+,C2), it is simple to

obtain

m(z) = −w

2
+
√

w2

4
− 1,

with w = [m2c4 − z2 + 2c2]/c2. Now, put

� m(E) = lim sup
ε↓0

� m(z), z = E + iε,

and let L(ρ) be the set of all E ∈ R for which this limit exists. It is known (see Appendix B of
Ref. 30) that the minimal (or essential) supports M, Mac, and Ms of ρ, the absolutely continuous
part ρac and the singular part ρs of ρ, with respect to the Lebesgue measure in R, are, respectively,
given by E ∈ L(ρ) such that 0 < � m(E) ≤ ∞, 0 < � m(E) < ∞ and � m(E) = ∞. These criteria
can be obtained by de la Vallée-Poussin’s decomposition theorem,24 the Radon–Nikodym theorem
and the following application of Lemma 3 in Ref. 11.

Lemma 2.9: If the Radon–Nikodym derivative (dρ/d�)(E) exists and takes values in [0,∞],
then � m(E) also exists and (dρ/d�)(E) = (1/π )� m(E) (� is the Lebesgue measure on R).

Since

lim
ε↓0

� m(E + iε) =
⎧⎨⎩
√

(E2 − m2c4)(m2c4 + 4c2 − E2)

2c2
, if E2 ∈ [m2c4, m2c4 + 4c2],

0, otherwise,

it follows by the above criteria and Proposition 2.3 that the spectral matrix measure � is purely ab-
solutely continuous on the interval defined by (2.13); moreover, the essential spectrum of H0,0(m, c)
coincides with its own spectrum. This conclude the proof of the proposition. �

Remark 2.10: As we have discussed in Remark 1.2, the operator Hv,φ(m, c) with bound-
ary condition (1.4) at n = −1 may be written as a rank-one perturbation of Hv,0(m, c); hence,
σess(Hv,φ(m, c)) = σess(Hv,0(m, c)), by Weyl’s criterion (see, for instance, Sec. 11.3 of Ref. 6). Thus,
it is sufficient to deal with Hv,0(m, c) in order to determine the essential spectrum of Hv,φ(m, c).

We are now ready to prove Theorem 1.3.

Proof: (Theorem 1.3) By taking into account the above results and Remark 2.10, the proof
of Theorem 1.3 reduces to a direct extension of Theorem 3.13 in Ref. 5 to the discrete Dirac
operator. �

The eigenvalues of H ′
0,0(m, c) are isolated points of the essential spectrum of Hv,0(m, c); hence,

they cannot belong to the continuous spectrum of Hv,0(m, c), neither be eigenvalues of infinite
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multiplicity (since we have a unidimensional problem). Thus, they must be accumulation points of
the discrete spectrum of Hv,0(m, c).

Since the operator H ′
0,0(m, c) is a rank-one perturbation of H0,0(m, c), it follows that its spectrum

is the union of the interval (2.13) with the possible addition of a finite number of isolated points.
Thus, it follows by Theorem 1.3 that the essential spectrum of Hv,φ(m, c) has the same structure.

III. TRANSFER MATRICES AND PRÜFER VARIABLES

In order to determine the exact Hausdorff dimension of the spectral matrix measure � and,
consequently, the spectral nature of Hv,φ(m, c), we study the exact asymptotic behavior of the
solutions to the Dirac eigenvalue equation

Hv,φ(m, c)� = E�, (3.1)

with E ∈ R; this is an important step in our approach. It is here that the concepts of transfer matrix
and Prüfer variables play a fundamental role. What follows is an adaptation of the material presented
in Sects. 2 and 4 of Ref. 20 to the Dirac operator setting.

For E ∈ C, let

T (n, n − 1; E) =

⎛⎜⎜⎝ 1 + m2c4 − (E − Vn)2

c2

mc2 + E − Vn

c

mc2 − E + Vn

c
1

⎞⎟⎟⎠ (3.2)

be the 2 × 2 transfer matrix associated with the l2(Z+,C2) solution to the Dirac equation (3.1) (see
Refs. 7 and 8).

The equation (
ψ1,n+1

ψ2,n

)
= T (n, n − 1; E)

(
ψ1,n

ψ2,n−1

)

holds for n ≥ 0, with

(
ψ1,0

ψ2,−1

)
=
(

cos φ

sin φ

)
satisfying (1.4) for some φ ∈ [0, π ]. Another important

tool is the product of the n + 1 first transfer matrices, denoted by

T (n; E) = T (n, n − 1; E)T (n − 1, n − 2; E) . . . T (0,−1; E). (3.3)

Given the values (1.5) of the potential Vn and the sparseness condition (1.7), only two different
2 × 2 matrices appear on the rhs of (3.3): that is,

Tv(E) =

⎛⎜⎜⎝ 1 + m2c4 − (E − v)2

c2

mc2 + E − v

c

mc2 − E + v

c
1

⎞⎟⎟⎠
and

T0(E) =

⎛⎜⎜⎝ 1 + m2c4 − E2

c2

mc2 + E

c

mc2 − E

c
1

⎞⎟⎟⎠
occur depending on the entry n in (3.2) being or not aω

j ∈ A.

Let E = ±
√

m2c4 + 2c2(1 − cos ϕ), with ϕ ∈ [0, π ), be parametrizations of the intervals (2.13).
Now note that, for such energies, the free matrix T0(E) is similar to a purely clockwise rotation
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R(ϕ), that is,

U T0(E)U−1 =
⎛⎝ cos ϕ sin ϕ

− sin ϕ cos ϕ

⎞⎠ = R(ϕ), (3.4)

where

U ≡

⎛⎜⎝−mc2 − E

c sin ϕ
−1 − cos ϕ

sin ϕ

0 1

⎞⎟⎠ .

Note also that U is not uniquely defined since any other matrix U ′ = HU , with H commuting with
R, satisfies (3.4).

Since the product of rotation matrices is also a rotation, we obtain

U T (n; E)U−1 = R((n − aω
k )ϕ)P(E)R((aω

k − aω
k−1)ϕ) · · · P(E)R((aω

1 + 1)ϕ) (3.5)

as the conjugation of (3.3) by U−1, for every n ∈ N and ω j ∈ {0, , 1, 2, . . . , [ jη]}, j ≥ 1; k is an
integer such that aω

k ≤ n < aω
k+1; P(E) is defined by

P(E)R(ϕ) = U Tv(E)U−1

=

⎛⎜⎝1 + vE+
2c2 − v2

c2 − v
2c2

√
E+ E−

F

(
E+ − 4c2

E+
− 2v

)
− v

2c2

√
E+ F
E−

1 − vE+
2c2

⎞⎟⎠ , (3.6)

where E+ = E + mc2, E− = E − mc2, and F = m2c4 + 4c2 − E2.
Next we consider the following change of variables, known as EFGP transform:

vk :=
(

Rk cos θω
k

Rk sin θω
k

)
= U

(
ψ1,k

ψ2,k−1

)
=
(

(E−mc2)ψ1,k/c−(1−cos ϕ)ψ2,k−1

sin ϕ

ψ2,k−1

)
, (3.7)

The variables Rk and θω
k are called, respectively, Prüfer radii and angles. Observe that the Prüfer

angles are random variables, since ω j are randomly distributed. The Prüfer radii, on the other hand,
are random variables only as a function of the Prüfer angles, and their dependence on ω will be
omitted.

Remark 3.1: The convention we have employed here differs from the convention in Ref. 14,
since the functions cos θk and sin θk are exchanged. Nevertheless, the behavior of the Prüfer variables
are identical in both conventions.

We nonetheless use a slightly different expression of (3.7), more adequate to relation (3.5).
Given the vectors

vk = (Rk−1 cos θω
k , Rk−1 sin θω

k

)
, ṽk = (Rk cos θ̃ω

k , Rk sin θ̃ω
k

)
,

the Prüfer variables
(
Rk, θ

ω
k

)
k≥0 satisfy a recurrence relation induced by

vk = R((aω
k − aω

k−1)ϕ)ṽk−1 (3.8)

and

ṽk = P(E)vk, (3.9)

with v1 = R((aω
1 + 1)ϕ)ṽ0,

ṽ0(θ0) = R0

(
cos θ0

sin θ0

)
= U

(
cos φ

sin φ

)
=
(

(E−mc2)/c cos φ−(1−cos ϕ) sin φ

sin ϕ

cos φ

)
,

R2
0 =

(
((E − mc2) cos φ)/c − (1 − cos ϕ) sin φ

sin ϕ

)2

+ cos2φ.
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Thus, if ψn = (ψ1,n, ψ2,n−1
)

represents a solution to (3.1) satisfying the initial conditions
u0 = (cos φ, sin φ), then

R(ϕ)ṽk = Uuak+1.

By equivalence of norms, the growth of T (n; E) may be controlled by the euclidean norm (see
Sec. 4 of Ref. 20 for details)

‖U T (n; E)U−1v0‖2 = ‖U T (aω
N + 1; E)U−1v0‖2 = R2

N ,

where the equality holds for any unit vector v0 = (cos θ0, sin θ0) and for each n such that aω
N ≤ n

< aω
N+1. Thus, from Eqs. (3.8), (3.9), and (3.6), R2

N can be written as

(RN )2 = (R0)2
N∏

n=1

(
Rn

Rn−1

)2

= (R0)2

(
exp

{
1

N

N∑
n=1

ln f
(
θω

n , ϕ
)})N

. (3.10)

with

f (θω, ϕ) := (A(ϕ) cos θω + B(ϕ) sin θω)2 + (C(ϕ) cos θω + D(ϕ) sin θω)2
, (3.11)

where A(ϕ) = 1 + v(E+mc2)
2c2 − v2

c2 , D(ϕ) = 1 − v(E+mc2)
2c2 ,

B(ϕ) = − v

2c2

√
E2 − m2c4

m2c4 + 4c2 − E2

(
E + mc2 − 4c2

E + mc2
− 2v

)
,

and

C(ϕ) = − v

2c2

√
(E + mc2)(m2c4 + 4c2 − E2)

E − mc2

are the entries of P(E).
The Prüfer angles (θω

k )k≥1 are, on the other hand, obtained recursively by

θω
k = tan−1

(
C + D tan θω

k−1

A + B tan θω
k−1

)
− (βk + ωk − ωk−1)ϕ (3.12)

for k > 1, with θω
1 given by θω

1 = θ0 − (a1 + ω1)ϕ.
Hence, the determination of the exact asymptotic behavior of the sequence (Rn(θ0))n≥1 involves

an estimate of the Birkhoff-like sum

1

N

N∑
n=1

ln f
(
v, θω

n

)
, (3.13)

for N large, which, on the other hand, depends on the distribution properties of the sequence
(
θω

n

)
n≥1

of the Prüfer angles. The tool that intertwines these elements is the following theorem (recall that
a sequence w = (xn)n≥1 is said to be uniformly distributed modulo π (u. d. mod π ) if it is equally
distributed, in fractional portions, over half open subintervals of [0, π )).

Theorem 3.2 (Theorem 1.1 in Ref. 15): The sequence w = (xn)n≥1 of real numbers xn ∈ [0, π )
is u. d. modπ , if and only if, for every continuous real function h defined on the closed interval
I = [0, π ], we have

lim
N→∞

1

N

N∑
n=1

h({xn}) = 1

π

∫ π

0
h(x)dx . (3.14)

Theorem 3.2 provides a criterion that permits the substitution, on the asymptotic limit N → ∞,
of the average (3.13) by the integral

1

π

∫ π

0
ln f (v, θ )dθ,
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in case the sequence
(
θω

n

)
n≥1 of the Prüfer angles is u. d. mod π and ln f (v, θ ), with f (v, θ ) given

by (3.11), is a periodic Riemann integrable function of period π .

Lemma 3.3: The function h(θ ) := ln f (v, θ ) is a periodic Riemann integrable function of period
π , whose average is given by

1

π

∫ π

0
h(θ )dθ = ln r (v, E), (3.15)

with

r (v, E) = 1 + 1

(m2c4 + 4c2 − E2)

v2

c2

[
(E2 − m2c4)2 + 4m2c6

(E2 − m2c4)
− 4vE + 2v2

]
. (3.16)

Proof: The proof of the lemma is an adaptation of some results presented in Sec. IV in
Ref. 20. �

Lemma 3.3 and Theorem 3.2 provide a precise estimate for the asymptotic limit of the “time
average” (3.13) under the hypothesis of the u. d. mod π of the sequence

(
θω

n

)
n≥1 of Prüfer angles.

Lemma 3.4: Let (Rn(θ0))n≥1 be the sequence of the Prüfer radii which satisfy the initial conditions
v0 = (cos ϑ, sin ϑ). Suppose there is a set A ⊂ R of null Lebesgue measure so that the sequence(
θω

n

)
n≥1 of the Prüfer angles is u. d. mod π for ϕ ∈ [0, π )\A. Then,

C−1
N r N ≤ (RN (θ0))2 ≤ CN r N , (3.17)

where CN is a real number such that CN > 1 and limN→∞ C1/N
N = (R0)2, with r given by (3.16).

Proof: The inequalities (3.17) follow from the hypotheses of the lemma, by Eqs. (3.10) and
(3.15) and the estimate∣∣∣∣∣ 1

N

N∑
n=1

ln f
(
v, θω

n

)− 1

π

∫ π

0
ln f (v, θ )dθ

∣∣∣∣∣ ≤ C D∗
N ,

where

D∗
N (θ ) = D∗

N (θ1, . . . , θN ) = sup
0<ϑ≤π

∣∣∣∣card({k : θkmod π ∈ [0, θ ), 1 ≤ k ≤ N })
N

− ϑ

∣∣∣∣
is the so-called discrepancy of the sequence (θn)n≥1 (see Ref. 15 for an ample discussion on
discrepancy) and C is some positive constant. For the second part of the lemma, we need

Theorem 3.5 (Corollary 1.1 of Chapter 2 in Ref. 15): A sequence w is u. d. mod π if, and
only if, limN→∞ D∗

N (w) = 0.

It follows by the hypothesis of uniform distribution and Theorem 3.5 that

lim
N→∞

D∗
N (θω) = 0;

hence, limN→∞ C1/N
N = (R0(θ0))2, and the proof of Lemma 3.4 is complete. �

Now we finally deal with the uniform distribution of the sequence
(
θω

n

)
n≥1.

Theorem 3.6: The sequence of Prüfer angles (θω
n )n≥1 is u. d. mod π for all ϕ/π ∈ [0, 1]\Q and

all ω ∈ 	, apart from a set with null ν measure.

Proof: The proof is exactly the same of Theorem 3.2 in Ref. 2. �

Downloaded 18 Jul 2013 to 200.130.19.215. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions



073501-13 Sparse 1D discrete Dirac operators II: Spectral J. Math. Phys. 52, 073501 (2011)

IV. HAUSDORFF DIMENSION OF THE SPECTRAL MEASURE

This section is devoted to the determination of the Hausdorff dimension of the spectral measure
of Hv,φ(m, c). At the end, the proofs of Theorems 1.4 and 1.5 are presented.

A. Basic definitions and generalized subordinacy theory

First, we recall some useful definitions. An almost complete description is found in Ref. 17.
Given a Borel set S ⊂ R and α ∈ [0, 1], consider the number

Qα,δ(S) = inf

{ ∞∑
ν=1

|bν |α : |bν | < δ; S ⊂
∞⋃

ν=1

bν

}
, (4.1)

with the infimum taken over all covers by intervals of size at most δ. The limit

hα(S) = lim
δ↓0

Qα,δ(S), (4.2)

is called α-dimensional Hausdorff (outer) measure. The counting measure, at α = 0, and the
Lebesgue measure, at α = 1, are important particular cases. It is clear by the definitions (4.1)
and (4.2) that hα(S) is an outer measure on R (see Ref. 10). For β < α < γ ,

δα−γ Qγ,δ(S) ≤ Qα,δ(S) ≤ δα−β Qβ,δ(S),

holds for any δ > 0 and S ⊂ R. So, if hα(S) < ∞, then hγ (S) = 0 for γ > α; if hα(S) > 0, then
hβ(S) = ∞ for β < α. Thus, for every Borel set S, there is a unique αS such that hα(S) = 0 if
α > αS and hα(S) = ∞ if αS < α. The number αS is called the Hausdorff dimension of the set S.

Another useful concept is the exact dimension of a measure, taken from Ref. 23.

Definition 4.1: A Borel measure μ in R is said to be of exact dimension α, α ∈ [0, 1], if two
requirements hold: (1) for every β ∈ [0, 1] with β < α and S a set of dimension β, μ(S) = 0 (which
means that μ(S) gives zero weight to any set S with hα(S) = 0); (2) there is a set S0 of dimension α

which supports μ in the sense that μ(R\S0) = 0.

Finally, we recall the notions of continuity and singularity of a measure with respect to the
Hausdorff measure. Given α ∈ [0, 1], a measure μ is called α-continuous if μ(S) = 0 for every set
S with hα(S) = 0; it is called α-singular if it is supported on some set S with hα(S) = 0.

Remark 4.2: It is possible to reformulate Definition 4.1 in this context: a measure μ is said to have
exact dimension α if, for every ε > 0, it is simultaneously (α − ε)-continuous and (α + ε)-singular.

Jitomirskaya and Last12 extended, to Hausdorff measures, the Gilbert-Pearson theory of
subordinacy11 for Lebesgue measures, which relates the spectral property of ρ to the rate of growth
of the solutions to the Schrödinger equation. Now we describe the extension of these results to Dirac
operators (1.2).

A solution � to (3.1) is said to be subordinate if

lim
l→∞

‖�‖l

‖�‖l
= 0

holds for any linearly independent solution � to (3.1), where ‖·‖l denotes the l2(Z+,C2)-norm
truncated at the length l ∈ R, i.e.,

‖�‖2
l ≡

[l]∑
n=0

[|ψ1,n|2 + |ψ2,n|2
]+ (l − [l])

(|ψ1,[l]+1|2 + |ψ2,[l]+1|2
)
,

[l] the integer part of l.
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Following Jitomirskaya-Last,12 for any given ε > 0 introduce a length l(ε) ∈ (0,∞) by the
equality ∥∥uD

∥∥
l(ε)

∥∥uN
∥∥

l(ε) = c

2ε
(4.3)

(see Eq. (1.12) in Ref. 12), where uD and uN are the solutions to (3.1) which satisfy the initial
conditions (2.4).

At most one of the solutions
{
uD, uN

}
to (3.1) belongs to l2(Z+,C2), thanks to the constancy

of the Wronskian, which follows by the Green’s identity; that is, for n ≥ −1,

N∑
n=0

(
�∗

n (HD�)n − (HD�)∗n�n
) = W [�,�](N ) − W [�,�](−1) = 0,

(where W [�,�](n) = c(φ1,n+1ψ
∗
2,n − φ2,nψ

∗
1,n+1); see also Chapter 9 in Ref. 3). Hence, the left-

hand side of (4.3) is a monotone increasing function of l which vanishes at l = 0 and diverges as
l → ∞. On the other hand, the right-hand side of (4.3) is a monotone decreasing function of ε which
diverges as ε → 0. It is then concluded that the function l(ε) is a well-defined monotone decreasing
and continuous function of ε which diverges as ε → 0.

What follows is the version of Jitomirskaya-Last inequalities for the discrete Dirac operators.

Theorem 4.3: Let HD(m, c) be the Dirac operator (1.2) that satisfies the boundary condition
(1.8). Given ε > 0, we obtain

5 − √
24

m(E + iε)
≤
∥∥u D

∥∥
l(ε)∥∥uN
∥∥

l(ε)

≤ 5 + √
24

m(E + iε)
.

In order to prove this theorem, we only need the following lemma, which is an adaptation of
Lemma 3.1 in Ref. 12; with such result at hand, the proof of Theorem 4.3 follows the same lines as
the proof of Theorem 1.1 in Ref. 12.

The function χn(z) in Lemma 4.4 is nothing but the unique l2(Z+,C2) solution of the Dirac
equation (2.3), the one associated with the definition of m(z) (see Sec. II).

Lemma 4.4 (Variation of Parameters): For every n ≥ 0, χn(z) satisfies the identity(
χ1,n+1(z)

χ2,n(z)

)
= −

(
uN

1,n+1(E)

uN
2,n(E)

)
+ m(z)

(
u D

1,n+1(E)

uD
2,n(E)

)

− iε

c

(
uN

1,n+1(E)

uN
2,n(E)

)
n∑

k=1

{
uD

1,k+1(E)χ1,k(z) + uD
2,k(E)χ2,k(z)

}

+ iε

c

(
uD

1,n+1(E)

uD
2,n(E)

)
n∑

k=1

{
uN

1,k+1(E)χ1,k(z) + uN
2,k(E)χ2,k(z)

}
. (4.4)

Proof: We denote by
(
ṽ1,n+1(E)
ṽ2,n (E)

)
the right-hand side of (4.4), and let

(
ṽ1,0(E)
ṽ2,−1(E)

) = (m(z)
−1

)
. Regarding

the Wronskian constancy, it is easy to verify that(
ṽ1,n+1(E)

ṽ2,n(E)

)
=
(

ṽ1,n(E) + mc2−Vn+E
c ṽ2,n(E) + iε

c χ2,n(z)

ṽ2,n−1(E) + mc2−Vn−E
c ṽ1,n(E) − iε

c χ1,n(z)

)
holds for every n ≥ −1. Since(

χ1,n+1(z)

χ2,n(z)

)
=
(

χ1,n(z) + (mc2−Vn+E+iε)χ2,n (z)
c

χ2,n−1(z) + (mc2−Vn−E−iε)χ1,n (z)
c

)
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and
(

ṽ1,0(E)
ṽ2,−1(E)

) = (m(z)
−1

) = ( χ1,0(E)
χ2,−1(E)

)
, it follows by induction that ṽn(z) = χn(z) for every

n ≥ 0. �
It is a direct consequence of Theorem 4.3 that Theorem 1.2 in Ref. 12 and its corollaries also

hold true: if ρ is defined by (2.7), then, with b = α/(2 − α),

Dα
ρ (E) := lim sup

ε↓0

ρ ((E − ε, E + ε))

(2ε)α
= ∞

if, and only if,

lim inf
l→∞

∥∥uD
∥∥

l∥∥uN
∥∥b

l

= 0,

and Dα
ρ (E) is the so-called Hausdorff upper derivative of ρ at E (see Ref. 17 for a detailed discussion

of this concept).
Before we proceed, we need some important results regarding the behavior of the generalized

eigenfunction uD . Next we present a version of Theorem 3.10 in Ref. 19.

Proposition 4.5: Fix δ > 0. For almost every E with respect to the measure ρ,

1

l

l∑
n=0

(∣∣uD
1,n(E)

∣∣2 + ∣∣uD
2,n(E)

∣∣2) ≤ CE (ln l)1+δ, l ≥ 2. (4.5)

In particular, by taking δ = 1,

lim sup
l→∞

‖uD(E)‖
l1/2 ln l

< ∞. (4.6)

Proof: Define the function gk(E) = 2−k
∑2k

n=0

(|uD
1,n(E)|2 + |uD

2,n(E)|2). It follows from Propo-
sition 3.3 in Ref. 19 (in fact, from a straightforward adaptation of this result) that

∫
gk(E)dρac(E) ≤

C < ∞; thus,
∑∞

k=0 k−1−δgk(E) ∈ L1(R, dρ). This implies the inequality gk(E) ≤ C̃E k1+δ for al-
most every E with respect to ρ. Let 2k−1 ≤ l ≤ 2k . Then

1

l

l∑
n=0

(∣∣uD
1,n(E)

∣∣2 + ∣∣uD
2,n(E)

∣∣2) ≤ 2C̃E k1+δ ≤ CE (ln l)1+δ,

with CE = 2
(
1 + 1

ln 2

)
C̃E . In particular, by picking the value δ = 1, relation (4.6) follows from

(4.5). This completes the proof of the proposition. �
Lemma 4.6: Let uD(E) and uN (E) be the solutions to (3.1) that satisfy the initial conditions

(2.4). Then

‖u D(E)‖l‖uN (E)‖l ≥ c l.

Proof. Since the Wronskian is constant, it follows that

W [uD, (uN )∗](n) = c
(
uD

1,n+1uN
2,n − uN

1,n+1uD
2,n

) = W [uD, (uN )∗](−1) = c

for every n ≥ 0. Thus,

l−1∑
n=0

c =
l−1∑
n=0

W [uD, (uN )∗](n) ≤
∣∣∣∣∣
〈(

(u D
1,n+1(E))∗

(uD
2,n(E))∗

)
,

(
uN

2,n(E)

−uN
1,n+1(E)

)〉
l−1

∣∣∣∣∣
≤
∥∥∥∥∥
(

uD
1,n+1(E)

uD
2,n(E)

)∥∥∥∥∥
l−1

∥∥∥∥∥
(

uN
1,n+1(E)

uN
2,n(E)

)∥∥∥∥∥
l−1

,
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where we have used Cauchy-Schwarz inequality in the last step. Hence,

‖uD(E)‖l‖uN (E)‖l ≥ c l,

which concludes the proof of the lemma. �
By taking into account the above adaptations to the Dirac operator, the proofs of

Corollaries 4.7(a) and 4.7(b) follow the same lines of the proofs of Corollaries 4.4 and 4.5 in
Ref. 12, respectively.

Corollary 4.7: (a) Suppose that for some α ∈ [0, 1) and every E in some Borel set F, every
solution � to the Dirac eigenvalue equation (3.1) obeys

lim sup
l→∞

‖�‖2
l

l2−α
< ∞.

Then, the restriction ρ(F ∩ ·) is α-continuous.
(b) Suppose that

lim inf
l→∞

∥∥uD(E)
∥∥2

l

lα
= 0 (4.7)

is satisfied for every E in some Borel set F. Then the restriction ρ(F ∩ ·) is α-singular.

Corollary 4.7 can be rewritten in terms of the one-dimensional 2 × 2 transfer matrices T (n; E)
defined by (3.3). This approach, based on Corollary 3.7 in Ref. 1, is of particular importance in our
problem, since we have obtained in Sec. III the exact behavior of these matrices for a sparse potential
like (1.5).

Corollary 4.8: Suppose that for some α ∈ [0, 1) and every E in some Borel set A ⊂ R,

lim sup
l→∞

1

l2−α

l∑
n=0

‖T (n; E)‖2 < ∞, (4.8)

with ‖·‖ some matrix norm. Then the restriction ρ(A ∩ ·) is α-continuous.

Proof: By choosing θ1 = 0 and θ2 = π/2, it follows from a straightforward adaptation of
Theorem 2.3 in Ref. 14 that there exists a constant D such that

‖T (n − 1; E)‖ ≥ C max {Rn(0), Rn(π/2)} ,

where Rn(θ ) is the Prüfer radius at n starting from the initial condition vθ =
(

cos θ

sin θ

)
; explicitly,

C =
√

(E+mc2)(2c+E−mc2)
(E−mc2)(2c−E−mc2) . Since

R2
n(θ1(2)) = 4c2(E − mc2)

(E + mc2)(4c2 + m2c4 − E2)

∣∣∣uD(N )
1,n

∣∣∣2 + 4c2

(4c2 + m2c4 − E2)

∣∣∣uD(N )
2,n−1

∣∣∣2

− 4c(E − mc2)

4c2 + m2c4 − E2
�
{

uD(N )
1,n (uD(N )

2,n−1)∗
}

(see (3.7)), we obtain the inequality

D

[∣∣∣uD(N )
1,n

∣∣∣2 +
∣∣∣uD(N )

2,n−1

∣∣∣2] ≤ R2
n(θ1(2)),
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with D = 2c(E−mc2)(2c−E−mc2)
(E+mc2)(4c2+m2c4−E2) . Thus,

l∑
n=0

‖T (n; E)‖2 ≥ C1 max
{∥∥uD(E)

∥∥2

l+1 ,
∥∥uN (E)

∥∥2

l+1

}
, (4.9)

C1 = C × D. Hypothesis (4.8), together with (4.9), imply Corollary 4.8. �
Note that the growth of the norm of the transfer matrix gives exactly the growth of the increasing

solution. This fact will be of great importance later on.

B. Hausdorff dimension and spectral transition

The last step in the determination of the Hausdorff dimension of the measure ρ is the following
extension of Proposition 3.9 in Ref. 1:

Proposition 4.9: LetA = (an)n≥1 be given by (1.7), E ∈ R and assume that the sequence
(
θω

n

)
n≥1

of Prüfer angles (3.12) is u. d. mod π for every θ0 ∈ [0, π ), almost every ϕ ∈ [0, π ) (with respect to
Lebesgue measure) and almost every ω ∈ �. Then, there is a generalized eigenfunction � (i.e., �

satisfies Hv,φ(m, c)� = E� and the phase boundary condition (1.4)) such that

C−1
n rn/2 ≤ Rn(φ) ≤ Cnrn/2 (4.10)

holds with r given by (3.16) and C1/n
n ↘ R0(φ) as n → ∞. In addition, there exists a subordinate

solution � (with α∗-phase boundary condition) for energy E such that, for all sufficiently large n,
the Prüfer radius associated with � satisfies∣∣Rn(α∗)

∣∣ ≤ C̃nr−n/2
j (4.11)

with C̃1/n
n ↘ R0(α∗) as n → ∞.

Proof: The proof of the proposition follows the same steps of the proof of Proposition 3.9 in
Ref. 1. We, nevertheless, trace them out.

The first part of the proposition is simply Lemma 3.4. The second part follows the same steps of
Lemma 3.6 in Ref. 2, which adapts the results presented in Theorem 8.1 in Ref. 19 (the latter gives
a sufficient condition for the existence of a subordinate solution to the Dirac equation (3.1)).

The inequalities (4.10) and the results of Theorem 2.3 in Ref. 14 imply that

C−1
n rn/2 ≤ tn ≤ Cnrn/2, (4.12)

with tn := ‖T (an + 1; E)‖ and r given by (3.16). From now on, the proof of the existence of a
subordinate solution, as well as the determination of its asymptotic behavior, follow from the proof
of Lemma 3.6 in Ref. 2. �

Remark 4.10: The corresponding modifications of the known results for Schrödinger operators,
employed in the proof of Proposition 4.9 to the Dirac setting studied in this work, are straightforward,
being therefore omitted.

Finally, we are able to prove our main result.
Proof: (Theorem 1.4) We base the arguments on the proof of Theorem 3.11 in Ref. 1. First,

introduce the notation

A = −
√

m2c4 + 2c2(1 − cos(Qπ )) ∪
√

m2c4 + 2c2(1 − cos(Qπ )), (4.13)

which will also be used in other occasions ahead.
Theorem 3.6 implies that the sequence

(
θω

n

)
n≥0 of Prüfer angles is u. d. mod π for every

θ0 ∈ [0, π ], every E ∈ L′ ≡ L \ A, and almost every ω ∈ �. We obtain from (4.12) the estimates

‖T (k; E)‖ ≤ Cnrn/2 ≤ C ′
naγ /2

n ≤ C ′′
n kγ /2,

which hold for every E ∈ L′ and every aω
n ≤ k < aω

n+1, with γ ≡ ln r/ ln β, C ′′
n > 0 and

limn→∞
(
C ′′

n

)1/n
< ∞.
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It follows by the constancy of ‖T (k; E)‖ on [an + 1, an+1] (since the free matrix T0 is equivalent
to a rotation; see Sect. III) that

l∑
k=0

‖T (k; E)‖2 ≤ c l1+γ (4.14)

holds for some c > 0 and every E ∈ L′.
The application of Proposition 4.9 together with (1.10) guarantees, for these values of E , the

existence of a subordinate solution �sub such that its sequence of Prüfer radii satisfies the estimate

|Rn (θα∗ )| ≤ C ′′′
n a−γ /2

n ,

for some constant C ′′′
n > 0.

Since every solution to (3.1) has constant modulus on the interval [an + 1, an+1], we have∥∥�sub
∥∥2

l ≤ c′ l1−γ , (4.15)

for some c′ > 0.
Since the restriction of the measure ρ to I is supported on the set of those E for which �sub

satisfies the boundary condition φ (thanks to the fact that ρ has no absolutely continuous part; see
Theorem 1 in Ref. 11), we have u D = �sub for almost every E ∈ I with respect to ρ and for almost
every boundary condition φ (by the theory of rank-one perturbation; see Theorem 1.3 in Ref. 12).

Thus, by (4.14) and (4.15), on the intervals (2.13), one has

lim sup
l→∞

1

l2−α

l∑
k=0

‖T (k; E)‖2 < ∞

and

lim inf
l→∞

∥∥uD(E)
∥∥2

l

lα′ = 0,

provided 2 − α = 1 + γ + ε and α′ = 1 − γ + ε, respectively, where ε is an arbitrary positive
number.

It follows, by Corollary 4.8, that the spectral measure ρ is simultaneously (1 − γ − ε)-
continuous and (1 − γ + ε)-singular. Since ε is arbitrary, we have from Remark 4.2 that the re-
striction ρ(I ′ ∩ ·) has exact Hausdorff dimension given by (1.11), where I ′ ⊆ L′.

Finally, from the theory of rank one perturbations (more specifically, Theorem 8.1 of26),
we know that ρ (A) = 0 (see (4.13)) holds for almost every φ; therefore, for almost every φ,
the restriction ρ(I ∩ ·) has (1.11) as its Hausdorff dimension. This concludes the proof of the
theorem. �

Remark 4.11: We have checked that it is possible to extend the results of Refs. 11 and 13 to the
Dirac setting, in the same way as exposed here for the results of generalized subordinacy discussed
in Ref. 12.

Despite the obtained exact Hausdorff dimension of the spectral measure ρ, what can we infer
from the spectral nature of the operator Hv,φ(m, c) on the interval (2.13)? This is a tricky question,
since we are induced to think that for αρ = 0, the spectrum is simply dense pure point and for
αρ > 0, the spectrum is singular continuous. There are, however, some examples in the literature2, 9, 31

where the spectrum is singular continuous with null Hausdorff dimension. Note that Theorem 1.5
settles the problem. Now we present its proof.

Proof: (Theorem 1.5) We must prove, for fixed v and β, the inclusion

I1 \ A1 ⊆
{

E ∈ R :
∞∑

n=0

‖T (n; E)‖−2 = ∞
}
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(A1 is a set with zero Lebesgue measure), since (a) follows directly from an adaptation of
Theorem 2.1 in Ref. 27. Now, if

[I1 \ A1]C ⊆
⎧⎨⎩E ∈ R :

∞∑
n=1

βn(tn)2

( ∞∑
m=n

(t j
m)−2

)2

< ∞
⎫⎬⎭ ,

then (b) follows from an adaptation of Lemma 4.1 in Ref. 2 and by Proposition 4.2 in Ref. 20.
We pick n such that aω

N ≤ n < aω
N+1 is valid for some N ∈ N. We obtain from (1.7) and (3.4),∑

m≤n

‖T (m; E)‖−2
U =

∑
k≤N+1

‖T (aω
k ; E)‖−2

U βk+1 + ‖T (aω
N ; E)‖−2

U

∑
aω

N+1≤m<n

1 , (4.16)

with ‖ · ‖U := ‖U · U−1‖ (see Sec. 4 of Ref. 20).
We have by Theorem 2.3 in Ref. 14 the inequalities

‖T (m; E)‖−2 ≤ C2‖T (aω
k ; E)‖−2

U ≤ C2

(
max

i∈{1,2}
Rk(θi )

)−2

(4.17)

and

‖T (m; E)‖−2 ≥ C−2‖T (aω
k ; E)‖−2

U ≥ C̃−2

(
max

i∈{1,2}
Rk(θi )

)−2

, (4.18)

for every aω
k ≤ m < aω

k+1, with C as in the proof of Corollary 4.8 and

C̃ = C/| sin(θ1 − θ2)/2|
(θ1, θ2 ∈ [0, π ) represent a pair of initial Prüfer angles such that 0 < |θ1 − θ2| < π/2; see
Lemma 2.2 of Ref. 14).

Introduce

S±
N ,M (β, ϕ) ≡

M∑
k=N

C±
k

(
βk+1 ± 2k

)
r−k ; (4.19)

(the term 2k is due to the uncertainty associated with the position of the kth barrier: βk+1 − 2k
≤ aω

k ≤ βk+1 + 2k − 1 for all ω ∈ �), with r given by (3.16). It follows by Lemma 3.4, and
Eqs. (4.16), (4.18), and (4.19),

C̃−2S−
N+1,M ≤

aM +1∑
m=n

‖T (m; E)‖−2 ≤ C2S+
N ,M , (4.20)

for every M ≥ N + 1 and E ∈ B, with

B ≡ −
√

m2c4 + 2c2(1 − cos([0, π ] \ Qπ )) ∪
√

m2c4 + 2c2(1 − cos([0, π ] \ Qπ )), (4.21)

2 cos(Qπ ∩ [0, π )) representing the “energies” where the sequence (θω
n )n≥0 is not u. d. mod π ; see

the proof of Theorem 3.6.
It is clear by Lemma 3.4, and Eqs. (3.16), (4.20), and (4.21) that

B ⊆
{

E : lim
n→∞ ‖T (n; E)‖ = ∞

}
,

i.e., B belongs to the complement of the essential support of the absolutely continuous part of
the spectrum of Hv,φ(m, c), �ac, according to Theorem 1.1 of Ref. 19. Hence, except for the set
A1 = (Qπ ∩ [0, π )) ∪ A∗ of Lebesgue zero measure (A∗ is some set of Lebesgue zero measure
presented in the definition of �ac), the set

B1 ≡ −
√

m2c4 + 2c2(1 − cos([0, π ] \ A1)) ∪
√

m2c4 + 2c2(1 − cos([0, π ] \ A1)) (4.22)
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belongs to the singular spectrum. It follows from (4.19) and the left-hand member of (4.20), for
M → ∞, that

∞∑
n=0

‖T (n; E)‖−2 = ∞

if β > r . Therefore, we conclude from (4.22) and Theorem 2.2 of Ref. 14 that the essential spectrum
of Hv,φ(m, c) is purely singular continuous when restricted to I\A1, and this proves part (a) of the
theorem.

We prove part (b) by assuming that β < r . By introducing

S =
∑
m=n

Cmr−m, (4.23)

it follows by Lemma 3.4 and Eqs. (4.16) and (4.17), that

∞∑
m=n

‖T (am + 1; E)‖−2 ≤ C2S. (4.24)

Finally, we have from Lemma 3.4 and Eqs. (4.17), (4.18), (4.23), and (4.24) that

∞∑
n=1

(
βn + ωn − ωn−1

) ‖T (an + 1; E)‖2

( ∞∑
m=n

‖T (am + 1; E)‖−2

)2

≤ C ′
∞∑

n=1

(
βn + 2n

)
Cnrn S2

≤ C ′′
∞∑

n=1

(
βn + 2n

)
(Cn)3r−n (4.25)

converges for every E ∈ I C . It follows by Lemma 3.6 in Ref. 2 and (4.25) above, that if
E ∈ I c \ A1, then the Dirac equation (3.1) have a l2(Z+,C2) solution. Since, by Theorem 1.3,
I c ∈ σess(Hv,φ(m, c)) for every φ ∈ [0, π ], the hypothesis of Proposition 4.2 of Ref. 20 is fulfilled
and consequently Hv,φ(m, c) have only dense pure point spectrum in I C for almost every φ ∈ [0, π ].
This concludes the proof of part (b) of the theorem. �
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