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Abstract. We investigate the scattering of heavy-light K and D mesons by nucleons at low energies.
The short-distance part of the interaction is described by quark-gluon interchange and the long-
distance part is described by a one-meson-exchange model that includes the contributions of vector
(ρ , ω) and scalar (σ ) mesons. The microscopic quark model incorporates a confining Coulomb
potential extracted from lattice QCD simulations and a transverse hyperfine interaction consistent
with a finite gluon propagator in the infrared. The derived effective meson-nucleon potential is
used in a Lippmann-Schwinger equation to obtain s-wave phase shifts. Our final aim is to set up a
theoretical framework that can be extended to finite temperatures and baryon densities.
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1. INTRODUCTION

The low-energy scattering of strange and charmed mesons by nucleons has been subject
of many investigations during the last years [1, 2, 3, 4]. Most of the studies have con-
centrated attention on two basic approaches, meson-exchange models and constituent
quark models. In Ref. [1], a meson-exchange model was developed as an extension of
the Bonn model for the NN interaction to study the K+N reaction. This work consi-
dered contributions of vector (ρ , ω) and scalar (σ ) mesons together with higher-order
diagrams involving N, ∆, K, and K∗ intermediate states. A good description of phase
shifts and cross sections was obtained, but an additional phenomenological short-range
repulsive contribution of a σrep was required to explain simultaneously phase shifts for
S and P waves. This model was sophisticated in Ref. [4], where the authors replace the
unphysical σrep contribution by quark-gluon exchange. The result was a satisfactory des-
cription of the S as well as higher partial waves. Recently [2, 3] SU(4) flavor symmetry
was invoked to extend this hybrid model to the D̄N system (D̄ stands D̄0 and D−). In this
study it was shown that quark-gluon interchange contributes with 50% to the S-wave
phase shifts and σ , ω and ρ meson exchanges contribute with other 50%.

In spite of the many successes achieved by constituent quark models in the descrip-
tion of low energy hadronic spectra and interactions, they are clearly unable to explain
the source of the constituent quark masses which are supposed to be generated by dyna-
mical chiral symmetry breaking (DχSB). In view of this, such a model is clearly limited
for studying chiral effects in a medium at finite baryon density and finite temperature.
With these facts in mind, we apply here the approach used in the Refs [2, 3] to study the
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KN and D̄N interaction, but now with a quark model inspired in the QCD Hamiltonian
in Coulomb gauge [5]. The model is based on a field theoretic Hamiltonian that con-
fines color and realizes DχSB [6]. The model allows to obtain effective meson-baryon
potentials that can be used in a Lippmann–Schwinger equation to calculate phase shifts.
In order to compare with the results obtained in Ref. [2], we add contributions from
one-meson exchanges.

2. QUARK MODEL WITH DYNAMICAL CHIRAL SYMMETRY
BREAKING

Our starting point is a microscopic Hamiltonian inspired in Coulomb gauge QCD [6]

H =
∫

dxΨ†(~x)[−i~α ·~∇+β m0]Ψ(~x)− 1
2

∫
dxdyρa(~x)VC(|~x−~y|)ρa(~y)

+
1
2

∫
dxdyJa

i (~x)Vi j(|~x−~y|)Ja
j (~y), (1)

where Ψ(~x) is the quark field operator, m0 is the current-quark mass matrix, and ρa(~x)
and Ja

i (~x) are the color charge and current densities given by

ρa(~x) = Ψ†(~x)
λ a

2
Ψ(~x), Ja

i (~x) = Ψ†(~x)
λ a

2
αiΨ(~x). (2)

In Eq. (1), VC(|~x−~y|) is the Coulomb potential, and Vi j(|~x−~y|) is a transverse-gluon
hyperfine potential

Vi j(|~x−~y|) =
(

δi j− ∇i∇ j

∇ j

)
VT (|~x−~y|). (3)

The quark field operator is expanded in a basis of plane-wave spinors u and v as

Ψ(~x) =
∫ dx

(2π)3/2 ∑
s=±1/2

[us(~k)qs(~k)+ vs(~k)q̄†
s (−~k)]ei~k·~r, (4)

where

us(~k) =
√

Ek +Mk

2Ek




1

~σ ·~k
Ek+Mk


 χs, vs(~k) =

√
Ek +Mk

2Ek



− ~σ ·~k

Ek+Mk

1


 χc

s , (5)

where Mk is the constituent-quark mass function. The mass function is obtained by
solving a Schwinger-Dyson equation for the quark propagator, which results in

Mk = m0 +
2
3

∫ dq
(2π)3Eq

[
f1(~k,~q)VC(|~k−~q|)+g1(~k,~q)VT (|~k−~q|)

]
. (6)

Once the potentials VC(|~x−~y|) and VT (|~x−~y|) are specified, this integral equation can
be solved by iteration for different current quark masses m0.
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3. COULOMB GAUGE QUARK-MODEL MESON-BARYON
INTERACTION

Having obtained the mass function, one proceeds to the derivation of an effective meson-
baryon potential. For this, one needs hadron wave functions. They are obtained varia-
tionally using an approximation scheme that allows to perform almost all calculations
analytically. Specifically, we retain terms up to O(k2/M2) in the expansion of the spinors
us(k) and vs(k) to obtain a Fermi-Breit type of Hamiltonian. The dominant components
of the qq and qq̄ interactions can be written in momentum space as

V (~q) = VC(~q)+
2
3

q2

M1M2
~S1 ·~S2VT (~q), (7)

where VC(q) and VT (q) are the Fourier transforms of VC(|~x|) and VT (|~x|). The part of the
Hamiltonian relevant for our study can be written in a compact notation as

Hqq̄ = T (µ)q†
µqµ +T (ν) q̄†

ν q̄ν +
1
2

Vqq(µν ;σρ)q†
µq†

νqρqσ

+
1
2

Vq̄q̄(µν ;σρ) q̄†
µ q̄†

ν q̄ρ q̄σ +Vqq̄(µν ;σρ)q†
µ q̄†

ν q̄ρqσ , (8)

where µ,ν , · · · represent the set of all quantum numbers of quarks (momentum, color,
spin and flavor). From this quark Hamiltonian one can obtain an effective meson-baryon
potential using e.g. the Fock-Tani representation. Given baryon Ψ and meson Φ wave
functions (derived for the same quark Hamiltonian), the meson-baryon potential is

V (ab,cd) = −3φ ∗µν1
c ψ∗νµ2µ3

d Vqq(µν ;σρ)φ ρν1
a ψσ µ2µ3

b

−3φ∗σρ
c ψ∗µ1µ2µ3

d Vqq̄(µν ;σρ)φ µ1ρ
a ψµµ2µ3

b

−6φ∗µ1ν1
c ψ∗νµµ3

d Vqq(µν ;σρ)φ ρν1
a ψµ1σ µ3

b

−6φ ∗ν1ν
c ψ∗ν1µµ3

d Vqq̄(µν ;σρ)φ ν1ρ
a ψµ1σ µ3

b , (9)

where a,b, · · · represent the set of all hadron quantum numbers. The explicit forms the
VC and VT of the microscopic Hamiltonian necessary in the calculations are given in [7].

4. MESON-EXCHANGE CONTRIBUTIONS

The interacting Lagrangian densities we use are given in Refs. [2] and [8]. The (OBE)
potentials derived from these Lagrangian densities lead to the following expressions for
the vector-meson (v = ρ ,ω) and scalar-meson (σ ) exchanges,

V v(p′,p) =
gNNv gPPv√

(2π)6 4ω(p)ω(p′)
(p′+ p)µ ∆µν

v (q)

×
[

ū(p′,s′)γµu(p,s)+
(

κv

2mN

)
ū(p′,s′) iσµν qν u(p,s)

]
, (10)

V σ (p′,p) =
gNNσ gPPσ√

(2π)6 4ω(p)ω(p′)
∆σ (q)ū(p′,s′)u(p,s). (11)
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5. NUMERICAL RESULTS

In Figs. 1-2 we present our numerical results for the DN and KN S-wave phase-shifts
for the I = 0 and I = 1 isospin channels.
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FIGURE 1. Quark interchange S-wave phase-shift for isospin I=0 and I=1.
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FIGURE 2. Quark interchange and Meson-exchange S-wave phase-shift for isospin I = 0 and I = 1.
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