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a  b  s  t  r a  c t

An  exocellular  �-(1→6)-d-glucan  (lasiodiplodan) produced  by  a  strain  of Lasiodiplodia theobromae

(MMLR)  grown on sucrose  was  derivatized by  sulfonation to  promote  anticoagulant activity.  The struc-

tural  features  of the  sulfonated  �-(1→6)-d-glucan were  investigated  by  UV–vis, FT-IR  and 13C  NMR

spectroscopy,  and  the  anticoagulant  activity was investigated  by  the  classical  coagulation  assays APTT,

PT  and  TT  using heparin as standard. The content  of sulfur  and  degree  of substitution  of the sulfonated

glucan  was  11.73%  and  0.95, respectively.  UV  spectroscopy  showed  a  band  at 261  nm  due to the unsat-

urated  bond  formed in the  sulfonation reaction.  Results  of FT-IR  and 13C  NMR indicated  that sulfonyl

groups  were  inserted  on  the  polysaccharide.  The sulfonated  �-(1→6)-d-glucan  presented  anticoagulant

activity  as demonstrated  by  the  increase in dose dependence  of APTT and  TT,  and these  actions  most

likely  occurred because  of the  inserted  sulfonate  groups  on the  polysaccharide.  The  lasiodiplodan  did  not

inhibit the  coagulation  tests.

© 2012 Elsevier Ltd. 

1. Introduction

�-Glucans are found mainly in the cell wall of yeasts and fil-

amentous fungi, as minority constituents in the cytosol, and can

also be secreted as exo-biopolymers to the environment (Williams,

1997). They have emerged as an important class of bioactive prod-

ucts with biological response modifying (BRM) activities (Bohn &

BeMiller, 1995). Besides immunoprotective activity, exopolysac-

charides of the �-glucan type have been examined in relation to

the antithrombotic, antioxidant, antiviral, anti-inflammatory, anti-

coagulant actions, and antiproliferative activity on breast cancer

cells (Brandi et al., 2011; Cunha et al., 2012; Kato et al., 2010;

Martinichen-Herrero, Carbonero, Gorin, & Iacomini, 2005; Wang

et al., 2010).

The  biological activities can be presented by  the molecules in

natura, or through chemical modification. The chemical derivati-

zation of glycans offers an opportunity to enhance their action,

and even develop activity in  non-bioactive molecules, which

can be used as new pharmacological agents (Mantovani et al.,

2008; Vetvicka, Vetvickova, Frank, & Yvin, 2008). Furthermore,
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the inclusion of sulfonate groups on glycans enables the gen-

eration of water-soluble molecules, and this is important for

anticoagulant and other biological activities (Mendes et al.,

2009).

Glucans of the �-(1→3)- and �-(1→3;1→6)-types are  the

most described in  scientific articles and patents. They have lin-

ear, branched or  cyclic (Laroche & Michaud, 2007) structures, and

are targets for research for their pharmacological and immunolog-

ical effects (Vetvicka et al., 2008). �-(1→6)-d-Glucans are widely

known as pustulan produced by lichens of Umbilicariaceae species

(Narui, Sawada, Culberson, Culberson, & Shibata, 1999), and are

commonly present as constituents of the fungal and yeast cell wall

(Klis, Mol, Hellingwerf, & Brul, 2002). As exocellular biopolymers,

�-(1→6)-d-glucans are uncommon, if not  rare, and are known to

be produced by only some fungi (Cunha et al., 2012; Vasconcelos

et al., 2008).

The biological activity of the �-glucans from fungi including

mushrooms that comprise both �-(1→3)- and (1→6)-d-glucans

are considered the most effective immune stimulatory agents (Rop,

Mlcek & Jurikova, 2009), and the presence of branches at C-6 on the

�-(1→3)-glucan chain as well as a  triple helix conformation are

important structural features determining BRM activity of these

polysaccharides (Bohn & BeMiller, 1995; Leung, Liu, Koon, & Fung,

2006).
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Substances with anticoagulant properties have been used both

in therapeutic processes and in vitro to treat medical condi-

tions, and natural heparin is most widely used (Wang, Li, Zheng,

Normakhamatov, & Guo, 2007). Unfortunately, heparin shows

some contra-indications such as bleeding, and moreover, because

heparin is extracted from animal tissues, it tends to  cause a  risk

of contamination by  animal-derived pathogens. Development of

alternatives to heparin therefore is an important field of research.

No mammalian source of heparin or its derivatives are considered

to be ideal choices, and consequently, polysaccharide sulfonates

(natural or chemically derivatized) are of special interest (Glauser

et al., 2009; Pomin, 2012).

An abundant source of anticoagulant polysaccharides is  marine

algae that contain a  variety of natural sulfated galactans and sul-

fated fucans (Melo, Pereira, Foguel, & Mourão, 2004). Other sulfated

polysaccharides with anticoagulant activity are found in marine

invertebrates (Pomin, 2012). Chemically sulfonated polysaccha-

rides, which present anticoagulant and antithrombotic activity,

have been obtained from various polysaccharide types such as

microbial �-glucans (Brandi et al., 2011; Mendes et al., 2009)

and dextrans, and plant-derived galactoglucomannans and galac-

tomannans (Martinichen-Herrero et al., 2005; Yang, Du,  Wen, Li, &

Hu, 2003).

In  this work we describe for the first time the sulfonation of an

exocellular �-(1→6)-d-glucan (lasiodiplodan) from Lasiodiplodia

theobromae MMLR  grown on sucrose as carbon source (Vasconcelos

et al., 2008), and the effect of sulfonation on promoting the

solubility of this polysaccharide in aqueous solutions, and the phys-

iological activity as an anticoagulant as alternative to heparin.

2.  Experimental

2.1. Materials

Sodium heparin (5000 UI/mL) was purchased from Akzo

Organon (São Paulo, Brazil). Human plasma was obtained by

centrifugation (450 × g/15 min  at 25 ◦C)  of citrated blood. Blood

coagulation time reagents: activated partial thromboplastin time

(APTT), thrombin time (TT) and prothrombin time (PT), were

acquired from In-Vitro Diagnóstica S/A (Itabira, MG,  Brazil).

Thrombin and antithrombin were obtained from Haematologic

Technologies, USA, and chromogenic substrate S-2238 from Chro-

mogenix, Sweden. Chlorosulfonic acid was obtained from Vetec

(Rio de Janeiro, RJ, Brazil).

2.2.  Production and preparation of ˇ-(1→6)-d-glucan

(lasiodiplodan)

�-(1→6)-d-Glucan (lasiodiplodan) was produced by L. theobro-

mae MMLR  and grown on nutrient medium containing sucrose as

previously described (Vasconcelos et al., 2008). Cell-free culture

fluid was obtained after removal of the mycelium by centrifugation

(5500 × g/20 min) at 4 ◦C. The supernatant was treated with 3 vol-

umes of absolute ethanol, the precipitated material recovered and

dissolved in distilled water, followed by  extensive dialysis against

frequent changes of distilled water over 48 h,  and then freeze-dried.

2.3. Analytical techniques

Carbohydrate was determined by  the phenol–sulfuric acid

method (Dubois, Gilles, Hamilton, & Rebers, 1956) with d-glucose

as standard. Protein was measured by  the Bradford method

(Bradford, 1976) using bovine serum albumin as standard.

2.4. Sulfonation

Sulfonation of �-(1→6)-d-glucan was performed according to

O’Neill (1955) with some modifications: lasiodiplodan powder

(50.0 mg)  was solubilized in dry formamide (10.0 mL) with vigor-

ous stirring for 24 h at room temperature. Then 10.0 mL  of pyridine

was added to the mixture followed by continuation of  vigorous

stirring for another 30 h at room temperature. Chlorosulfonic acid

(4.0 mL)  was next added drop-wise to the mixture in an ice-bath

over an interval of 2 h,  and then left at 4 ◦C for 12 h. The reaction

was terminated by adding ice-water, and neutralized by  adding a

solution of 10% (w/v) NaHCO3 until all CO2 evolution ceased. The

reaction mixture was then dialyzed exhaustively against distilled

water for 6 days with several changes of water, and the dialysate

concentrated under reduced pressure (<39 ◦C) and lyophilized. The

product obtained was referred to as sulfonated �-(1→6)-d-glucan.

The sulfonation reaction was  repeated two  further times until a

degree of substitution (DS) of greater than 0.80 was obtained.

2.5.  Determination of the degree of substitution (DS)

Samples of sulfonated �-(1→6)-d-glucan (1.0 mg)  were

hydrolyzed using 1.0 M HCl (1.0 mL)  for 5 h at 100 ◦C. To determine

the DS, 0.2 mL  of hydrolyzed the sulfonated �-(1→6)-d-glucan

sample was  reacted with 3.8 mL  of 3% (w/v) trichloroacetic acid

(TCA) in a glass tube, and then 1.0 mL  of protector solution (6.0 g

NaCl, 0.5 mL  c.HCl, 2.5 mL  of 0.1% (w/v) gelatin and 47.0 mL  distilled

water) and 0.03 g BaCl2 were added. The contents were stirred

for 1 min  and left for 15 min. The resulting BaSO4 formed was

measured turbidimetrically at 360 nm.  The DS, which designates

the average number of sulfonyl groups on each sugar-residue,

was established from the sulfur content according to Whistler and

Spencer (1964), in  which S  =  % sulfur:

S(%)  = (BaSO4, �g)  × 0.1374 × 100

Sample,  �g

DS  = 162 × S

3200 −  102 × S

2.6. Homogeneity of the ˇ-(1→6)-d-glucan and sulfonated

ˇ-(1→6)-d-glucan

The homogeneity of the �-(1→6)-d-glucans (natural and sul-

fonated) was  determined by gel permeation chromatography.

One milligram of each of the 2 polysaccharide samples was  dis-

solved in water (1.5 mL)  and applied to a Sepharose CL-4B column

(1.5 cm × 30 cm), and eluted with distilled water at a  flow rate of

0.5 mL/min. Fractions (1.5 mL)  were collected and analyzed for car-

bohydrate (490 nm). The void volume (19.5 mL)  was determined

using blue dextran.

2.7.  Spectroscopy analysis

Fourier-transform infra-red (FT-IR) spectra of  the

exopolysaccharides samples (�-(1→6)-d-glucan and sulfonated

�-(1→6)-d-glucan, 1 mg)  were recorded using KBr pellets

(250.0 mg)  on a  Bruker Vector 22 Model spectrometer. The

ultraviolet–visible (UV–vis) absorption spectra for dilute aqueous

solutions (1.0 mg/mL) of �-(1→6)-d-glucan and sulfonated �-

(1→6)-d-glucan were determined using a  Shimadzu 1601 UV-Vis

spectrophotometer. Nuclear magnetic resonance spectroscopy

of carbon thirteen (13C NMR) analysis of �-(1→6)-d-glucan and

sulfonated �-(1→6)-d-glucan were carried out using a  400 MHz

Bruker model DRX Avance spectrometer incorporating Fourier

transform. Samples (∼20.0 mg)  were dissolved in Me2SO-d6 and
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examined at 50 or 70 ◦C. Chemical shifts are expressed in ppm (ı)

relative to resonance of Me2SO-d6 at 39.70 for samples examined

in this solvent.

2.8.  Blood clotting assays

The  anticoagulant activity of the samples (�-(1→6)-d-glucan

and sulfonated �-(1→6)-d-glucan; 0–200 �g/mL) was  determined

by measuring the clotting times (in seconds) of human plasma

using the reagents prothrombin time (PT), thrombin time (TT)

and activated partial thromboplastin time (APTT) according to

the manufacturer’s instructions. Each assay was performed at

37 ◦C. Heparin (0–30 �g/mL) was used as standard. Normal human

plasma (900 �L) was mixed with 100 �L of exopolysaccharides

solution  (�-(1→6)-d-glucan and sulfonated �-(1→6)-d-glucan),

or heparin dissolved in  isotonic saline, within the concentration

ranges indicated above. Isotonic saline (100 �L) was  used in the

control group. In each of the blood clotting assays, the reagents (PT,

TT and APTT) and all glass tubes were pre-heated at 37 ◦C before to

use. The assays were performed in  triplicate and the results repre-

sent the means ± SD.

2.9. Inhibition of thrombin by  antithrombin in the presence of

ˇ-(1→6)-d-glucan, sulfonated ˇ-(1→6)-d-glucan and heparin

The  inhibition of thrombin by antithrombin was  performed

according to Melo et al. (2004) with the following modifica-

tions: incubations were performed in  disposable microcuvettes.

The reaction mixture contained 25 �L of human plasma or purified

antithrombin (40 nM), and 25 �L  of exopolymer solution (�-

(1→6)-d-glucan or sulfonated �-(1→6)-d-glucan; 0–400 �g/mL),

or heparin (0–1 �g/mL) in  TS/PEG buffer (0.02 M Tris/HCl, 0.15 M

NaCl, and 1.0 mg/mL  polyethylene glycol, pH 7.4). Thrombin (10 �L,

20 nM)  was next added to the mixture to initiate the reaction, and

after 60 s incubation (room temperature), 500 �L of TS/PEG buffer

containing 25 �M chromogenic substrate S-2238 for thrombin was

added, and the absorbance at 405 nm recorded for 300 s.  No inhi-

bition occurred in the control experiment in which thrombin was

incubated with antithrombin in  the absence of sulfated polysac-

charides.

3. Results and discussion

3.1.  Sulfonation and structural characterization

The exocellular �-(1→6)-d-glucan was selected for this work

as it presents important characteristics for biological activity with

regards to purity, uniformity, homogeneity (Fig. 1) and triple helix

conformational structure at previously described (Vasconcelos

et al., 2008). As hydrated the biopolymer formed a viscous solu-

tion, and the derivatization by sulfonation was a  way  to  improve

its solubility in aqueous solutions, and to  promote anticoagulant

activity. It is well known that the introduction of charged groups

on a neutral polysaccharide chain improves water solubility and

can enhance its biological activities such as anticoagulation (Brandi

et al., 2011; Jung, Bae, Lee, & Lee, 2011).

In this work, sulfonation (three cycles) was performed using

formamide as solvent, pyridine as catalytic reagent and chlorosul-

fonic acid as the hydroxyl group donor. The effectiveness of each

cycle of the sulfonation reaction was monitored by  UV–vis and

FT-IR analysis. The integrity of sulfonated material was  performed

by gel permeation chromatography on Sepharose CL-4B (Fig. 1),

and presented a single carbohydrate peak. Following sulfonation,

UV–vis spectroscopy showed a  new band at 261 nm (Fig. 2) that

can be attributable to the n → �* transition of sulfonate or  the

Fig. 1.  Gel permeation chromatography profile of the �-(1→6)-d-glucan (- -  -) and

sulfonated �-(1→6)-d-glucan (—) on  a column of Sepharose CL-4B. The column

(1.5  cm × 30 cm) was eluted with water at  a  flow rate of 0.5 mL/min.

unsaturated bond formed in the sulfonation process (Brandi et al.,

2011; Yang et al., 2003).

The  success of the reaction was  accompanied by the appearance

of two  characteristics absorption bands on FT-IR spectra of the sul-

fonated �-(1→6)-d-glucan (Fig. 2): one at 1258 cm−1 describing an

asymmetrical S  O  stretching vibration (Yang, Du,  Huang, Wan, & Li,

2002; Zhang, Zhang, Zhou, Chen, &  Zeng, 2000), whereas the band

at 810 cm−1 representing a symmetrical C O S vibration associ-

ated with a  C O SO3 group (Brandi et al., 2011; Nie, Shi, Ding, &

Tao, 2006) demonstrated that lasiodiplodan was  successfully sul-

fonated. Additionally, a  new band at 1631 cm−1 could be related to

the unsaturated bond formed due to the sulfonation process (Yang

et al., 2003).

The sulfur content of the sulfonated polysaccharide was deter-

mined by calculating the DS, and in  this case was  0.95. In

studies related to  anticoagulant activities of chemically modified �-

glucans, the DS was around 1.95 (Martinichen-Herrero et al., 2005),

1.74 (Nie et al., 2006) and 1.54 (Brandi et al., 2011). According to

published reports, DS values equal or  higher than 0.80 are required

for anticoagulant activity (Han, Yao, Yang, Liu, & Gao, 2005). The

content of sulfur obtained for the sulfonated �-(1→6)-d-glucan

was 11.73%, and within the range of values necessary for antico-

agulant activity.

The  positions of the sulfonyl groups in polysaccharides can be

determined by 13C NMR (Han et al., 2005; Zhang et al., 2008), and

the literature shows that the main position for the entry of sul-

fonyl groups in  �-(1→3)-glucans is  the primary carbon, i.e. at C-6,

followed by C-2 and C-4 (Telles et al., 2011; Zhang et al., 2000).

The 13C NMR spectra of native �-(1→6)-d-glucan and its sul-

fonated derivative are presented in Fig. 3. The chemical shift at

103.0 ppm of �-(1→6)-d-glucan was  attributed to the anomeric

carbon and that at 69.0 ppm to substituted C-6. The signals at 75.9,

75.0, 73.2 and 69.9 ppm were attributed to  C-3, C-5, C-2 and C-

4, respectively (Narui et al., 1999; Sassaki et al., 2002). The 13C

NMR spectrum of sulfonated glucans was  more complicated with

broader signals, resulting from the sulfonation of the hydroxyl

groups (Brandi et al., 2011). Usually following sulfonation, the

spectra became more complicated because the carbons directly

attached to the electronegative sulfonated ester groups shift down

field, while the carbons indirectly attached (neighborhood) to the

sulfonyl group shift to  an upfield position (Perlin & Casu, 1982;

Telles et al., 2011).

The  chemical shifts in the 13C NMR  spectrum of the sulfonated

�-(1→6)-d-glucan presented a  small variation (+0.3 ppm), in rela-

tion to the original biopolymer. The new signal at 96.3 ppm was
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Fig. 2. FT-IR and UV–vis (inset) spectra of �-(1→6)-d-glucan before (- - -) and after sulfonation (—).

attributed to C-1 as the signal of C-1 splits when an OH group on

C-2 is substituted with a sulfonyl group. In addition, the chemical

shift at 73.2 ppm assigned as C-2 also split and moved downfield

(73.6 ppm), suggesting that part of C-2 was sulfonated. The intense

signal at 70.2 ppm corresponded probably to the substituted C-6

and free C-4, while that at 71.9 ppm could be assigned to C-4 sub-

stituted by sulfonyl groups (� shift). The small signal at 68.6 ppm

(� shift) can be related to carbon indirectly attached to  sulfonyl

groups. Probably part of C-3 was also substituted, however, the

attribution is difficult because the chemical shifts may  correspond

to more than one carbon. From the results we  concluded that non-

selective sulfonation of �-(1→6)-d-glucan has occurred, as C-2 and

C-4 were split indicating partial substitution.

After the sulfonation reaction, the solutions of sulfonated �-

(1→6)-d-glucan became less viscous and more water soluble,

which facilitates the bioassays to determine anticoagulant activ-

ity through traditional tests of blood coagulation with heparin as

the reference.

3.2. Anticoagulant activity

3.2.1.  APTT, TT and PT clotting times

To investigate the anticoagulant property of �-(1→6)-d-glucan

and sulfonated �-(1→6)-d-glucan, APTT, PT and TT assays were

conducted using normal human plasma and the effects of the �-

glucans on the clotting times measured. The results were compared

with those for heparin as the reference standard.

The APTT test is related to the phase of intrinsic coagulation in

plasma and measures the function of blood coagulation factors XII,

XI, IX and VIII. PT is  related to the extrinsic phase, which depends

upon  the tissue factor of the activation process and measures the

integrity of the common phase of coagulation. The TT assay evalu-

ates the conversion of plasmatic fibrinogen to fibrin in  the presence

of exogenous thrombin. The coagulation time in the last stage of

the coagulation cascade of events is the conversion of fibrinogen to

fibrin by thrombin (Beutler, Coller, Lichtman, & Kipps, 2001; Melo

et al., 2004; Mendes et al., 2009).

The results for the APPT, TT and PT assays are shown in Table 1.

The sulfonated polysaccharide was  able to prolong the APPT and

TT times in a concentration-dependent manner. With regard to

the APTT and TT results, the anticoagulant effect of sulfonated �-

(1→6)-d-glucan at 30 and 40 �g/mL concentration was  ∼5 and

∼7 times greater, respectively, than the control. These results

demonstrated an important in vitro anticoagulant activity for the

sulfonated �-(1→6)-d-glucan as demonstrated by the increases

in the dose-dependence of APTT and TT, and this action could be

attributable to  the degree of sulfonation (DS 0.95).

The APTT prolongation time suggests inhibition of  the intrinsic

coagulation pathway, whereas prolongation of TT time indicates

inhibition of thrombin-mediated fibrin formation (Wang et  al.,

2007). No prolongation of PT demonstrated there was no inhibition

of the extrinsic pathway of coagulation (Mao  et al., 2009). Since the

anticoagulant effect of heparin is  not mediated by modulation of

the extrinsic system, the sulfonated �-(1→6)-d-glucan is a  poor

inhibitor of the extrinsic pathway. The APTT and TT values were

compared with heparin, and a concentration ∼10 times greater

of the sulfonated �-(1→6)-d-glucan was  necessary to  achieve the

same effect as exhibited by heparin. The sulfonated �-(1→3;1→6)-

d-glucan (named botryosphaeran) from Botryosphaeria rhodina

MAMB-05 grown on fructose (Mendes et al., 2009), and glucose
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Fig. 3. 13C NMR  spectra of exocellular �-(1→6)-d-glucan and sulfonated �-(1→6)-d-glucan.

(Brandi et al., 2011), showed similar results as anticoagulants.

According to Martinichen-Herrero et al. (2005), sulfated polysac-

charides with a lower anticoagulant activity than heparin could

exhibit a potent antithrombotic effect with less hemorrhagic

risk.

As with heparin, the weakest effect was observed in  the PT

assay for the sulfonated �-(1→6)-d-glucan. The relative lack of

effect of sulfonated �-(1→6)-d-glucan on the PT is consistent with

the observation that this test is  also not sensitive to  heparin, and

several other sulfated polysaccharides (Martinichen-Herrero et al.,

Table 1
Anticoagulant activity of normal human plasma in the presence of �-(1→6)-d-glucan, sulfonated �-(1→6)-d-glucan and heparin as measured by the activated partial

thromboplastin time (APTT), thrombin time (TT) and prothrombin time (PT).

Polysaccharide Amount (�g/mL) Clotting times (s)

APTT TT PT

�-(1→6)-d-Glucan Control  (0) 46.65 ±  0.8 19.45 ±  0.4 12.87 ± 0.8

1  39.45 ±  0.2 15.92 ±  0.4 16.04 ± 0.1

5  39.94 ±  0.6 16.56 ±  0.5 14.87 ± 0.1

10 42.30 ±  0.1 14.24 ±  0.3 15.77 ± 0.1

15 41.07 ±  0.7 14.53 ±  0.2 14.27 ± 0.2

20  41,09 ±  0.2 14.43 ±  0.4 16.87 ± 0.1

Sulfonated �-(1→6)-d-glucan Control (0) 46.65 ±  0.8 19.45 ±  0.4 12.87 ± 0.8

1  46.79 ±  0.2 15.67 ±  0.3 15.12 ± 0.0

5  58.27 ±  0.1 26.75 ±  1.6 17.56 ± 0.1

10 70.55 ±  3.6 50.87 ±  1.1 17.52 ± 0.4

15 96.97 ±  1.3 70.06 ±  0.6 18.65 ± 0.2

20  105.69 ±  0.1 187.54 ±  1.5 18.61 ± 0.4

30  228.49 ±  3.7 227.06 ±  2.2 17.45 ± 0.4

40  298.13 ±  1.0 249.45 ±  0.6 17.17 ± 0.7

Heparina Control (0) 46.65 ±  0.8 19.45 ±  0.4 12.87 ± 0.8

1  55.60 ±  0.6 95.00 ±  0.7 16.56 ± 0.2

2 76.19 ±  1.0 275.98 ±  1.3 17.93 ± 0.6

3  106.08 ±  0.3 592.70 ±  2.9 19.20 ± 0.2

a Sodium heparin, 5000 IU/mL. The results represent mean times ± SD.
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Fig. 4. Concentration dependence of �-(1→6)-d-glucan, sulfonated �-(1→6)-d-

glucan  and heparin on the inactivation of thrombin by (a)  antithrombin of human

plasma and (b) a purified antithrombin preparation.

2005). The �-(1→6)-d-glucan (lasiodiplodan) did not inhibit the

APTT, TT and PT assays, and demonstrated that the presence of sul-

fonyl groups was an essential requirement for these anticoagulant

activities.

3.2.2. Inhibition of thrombin by  antithrombin in the presence of

ˇ-(1→6)-d-glucan, sulfonated ˇ-(1→6)-d-glucan and heparin

The  biological mechanism of sulfonated polysaccharides occurs

by the potentiation of plasmatic cofactors, which are physiologi-

cal inhibitors of the coagulation cascade as antithrombin that acts

by inhibiting thrombin and factors Xa, XIIa, XIa and IX, and may

have its action strengthened by  the presence of heparin (Melo et al.,

2004; Mendes et al., 2009). To elucidate the inhibitory mecha-

nism of the anticoagulant activity of sulfonated �-(1→6)-d-glucan,

the effects on thrombin activity were studied using chromogenic

substrates in the presence of plasma as a  source of physiological

inhibitors (antithrombin and heparin cofactor II), and also purified

antithrombin.

Fig. 4(a) and (b) shows that the sulfonated �-(1→6)-d-glucan

was  able to potentiate thrombin inhibition in  a  manner similar to

that of heparin. However, comparing the values of IC50 (concentra-

tion of the sulfonated �-(1→6)-d-glucan necessary to obtain 50%

inhibition of thrombin activity) obtained for both sets of assays,

the activity of the sulfonated �-(1→6)-d-glucan was  approximately

180-fold lower than that of heparin in experiments using the puri-

fied antithrombin, and ∼38-fold lower with human plasma. These

results suggest that besides the activation of antithrombin, the sul-

fonated �-(1→6)-d-glucan could possibly contribute to  an increase

in  the action of another physiological inhibitor of thrombin (hep-

arin cofactor II) absent in  the assays with purified antithrombin.

Heparin cofactor II is  an inhibitor of serine protease and thrombin.

Antithrombin inhibits all intrinsic pathway coagulation enzymes

(Mao et al., 2009).

Therefore, the results of the anticoagulant tests described in  this

work demonstrated that the sulfonated �-(1→6)-d-glucan exhib-

ited anticoagulant activity, and was most likely involved with the

intrinsic pathway. The lasiodiplodan did not present inhibiting

activity at any of the concentrations examined, demonstrating that

the presence of sulfonyl groups in this �-(1→6)-d-glucan was an

important characteristic of anticoagulant action.

4.  Conclusions

An exocellular �-(1-6)-d-glucan (lasiodiplodan) was  sulfonated

(three cycles) using formamide as solvent, pyridine as catalytic

reagent and chlorosulfonic acid as the hydroxyl group donor. The

effectiveness of each sulfonation reaction cycle was  monitored

by UV–vis and FT-IR analysis, and only the sulfonated �-(1-6)-d-

glucan showed sulfonate or the unsaturated bond formed in  the

sulfonation process. The content of sulfur and DS obtained for

the sulfonated �-(1→6)-d-glucan was  11.73% and 0.95, respec-

tively, which indicated that there was  approximately one sulfonyl

group per residue of glucose. The positions of the sulfonyl groups

introduced in  lasiodiplodan were determined by 13C NMR, and from

the results it was concluded that non-selective sulfonation of  the

�-(1→6)-d-glucan had occurred, with C-2 and C-4 being partially

substituted. It is possible that C-3 also received a  sulfonyl group. The

prolongation of APTT in the presence of the sulfonated �-(1→6)-d-

glucan suggested inhibition of the intrinsic pathway of coagulation,

while an extension of the TT time probably indicated inhibition of

the reaction resulting in the conversion of fibrinogen into fibrin.

Thus, this work demonstrated that the chemical derivatization of

exocellular �-(1→6)-d-glucan by sulfonation produced a modified

polysaccharide resulting in anticoagulation activity.
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