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geodesics in the BTZ black hole and obtain open string solutions which are pinned on
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strings upon regularising their charge and spins have a dispersion relation similar to that

of giant magnons. We then dress space like geodesics which start and end on the boundary

of the BTZ black hole and obtain minimal surfaces which can penetrate the horizon of the

black hole while being pinned at the boundary. Finally we embed the giant gluon solutions

in the BTZ background in two different ways. They can be embedded as a spiral which

contracts and expands touching the horizon or a spike which originates from the boundary

and touches the horizon.
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1 Introduction

Classical solutions of strings moving in AdS5 × S5 backgrounds have played an important

role in the AdS/CFT correspondence. Spinning strings in AdS or the sphere have been

established as excitations dual to operators with large spins or R-charges respectively [1].

These solutions were crucial in discovering the role of integrability and verifying many of

its predictions in the AdS/CFT correspondence, see [2] for a review and a comprehensive

list of references. Conversely integrability of strings in AdS was used to generate many

new and useful solutions dual to single trace operators as well as Wilson loops in the field

theory dual [3–6].

The AdS3×S3 dual pair is another example where the role of integrability is beginning

to be investigated [7–14]. One of the most interesting aspects of this dual pair is that

classical string propagation in the background of AdS3 black holes is integrable unlike the

higher dimensional examples [15]. Integrability can be used to classify and generate new

classical string solutions in the BTZ background. This in turn will shed light on aspects of

black hole physics which can be probed by extended objects. In this paper we apply the

dressing method introduced in the AdS/CFT context by [3], to generate and study new

solutions of classical strings in the BTZ background.

Trajectories of point like objects described by geodesics are the canonical probes of

the causal structure of the black hole. Space like geodesics in black hole backgrounds are

used to obtain semi-classical limits of two point correlators in the boundary [16–20] and to

study entanglement entropy of the boundary theory for 3 dimensional backgrounds [21].

Studying the behaviour of extended objects gives access to new phenomena near black
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hole horizons. For instance general arguments indicate that strings are expected to spread

and become tensionless near black hole horizons due to quantum fluctuations [22–24].

Furthermore minimal surfaces whose boundary are pinned at asymptotic infinity are dual

to Wilson/Polyakov loops [25, 26] and are useful probes of the transition from thermal AdS

to a black hole in AdS [26, 27] They are also used to evaluate entanglement entropy [21].

See [28] for a nice review and also for some interesting properties of these minimal surfaces.

Finally studying spinning strings in the background of black holes in AdS provides clues

of the spectrum of the excitations in the dual thermal CFT analogous to the information

provided by the spectrum of quasi-normal modes of fields in the black hole background.

The simplest kind of classical string solutions are those which are circular and which

wind around the horizon and which then eventually fall into the horizon. Such solutions

in the context of the BTZ black holes were studied in [9]. They were classified in terms of

the finite gap solutions of the BTZ sigma model. However since the BTZ sigma model is

integrable it is possible to apply the dressing method to construct more general classical

solutions given a seed solution. In this paper we show how the dressing method developed

for the SU(1, 1) principal chiral model [5, 6] can be used to generate classical string solutions

for the sigma model on BTZ×S1. One of the by-products of this study is the proof that the

dressing method preserves the Virasoro constraints of the seed solution .1 This method of

generating solutions for the sigma model is different from that obtained by the spectral flow

method used to obtain long strings in the SL(2, R) WZW model in [29]. The Wess-Zumino

term which allowed for the possibility of obtaining new solutions using the spectral flow

in the SL(2, R) WZW model is not present in the sigma model on BTZ×S1 considered in

this paper.

We first apply the dressing method on time like geodesics to obtain classical string

configurations. We obtain open string configurations which are pinned at the boundary

but cross the horizon. The end points of these strings move on time like geodesics which

have the same constants of motion as the seed geodesic but different initial condition.

After a suitable regularization of the energy E and spin S of these solutions which involves

subtracting the energy and spin density of seed geodesic we find that their dispersion

relation is by the form

E − S = κ| sin θ|, (1.1)

where κ is a function of the background and θ is the phase of the dressing parameter. Thus

the dispersion relation resembles that of the giant magnons found in [30]. We next examine

the minimal surfaces obtained by dressing space like geodesics. We show that it is possible

to obtain closed strings, they also have a dispersion relation given in (1.1). These surfaces

are pinned at two points on the boundary. These points move on time like trajectories at

the boundary.

We finally examine the embedding of the well studied giant gluon solutions of [31, 32] in

the BTZ background. These are Euclidean worldsheet solutions. We examine two possible

embeddings: in one case these solutions have vanishing energy and spin. The configuration

1The authors are not aware of a proof that the dressing method in general preserves the Virasoro

constraints in the existing literature.
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is a spiral which originates from the boundary, contracts and touches the horizon and

then expands back to the boundary. In the second solution the embedding solutions has a

dispersion relation given by

E + S = κ logS. (1.2)

These are spinning spikes which originate from the boundary and touch the horizon.

The organization of the paper is as follows. In the next section we adapt the dressing

method developed for the SU(1, 1) sigma model to the BTZ background and show that the

Virasoro constraints are preserved by the dressing. In section 3 we dress time like geodesics

and discuss the properties of the solutions obtained. In section 4 we repeat this analysis for

the case of space like geodesics. In section 5 we embed the giant gluon solutions in the BTZ

background and examine its properties. Section 6 contains our conclusions. Appendix A

contains the discussion of the general method to obtain multi-dressed solutions in the BTZ

background.

2 The BTZ dressing method

To apply the dressing method to classical solutions in the BTZ background, we first review

the construction of the BTZ black hole as an orbifold of the AdS3 hyperboloid. Consider

the hyperboloid given by

− u2 − v2 + x2 + y2 = −1. (2.1)

We then parameterize the hyperboloid as

u+ x = cosh γ eφ̃, u− x = cosh γ e−φ̃,

y + v = sinh γ et̃, y − v = sinh γ e−t̃.
(2.2)

The induced metric on the hyperboloid is given by

ds2 = dγ2 + cosh2 γ dφ̃2 − sinh2 γ dt̃2. (2.3)

The BTZ black hole is then obtained by the identification [33, 34]

t̃ ∼ t̃− 2πr−, φ̃ ∼ φ̃+ 2πr+, (2.4)

where r+, r− are the inner and outer radii of the BTZ black hole. The relationship between

these coordinates and the conventional radial, time and angular coordinates are given by

tanh2 γ =
r2 − r2

+

r2 − r2
−
, t̃ = r+t− r−φ, φ̃ = −r−t+ r+φ. (2.5)

The identifications given in (2.4) ensure that the angular variable φ has the required pe-

riodicity of 2π. Note that this parametrization is suitable for r > r+. Suitable parame-

terizations exist for all the regions of the black hole. In this paper we will be focussing

on the region outside the horizon. For the BTZ background, it is natural to think of the

hyperboloid given in (2.1) as an SL(2, R) group manifold. The group element is given by

g =

(
u+ x y + v

y − v u− x

)
. (2.6)
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Then the identification given in (2.4) can be written as

g ∼ ÃgA, Ã =

(
e(r+−r−)π 0

0 e−(r+−r−)π

)
, A =

(
e(r+−+r−)π 0

0 e−(r++r−)π

)
. (2.7)

These embedding coordinates are related to the conventional coordinates r, t and φ by the

following equations

r =
√

(r2
+ − r2

−)(y2 − v2) + r2
+, φ =

r+ log
(
u+x
u−x

)
+ r− log

(
y+v
y−v

)
2(r2

+ − r2
−)

,

t =
r− log

(
u+x
u−x

)
+ r+ log

(
y+v
y−v

)
2(r2

+ − r2
−)

.

(2.8)

Thus the action of the string propagating in BTZ times S1 is given by

S = − λ̂
2

∫
d2σ

(
1

2
Tr(g−1∂agg

−1∂ag−1) + ∂aZ∂
aZ

)
, (2.9)

together with the identifications given in (2.7). Here Z is the coordinate along the S1 and

λ is the coupling of the sigma model. Translational symmetry along the time direction t

and the angular direction φ give rise to the global charges E and S. These charges have

the following simple relation in terms of the right and left currents of the sigma model

E + S =
λ̂

2
(r+ − r−)

∫ 2π

0
dσTr(∂0gg

−1σ3),

E − S = − λ̂
2

(r+ + r−)

∫ 2π

0
dσTr(g−1∂0gσ

3).

(2.10)

The equations of motion of the sigma model are given by

∂a(∂agg
−1) = 0, ∂a∂aZ = 0. (2.11)

where a ∈ {0, 1} refers to the worldsheet coordinates τ, σ. It is convenient to define the

light-cone coordinates as

σ± =
1

2
(τ ± σ), ∂± = ∂τ ± ∂σ. (2.12)

Let us choose a gauge in which

Z =
Ĵ

2πλ
τ + m̂σ, (2.13)

where Ĵ refers to the momentum on S1 and m̂ refers to the winding. We will restrict our

attention to classical solutions with m̂ = 0. Then the Virasoro constraints of the sigma

model reduce to

1

2
Tr(j2

±) = −

(
Ĵ

2πλ̂

)2

, (2.14)
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where

ĵ± = ∂±gg
−1. (2.15)

Our goal now is to find a method to generate new solutions for this sigma model from

a given solution. For this we adopt the following strategy. Consider a solution of the

SL(2, R) sigma model which is parameterized as given in (2.6). We use the isomorphism

between SL(2, R) and SU(1, 1) and consider it as solution in a SU(1, 1) sigma model by the

parametrization

ĝ =

(
u− iv x+ iy

x− iy u+ iv

)
= QgQ−1, (2.16)

where

Q =
1√
2

(
1 i

1 −i

)
. (2.17)

From the fact that g ∈ SL(2, R) it is easy to show that ĝ satisfies the defining property of

SU(1, 1) which is given by

ĝ†Mĝ = M, det ĝ = 1, M =

(
1 0

0 −1

)
. (2.18)

It is clear from the relationship between the SU(1, 1) and the SL(2, R) group elements given

in (2.16) that a solution to the classical equations of motion and the Virasoro constraints

of the BTZ×S1 sigma model will be a solution to the classical equations of motion and the

Virasoro constraints of the SU(1, 1)× S1 sigma model.

Now that we have a solution in the SU(1, 1)×S1 sigma model we can use the dressing

method developed for this sigma model in [5, 6] to generate new classical solutions to

this sigma model. We then transform it back to a solution in the BTZ×S1 sigma model.

This will then be a new solution to the BTZ ×S1 sigma model. In general the solutions

generated by this method will be classical open strings moving in the BTZ background.

Before we proceed to explicitly apply this strategy we review the dressing method for

the SU(1, 1) × S1 sigma model. Consider the equations of motion to this sigma model

which are given by

∂+(∂−ĝĝ
−1) + ∂−(∂+ĝĝ

−1) = 0. (2.19)

To generate new solutions from a given solution we consider the following system of equa-

tions

i∂+Ψ =
AΨ

1− λ
, i∂−Ψ =

BΨ

1 + λ
, (2.20)

where λ is the complex spectral parameter and A,B are independent of λ. Let us suppose

we have a solution to the equations of motion given in (2.19). Then taking

A = i∂+ĝĝ
−1, B = i∂−ĝĝ

−1, (2.21)

guarantees that the integrability constraints of the system of equations in (2.20) is satisfied.

This is because the equation in (2.19) together with the identity

∂−(∂+ĝĝ
−1)− ∂+(∂−ĝĝ

−1)− [∂1ĝĝ
−, ∂+ĝĝ

−1] = 0, (2.22)
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are the integrability constraints of the system of equations in (2.20). Thus for this situation

the system (2.20) can be solved to obtain Ψ(λ) with

Ψ(0) = ĝ. (2.23)

Now given the consistent system of equations in (2.20) which implies that the integrability

constraints are satisfied, it is easy to see that Ψ(0) is assured to satisfy the equation of

motion (2.19). This is because the equation of motion is part of the integrability constraint

of the system in (2.20). Now to ensure that we obtain a solution in the group SU(1, 1) we

impose the following constraint

Ψ†(λ̄)MΨ(λ) = M. (2.24)

Given that A,B are constructed as in (2.21) from a known solution to (2.20), we can

generate a new solution by considering a λ-dependent gauge parameter χ(λ). Under this

transformation we obtain the system of equations as in (2.20) but with Ψ′, A′, B′ given by

Ψ′ = χΨ,

A′ = χAχ−1 + i(1− λ)∂+χχ
−1,

B′ = χBχ−1 + i(1 + λ)∂−χχ
−1.

(2.25)

If we ensure that A′, B′ are independent of λ, then it is guaranteed that ĝ′ = Ψ′(0) is a

possible new solution to the set of equations in (2.19). The SU(1, 1) constraint in (2.24)

requires χ to satisfy the equation

χ†(λ̄)Mχ(λ) = M. (2.26)

To fix the form of χ so that A′, B′ are independent of λ we proceed as follows. The

form of χ is taken to be as

χ(λ) = 1 +
λ1 − λ̄1

λ− λ1
P, (2.27)

where P is a projection operator given by

P =
Ψ(λ̄1)ee†Ψ†(λ̄1)M

e†Ψ†(λ̄1)MΨ(λ̄1)e
, (2.28)

where e is a constant vector and λ1 is an arbitrary complex parameter. This projection

operators satisfies the conditions

P 2 = P, MP †M = P. (2.29)

Note that the determinant of χ(0) is given by

detχ(0) =
λ̄1

λ1
. (2.30)

Thus to ensure that the new solutions which we call the dressed solution belongs to SU(1, 1),

ĝ′ is given by

ĝ′ =

√
λ1

λ̄1
χ(0)Ψ(0) =

√
λ1

λ̄1
χ(0)ĝ(0). (2.31)
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We will now show that the form of χ given in (2.27) ensures that A′, B′ are independent

of λ. From our analysis in the previous paragraphs we see that this is required so that

the equations of motion of the sigma model is satisfied by Ψ′(0). Let us first show that A′

given in (2.25) is independent of λ. For this we first evaluate

χ−1(λ) = 1 +
λ̄1 − λ1

λ− λ̄1
P. (2.32)

From the expression of A′ given in (2.25) and that of χ and χ−1 in (2.27) and (2.32) we

see that the elements of A′ are holomorphic functions of λ except for the possible poles at

λ = λ1 and λ = λ̄1. We will now show that the residue at the possible pole at λ = λ1

vanishes. Taking the limit λ→ λ1 we obtain

A′(λ→ λ1) =
λ1 − λ̄1

λ− λ1
[PA(1− P ) + i(1− λ1)∂+P (1− P )] . (2.33)

Now using the equations of motion in (2.20) and the definition of P in (2.28), we see that

i∂+P =
AP

(1− λ̄1)
− PA

1− λ1
− λ̄1 − λ1

(1− λ1)(1− λ̄1)
PTr(AP ). (2.34)

Here we have used the equation

A†M = MA, (2.35)

which can be obtained by differentiating the SU(1, 1) constraint in (2.18). To obtain the

last term in (2.34) we have used the identity

Tr(AP ) =
e†Ψ(λ̄)†MAψ(λ̄)e

e†Ψ†(λ̄1)MΨ(λ̄1)e
, (2.36)

which can be shown easily by taking the trace in the following orthonormal basis

v1 =
MΨ(λ̄1)e√

e†Ψ†(λ̄1)Ψ(λ̄1)e
, v2 = v⊥, (2.37)

where v⊥ is the orthogonal unit vector perpendicular to v1. Using this basis one can also

show that TrP = 1. Now substituting i∂+P from (2.34) into the expression for A′ in the

limit λ→ λ1 given in (2.33), we see the residue at λ1 vanishes. One can perform the same

analysis for the limit λ → λ̄1 and show that the potential pole at λ̄1 in A′ also vanishes.

This implies that A′ is a meromorphic function in the λ plane which approaches the matrix

A at λ → ∞. Thus Liouville’s theorem in complex analysis allows us to conclude that A′

is independent of λ. A similar analysis for the matrix B′ can be used to show that B′ is

independent of λ. Therefore the dressed solution given in (2.31) is guaranteed to solve the

equations of motion of the SU(1, 1) sigma model.

Dressing preserves Virasoro constraints. We now show that the dressed solution also

preserves the Virasoro constraints. The original solution satisfies the Virasoro constraints

which are given by

1

2
Tr(∂±ĝĝ

−1)2 = −

(
Ĵ

2πλ̂

)2

. (2.38)
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Let us examine the first constraint in the above set of equations, a similar analysis applies

to the second Virasoro constraint. From the definition of the dressed solution in (2.31)

we see that the dressed solution preserves the Virasoro constraints provided the following

equation is obeyed by the dressing matrix χ

Tr
(
2iAχ−1(0)∂+χ(0) + ∂+χ

−1(0)∂+χ(0)
)

= 0. (2.39)

Now substituting the definition of χ in (2.27) and its inverse in (2.32) as well as the

equation (2.34) we obtain

Tr
(
2iAχ−1(0)∂±χ(0)

)
=

2(λ1 − λ̄1)2

λ1λ̄1(1− λ̄1)(1− λ1)

(
Tr(A2P )− (Tr(AP ))2

)
. (2.40)

Here we have also used the equation

Tr(APAP ) = (TrAP )2, (2.41)

which holds since the projector in (2.28) is a rank 1 projector. It can also be shown

explicitly by evaluating the trace using the complete set of states given in (2.37). Now

using the same manipulations one can show that

Tr(∂+χ
−1(0)∂+χ(0)) = − 2(λ1 − λ̄1)2

λ1λ̄1(1− λ̄1)(1− λ1)

(
Tr(A2P )− (Tr(AP ))2

)
. (2.42)

The equations (2.40) and (2.42) imply that the equation (2.39) is true and thus the dressed

solution also preserves the Virasoro constraints.

3 Dressing time like geodesics

In this section we apply the dressing method to time like geodesics in the BTZ background

and obtain open string solutions. The components of the SL(2, R) matrix for geodesics in

BTZ can be written as

g0 =

(
a(τ) exp(f(τ)) b(τ) exp(g(τ))

b(τ) exp(−g(τ)) a(τ) exp(−f(τ))

)
,

with the constraint a(τ)2 − b(τ)2 = 1. A convenient parametrization for these variables is

given by

a(τ) = cosh γ(τ), b(τ) = sinh γ(τ). (3.1)

The Virasoro constraints for the geodesic reduce to

γ̇2 +
c2

1

cosh2 γ
− c2

2

sinh2 γ
+

(
Ĵ

2πλ̂

)2

= 0, (3.2)

where the dot denotes the derivative with respect to the worldsheet time coordinate and

c1, c2 are the constants of motion given by

ḟ cosh2 γ = c1, ġ sinh2 γ = c2. (3.3)
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We choose the initial conditions

a(0) = a0, b(0) = b0, f(0) = 0, b(0) = 0, γ̇(0) = 0. (3.4)

It is easy to show using the equations of motion that for the geodesic solution given in (3.1),

the current

j = ∂+g0g
−1
0 = ∂−g0g

−1
0 (3.5)

is a constant matrix. Therefore the solution to the equation of motion can also be written as

g = exp(jτ)

(
a0 b0
b0 a0

)
. (3.6)

Note that this solution clearly satisfies the initial conditions given in (3.4). Using this

solution consider the set of equations

∂+Ψs =
jΨs

1− λ
, ∂−Ψs =

jΨs

1 + λ
. (3.7)

Since j is a constant, the equations in (3.7) can easily be integrated. Their solution is

given by

Ψs = exp

(
j
τ + σλ

1− λ2

)(
a0 b0
b0 a0

)
. (3.8)

Note that this solution satisfies the initial condition

Ψs(0) = g. (3.9)

Explicitly performing the exponentiation in the solution (3.8) we obtain

Ψs(λ) =

(
a0 cosϑ+ c1

a0J
sinϑ b0 cosϑ+ c2

b0J
sinϑ

b0 cosϑ− c2
b0J

sinϑ a0 cosϑ− c1
a0J

sinϑ

)
, (3.10)

where

ϑ =
J(τ + σλ)

1− λ2
, J =

Ĵ

2πλ̂
. (3.11)

To obtain (3.10) we have also used the Virasoro constraint

c2
1

a2
0

− c2
2

b20
+ J2 = 0. (3.12)

Now given a solution to the set of equations in (3.7) it is easy to find the solution to the

corresponding SU(1, 1) monodromy equations given in (2.20). Since the relation between

SU(1, 1) and SL(2, R) is given by (2.16) we see that the corresponding solution to (2.20) is

given by

Ψ = QΨsQ
−1. (3.13)
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Writing this out explicitly we obtain

Ψ(λ) =

(
a0 cosϑ− i c2b0J sinϑ c1

a0J
sinϑ+ ib0 cosϑ

c1
a0J

sinϑ− ib0 cosϑ a0 cosϑ+ i c2b0J sinϑ

)
. (3.14)

Now that we have the explicit form of Ψ(λ) corresponding to the time like geodesics we

can construct χ(λ) as defined in (2.27) and proceed to obtain the dressed solution in the

SL(2, R) sigma model which is given by

g′ = Q−1ĝ′Q = Q−1

√
λ1

λ̄1
χ(0)ĝ(0)Q, (3.15)

where we have substituted ĝ′ from (2.31).

3.1 The dressed solution

In this section we will present an explicit example of a class of classical string solutions

obtained by applying the dressing method on time like geodesics. For this we will first

simplify the situation by considering time like geodesics which satisfy the following relation

c1 = c2 = a0b0J. (3.16)

The Virasoro constraint at the initial point τ = 0 given in (3.12) is trivially satisfied with

the condition given in (3.16). Evaluating the global charges of these time like geodesics we

obtain the following

E + S = 0, E − S = −2πλ̂(r+ + r−)(c1 + c2) = −4πa0b0J. (3.17)

Using the condition (3.16) in the expression for Ψ(λ) given in (3.14) we find that it re-

duces to

Ψ(λ) =

(
a0 exp(−iϑ) ib0 exp(−iϑ)

−ib0 exp(iϑ) a0 exp(iϑ)

)
. (3.18)

We will now choose the following constant vector for constructing the dressing factor

e =

(
1

0

)
. (3.19)

Using the definition of P given in (2.28) we find its elements are given by

P11 =
a2

0 exp(−J1)

a2
0 exp(−J1)− b20 exp(J1)

, P12 =
−ia0b0 exp(−iJ1)

a2
0 exp(−J1)− b20 exp(J1)

,

P21 =
−ia0b0 exp(iJ1)

a2
0 exp(−J1)− b20 exp(J1)

, P22 =
−b20 exp(J1)

a2
0 exp(−J1)− b20 exp(J1)

,

(3.20)

where

iJ1 = J

[
τ + σλ1

1− λ2
1

− τ + σλ̄1

1− λ̄2
1

]
= i2J

[
τr2 sin(2θ) + rσ sin(θ)(1 + r2)

1 + r4 − 2r2 cos(2θ)

]
,

J2 = J

[
τ + σλ1

1− λ2
1

+
τ + σλ̄1

1− λ̄2
1

]
= 2J

[
τ(1− r2 cos(2θ)) + σr cos(θ)(1− r2)

1 + r4 − 2r2 cos(2θ)

]
.

(3.21)
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Note that the projection matrix has the following property: given a definite value of τ , the

asymptotic values of P for σ → ±∞ are given by

P (τ,∞) =

(
0 0

0 1

)
, P (τ,−∞) =

(
1 0

0 0

)
. (3.22)

By using the projection matrix given in (3.20) to construct the normalized dressing factor

dressing factor χ̂(0) we obtain

χ̂11(0) = exp(iθ)− 2i sin(θ)a2
0 exp(−J1)

a2
0 exp(−J1)− b20 exp(J1)

, χ̂12(0) = − 2 sin(θ)a0b0 exp(−iJ2)

a2
0 exp(−J1)− b20 exp(J1)

,

χ̂22(0) = exp(iθ) +
2i sin(θ)a2

0 exp(−J1)

a2
0 exp(−J1)− b20 exp(J1)

, χ̂21(0) = − 2 sin(θ)a0b0 exp(iJ2)

a2
0 exp(−J1)− b20 exp(J1)

,

(3.23)

where

χ̂ =

√
λ1

λ̄1
χ(0), (3.24)

and the complex parameter λ1 = reiθ. It can be easily verified that the dressing factor

in (3.23) belongs to SU(1, 1). Note that when the parameter λ1 becomes real, that is θ = 0,

the dressing factor reduces to identity. Thus there is a smooth limit in which the dressed

solution will reduce to the original geodesic. Now using the expression in (3.15), the new

solution to the sigma model which satisfies the Virasoro constraints is given by

u′ = a0 cos(θ − Jτ)− 2 sin(θ)(a3
0 exp(−J1) sin(Jτ) + a0b

2
0 sin(Jτ − J2))

a2
0 exp(−J1)− b20 exp(J1)

,

v′ = −a0 sin(θ − Jτ) +
2 sin(θ)(a3

0 exp(−J1) cos(Jτ)− a0b
2
0 cos(Jτ − J2))

a2
0 exp(−J1)− b20 exp(J1)

,

x′ = −b0 sin(θ − Jτ) +
2 sin(θ)a2

0b0(exp(−J1) cos(Jτ)− cos(Jτ − J2))

a2
0 exp(−J1)− b20 exp(J1)

,

y′ = b0 cos(θ − Jτ)− 2 sin(θ)a2
0b0(exp(−J1) sin(Jτ) + sin(Jτ − J2))

a2
0 exp(−J1)− b20 exp(J1)

,

(3.25)

where J1 and J2 are given by (3.21). We have used the parametrization of SL(2, R) given

in (2.6) to read out the u′, v′, x′, y′ values of the dressed solution. Note that as a simple

check it can be verified that the constraint −u′2− v′2 +x′2 + y′2 = −1 is satisfied. We have

also explicitly verified that the solution in (3.25) satisfies both the equation of motion as

well as the Virasoro constraints given by

− ∂±(u′ + x′)∂±(u′ − x′) + ∂±(y′ + v′)∂±(y′ − v′) = −J2. (3.26)

Multiple dressed solutions can be obtained by the general procedure discussed in the ap-

pendix.
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Description of the solution. We now briefly describe the features of the solution. At

any given value of the worldsheet time the end points of the string σ → ±∞ move as time

like geodesics. Taking the limit σ →∞ in the solution given in (3.25), we obtain

u′ = a0 cos(θ − Jτ), v′ = −a0 sin(θ − Jτ),

x′ = −b0 sin(θ − Jτ), y′ = b0 cos(θ − Jτ).
(3.27)

In taking this limit we have assumed that sin θ > 0 (a similar analysis can be repeated for

sin θ < 0). Comparing this to the seed solution Ψx(0) = g given in (3.10) we see that it is

the geodesic with same constants of motion but with different initial conditions. Similarly

taking the limit σ → −∞ we obtain

u′ = a0 cos(θ + Jτ), v′ = a0 sin(θ + Jτ),

x′ = b0 sin(θ + Jτ), y′ = b0 cos(θ + Jτ).
(3.28)

Again, this is the same geodesic as in (3.27) with θ → −θ. Thus, the end points of the

string move as geodesics with the same constants of motion as the seed geodesic, but with

initial conditions depending on θ.

To further characterize these solutions we will evaluate their global charges. We first

show that the charge E + S = 0, thus preserving the condition of the seed geodesic given

in (3.17). The charge of the dressed solution is given by

E + S

r+ − r−
=
λ̂

2

∫ ∞
−∞

dσTr(∂0g
′g′−1σ3),

=
λ̂

2

∫ ∞
−∞

dσTr(∂0ĝ
′ĝ′−1Qσ3Q−1),

=
λ̂

2

∫ ∞
−∞

dσTr(∂0ĝ
′ĝ′−1σ1).

(3.29)

In the second and third line of the equation we have converted the SL(2, R) variables to

SU(1, 1). Now from the fact that the dressing method is a gauge transformation the new

currents are related to the old ones by (2.25)

A′ = χAχ−1 + i(1− λ)∂+χχ
−1,

B′ = χBχ−1 + i(1 + λ)∂−χχ
−1.

(3.30)

We have also seen that A′, B′ are independent of λ, therefore we can evaluate the l.h.s. of

the above equations at any convenient value of λ. Let us evaluate the l.h.s. at λ → ∞.

This results in the following equations

∂+ĝ
′ĝ′−1 = ∂+ĝĝ

−1 − (λ1 − λ̄1)∂+P,

∂−ĝ
′ĝ′−1 = ∂−ĝĝ

−1 + (λ1 − λ̄1)∂−P.
(3.31)

Adding both equations we obtain the following

∂0ĝ
′ĝ′−1 = ∂0ĝĝ

−1 − (λ1 − λ̄1)∂σP. (3.32)
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This equation is very convenient to evaluate the charge given in (3.29) .

2(E + S)

λ̂(r+ − r−)
=

∫ ∞
−∞

dσTr
(
∂0ĝĝ

−1σ1
)
− (λ1 − λ̄1)Tr

[
(P (τ,∞)− P (τ,−∞)σ1

]
= 0.

(3.33)

To obtain the last line we have used the fact that the seed geodesic has the property c1 = c2

and the values of the asymptotic values of the projection matrix are given in (3.22). Thus

the dressing does not change the left charge E + S. It is easy to see from the analysis

that this holds true for any number of dressings of this geodesics provided the asymptotic

property of the projection matrix is that given in (3.22). Now let us study the charge

E − S. Here we need to explicitly perform the integrals. By a tedious calculation, it can

be shown that the following integral is given by∫
Tr(g′−1∂τg

′σ3)dσ = 4a0b0

[
Jσ +

−2a2
0 + (1 + 2b20) exp(2B) cos(C)

(−1 + b20(−1 + exp(4B)))r
sin(θ)

]
,

B =
Jr[σ(1 + r2) + 2τr cos(θ)]

1 + r4 − 2r2 cos(2θ)
sin θ,

C =
2Jr[σ(r2 − 1) cos(θ) + rτ(r2 − cos(2θ))]

1 + r4 − 2r2 cos(2θ)
.

(3.34)

Now on taking the limits we obtain the following global charge

E − S = − λ̂
2

(r+ + r−) lim
L→∞

∫ L

−L
dσTr(g−1∂τgσ

3),

= − λ̂
2

(r+ + r−)(8a0b0JL− 8
a0b0| sin θ|

r
).

(3.35)

Thus the leading contribution to the global charge diverges linearly with the worldsheet

length. From (3.17) we see that the uniform charge density which contributes to this

divergence is the same as that of the seed geodesic. Therefore we regulate the charges by

simply subtracting this charge density. Since E = −S from (3.33) we see that we must

define the following regulated charges

Ê = E + 2λ̂(r+ + r−)a0b0JL, Ŝ = S − 2λ̂(r+ + r−)a0b0JL. (3.36)

In terms of these regulated charges we obtain the following dispersion relation

Ê − Ŝ = λ̂(r+ + r−)
4a0b0| sin θ|

r
. (3.37)

The dispersion relation of these classical solutions resembles that of the giant magnon.

For the case r = 0, the solution reduces to a geodesic but with different conserved

charges. Substituting r = 0 in (3.21) and using the result in the equations (3.25) we obtain

the following geodesic

u′ = a0 cos(θ + Jτ), v′ = a0 sin(θ + Jτ),

x′ = −b0 sin(θ − Jτ), y′ = cos(θ − Jτ).
(3.38)
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Evaluating the global charges for this case we obtain

E + S = 0, E − S = −4πλ̂(r+ + r−)a0b0 cos(2θ). (3.39)

We now describe the snapshot of the string at a given value of the worldsheet time τ .

From the expression for the coordinates given in (3.25) we see that in general they acquire

large values when the following equality is satisfied

e−J1 =
b0
a0
. (3.40)

Using the expression for J1 in (3.21) we see that given a particular value of τ , the equality

in (3.40) will be satisfied at one point say σ∗. From the relations between the embedding

coordinates u, v, x, y and the BTZ coordinates r, θ, t given in (2.8) we see that at σ∗ the

string possibly is at the boundary of the BTZ geometry. As discussed before the end

points of the string move on time like geodesics. Thus at a given value of τ is pinned at

the boundary and the end points lie on time like geodesics. An estimate of the worldsheet

time at which the string falls into the horizon is given by

τfall = Min

(
1

J

∣∣∣∣tan−1 b0
a0

+ θ

∣∣∣∣ , 1

J

∣∣∣∣tan−1 b0
a0
− θ
∣∣∣∣) , (3.41)

where the Min refers to the minimum of the quantities in the bracket. This estimate

is obtained from the time at which the end points reach the horizon. We now plot the

snapshot of the solution for some typical values of the parameters in the BTZ geometry.

In figure 1 we have plotted the radial position of the solution (3.25) against the worldsheet

σ coordinate for the following set of parameters.

b0 =
0.9√
0.19

, r+ = 10, r− = 9, J =
0.8π

2
, θ =

0.9π

2
, r = 1. (3.42)

The above choice of b0 gives b0/a0 = 0.9. Note that r and φ reach asymptotic values at

large values at σ∗ as predicted by the solution. The string is completely outside the horizon

which is at r+ = 10 for worldsheet time τ=1. As τ increases we see that the end points

cross the horizon and the point which is pinned at the boundary falls in. In figure 2 we

have plotted the projection of the snapshot in the r − φ plane for τ = 1, the range of σ

chosen for the plot is from −5 to 5. The two end points near the horizon are the ends

of the strings which move on time like geodesics. The strings extends along the almost

parallel lines which meet at the boundary of BTZ. Figure 3 shows the string configuration

at τ = 1 in the 3 dimensional BTZ spacetime.

4 Dressing space like geodesics

Space like geodesics in the BTZ background play an important role in the framework

of AdS3/CFT2 . The regularized length of the space like geodesic connecting two equal

time points on the boundary is a useful WKB estimate of the correlator of operators of

large dimension operators inserted at these points [16–20]. Their lengths are also used to
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Figure 1. Orange (τ = 1.0), dashed (τ = 1.2), thick (τ = 1.5), grey (τ = 2.0).
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Figure 2. String in r − φ plane.

determine Wilson loops and entanglement entropy in the boundary theory [21, 28]. In the

SL(2, R) WZW model they played an important role in generating new solutions using

spectral flow [29]. In this section we study the solutions to the sigma model in the BTZ

background obtained by dressing space like geodesics. Space like geodesics which ends on
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Figure 3. String in 3d BTZ background.

two points of the boundary never penetrate the horizon of the black hole. Starting at

a point in the boundary they reach a minimum distance and before the turn back to the

boundary. An interesting result we obtain is that the minimal surfaces obtained by dressing

these space like geodesics can penetrate the horizon while being pinned on some curve at

the boundary. Thus these can possibly be good probes of the physics at the horizon.

For the time like geodesics the mass of the particle was identified as the momentum J

of the circle in the BTZ × S1 sigma model given in (2.9). For the space like geodesics the

equation of motion remains the same however the Virasoro constraints are changed. They

are given by

γ̇2 +
c2

1

cosh2 γ
− c2

2

sinh2 γ
− J2 = 0. (4.1)

Comparing this constraint with that corresponding to the time like case given in (3.2) we

see that for the space like geodesics we need to replace J2 → −J2. We are now interested

in geodesics that can originate from the boundary and reach back to the boundary. For

this let us examine the potential for the space like geodesics. It is given by

V (γ) =
c2

1

a2
− c2

2

b2
− J2. (4.2)

For definiteness let us assume c1, c2, J ≥ 0. Then the maximum of the potential occurs at

sinh γ =

√
c2

c1 − c2
. (4.3)

This maximum exists for c1 > c2. For the geodesic to turn back to the boundary we need

the value at this maximum to be greater than zero. This is achieved by the following

condition

c1 − c2 > J. (4.4)
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Figure 5. Trajectory of the tachyon for c1 = 5, c2 = 1, J = 3, r+ = 10, r− = 9 in r − φ plane of

BTZ.

Once these conditions are satisfied it is clear that a geodesic starting at the boundary will

return back to the boundary. It will never reach the horizon which is at γ = 0. An example

of values which satisfy these conditions are c1 = 5, c2 = 1, J = 3. The potential is plotted

in figure 4. A trajectory of a space like geodesic originating close to the boundary and

going back to the boundary after hitting the hump located at

γc = sinh−1

(√
c2

c2 − c1

)
= 0.4812 (4.5)

is plotted in the r − φ plane in figure 5.

It is clear from the generic shape of the potential for the condition c1 − c2 > J ,

that the space like geodesic never reaches the horizon. We will show that upon dressing

these space like geodesics we will obtain classical string solutions that can penetrate the

horizon while being pinned on the boundary at two points. The reason this is possible is

perhaps due to the fact that the worldsheet in this case has Minkowski signature unlike

the situation discussed in [28] where is was shown that Euclidean minimal surfaces pinned

at the boundary do not penetrate horizons. We will also show that there is a domain of

parameter space in which these solutions are closed strings. Just as space like geodesics
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which originate and end at the boundary can be used as probes of horizon physics it is

plausible that these solutions can give information of the physics of the horizon.

To solve for the trajectory of a general space like geodesic we again use the ansatz

given in (3.1). The initial conditions are given by

a(0) = a0, b(0) = b0, f(0) = 0, b(0) = 0, γ̇(0) = −

√
J2 +

c2
2

b20
− c2

1

a2
0

. (4.6)

We start at some large γ0 outside the maxima of the potential with radially inward velocity.

The solution to the monodromy equations given in (3.7) can be obtained by following the

similar procedure adopted for time like geodesics. The results are

Ψs =

(
Ψs(11) Ψs(12)

Ψs(21) Ψs(22)

)
, (4.7)

where

Ψs(11) = a0 cosh[ϑ]−
b0

√
J2 +

c22
b20
− c21

a20

J
sinh[ϑ] +

c1

a0J
sinh[ϑ],

Ψs(12) = b0 cosh[ϑ]−
a0

√
J2 +

c22
b20
− c21

a20

J
sinh[ϑ] +

c2

b0J
sinh[ϑ],

Ψs(21) = b0 cosh[ϑ]−
a0

√
J2 +

c22
b20
− c21

a20

J
sinh[ϑ]− c2

b0J
sinh[ϑ],

Ψs(22) = a0 cosh[ϑ]−
b0

√
J2 +

c22
b20
− c21

a20

J
sinh[ϑ]− c1

a0J
sinh[ϑ],

(4.8)

and ϑ and J are defined in (3.11). Note that this solution satisfies the condition

Ψs(0) = g, (4.9)

where g refers to the trajectory of the space like geodesic with the initial conditions given

in (4.6). To obtain this form of the monodromy matrix we have used the Virasoro con-

straint given in (4.1). Using the transformation given in (3.13) the solution to the SU(1, 1)

monodromy equations can be constructed. To write this solution in a convenient form we

define

c1 = n1a0J, c2 = n2b0J, (4.10)

where n1 and n2 are arbitrary parameters. The solution to the SU(1, 1) monodromy equa-

tions in (2.20) is then given by

Ψ11 = cosh γ0 coshϑ− c sinh(γ0) sinhϑ− in2 sinhϑ,

Ψ12 = n1 sinhϑ+ i (sinh γ0 coshϑ− c cosh γ0 sinhϑ) ,

Ψ21 = n1 sinhϑ− i (sinh γ0 coshϑ− c cosh γ0 sinhϑ) ,

Ψ22 = cosh γ0 coshϑ− c sinh(γ0) sinhϑ+ in2 sinhϑ,

(4.11)
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where

c =
√

1− n2
1 + n2

2. (4.12)

We now proceed as in the case of the time like geodesics and construct the dressing

factor given in (2.27) with the constant vector e =

(
1

0

)
. The dressed solution in the

SL(2, R) sigma model is then obtained by using (3.15). This results in the following solution

u′ =u cos(θ)+

sin(θ)
[
− sinh(γ0)(eγ

′
sinh(Jτ − 2α) + eγ̃c cosh(Jτ − 2α))+

(c sinh(γ0) cosh(Jτ)− sinh(Jτ) cosh(γ0))(eγ̃ cos(2β) + sin(2β))
]

× (cos(2β)− exp(γ̃) sin(2β))−1,

v′ =v cos(θ)

+ sin(θ)
[
cosh(Jτ − 2α)(cosh(γ0) + n2e

γ̃) + c sinh(γ0) sinh(Jτ − 2α)

−n2 cosh(Jτ)(eγ̃ cos(2β) + sin(2β))
]

(cos(2β)− exp(γ̃) sin(2β))−1,

x′ =x cos(θ)

+ sin(θ)
[
cosh(Jτ − 2α)(n1e

γ̃ − sinh(γ0))− c cosh(γ0) sinh(Jτ − 2α)

−n1 cosh(Jτ)(eγ̃ cos(2β) + sin(2β))
]

(cos(2β)− exp(γ̃) sin(2β))−1,

y′ =y cos(θ)+

sin(θ)
[
− cosh(γ0)(eγ

′
sinh(Jτ − 2α) + eγ̃c cosh(Jτ − 2α))+

(c cosh(γ0) cosh(Jτ)− sinh(Jτ) sinh(γ0))(eγ̃ cos(2β) + sin(2β))
]

× (cos(2β)− exp(γ̃) sin(2β))−1,

where

eγ̃ = n2 cosh(γ0) + n1 sinh(γ0), eγ
′

= n1 cosh(γ0) + n2 sinh(γ0), (4.13)

and

α =
τ(1− r2 cos(2θ)) + σ cos(θ)(1− r2)

1 + r4 − 2r2 cos(2θ)
J, β =

τr2 sin(2θ) + rσ sin(θ)(1 + r2)

1 + r4 − 2r2 cos(2θ)
J. (4.14)

Note that α = J2/2 and β = J1/2 as defined in (3.21). We have also explicitly verified that

these solutions satisfy the equations of motion as well as the following Virasoro constraints

− ∂±(u′ + x′)∂±(u′ − x′) + ∂±(y′ + v′)∂±(y′ − v′) = J2. (4.15)

Note that compared to the Virasoro constraints of solutions obtained by dressing time like

geodesics in (3.26) we have J2 → −J2. This is expected from the general proof that the

Virasoro constraints of the original solution are preserved by the dressing method. Since

these are not the Virasoro constraints obeyed by a physical string these solutions are best

thought of as minimal surfaces in the BTZ background.
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4.1 Closed string solutions

The solutions given in the equations (4.13) are in general open strings and are complicated.

To get more insight into them we discuss the interesting situation when the solutions given

in (4.13) become periodic in σ. Two special cases for the above solutions are r = 1 and

θ = π/2. Note that for either of these two cases, α in (4.14) loses its σ dependence. For

these cases the solution given in (4.13) depends on σ through the trigonometric functions

of the angle β which in turn depends linearly on σ. Thus the solutions are periodic in σ

with the period determined by the coefficient multiplying σ in β given in (4.14). Thus the

periodicity σp of the closed string is given by

σp =
π(1 + r4 − 2r2 cos(2θ))

Jr sin(θ)(1 + r2)
. (4.16)

Closed strings with r = 1, arbitrary θ We will discuss the case r = 1 with arbitrary

θ in some detail. These solutions have σ dependance through the periodic trigonometric

functions. The solutions are now closed strings with period

σp =
2π

J
sin θ. (4.17)

We will now evaluate the global charges for these solutions. From the same analysis leading

up to equation (3.33) we obtain the following expression for the charge E + S

2(E + S)

λ̂(r+ − r−)
=

∫ 2πσp

0
dσTr(∂0ĝĝ

−1σ1)− (λ− λ̄)Tr((P (τ, 2πσp)− P (τ, 0))σ1),

=

∫ 2πσp

0
dσTr(∂0gg

−1σ3),

=
4π(c1 − c2) sin θ

J
.

(4.18)

To obtain the second line we have used the periodicity property of the solution and also

the relation between the SL(2, R) group element g and the SU(1, 1) group element denoted

by ĝ. We have also verified the last line of the equation by explicitly evaluating this charge

on the dressed solution g′ given in (4.13). Thus we obtain the simple result that the charge

E +S of the dressed solution reduces to the charge density of the seed geodesic multiplied

by the periodicity of the string. For the charge E − S we obtain a similar result though

we do not have a simple proof. Explicitly evaluating the charge density E − S for the

solution (4.13) we obtain

2(E − S)

λ̂(r+ − r−)
=

4π(c1 + c2) sin θ

J
. (4.19)

Here again we find that the charge is equal to the charge density corresponding to the seed

geodesic multiplied by the length of the closed string.2 Again the equations for the charge

2We have also verified that the property that the global charges are equal to the charged density of the

corresponding seed geodesic multiplied by the length of the closed string remains true for the situation with

θ = π
2

and arbitrary r.
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in (4.18) and (4.19) closely resemble that of giant magnon dispersion relations. Note that

in this analysis we have chosen sin θ > 0, whereas for sin θ < 0 the expressions in (4.18)

and (4.19) are similar with sin θ replaced by | sin θ|.
We now qualitatively describe the motion of the string in the BTZ background. From

the solution given in (4.13) we see that the coordinates u′, v′, x′, y′ assume large values

when

cot 2β∗ = eγ̃ , (4.20)

which implies

β∗± = cot−1(eγ̃ ±
√
e2γ̃ + 1). (4.21)

From (4.14) we see that for r = 1 , β is given by

β =
J

2

(
τ cos θ + σ

sin θ

)
. (4.22)

Thus given γ̃, the equation (4.21) determines a line in the worldsheet coordinates at which

the space time coordinates become large. From the relationship between the radial co-

ordinate of the BTZ to the coordinates u′, v′, x′, y′ given in (2.8) we see that when the

equation (4.21) holds it is possible that the minimal surface can reach the boundary of

BTZ.

To describe the solution further we examine the solution at the following parameters

γ0 = 3, r+ = 10, r− = 9, J = 3, c1 = 5, c2 = 1, θ =
π

4
, r = 1. (4.23)

As before the outer and inner horizon radius of BTZ is chosen to be r+ = 10 and r− = 9

respectively. Note that as discussed earlier and from figure 4 and figure 5 the seed space

like geodesic for these set of parameters originates close to the boundary and bounces back

to the boundary after reaching near the horizon. It does not penetrate the horizon. The

periodicity of the string for this set of parameters is given by

σp =

√
2π

3
. (4.24)

The values of β∗± are given by

β∗+ = 0.232484, β∗− = −1.33831. (4.25)

The curve on the world sheet for which the space time coordinates become large is given by

σ∗± =

√
2

3
β∗± −

τ√
2
. (4.26)

Thus given a value of τ , there are two values of σ at which the space time coordinates are

large. To visualize the minimal surface we plot its snapshot at various values of worldsheet

time. The radial r, time t and the angular coordinate φ are plotted with respect to the

σ coordinate at worldsheet times τ = .5, 1.0, 1.34 in figure 6. The cross section of the

minimal surface in the r − φ plane is provided in figure 7 and figure 8. The range of the
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Figure 6. Dashed (τ=0.5), thick (τ=1.0), red (τ=1.34).

σ axis runs from −
√

2π/3 to
√

2π/3 in figure 6. The fact that the string is closed with

period
√

2π/3 is clearly visible in figure 6. In figure 6 we have also marked the position

at which the radial coordinate becomes infinite for the time τ = 1.0, 1.34. For τ = 1.0,

the value of σ∗+ and its periodic image is marked by a1 and a′1 and the value of σ∗− and

its periodic image is marked by a2 and a′2. Similarly for τ = 1.34 the value of σ∗+ and

its image is marked by b1 and b′1, the value of σ∗− and its image is marked by b2 and b′2.

From the plots we see that the surface is pinned at the boundary on two curves and hangs

into the bulk. As the worldsheet time is increased the surface crosses the horizon while

being pinned at the boundary. Eventually the string reaches the singularity. We can also

describe the two curves on the boundary at which the minimal surface is pinned. These

curves are given by substituting the relations for σ+, σ− given in (4.26) into the expression

for the time coordinate t and the angular coordinate φ given in (2.8). Then one can obtain a

parametric plot of t and φ with respect to the parameter t. These two curves corresponding

to β∗+ and β∗− are given in figure 9 and figure 10 respectively. From the figures we see that

the curves describe a time like on the boundary.
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Figure 7. Spacelike strings in r − φ plane at τ = 1.34.

Since these solutions can be interpreted as minimal surfaces it is interesting to verify

if their proper area given by the Nambu Goto Lagrangian is positive for all σ for the

worldsheet times of interest.3 The Nambu-Goto Lagrangian density is given by

LNG =
[
Tr(g−1g′g−1ġ))2 − Tr(g−1ġg−ġ)Tr(g−1g′g−1g′)

]1/2
, (4.27)

where g is given in terms of the embedding in (2.6). Here the superscripts prime and dot

refer to derivatives with respect to σ and worldsheet time τ respectively. We have verified

that this Lagrangian density is positive for all τ = 0.5 to τ = 1.34. For a sample of its

profile we have plotted the Lagrangian density for τ = 1.0 with respect to the worldsheet

σ coordinate in figure 11.

5 Giant gluons in BTZ

The giant gluon solution found in [31, 32] is a solution of the Euclidean worldsheet equa-

tions of motion in AdS3. This solution has played an important role in evaluating the

gluon scattering amplitudes in AdS. It is interesting to study its properties in the BTZ

background. The embedding can be done in BTZ in two different ways consistent with the

periodicities of the BTZ background.

Method 1. In this method the giant gluon solution can be written in terms of BTZ

embedding coordinates given in (2.6) as follows

u = coshσ cosh τ, v = sinhσ sinh τ,

x = sinhσ cosh τ, y = coshσ sinh τ.
(5.1)

3This check was suggested to us by Aninda Sinha.
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Figure 8. Spacelike strings in r − φ plane at τ = 1.0.
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Figure 9. Propagation of the BTZ boundary point due to root β1 from τ =0.5 to 1.34.

With the above choice the SL(2, R) group element becomes

g =

(
cosh τeσ sinh τeσ

sinh τe−σ cosh τe−σ

)
. (5.2)

The conserved left and right currents are

jτ = ∂τgg
−1 =

(
0 e2σ

e−2σ 0

)
, jσ = ∂σgg

−1 =

(
1 0

0 −1

)
,

lτ = g−1∂τg =

(
0 1

1 0

)
, lσ = g−1∂σg =

(
cosh 2τ sinh 2τ

− sinh 2τ − cosh 2τ

)
.

(5.3)
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Figure 10. Propagation of the BTZ boundary point due to root β2 from τ =0.5 to 1.34.
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Figure 11. Worldsheet Lagrangian vs σ plot for space like strings.

From these currents it can be seen that this solution satisfies the Euclidean worldsheet

equations of motion trivially, i.e.

∂τ jτ + ∂σjσ = 0. (5.4)

They also satisfy the Euclidean Virasoro constraints which are

− ∂±(u+ x)∂±(u− x) + ∂±(y + v)∂±(y − v) = 0, (5.5)

where ∂± = i∂τ±∂σ. The factor of i in front of ∂τ accounts for the fact that these solutions

are Euclidean. The global charges E and S are zero for this configuration, since Tr(jτσ3)

and Tr(lτσ3) vanish.
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Figure 12. Plot of r with respect to τ .

Let us examine the behaviour of the solution in space time. In terms of the BTZ

coordinates the solution has a rather simple form

r =
√

(r2
+ − r2

−)(y2 − v2) + r2
+ =

√
(r2

+ − r2
−)(sinh2 τ) + r2

+,

φ =
r+ log

[
u+x
u−x

]
+ r− log

[
y+v
y−v

]
2(r2

+ − r2
−)

=
σ

r+ − r−
,

t =
r− log

[
u+x
u−x

]
+ r+ log

[
y+v
y−v

]
2(r2

+ − r2
−)

=
σ

r+ − r−
.

(5.6)

From figure 12 we notice that r is an even function of τ only and the minimum of r occurs

at r+ at τ = 0. The space time coordinates t and φ are linear in σ. Thus a snapshot of

the string at a given value of τ has a spiral shape as shown in figure 13. As τ increases

or decreases from τ = 0, the radius of the spiral increases since r is an even function of τ .

Since this embedding has trivial global charges E, S it is degenerate with the BTZ state

in the CFT at least with respect to these charges.

Method 2. The other possible configuration for the string in BTZ is written by inter-

changing x and y in method 1. This is given by

u = coshσ cosh τ, v = sinhσ sinh τ,

y = sinhσ cosh τ, x = coshσ sinh τ,
(5.7)

and the SL(2, R) group reduces to

g =

(
coshσeτ sinhσeτ

sinhσe−τ coshσe−τ

)
. (5.8)
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Figure 13. The 3d plot shows a spiral string at τ = 1 and for σ ∈ [−5, 5] and the 2d plot shows

the projection of the spiral in r − φ plane. The red circle denotes the position of the horizon.

Note that this embedding is obtained from the one in method 1 by the interchange of σ

and τ . The conserved left and right currents are

jτ = ∂τgg
−1 =

(
1 0

0 −1

)
, jσ = ∂σg =

(
0 e2τ

e−2τ 0

)
,

lτ = g−1∂τg =

(
cosh 2σ sinh 2σ

sinh 2σ − cosh 2σ

)
, lσ = g−1∂σg =

(
cosh 2τ sinh 2τ

− sinh 2τ − cosh 2τ

)
.

(5.9)

This solution satisfies and Euclidean equations of motion and the corresponding Virasoro

constraint given in (5.5). Unlike the case of the embedding in method 1, this solution has

non zero values for E and S. It is

E + S =
λ̂

2
(r+ − r−)

∫ Λ

−Λ
dσTr(jτσ3)

= 2Λλ̂(r+ − r−),

(5.10)

and

E − S = − λ̂
2

(r+ + r−)

∫ Λ

−Λ
dσTr(lτσ3)

= − λ̂
2

(r+ + r−)e2Λ,

(5.11)

where we have introduced the cut-off Λ. For large Λ we can solve for S and eliminate the

cut-off to obtain the dispersion relation

E + S ∼ λ̂(r+ − r−) ln

(
4S

λ̂(r+ + r−)

)
. (5.12)

These dispersion relations are similar to that seen in the giant gluon solution.
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Figure 15. The position of string in r − φ plane at τ = 1 (left) and τ = 2 (right) plotted for

σ ∈ [−π, π], r+ = 10 (blue circle), r− = 9.

The space time coordinates for this embedding is given by

r =
√

(r2
+ − r2

−)(sinh2 σ) + r2
+, φ = t =

τ

r+ − r−
, (5.13)

where r is again an even function of σ and it’s minimum occurs at r+ as seen in figure 14.

Figure 15 shows the snapshot of the string at two different τ ’s. The open string is a spike

which originates at the boundary, touches the horizon and returns back to the boundary.

It is folded onto itself. Since φ is linear in τ , the string will rotate around the horizon as τ

changes. The end points of the string at the boundary describe a light like trajectory.
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6 Conclusions

We have applied the dressing method to construct and study classical string solutions in the

BTZ background. Dressing time like and space like geodesics we obtained solutions which

have dispersion relation similar to that of the giant magnon. Dressed time like geodesics

are open strings whose end points move on time like trajectories with one point pinned to

the boundary. They eventually fall into the horizon. We studied closed strings obtained by

dressing space like geodesics. The minimal surfaces obtained are pinned on the boundary

at two points and can cross the horizon. Giant gluons can be also embedded in the BTZ

background. They give rise to two solutions, one of them is a spiral which expands and

contracts, the other is a spike stretching from the boundary to the horizon.

There are several interesting directions which can be pursued to develop the obser-

vations of this paper further. It will be interesting to study the solutions obtained by

multiple dressings and find their general properties, the appendix contains a discussion of

the general procedure to obtain these solutions. If their dispersion relations turns out to

be similar to multi-magnon solutions then perhaps these are the fundamental excitations

of the integrable system corresponding to the BTZ background. Another direction is to

investigate the role of these solutions from the boundary CFT point of view. The solution

obtained by dressing space like geodesic is possibly best suited to be thought of as a non-

local observable in the CFT. It will be interesting to pin down this observable precisely.

Since these solutions penetrate the horizon while being pinned to the boundary, it will be

extremely interesting to quantize the fluctuations about these solutions. This will help to

verify the general predictions of the behaviour of strings near the horizon as argued in [22]

and give more insight of the physics of extended objects near the horizon.

To summarize: classical string propagation in the BTZ sigma model is integrable. As

shown in this paper it can be used to construct several interesting classical solutions in this

background. This structure of the BTZ black hole is certainly worth further investigation.
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A N -dressed geodesics

Once we know a solution Ψ0(λ) to the system (2.20) it is possible to construct an explicit

solution for the N -dressed geodesic. The details of this calculation for the SU(2) case have
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been worked out in [35]. A parallel treatment for SU(1, 1) yields that the N -th dressed

solution gN is

gN =

∏N
i=1

λi
|λi|

det(aij)
:

∣∣∣∣∣∣∣∣∣∣
g0 −h1 · · · −hN

h†1Mg0 a11 · · · a1N
...

...
...

...

h†NMg0 aN1 · · · aNN

∣∣∣∣∣∣∣∣∣∣
: , (A.1)

where the colons around the second determinant simply mean that upon expanding the

determinant, the column hi is ordered before the row h†jMg0. In the above

hi = Ψ0(λ̄i)ei, αij = − λiβij

λi − λ̄j
, βij = h†iMhj . (A.2)

The parameter λi is the spectral parameter and ei the polarization vector.

As an example we give the first two dressed solutions

g1 =
λ1

|λ1|

(
1 +

h1h
†
1M

α11

)
g0,

g2 =
λ1λ2

|λ1λ2|

(
1 +

α22h1h
†
1M + α11h2h

†
2M − α12h1h

†
2M − α21h2h

†
1M

α11α22 − α12α21

)
g0.

(A.3)

In order to prove the above (A.1) we start by applying consecutive dressing transfor-

mations to the vacuum solution Ψ0(λ). Then, at the N -th step we will have ΨN (λ) =

χN (λ)ΨN−1(λ), with a dressing factor

χN (λ) = 1 +
λN − λ̄N
λ− λN

PN . (A.4)

In the above, PN is a rank one projection operator that can be expressed as

PN =
1

β
(N−1)
NN

h
(N−1)
N h

(N−1)†
N M, (A.5)

where we have defined

h
(N)
i = ΨN (λ̄i)ei, β

(N)
ij = h

(N)†
i Mh

(N)
j , α

(N)
ij = −

λiβ
(N)
ij

λi − λ̄j
, (A.6)

for any N ≥ 0. We can then obtain a recursion relation for the matrix field gN = ΨN (0)

which will be given by

gN =
1

α
(N−1)
NN

(
α

(N−1)
NN + h

(N−1)
N h

(N−1)†
N M

)
gN−1. (A.7)
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Furthermore, we can use the relations (A.4)–(A.7), and obtain the following recursion

relations

h
(N)
i = h

(N−1)
i −

α
(N−1)
Ni

α
(N−1)
NN

h
(N−1)
N

α
(N)
ij = α

(N−1)
ij −

α
(N−1)
iN α

(N−1)
Nj

α
(N−1)
NN

h
(N)†
i MgN =

1

α
(N−1)
NN

(
α

(N−1)
NN h

(N−1)†
i MgN−1 − α(N−1)

iN h
(N−1)†
N MgN−1

)
,

(A.8)

which after a straightforward calculation will lead to the final expression (A.1).
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