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Muscle growth mechanisms are controlled bymolecular pathways that can be affected by fasting and refeeding.
In this study, we hypothesized that short period of fasting followed by refeeding would change the expression of
muscle growth-related genes in juvenile Nile tilapia (Oreochromis niloticus). The aim of this studywas to analyze
the expression of MyoD, myogenin and myostatin and the muscle growth characteristics in the white muscle of
juvenile Nile tilapia during short period of fasting followed by refeeding. Juvenile fish were divided into three
groups: (FC) control, feeding continuously for 42 days, (F5) 5 days of fasting and 37 days of refeeding, and
(F10) 10 days of fasting and 32 days of refeeding. At days 5 (D5), 10 (D10), 20 (D20) and 42 (D42), fish (n=
14 per group) were anesthetized and euthanized for morphological, morphometric and gene expression analy-
ses. During the refeeding, fasted fish gained weight continuously and, at the end of the experiment (D42), F5
showed total compensatory mass gain. After 5 and 10 days of fasting, a significant increase in the muscle fiber
frequency (class 20) occurred in F5 and F10 compared to FC that showed a high muscle fiber frequency in
class 40. At D42, the muscle fiber frequency in class 20 was higher in F5. After 5 days of fasting, MyoD and
myogenin gene expressions were lower and myostatin expression levels were higher in F5 and F10 compared
to FC; at D42, MyoD, myogenin and myostatin gene expression was similar among all groups. In conclusion, this
study showed that short periods of fasting promoted muscle fiber atrophy in the juvenile Nile tilapia and the
refeeding caused compensatorymass gain and changed the expression ofmuscle growth-related genes that pro-
mote muscle growth. These fasting and refeeding protocols have proven useful for understanding the effects of
alternative warm fish feeding strategies on muscle growth-related genes.

© 2013 Published by Elsevier Inc.Open access under the Elsevier OA license.
1. Introduction

Methods for maximizing growth have been tested for many years in
aquaculture, i.e. the use of fasting conditions that result in low growth
rate followed by refeeding, when many organisms attempt to accelerate
the growth rate (Hornick et al., 2000). This accelerated growth is identi-
fied by being significantly faster than thegrowth rate of those individuals
that have not experienced growth depression and have been kept under
the same conditions (Nikki et al., 2004). There are several hypotheses
that attempt to explain the increased growth following a fasting period
such as an increase of feed intake (hyperphagia) (Jobling and Johansen,
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1999; Hayward et al., 2000), protein synthesis (Bower et al., 2009) and
hormonal responses (Gaylord and Gatlin, 2001). Muscle is one of the
most important tissues that are considerably affected by fasting and
refeeding. Gene expression induced by starvation and refeeding also
changes muscle metabolism, growth rate and sometimes can impair
muscle growth (Hornick et al., 2000; Hagen et al., 2009).

In most fish, skeletal muscle comprises 40–60% of total body mass
(Weatherley and Gill, 1985) and predominantly consists of white
muscle, the edible part of the fish (Zhang et al., 1996; Sänger and
Stoiber, 2001). Researchers have shown that fasting protocols lead
to a substantial decrease in white muscle fiber size, thus implying
that this muscle is the main target in this condition (Fauconneau et
al., 1995; Martínez et al., 2002). Fish muscle growth involves a popu-
lation of adult myoblasts, also called satellite cells (Johnston, 1999),
that provide the essential nuclei for hyperplasic and hypertrophic
muscle growth mechanisms (Zammit et al., 2006; McCarthy et al.,
2011).
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Table 1
Oligonucleotide primers used for RT-qPCR amplification.

Genes Primers (5′→3′) AT, °C Size (bp)

Myostatin Forward: TGTGGACTTCGAGGACTTTGG 59 59
Reverse: TGGCCTTGTAGCGTTTTGGT

MyoD Forward: TCAGACAACCAGAAGAGGAAGCT 58 60
Reverse: CCGTTTGGAGTCTCGGAGAA

Myogenin Forward: GCAGCCACACTGAGGGAGAA 60 58
Reverse: AAGCATCGAAGGCCTCGTT

18S rRNA Forward: GCAGCCGCGGTAATTCC 58 62
Reverse: ACGAGCTTTTTAACTGCAGCAA

AT: annealing temperature; bp: base pairs.
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These muscle growth processes are controlled by several molecules
such as myogenic regulatory factors (MRFs) and myostatin. The MRFs,
includingMyoD, Myf5, myogenin, and MRF4 (Watabe, 2001; Pownall et
al., 2002), are transcription factors that have a highly conserved basic
helix–loop–helix (bHLH) region (Funkenstein et al., 2007), which is
linked to the DNA sequence E-box found in the promoting region of
many muscle specific genes (Lassar et al., 1989; Murre et al., 1989;
Blackwell and Weintraub, 1990). During fish muscle growth, MyoD
and Myf5 regulate the activation and proliferation of satellite cells,
whereasmyogenin andMRF4 act on cell differentiation (Watabe, 2001).

Muscle growth is also controlled by the expression of myostatin,
known as growth and differentiation factor-8 (GDF-8), member of
the transforming growth factor-β (TGF-β) superfamily of proteins
(McPherron et al., 1997). Myostatin functions as a negative regulator
of skeletal muscle growth, and in fish, their role may not be restricted
to muscle growth regulation but may have other possible functions
both in muscle and other tissues (Østbye et al., 2001; Rodgers et al.,
2001; Acosta et al., 2005; Patruno et al., 2008; Lee et al., 2009).

Because muscle growth mechanisms are dependent on MyoD,
myogenin and myostatin expressions and these growth factors can be
influenced by extrinsic factors, we hypothesized that short periods of
food restriction followed by refeeding would change the expression of
muscle growth-related genes in juvenile Nile tilapia (Oreochromis
niloticus). The aim of this study was to analyze the expression of
MyoD, myogenin and myostatin and the muscle growth characteristics
in white muscle of juvenile Nile tilapia during short fasting followed
by refeeding.

2. Materials and methods

2.1. Fish rearing conditions and experimental design

The experiment was conducted at the Laboratory of Aquatic Organ-
isms Nutrition from the Aquaculture Center, UNESP, SP.We used the ju-
venile Nile tilapia (O. niloticus) chitralada Thai strain. Juvenile fish with
body mass of 0.6±0.19 g and total length of 35.6±29.4 mm were
stored (100 juvenile/tank) in 150 L polyethylene tanks with continu-
ously flowing water and constant aeration. The experiment lasted
42 days. Fish were randomly distributed into three groups with three
replicates per group: (FC) control, feeding continuously to apparent sa-
tiation with a commercial diet for 42 days, (F5) 5 days of fasting and
37 days of refeeding, and (F10) 10 days of fasting and 32 days of
refeeding. After 5 or 10 days of food restriction, fish from F5 and F10
were fed to apparent satiation with a commercial diet. During the ex-
perimental period, the following values of tank water quality were ob-
served: temperature 26.7±0.6 °C, pH 8.3±0.55 and dissolved oxygen
6.5±0.17 mg/L. At the beginning of the experiment (day 0) and at 5
(D5), 10 (D10), 20 (D20), and 42 (D42) days, fish from all groups
(n=14) were anesthetized using benzocaine (0.1 g L−1), individually
weighted (g), andmeasured (mm), andmuscle sampleswere collected.
This experiment was approved by the Ethics Committee of the Biosci-
ences Institute, UNESP, Botucatu, SP, Brazil (Protocol 106/2009).

2.2. Morphological and morphometric analyses

White muscle samples (n=7 for each group) were collected from
the dorsal region, near the head, fixed in Karnovsky solution (8% para-
formaldehyde and 2.5% glutaraldehyde in PBS) and embedded in
Historesin® (Leica, Germany). Histological transverse sections (4 μm)
were obtained and stained with hematoxylin–eosin to analyze muscle
fiber diameter and morphology (Dubowitz and Brooke, 1973). To esti-
mate the degree of muscle hypertrophy and hyperplasia, the smallest
diameter of 200 white muscle fibers from each animal per group was
measured using an image analysis system (Leica Qwin, Germany).
Based on the methodology used by Valente et al. (1999), the fibers
were distributed into classes according to their diameter (d, μm): class
20=d≤20; class 30=20>d≤30; class 40=30>d≤40; class 50=
40>d≤50; and class 60=d>50. Muscle fiber frequency was
expressed as the number of fibers from each diameter class relative to
the total number of fibers measured.

2.3. MyoD, myogenin and myostatin mRNA expressions

2.3.1. RNA isolation and cDNA synthesis
Muscle samples (n=7 for each group) were collected from the dor-

sal region in groups FC, F5 and F10. Total RNA was extracted using
TRIzol® Reagent according to the manufacturer's protocol (Invitrogen,
Carlsbad, CA, USA). Extracted RNA integrity was confirmed by electro-
phoresis on a 1% agarose gel stained with GelRed (Biotium, Hayward,
CA, USA) and visualized under ultraviolet light (not shown). The
amount of RNA extracted was determined using a NanoVue™ Plus
Spectrophotometer (GE Healthcare, Piscataway, NJ, USA). RNA purity
was ensured by obtaining a 260/280 nm OD ratio≥1.8.

Total RNA was treated with Dnase I Amplification Grade (Invitrogen)
following the manufacturer's protocol to remove any potential genomic
DNA contamination present in the samples.

Total RNA (2 μg) was reverse transcribed using the a High Capacity
cDNA archive kit (Applied Biosystems, Foster City, CA, USA) with
10 μL of reverse transcriptase buffer (10× RT buffer), 4 mL of dNTP
(25×), 10 μL of random primers (10×), 2.5 μL of MultiScribe™ Reverse
Transcriptase (50 U/μL), and 2.5 μL of Recombinant Ribonuclease Inhib-
itor RNaseOUT (40 U/μL) (Invitrogen), and the final volumewas adjust-
ed to 100 μL with RNase-free water. The samples were incubated at
25 °C for 10 min, 37 °C for 120 min and 85 °C for 5 min; then, the reac-
tion products were stored at−20 °C.

2.3.2. RT-qPCR analysis of target gene expression
Samples were amplified with specific primers to the MyoD,

myogenin, myostatin, and 18S genes from cDNA nucleotide sequences
from other teleost fishes, available in GenBank (http://www.ncbi.nlm.
nih.gov/pubmed/nucleotide). All PCR products were sequenced using
a BigDye Terminator v.3.1 Cycle Sequencing kit (GE Healthcare,
Piscataway, NJ, USA). For the sequencing reaction, samples were
subjected to the following conditions: denaturation for 1 min at
96 °C followed by 25 cycles at varying temperatures (10 s at 96 °C,
5 s at 55–57 °C and 4 min at 60 °C), after which samples were kept
at 4 °C. The annealing temperature (55–57 °C) varied according to
the specific annealing temperature of each primer. The partial nucleic
acid sequences obtained (unpublished data) were analyzed by a
BLASTN search at the National Center for Biotechnology Information
(NCBI) web site (http://www.ncbi.nlm.nih.gov/blast) and were used
to design primer pairs for the RT-qPCR analysis with Primer Express®
software (Applied Biosystems) (Table 1).

MyoD, myogenin, and myostatin mRNA expression analyses were
performed with 2 μL of cDNA at a 1:10 dilution as template in the
real-time qPCR performed in a 7300 Real-Time PCR System (Applied
Biosystems). Cycling conditions were as follows: 95 °C for 10 min
followed by 40 cycles of 95 °C for 15 s and 60 °C for 1 min. The reactions
were run in duplicate using 0.4 μM of each primer and 2× Power SYBR
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Green PCR master mix (Applied Biosystems) in a final volume of 25 μL.
Melting dissociation curves and agarose gel electrophoresis were
performed to confirm that only a single product was amplified. Control
reactions were run lacking cDNA template to check for reagent contam-
ination. Relative gene expression was calculated using the Comparative
CT Method (Livak and Schmittgen, 2001). Different samples were nor-
malized to 18S gene expression.

2.4. Statistical analysis

Body mass and relative gene expression data were expressed as
minimum, 1st quartile, median, 3rd quartile and maximum values
using non-parametric ANOVA followed by Dunn's multiple comparison
test (Zar, 2009).

Muscle fiber diameter data were analyzed by Goodman test be-
tween and within the multinomial population (Goodman, 1965). The
statistical significance level was set at Pb0.05 for all analyses.

3. Results

3.1. Body mass response to fasting and refeeding

At the end of the experimental time period (D42), F5 recovered the
bodymass, whichwas similar to that observed in FC group. However, in
F10 the body mass was lower than that observed in FC and F5 at D42
(Pb0.05) (Fig. 1).

3.2. Morphological and morphometric analyses

In FC group, from D5 to D42, as well as in F5 and F10, from D20 to
D42 showed muscle morphology with round and polygonal fibers
separated by a fine septum of connective tissue, called endomysium.
Thicker septa of connective tissue separate muscle fibers into fascicles
comprising the perimysium. Muscle fibers were distributed in a mo-
saic pattern characterized by fibers of different diameters. However,
in F5 and F10 at D5 and D10 round muscle fibers were predominant
(Fig. 2).

At the beginning of the experiment, the muscle fiber frequency
distribution in diameter classes was similar in all groups: class 20:
33.67±0.24%; class 30: 44.8±0.14%; class 40: 18.23±0.17%; and
class 50: 3.3±0.22%. The majority of muscle fibers (~70%) showed
≤30 μm diameters (data not shown).

After 5 and 10 days of fasting, we observed a significant increase in
the smaller muscle fiber frequency (class 20) in F5 and F10 compared
to FC. In class 40, muscle fiber frequency was lower in F5 and F10
Fig. 1. Juvenile Nile tilapia body mass (g) of FC, F5 and F10 groups throughout the
experiment. Data are reportedmedian values (minimum, 1st quartile, median, 3rd quartile
and maximum). Capital letters compare the body mass in the same group. Small letters
compare groups in the same analysis period (Pb0.05, ANOVA).
compared to FC. At D10, there was an increase in muscle fiber frequency
in classes 50 and 60 in all groups. At the end of the experimental period
(D42), muscle fiber frequency in class 20 was higher in F5 (Fig. 3).

3.3. MyoD, myogenin and myostatin mRNA expressions

Gene expression was analyzed at D5, D10, D20, and D42. RT-qPCR
results showed changes in gene expression in response to fasting and
refeeding. At D5, the MyoD mRNA levels were higher in FC than in F5
and F10. However, at D20, theMyoD gene expression was higher in F5
and F10 compared to FC, indicating a possible attempt at recovery of
muscle growth (Fig. 4A). At D10 and D42, the expression levels were
similar between the groups. Myogenin gene expression was lower in
F5 and F10 in relation to FC at D5. At D10, the myogenin mRNA level
increased in F5 and F10, but only F5 showed a significant difference
in relation to FC. At D20, the expression levels were similar among
the groups, and at D42, the myogenin gene expression was higher in
FC compared with F5 (Fig. 4B). At D5, the myostatin mRNA level
was higher in F5 and F10 compared to FC, and from D10 to D42,
myostatin gene expression was similar among all groups (Fig. 4C).

4. Discussion

Themajor finding of this study is that short periods of fasting (5 and
10 days) followed by refeeding in juvenile Nile tilapia (O. niloticus)
changed the expression of muscle growth-related genes (MyoD,
myogenin and myostatin) and muscle growth characteristics.

Except in fasting groups at D5 and D10, the other time periods ana-
lyzed in the groups showedwhitemuscle fibers in amosaic distribution
pattern that was characterized by fibers with different diameters; this
pattern was also previously reported by Almeida et al. (2010) and
Leitão et al. (2011) in pacu and by Rowlerson and Veggetti (2001) in
other fish species such as trout, salmon, sea bream, sea bass, and carp,
among others. Muscle morphometric analysis showed significant
changes in the white fiber diameter during the refeeding. At D5 and
D10, in F5 and F10 groups led to a high frequency of fibers in class 20
in comparison to FC group. These findings could indicate muscle catab-
olism in these groups reflecting the muscle atrophy characterized by
small and roundfibers. In fact, Seiliez et al. (2008) observedmuscle pro-
teolysis in juvenile trout subjected to 14 days of fasting, these authors
observed an activation of ubiquitin–proteasome pathway proteins dur-
ing this time period; and 24-hour of refeeding induced a significant de-
crease in the expression of these proteins. Althoughwe did not evaluate
the ubiquitin–proteasomepathway in our experiment, it is possible that
this system has contributed to protein degradation and muscle fiber at-
rophy during the fasting periods. Additional experiments are required
to better investigate this possibility.

We observed an increase in the frequency of fiberswith a diameter of
≤30 and ≥40 μm in F10 and F5, respectively, at D20 (data not shown).
This result indicates a more active hyperplastic growth in F10 and the
beginning of differentiation and hypertrophy in F5 (Rowlerson and
Veggetti, 2001) during this time period. Based on these findings, we
can infer that F10 followed by 10 days of refeeding promotes muscle
fiber recruitment. On the other hand, muscle fiber hypertrophy was
more evident after 5 days of fasting followed by 15 days of refeeding.
At D42, a balance in muscle growth mechanisms in all groups was ob-
served. However, the frequency of fibers in class 20 was higher in F5,
which indicates that muscle fiber recruitment was still occurring during
at this time period.

In this study, juvenile Nile tilapia showed a differentialMyoD gene
expression during short fasting periods and refeeding. At D5, MyoD
mRNA levels were lower in F5 and F10 in relation to FC, and refeeding
caused an increase inMyoD gene expression that peaked at D20 in the
F5 and F10 groups. During skeletal muscle growth,MyoD controls sat-
ellite cell proliferation (Megeney and Rudnicki, 1995; Watabe, 2001;
Kuang and Rudnicki, 2008). These cells provide nuclei for newmuscle



Fig. 2. Transverse sections of juvenile Nile tilapia (Oreochromis niloticus) white muscle of FC, F5 and F10 groups. Muscle fibers (F), nucleus (N), endomysium (E), perimysium (P).
Note a mosaic pattern of muscle fibers with different diameters (*). A: FC at D5; B: F5 at D5; C: F10 at D10. D, E and F: FC, F5 and F10, respectively at D42. Hematoxylin–eosin stain.
Scale bars: 40 μm.
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fiber formation (hyperplasia) and hypertrophy (McCarthy et al.,
2011). The mechanism underlying increased MyoD mRNA expression
at D20 in the F5 and F10 may be related to an intense satellite cell
proliferation thus, demonstrating an attempt at recovery of muscle
growth by hypertrophy and hyperplasia in F5 and hyperplasia in
F10, as observed by morphometric analysis. On the contrary, the
lower level of MyoD (mRNA) in F5 and F10 at D5 may be related to
a low muscle growth rate and increased muscle catabolism; this fact
could explain the muscle fiber atrophy demonstrated by the high
frequency of fibers in class 20 in these groups. For rainbow trout
(Oncorhynchus mykiss, Walbaum, 1792), MyoD mRNA expression
did not change in response to 30 days of starvation and 14 days of
refeeding (Johansen and Overturf, 2006); similar results were also
observed for Atlantic salmon (Salmo salar Linnaeus, 1758) when the
fish were submitted to 32 days of starvation followed by 14 days of
refeeding (Bower et al., 2009). To our knowledge, this is the first
study that reports, in a warm water species such as the Nile tilapia,
an increase in MyoD mRNA levels during short periods of fasting (5
and 10 days) following by refeeding. In the FC group at D5, the MyoD
mRNA levels could reflect satellite cell proliferation, which in fact
could contribute to the muscle fiber hyperplasia and hypertrophy.
These processes remained active at 10 and 20 days and decreased at
42 days, but the MyoD expression, similar to that in the F5 and F10
groups, was enough to allow muscle growth in all groups, as shown
by morphological and morphometric analyses.

The shorter fasting period studied (F5) promoted a decrease in the
myogenin gene expression pattern in Nile tilapia. In rainbow trout, the
expression of myogenin decreased after 30 days of fasting, suggesting
a major reduction in muscle hypertrophy during this period
(Johansen and Overturf, 2006). In our study, after 5 days of refeeding,
the F5 group displayed high myogenin gene expression compared to
the FC group. The high myogenin mRNA levels observed in the F5
group indicate that the refeeding was able to induce a high rate of sat-
ellite cell differentiation, thus contributing to hyperplasia and hyper-
trophy muscle growth (Levesque et al., 2007; Sandri, 2008). Although
the myogenin expression declined until day 42, the mRNA levels
detected in all groups could have been enough to promote satellite
cell differentiation for hyperplasia and hypertrophy, as demonstrated
by distribution of the muscle fiber diameter classes.

MyostatinmRNA levels in the F5 and F10were higher in D5 compar-
ing to FC groups. At D10, D20 and D42,mRNA levels decreased similarly
in all groups. The same increase was observed in larvae tilapia during

image of Fig.�2


Fig. 3. Frequency distribution of white muscle fibers of juvenile Nile tilapia (Oreochromis niloticus) in diameter classes (d, μm): class 20=d≤20; class 30=20>d≤30; class 40=
30>d≤40; class 50=40>d≤50 and class 60=d>50 at D5, D10, D20 and D42 of the experiment. Capital letters compare the frequency of fibers in the same group. Small letters
compare the frequency of fibers in the same diameter class (Pb0.05, Goodman test).
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3 days of fasting, but in adult's tilapia, after 28 days of fasting,myostatin
expression was not affected, indicating that myostatin levels increase
during a short-term fasting but are reduced with prolonged fasting
(Rodgers et al., 2003). Many studies have investigated the actions of
myostatin in skeletal muscle development and growth and have
shown that myostatin inhibits satellite cell proliferation by activating
the cyclin-dependent kinase inhibitor p21, which forces withdrawal
from the cell cycle (Thomas et al., 2000). In our study, a highmyostatin
gene expression pattern in F5 and F10 groups indicated lower satellite
cell proliferation activity, which was also confirmed by low MyoD
mRNA levels. Based on these results and the observation that quiescent
satellite cells express myostatin (McCroskery et al., 2003), it has been
suggested that one of the normal functions of myostatin in postnatal
muscle is to maintain satellite cells in a quiescent and undifferentiated
state (Manceau et al., 2008). The fasting conditions used in the present
study promoted an increase in the myostatin gene expression. As this
behavior occurred simultaneously with lower MyoD gene expression,
we can infer that the fasting time period used may have prevented sat-
ellite cell activity. The refeeding was able to induce a decrease in
myostatin gene expression and an increase in the MyoDmRNA expres-
sion, as observed at D10 in F5 and at D20 in F10. This condition was
maintained until the end of the experiment and could explain themus-
cle fiber hyperplasia and hypertrophy phenomenon observed during
this time period.

In parallel, the activation of myostatin has also been associated
with the inhibition of myoblasts and satellite cell differentiation

image of Fig.�3


Fig. 4. Real-time RT-PCR quantification ofMyoD (A),myogenin (B) andmyostatin (C)mRNA
expressions in the white muscle of juvenile Nile tilapia (Oreochromis niloticus). Data were
expressed as minimum, 1st quartile, median, 3rd quartile and maximum values. Capital
letters compare the gene expression in the same group. Small letters compare groups in
the same analysis period (Pb0.05, ANOVA).
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(Fauconneau and Paboeuf, 2000; Langley et al., 2002; Rios et al., 2002;
Joulia et al., 2003), which is a process controlled by myogenin expres-
sion (Megeney and Rudnicki, 1995; Grobet et al., 1997). Studies
have shown that myostatin regulates the differentiation process by
inhibiting myogenin action and that this MRF is probably a major
target of endogenous myostatin (Joulia et al., 2003). However, this
correlation betweenmyogenin andmyostatin expressions was not ob-
served in the present experiment, except at 5 days in both starvation
groups. Johansen and Overturf (2006) showed that for rainbow trout
(O. mykiss, Walbaum 1792), themyogenin andmyostatinmRNA levels
were lower after 30 days of fasting and increased after 14 days of
refeeding, indicating that myostatin may not control myogenin ex-
pression. In fact, the role of myostatin in the regulation of muscle
growth mechanisms in fish is not yet well understood. Studies have
shown that myostatin regulation of muscle growth mechanisms is
dependent on the fish species, growth phase, muscle type and nutri-
tional conditions (Østbye et al., 2001; Roberts and Goetz, 2001;
Patruno et al., 2008).

5. Conclusion

In conclusion, this study showed that short periods of fasting pro-
moted muscle fiber atrophy in the juvenile Nile tilapia and the
refeeding caused compensatory mass gain and changed the expres-
sion of muscle growth-related genes that promote muscle growth.
These fasting and refeeding protocols have proven useful for under-
standing the effects of alternative warm fish feeding strategies on
muscle growth-related genes.
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