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Oxygen-deficient TiO2 films with enhanced visible and near-infrared optical absorption have been

deposited by reactive sputtering using a planar diode radio frequency magnetron configuration. It is

observed that the increase in the absorption coefficient is more effective when the O2 gas supply is

periodically interrupted rather than by a decrease of the partial O2 gas pressure in the deposition

plasma. The optical absorption coefficient at 1.5 eV increases from about 1� 102 cm�1 to more than

4� 103 cm�1 as a result of the gas flow discontinuity. A red-shift of �0.24 eV in the optical

absorption edge is also observed. High resolution transmission electron microscopy with

composition analysis shows that the films present a dense columnar morphology, with estimated

mean column width of 40 nm. Moreover, the interruptions of the O2 gas flow do not produce

detectable variations in the film composition along its growing direction. X-ray diffraction and

micro-Raman experiments indicate the presence of the TiO2 anatase, rutile, and brookite phases.

The anatase phase is dominant, with a slight increment of the rutile and brookite phases in films

deposited under discontinued O2 gas flow. The increase of optical absorption in the visible and

near-infrared regions has been attributed to a high density of defects in the TiO2 films, which is

consistent with density functional theory calculations that place oxygen-related vacancy states in the

upper third of the optical bandgap. The electronic structure calculation results, along with the

adopted deposition method and experimental data, have been used to propose a mechanism to

explain the formation of the observed oxygen-related defects in TiO2 thin films. The observed

increase in sub-bandgap absorption and the modeling of the corresponding changes in the electronic

structure are potentially useful concerning the optimization of efficiency of the photocatalytic

activity and the magnetic doping of TiO2 films. VC 2012 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4724334]

I. INTRODUCTION

The several existing and the potential new applications

of TiO2 films in the fields of biocompatibility, photovoltaics,

self-cleaning processes, non-toxic photocatalysis, and use in

diluted magnetic oxides have driven intensive research in

recent years.1–5 Indeed, the interest in increasing the optical

absorption at energies corresponding to the visible and near-

infrared spectral ranges derives from the possibility to

change the photocatalytic activity of this material from the

ultraviolet to the visible and near infrared.1,2

For many applications, the presence of defects plays a

fundamental role. In particular, the oxygen-related vacancies

are among the most important, since they are believed to

favor the interactions between the magnetic ions of transition

metals (e.g., Mn or Co) in diluted magnetic oxides for spin-

tronics devices4,5 and can be beneficial to the catalytic activ-

ity by changing the charge state of the surfaces and

enhancing the optical absorption.2

Concerning the use of TiO2 in photocatalysis, one of the

aims is to induce optical absorption in the visible range. With

this in mind, the effects of both intrinsic defects and extrinsic

impurities have been tried through the insertion of N, for

example.1,3,6 It was observed that the depletion of the O2 by

lowering the gas flow during deposition has little effect on the

optical absorption of films produced by sputtering. The pres-

ence of defects in the TiO2 surface is important because they

are expected to dominate the reactivity of the material, being

of bold importance to catalysis. Therefore, there is a need for

mechanisms that are able to control the defect creation in

TiO2 in order to optimize its functionality.2,6

During plasma-assisted deposition processes, electron

and ion bombardment are expected to influence the creation

of defects such as vacancies and interstitials.7,8 In fact, the

mechanisms involved in the deposition of TiO2 films by

plasma-assisted methods are extremely complex and funda-

mental in determining the atomic displacements and oxygen

diffusion in the surface of the growing films.7
a)Author to whom correspondence should be addressed. Electronic mail:

jhdsilva@fc.unesp.br.
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Motivated by the above aspects, this report focuses on

the deposition of TiO2 films by reactive sputtering using a Ti

target in an ArþO2 atmosphere. Periodic interruptions of

the O2 gas supply were adopted to produce controlled

oxygen depletion in the films. The deposited films were char-

acterized by optical and structural techniques and, together

with density functional theory calculations, allowed the anal-

ysis of the effects of the oxygen depletion in the material. A

mechanism for the defect creation due to the interrupted sup-

ply during the plasma deposition is proposed, and the possi-

ble implications concerning the applications are considered.

II. EXPERIMENTAL

The films have been deposited by radio frequency (RF)

magnetron sputtering using a 75-mm-diameter metallic Ti tar-

get (99.999% purity) in an ArþO2 atmosphere (99.9999%

purity). A Kurt J. Lesker sputtering chamber, model KJL—

System I, was used for the depositions. The system is

equipped with a magnetron gun electrode mounted in a planar

diode geometry and Advanced Energy RFX600 power source

operating at 13.6 MHz. Resistive heating of the substrates has

been used to produce samples at 450 �C and 600 �C. The total

pressure (5.0� 10�3 Torr) in the system was measured using

a capacitance manometer and controlled by a throttle valve. A

1000 l/s turbomolecular pump was employed. All deposition

runs started only after a residual pressure smaller than

1.0� 10�6 Torr was achieved. A residual gas analyzer was

used to check the system contamination: generally the more

important contaminants are water vapor (�70%) and hydro-

gen (�10%), hydrocarbons being less than 5%.

Silica glass (a-SiO2) and lanthanum aluminate (LaAlO3)

substrates were used simultaneously in the depositions.

Si(100) substrates were also used in some cases. The deposi-

tion conditions, consisting of a set of constant and a set of

variable parameters, are summarized in Table I. The sample

reproducibility was tested by depositing samples in identical

conditions and checking the structural and optical properties.

The main checks in this group of samples were indicated by

the different labels for the same conditions in Table I. The

uncertainties indicated in the film thickness, deposition rate,

static refractive index, and bandgap resulted from the optical

calculations.

Electronic mass flow controllers (Edwards Vacuum) with

0.2-sccm (standard cubic centimeters per minute) sensibility

and 50-sccm full scale were used to control the gas flow. The

flow shutoff was attained by closing a manual valve and

the mass flow controller, so no O2 flowed to the system,

nevertheless a mixture of Ar and O2 is present on the 1.5-m,

6-mm-diameter line located between the valve and chamber

}
}

TABLE I. Deposition and optical characterization parameters of TiO2 films prepared by RF magnetron sputtering.

Constant parameters

Target—metallic Ti (99.999%)

RF power—120 W, reflected RF power—3 to 4 W depending on deposition

Geometry—planar diode, cylindrical symmetry, target diameter 75 mm, target to substrate distance, 50 mm

Total pressure—5.0� 10�3 Torr

Substrate temperature—450 �C, electrically grounded

Argon flux—40 sccm

Substrates—amorphous silica (a-SiO2), lanthanum aluminate (LaAlO3), silicon (Si(100))a

Buffer layer used in interrupted flux films—60 nm thick, 18 min deposition, 0.2 sccm O2 flux

Variable parameters

Sample

O2 flux

(sccm)

O2 flow

mode

Period characteristics

Total deposition

time (min)

Film

thickness (nm)

Deposition

rate (A/s)

Static refractive

index (no)

Bandgap

(eV)

Interruption

interval (s)

Number of

interruptions

Open flux

interval (s)

KL11 2.0 Continuous … … … 180 402 6 10 0.37 6 0.01 2.33 6 0.01 3.38 6 0.05

KL16 6.0 Continuous … … … 180 410 6 10 0.38 6 0.01 2.30 6 0.01 3.35 6 0.05

KL15 0.2 Continuous … … … 180 618 6 50 0.57 6 0.05 2.11 6 0.01 3.37 6 0.05

KL45

KL33a

KL20 0.2 Interrupted 10 20 540 180 538 6 20 0.50 6 0.02 2.29 6 0.02 3.34 6 0.05

KL21 0.2 Interrupted 45 20 540 204 714 6 30 0.58 6 0.03 2.29 6 0.01 3.17 6 0.05

KL32a

KL22 10.0 Interrupted 45 20 540 221 907 6 40 0.68 6 0.04 2.56 6 0.07 3.14 6 0.05

KL23 0.2 Interrupted 38 20 540 211 659 6 40 0.52 6 0.04 2.25 6 0.01 3.38 6 0.05

KL24 0.2 Interrupted 45 10 1080 205 643 6 30 0.60 6 0.03 2.30 6 0.01 3.29 6 0.05

KL25 0.2 Interrupted 45i/20o/45i

(double interruption layer)

20 1080 213 677 6 50 0.53 6 0.05 2.33 6 0.01 3.22 6 0.05

KL27 0.2 Interrupted 140 1 6340 214 … … … …

aSamples KL32 and KL33 have been deposited also onto Si substrates using the same conditions as KL21 and KL15, in order to perform the transmission elec-

tron microscopy and x-ray diffraction experiments. Samples deposited using the same conditions with different labels were used also to check the reproducibil-

ity of the results.
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entrance. The argon flux was kept constant at 40 sccm in all

deposition runs. A clear change in the plasma emission color

was observed exactly 40 s after shutting down the valve. The

characteristic color of the ArþO2 was re-established instantly

after the valve and mass flow were opened.

The atomic structure of the TiO2 films were character-

ized by x-ray diffraction (XRD) using grazing incidence

(GIXRD) and Bragg-Brentano geometries. To check the ori-

entation texture, pole figures of selected diffraction planes—

recorded by keeping the h� 2h fixed and scanning over the

hemisphere by variation of the angles of inclination (x) and

azimuth (w)—were also obtained. The x-ray diffraction

experiments were performed in a Phillips model Xpert PRO

MPD setup, with Cu electrode and diffracted beam mono-

chromator. No background subtraction or pole alignment has

been performed in the pole figures, so the results correspond

to the bare measurements. Complementary structural infor-

mation was obtained by high-resolution transmission elec-

tron microscopy (HRTEM), which also provided the

composition of the films. The HRTEM experiments were

performed using a JEOL (model JEM-2100) 200-kV micro-

scope, equipped with a LaB6 electron gun. Energy-filtered

images were recorded in low resolution in order to check the

composition homogeneity of the samples. Films deposited

onto Si(100) were used in the analysis in order to avoid

charging effects.

Raman scattering measurements were carried out in a

commercial micro-Raman setup (Renishaw RM2000)

equipped with a 1200-lines/mm�1 diffraction grating and

an optical microscope, rendering a spectral resolution of

�2 cm�1 and a spatial resolution of �1 lm2. The experi-

ments were performed under the back-scattering geometry.

The films were excited by the 632.8-nm (1.96-eV) line of a

He-Ne laser, and no preferential polarization was adopted.

The regular optical transmittance spectra were recorded

in a Shimadzu UVmini-1240. The integrated transmittance,

reflectance, and forward scattered intensities were measured

using a Perkin-Elmer Lambda 1050, with a 150-mm integrat-

ing sphere attachment (Labsphere150).

When measuring the integrated transmittance, integrated

forward scattering, and total reflectance, it was necessary to

use a blocking beam holder, since the beam produced by the

equipment is bigger than the sample dimensions. Even

though the appropriate zero–100% correction procedure was

performed prior to the measurements, some influence of the

holder was noticed on the spectrum of the (forward) light

scattering.

The absorption coefficients were determined from the

optical transmittance spectra of the samples using the Cis-

neros’ method9 with the help of a specially developed com-

putational routine. The complete expressions derived for

homogenous thin film with parallel interfaces onto a thick

substrate were used with no approximations. The method is

based on the exponential dependence of the transmittance on

the absorption coefficient in an iterative procedure.

The use of expressions for homogeneous thin films in the

present absorption coefficient calculations is allowed by the

fact that the estimated sizes of the crystallites are much

smaller than the wavelengths of the spectral range used. Fur-

ther, the differences between the optical constants of the TiO2

anatase, rutile, and brookite phases are not large,10,11 so the

use of an effective (predominantly anatase) medium does not

introduce significant errors.

Considering that the anatase is the dominant phase in

the analyzed films (as will be shown in Sec. III) and consid-

ering that anatase gives rise to an indirect bandgap mate-

rial,10,11 the usual relationship

a ¼ Aðht� EgÞ2; (1)

where a is the absorption coefficient (in cm�1), ht is the pho-

ton energy, and Eg is the bandgap energy (in eV), was

employed in a plot of
ffiffiffi

a
p

versus ht in order to determine the

bandgap of the TiO2 films.10–13 The range of
ffiffiffi

a
p

used in the

linear fit of Eq. (1) was 100 cm�1/2 to 300 cm�1/2, while in

single crystals, the range is generally below 100 cm�1/2.12,13

This is due to the much greater thickness of the crystalline

specimens used.

For a better interpretation of the influence of oxygen

vacancies in the electronic structure of TiO2, density func-

tional theory (DFT) calculations were carried out using the

CRYSTAL09 program package.14 A 2� 2� 2 anatase supercell

with 48 atoms15 having I41/amd symmetry and Becke’s three-

parameter hybrid non-local exchange functional16 combined

with the Lee-Yang-Parr gradient-corrected correlation func-

tional, B3LYP (Ref. 17) were used in the calculations. The O

atoms were represented by the 6-31G(d1) Gaussian basis set,

available at the Crystal website.14 For the titanium atom, the

6-31G basis set developed by Rassolov et al.18 was selected,

as in a previous work.19 In order to improve the accuracy of

our results, we applied the empirical correction scheme for

energy in periodic systems that considers a functional density

dependent global scaling factor and the long-range dispersion

contributions proposed by Grimme20 and implemented by

Bucko et al.21 The basic strategy in the development is to

restrict the density functional description to shorter electron

correlation lengths scales and to describe situations with me-

dium to large interatomic distances by damped Cij
6 � R�6

ij

terms, where Cij
6 denotes the dispersion coefficient for atom

pair ij, and R�6
ij is the corresponding interatomic distance.20

III. RESULTS

Two sets of TiO2 films were considered in the present

investigation. The first set corresponds to films produced

using different continuous O2/Ar flow ratios, and the second

was related to films produced by periodically interrupting the

O2 flow during depositions. The deposition conditions are

summarized in Table I. It is worth noting that the starting

point for the set of interrupted flow samples was the condi-

tion of the lowest controllable O2 flux of the first set, corre-

sponding to an O2/Ar ratio of 0.005. Table I also contains the

deposition rates and optical constants, retrieved from the op-

tical experiments.

Transmission electron microscopy images of films de-

posited on Si(100) substrates are shown in Fig. 1. Figures

1(a) and 1(b) show that in both flow regimes, the samples

display columnar morphology with similar characteristics.

The columns are tightly fitted and present estimated average
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width of 40 nm. Figures 1(c) and 1(d) are high-resolution

images showing column interfaces of interrupted and contin-

uous flow samples, respectively. The misfit between atomic

layers of the neighbor columns produces a defective region

in the interface that can be seen in both situations. At the

film/Si substrate interfaces, the HRTEM images support the

presence of a native amorphous silicon oxide layer, �2 nm

thick (not shown).

The XRD results, including the GIXRD, and pole fig-

ures of selected peaks are presented in Figs. 2 and 3,

respectively. The diffraction data revealed that the anatase

(tetragonal I4/amd, ICSD#154602), rutile (tetragonal P42/

mnm, ICSD#898304), and brookite (ortorrombic Pbca,
ICSD#154605) phases coexist in the produced films, ana-

tase being the predominant phase. The HRTEM electron

diffraction and corresponding distances between planes are

also compatible with the presence of these three phases.

The x-ray diffractogram shown in Fig. 2(a) corresponds

to TiO2 films deposited onto silicon substrate using low O2

flux (sample KL33, Table I). The use of increased O2 flows

produced no important changes on the x-ray diffractograms.

Only a slight increase of the rutile f110g peak is worth men-

tioning when the O2/Ar ratio is increased to 0.15. Figure 2(b)

displays the x-ray diffractogram corresponding to an inter-

rupted flow sample (KL32). With the aim to produce oxygen-

deficient films, the lowest proportion of oxygen in the

deposition gas (O2/Ar ¼ 0.2 sccm/40.0 sccm ¼ 0.005) was

used to deposit the films with interrupted oxygen flow. By

comparing Figs. 2(a) and 2(b), it can be noticed that the x-ray

diffraction patterns are similar, indicating that the structures

of the films were not changed significantly with the O2 gas

flow interruption. The only significant difference is the change

in the relative intensities of the peaks at 2h of 36.9�, 37.8�,
and 38.6� corresponding to the anatase (103), (004), and (112)

planes, respectively. It is worth mentioning that on sample

KL32, deposited onto silica glass substrate, the peak associ-

ated to rutile at 27.7� presents nearly the same intensity as the

anatase peak at 25.2�, indicating that considerable differences

in texture and structure can be related to the substrates. No

peaks related to pure metallic Ti could be detected, in contrast

to metallic test films deposited with no oxygen in the cham-

ber, where the peaks were clear.

The lack of the peak at 2h ¼ 30.8� in the x-ray diffracto-

gram, where a strong peak corresponding to the (111) TiO2

brookite (orthorhombic Pbca) is expected, and the fact that

the several weak peaks attributed to the brookite in the

30�–80� range could not be identified in the diffractograms

indicate that this phase presents a small fraction.

The pole figures corresponding to the anatase f101g, ru-

tile f110g, and brookite f211g planes were measured on

samples deposited onto amorphous silica (Fig. 3). The

observed patterns are diffuse, but texture effects can still be

noticed as is frequently observed in sputtering deposited pol-

ycrystalline films.8,22 The brookite peaks have not being

FIG. 1. Transmission electron microscopy of films deposited onto Si(100)

substrates using different O2 gas flow conditions. (a) Interrupted O2 flow

sample (KL32), showing the film-air interface. The columnar morphology of

the film is apparent from the figure. (b) Continuous flow film (KL33) in

which the columnar morphology is also clear. Some striped aspect regions

noted in the figure are attributed to Moiré patterns, related to stress effects in

the columns. (c) High resolution TEM of an interface between columns in

interrupted flow sample (KL32). (d) Interface region between columns of a

continuous flow sample (KL33).

FIG. 2. Grazing incidence x-ray diffraction of TiO2 films deposited by reac-

tive sputtering, using ArþO2 gas supply and Si (100) substrate. (a) Sample

deposited using continuous O2 supply (KL33). (b) Sample with the O2 sup-

ply interrupted by 45 s, 20 times during the deposition (KL32). The diffrac-

tion peak at 2h ¼ 56.2� is attributed to the Si substrate.
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found in grazing angle or Bragg-Brentano diffractograms,

but the f211g pole figures indicate that this phase is present

in both continuous and interrupted O2 supply films. It can be

seen that the poles of the analyzed planes are more likely to

be found in the 40�–60� range with the sample normal. Some

patterns compatible with mosaic arrangement of crystallites

are observed in the rutile f110g and brookite f211g, while

the distribution of the anatase f101g presents itself with

almost random azimuth angles. No significant change in the

phase distribution and/or texture has been observed in asso-

ciation with the flux interruptions, as samples KL32 (inter-

rupted) and KL33 (continuous) display similar pole figures.

In addition to the x-ray and electron microscopy analy-

sis, the atomic structure and lattice vibrations of the TiO2

films were probed using micro-Raman scattering experi-

ments. Figure 4 displays results of films deposited onto a-

SiO2 substrates. The frequencies and corresponding modes

associated with the lattice vibrations of the anatase phase are

141 cm�1 (Eg), 195 cm�1 (Eg), 395 cm�1 (B1g), 514 cm�1

(A1g), 523 cm�1 (B1g), and 636 cm�1 (Eg). The peaks at

442 cm�1 (Eg) and 612 cm�1 (A1g) are attributed to the

rutile.23–25 The two weak peaks observed at 247 cm�1 and

319 cm�1 in Fig. 4 can be associated with the Ag and B1g

modes of the brookite phase.24,26,27 Using the recorded spec-

tra and the known vibration frequencies, one can infer the

modifications produced by the different interruption intervals:

the KL21(45s/20x) sample presents more important contribu-

tions of brookite and rutile, as compared to samples

KL20(10s/20x) and K24(45s/10x), in which the flux interrup-

tions were smaller.

The relative intensities and line shapes of the Raman

spectra also significantly changed with the kind of substrate

used. The spectra of films deposited onto LaAlO3 (not shown)

displayed only small changes among the different films with

interrupted flux: the anatase phase largely dominated the spec-

tra of all films, while in Fig. 4, the spectra indicate that the

contributions of rutile and brookite were noticeable in the

sample more affected by the flux interruption (KL21). This

indicates that the atomic structure of the films and the relation

between the fractions of anatase, rutile, and brookite phases

are influenced by the O2 gas flow interruption and also by the

nature of the substrates used.

The optical transmittance, reflectance, and scattered

intensities were measured to search for the sample optical

characteristics (Fig. 5). The transmittance results of films de-

posited interrupting the O2 flow are displayed in Fig. 5(a).

KL33, Anatase (101), 25.3o KL32, Brookite (211), 30.8o

KL32, Anatase (101), 25.3o KL32, Rutile (110), 27.4o

FIG. 3. XRD pole figures of interrupted flow (KL32) and continuous flow (KL33) films deposited onto a-SiO2 substrates. Upper left: anatase (101) peak, inter-

rupted flow sample (KL32). Lower left: anatase (101) peak, continuous flow sample (KL33). Upper right: rutile (110) interrupted flow sample (KL32). Lower

right: brookite (211), interrupted flux sample. The data correspond to the bare measurements and are not background corrected.
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The interference fringes show up at wavelengths bigger than

400 nm, and the absorption edge drops the transmittances to

zero below 350 nm. The regularity of the interference fringes

in the low absorption region of the produced films is compat-

ible with the good optical homogeneity of the films.

The transmittance spectra can be grouped into those in

which the maxima occur very close to the substrate and are

associated with low visible-infrared absorption, and those

which present decreased mean transmittance and absorption

edges slightly red shifted (Fig. 5(a)). Samples KL20 and

KL23 (green and blue curves, respectively) are associated

with low visible-infrared absorption, being representative of

the first group. These samples correspond to O2 interruptions

smaller than 40 s, while the others displayed in the figure cor-

respond to flow interruptions of 45 s and 140 s (cyan, KL27).

The films deposited using continuous O2 gas flow

(KL16/11/15/45) displayed characteristics similar to those

grown using small interruption times. Samples correspond-

ing to the minimum continuous attainable flux ratio (0.2

sccm/40 sccm, KL15/45/33, Table I) present only a small

decrease in the transmittance maxima (Fig. 5(a)).

In order to check if the observed attenuation of transmit-

tances in interrupted flow samples was due to absorption or

scattering, the integrated transmittance (straightþ scattered)

and the integrated forward scattered intensity of representa-

tive samples were measured. Fig. 5(b) displays the integrated

transmittances of a continuous flow sample (blue curve,

KL45) and of an interrupted flux sample (red, KL32). This

figure also displays the respective integrated forward scat-

tered intensities: the cyan curve corresponds to the continu-

ous flux (KL45), while the orange curve corresponds to the

interrupted flux sample (KL32).

In Fig. 5(c), the measured integrated percent transmittance

(T) and reflectance (R) of an interrupted flux sample (KL32)

are presented as well as the calculated values of sum (RþT)

and of the percent absorbed intensity, A ¼ 100� (RþT). It

can be seen that the mean value of A presents a broad maxi-

mum at about 800 nm.

The calculated values of the absorption coefficient of

the films are plotted in Fig. 6. Samples having continuously

decreasing absorption tails (KL15/16/20) were deposited

using continuous O2 supply or interruption intervals shorten

than 40 s (KL20).

In the higher photon energies of Fig. 6, an approxi-

mately linear behavior of log(a) is present, defining the fun-

damental absorption edge of the different samples. The

absorption edges of continuous supply films occur at higher

energies and presents slightly steeper slopes as compared to

the interrupted supply samples. As a result, a shift of 0.23 eV

to lower energies due to the flux interruptions is noticed.

In contrast to the relative similarity of the high absorp-

tion range, the low absorption displays remarkably different

FIG. 4. Raman scattering spectra of samples deposited under different O2

flow conditions: black—sample KL20 with interruption of O2 supply for 10

s, 20 times; green—sample KL14, with 45 s, 10 interruptions; red—sample

KL21, 45 s, 20 interruptions. The films are deposited onto a-SiO2 substrates.

FIG. 5. Spectrophotometric characterization results. (a) Transmittance of in-

terrupted flux films deposited under different conditions. (b) Total transmit-

tances of different samples, measured by integrating the scattered plus

straightly transmitted radiation with the help of an integrating sphere setup

(PerkinElmer Labsphere150). The spectrum of a silica glass slab (substrate)

is included as reference. (c) Measured total transmittance (T) and total re-

flectance (R), obtained by the use of an integrating sphere setup. The calcu-

lated RþT curve and absorbed energy (A ¼ 100� (RþT)), and the

transmittance of the setup with no sample (100% T) are also shown.
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behavior: in samples in which the O2 flow was interrupted

for intervals longer than 45 s, the sub-bandgap absorption

was bigger. Under these conditions, the absorption coeffi-

cient presented a plateau of almost constant absorption at

about 4� 103 cm�1 in the 2.0–3.0 eV range and presented a

slight increase at lower energies (2.0–1.2 eV), while the

absorption of the continuous flow samples dropped to a few

hundred cm�1.

Using the calculated absorption coefficient data of Fig. 6

to plot
ffiffiffi

a
p

versus ht curves, that is, assuming indirect bandg-

aps of the phases involved,12,13 allows the determination of

bandgaps in the 3.14–3.38 eV range when considering the

complete set of samples. The corresponding Eg values for

the different deposition conditions are shown in Table I.

Density functional calculations were performed using

the CRYSTAL09 program package14 to investigate the effects

of the oxygen vacancies on the electronic structure of anatase

TiO2 crystals. The calculations have been performed using

single and double oxygen vacancy configurations in an ana-

tase 2� 2� 2 supercell with 48 atoms. The supercell used in

the calculations of single and double vacancies is show in

Figs. 7(a) and 7(b), while the resulting density of states

(DOS) is displayed in Figs. 8(a) and 8(b), respectively. The

DOS peaks of the localized defect states in the bandgap are

located around 1 eV below the bottom of the conduction

band.

IV. DISCUSSION

Some aspects of the compact columnar morphology pre-

sented by the TiO2 films can be related to peculiar details of

the sputtering deposition, such as typical energy and ener-

getic distribution of depositing particles.7,8,28,29 A significant

amount of the precursors reaching the surface of the forming

film present an energy distribution resulting from the plasma

processes, so their mean energies are considerably higher

than the thermal energy provided by the substrate heating.7,28

With the adopted deposition parameters, the mean free path

in the plasma is expected to be of the order of the target to

substrate distance, so the sputtered atoms from the target

should arrive at the substrate with low energy losses as com-

pared to the just ejected ones, typically in the 1–40 eV

range.7,29 Also, the reflected species (essentially argon and

oxygen), which emerge from collisions with the target ener-

gies of the order of �100 eV, can hit the surface of the grow-

ing film, producing atomic surface scattering, sub-surface

damage, and even some sputtering of the film. Additionally,

in the planar diode configuration used, the flow of the species

arriving from the target is rather directional, with incidence

angles close to the substrate surface normal, favoring the co-

lumnar growth.8

Taking into account the energetic distribution of the

plasma constituents and the moderate substrate temperature

used (450 �C), the film precursors are expected to present

surface diffusion lengths comparable to the observed column

widths. In fact, the column width in this case is expected to

be influenced essentially by atomic impact with a relatively

small dependence of the substrate temperature.7,8,28

If on one hand the energy distribution details and direc-

tional deposition strongly influence the columnar morphol-

ogy of the films, then on the other hand the deposition

temperature is expected to have considerable influence on

their crystallite structure. The slow deposition rate and the

adopted substrate temperature (450 �C) are supposed to be

responsible for a partial anneal of the produced defects and

for some oxygen diffusion during growth. The predomi-

nantly anatase phase of the films is compatible with this rela-

tively low substrate temperature. In a recent review of the

deposition characteristics related to the magnetron sputtering

deposition of TiO2 films, Mráz and Schneider7 clearly

observed that the phase formation is controlled by the energy

FIG. 6. Optical absorption coefficients of TiO2 films deposited under differ-

ent conditions (specified in Table I).

FIG. 7. Calculation supercell structure of anatase TiO2. (a) Single oxygen

vacancy. (b) Double oxygen vacancy.
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of the particles reaching the substrate: the anatase dominates

at lower energies, the rutile dominates at higher energies,

and the intermediate energy is compatible with a mixture of

these two phases. Even though the brookite phase is not

mentioned and the substrates are not intentionally heated in

the review of Mráz and Schneider,7 the depicted scenario

provides a good explanation for the observed phase mixture.

In other words, the deposition power (3 W/cm2) is relatively

low and compatible with the anatase predomination, but the

small product pressure by distance ðpd ¼ 33Pa� mmÞ
causes small energy losses of the impinging species, allow-

ing the formation of the rutile phase as well.

In spite of the good agreement concerning the energetics

of the incident particles and the development of different

phases, the substrate temperature also deserves special atten-

tion. Test samples deposited at 600 �C (keeping all the other

conditions constant) presented higher fractions of the rutile

phase, in agreement with the literature reports focusing this

parameter on sputter-deposited samples.30 There is a clear

indication that both the kinetics of the impinging species and

the thermal processes provided by the substrate play impor-

tant roles concerning the morphology and structure of the

films.

Still concerning the film deposition process, it is worth

noting that despite the low O2/Ar ratio (0.005), interruptions

of the O2 flow for short periods caused no important increase

in the sub-bandgap absorption. Examples are samples KL20

and KL23 of Fig. 5(a). Also, the samples in which the optical

FIG. 8. Density of electronic states calculated using the CRYSTAL09 program. (a) Single vacancy per supercell. (b) Two vacancies per supercell. The insets cor-

respond to the enlargement of DOS near the Fermi energy, which is represented by the horizontal dotted red line. The observed energies of the states in the gap

due to oxygen vacancies are approximately in the 0.6–1.2 eV range of energies below the conduction bands and are occupied states, so the corresponding

energy values are in good agreement with the transmittance and absorption spectra.
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absorption was significantly affected by the longer oxygen

supply interruptions (45 s, 20 times) present no evidence for

composition modulation in the transmission electron micros-

copy (including energy filtered images of both Ti and O). At

this point, it is interesting to mention the detailed study of

the concentration of ionized O, O2, and Ar of Okimura and

Shibata:29 a remarkable dependence of these species on the

partial pressure and on the O2 flow rate occurs, indicating

that deposition conditions can change in a very complex

way, especially on shutdown and restoring transients of the

O2 flow.

The absence of clear Ti layers is consistent with the

presence, in the deposition chamber, of reactive oxygen

(electrically activated by the plasma) even after the interrup-

tion of the O2 supply. Such a presence of oxygen is mainly

related to three factors:

(i) The RF plasma activates the O2, producing O�2, Oþ2 ,

and free O in the chamber. The partial pressure of

these highly reactive oxygen species is expected to be

comparatively higher than that which is present in

thermally activated processes at similar temperature

and partial pressure. This occurs because the effi-

ciency to produce activated species in the plasma is

higher than that of thermal processes due to the higher

energy of the charged species present.

(ii) When interrupting the O2 gas flow, a time delay of

40 s for a change in the plasma color is observed. This

change is attributed to a modification in the plasma

composition, from a mixture of O2 and Ar, to pure Ar.

It is assumed, therefore, that the effective absence of

oxygen in the chamber corresponds to this delay time,

and consequently the effective period of sputtering of

the target with the oxygen-depleted condition is only

of the order of 5 s per interruption, which would result

in the deposition of a few atomic layers.

(iii) In spite of the oxygen depletion in the plasma, the tar-

get surface is expected to be “contaminated” by this

element due to the diffusion and reaction with the ox-

ygen previously present in the plasma. Actually,

because of the Ti�O bond energy and deposition con-

ditions, it is expected that the sputtering with pure ar-

gon will take some time to completely remove the

oxygen from the Ti target.

In addition to the preceding arguments, when the O2 is

restored it can react with the freshly deposited Ti-rich thin

layer. This is favored by the enhanced energy of the plasma

species: as the mean free path in the plasma for the used dep-

osition conditions is of the order of the target to substrate

distance, even oxygen atoms reflected from the collision

with the target can reach the surface of the growing film. In

the highest portion of the energy distribution, the oxygen

resulting from nearly elastic collisions can have energies of

the order of the bias voltage (�200 eV). The whole mecha-

nism is assisted by a low deposition rate (�0.5 Å/s).

The structural analysis shows that the predominant

phase of the films grown with continuous O2 flow is the ana-

tase, as indicated by the x-ray diffractograms and by the pole

diagrams (Fig. 3). In the film grown with interruption of the

O2 flow, the XRD (Fig. 2) shows a mix between anatase and

rutile. This phase mix is also evident in the Raman measure-

ments. The Raman spectra of samples deposited with 45-s

interruptions exhibits both rutile- and brookite-related peaks,

even though the contributions related to anatase still domi-

nate the spectra. However, the pole figures of films deposited

with interruption of O2 supply display essentially the same

characteristics of the low continuous-supply O2 film, indicat-

ing that the rutile phase as well as the brookite phase were al-

ready present in the continuous film.

The x-ray diffractograms and pole figures of films depos-

ited onto silicon substrates with interruption of O2 gas display

essentially the same characteristics of the low continuous-

supply O2 films. On films deposited onto silica there is a tend-

ency to increase the rutile phase in the interrupted flux films

(also observed in the Raman scattering experiments): the

Raman scattering spectra show a favoring of rutile- and

brookite-related peaks, even though the peaks related to the

anatase still dominate the spectra. So in a gross way, the films

are still dominated by the anatase phase with inclusions of ru-

tile and brookite. This reversal of the tendency to favor ana-

tase in the interrupted flux can be related to a different growth

regime caused by the Ti-rich layers deposited during the inter-

ruption of the O2 supply. The polymorphic nature of the mate-

rial is corroborated by HRTEM, with no clear distinction

between the results for samples obtained by the use of inter-

rupted or continuous gas supply parameters.

The change in the microstructure after the supply inter-

ruption detected by the Raman measurements is influenced

by the fact that the growing film finds a metallic layer instead

of an oxide one, slightly modifying the growth mechanism.

Pan et al.25 have observed that the oxidation of Ti foil forms

brookite-rich oxides, so the formation of brookite crystallites

observed in Raman and HRTEM are consistent with this

observation.

The optical results clearly show an increase in the sub-

bandgap absorption and a red-shift of the absorption edge,

associated with gas flow interruption for periods longer than

40 s. In contrast to the small changes observed in the higher

energy part of the absorption edge, the changes in the

absorption tails are remarkable.

Focusing on the bandgap changes determined by the

higher energy range of optical measurements, a shift from

3.38 6 0.05 eV to 3.14 6 0.05 eV (along with a small

decrease of slope) is observed as a result of the gas interrup-

tions. The observed changes are in the same range of those

occurring as a result of phase changes in TiO2.10–13 The

reported bandgaps of brookite, anatase, and rutile crystals are

3.4, 3.2, and 3.0 eV, respectively.10–13 Moreover, a decrease

in the slope of the absorption edge is noticed from anatase to

rutile at room temperature.13 A straightforward analysis of our

optical bandgap values seems to indicate a change from broo-

kite to anatase. Nevertheless, this is not supported by the

structural or the Raman results. Therefore, it is proposed that

the changes are from anatase to rutile, despite the discrepancy

of the absolute values of the optical bandgaps. This discrep-

ancy in the bandgap values could possibly be due to the higher

range of the square root of the absorption coefficient used

here as compared to that generally used for bulk TiO2,10–12
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resulting in overestimated values of the bandgaps for the pres-

ent samples. In this way, there is an indication that the red-

shift of the bandgap and the slight decrease of the slope of the

absorption coefficient versus photon energy in association

with the flow interruptions are compatible with the rutile for-

mation, since the XRD and Raman results show a tendency of

increase of the rutile fraction. Nevertheless, the tendency to

rutile is probably not the only reason for the optical bandgap

change since the anatase phase dominates and brookite is still

present in the films.

On the other hand, the enhancement of sub bandgap

absorption can be associated with defects, with a clear rela-

tionship to the decrease of the oxygen concentration during

deposition. In this way, oxygen-related vacancies are natural

candidates for the dominating defect centers. Despite the

film being a polymorph, the anatase phase dominates the

structure and it is likely that the vacancies are related to this

phase. In this way both the sub-bandgap absorption and part

of the decrease of the bandgap are proposed to be associated

with the existence of a high density of vacancies in the

anatase structure. One question that arises concerning this

hypothesis is if the energy levels of the oxygen-depletion-

related defects are compatible with the observed absorption.

The defect structure of this nanocrystalline columnar

and polymorphic TiO2 is expected to be very complex. Fur-

thermore, regarding the different kinds of grain boundaries

and interstitials, one should consider the column interfaces

and the film-substrate interface. Despite the expected high

density and complexity of defects, the absorption tails of

continuous gas flow films were similar to those obtained by

Zallen and Moret that analyzed brookite single crystals.31 In

order to investigate the compatibility of the absorption

enhancement with the defects produced in the films by the

oxygen supply interruption, electronic structure calculations

have been performed. Since the reproduction of the real

complexity of the defects in the material is unattainable, a

much simpler configuration of point defects (oxygen vacan-

cies in the anatase structure) was tested.

The electronic structure of anatase with one or two adja-

cent vacancies, using density functional theory in the

CRYSTAL09 code, places oxygen-related vacancies around

1 eV below the bottom of the conduction band, as shown in

Figs. 7 and 8. This result is in good agreement with other

theoretical and experimental reports in the literature.32,33

The DOS related to the single vacancy inside the bandgap is

rather localized and presents a low density of related states.

In this way, the single vacancy is not a good approximation

for the broad sub-bandgap optical absorption observed in

Figs. 5(c) and 6—even though its energy position is compati-

ble with the observed sub-bandgap absorption.

The double vacancy configuration used in the supercell

places the two vacancies in close vicinity to each other, so

strong effects of interactions between them are expected.

Indeed, the resulting energy distribution of defect bandgap

states is more complex, the states being distributed over a

wider energy range (Fig. 6(b)). This energy distribution in

the upper third of gap-state energies is compatible with the

optical absorption observed at sub-bandgap energies. The

DOS result for the double vacancy presents a better agree-

ment with the experimental data: the electronic transitions

from filled oxygen-related vacancy states to the conduction

band are expected above �1 eV, and transitions from the va-

lence band to the empty defect states existing above the

Fermi level can also occur for sub-bandgap energies.

The large density of columns present in the films is asso-

ciated with different kinds of interface states and is likely to

be the main source of the absorption tail states observed in

Fig. 6. The TEM results are similar for films deposited under

continuous or interrupted gas supply.

A close analysis of the HRTEM results indicates that

most of the defects are formed at the interfaces of the col-

umns and their close vicinity. A few isolated defects can be

observed in the compact columnar regions, but a large num-

ber of defects can be easily seen at the interfaces of the col-

umns. The HRTEM images also give some indication that

the interfaces between columns are more abrupt and less de-

fective in samples deposited under continuous gas supply,

as shown in Figs. 1(c) and 1(d). Even though the sample

processing for TEM measurements can artificially influence

the observations to some degree, it is reasonable that

defects are mainly associated with column boundary

regions.

It is worth noting that films grown with interruption of

gas supply present a much stronger optical absorption effect

than the regular films. This effect should be due to a mecha-

nism that favors a higher defect density at the column inter-

faces of the interrupted flow samples in comparison to the

regular flow samples. A possible mechanism that can take

into account the defect density enhancement at the column

interfaces during the O2 supply interruption is the partial fill-

ing of the gap between columns with Ti atoms. After the

interruption, when the O2 supply is restored, it is possibly

easier to oxidize the widely exposed Ti surfaces in the col-

umn tops than the less accessible deposits between columns,

leaving more defects behind—especially in the column inter-

faces, as the film grows. Therefore, the defect density related

to oxygen depletion in the interfaces of the columns is

expected to be higher in films deposited with interrupted gas

flow. It is also possible that a modulation of the defect den-

sity can be present in the structure. Nevertheless, it has not

been possible to find evidences in the HRTEM images of

this modulation along the column boundaries in samples

grown using periodic interruptions of the gas flow.

In contrast to the desirable effect of enhancing the opti-

cal absorption favoring the photocatalytic activity of TiO2 by

using an “intrinsic” mechanism of defect creation by periodi-

cally interrupting the O2 flux, the shortening of photo-carrier

lifetime is also likely to occur. This undesirable effect can

possibly be minimized by the location of the vacancies and

more complex defects in the vicinity of column interfaces.

As a consequence, complementary experiments are neces-

sary to further explore the proposition to use this depleted

oxygen TiO2 in photocatalysis.

The results show that it is possible to enhance the optical

absorption in the visible and near infrared of TiO2 films by

periodically interrupting the oxygen supply during reactive

sputtering deposition. According to the present proposal, this

can be accomplished by “intrinsic” means, in the sense that
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no doping impurity is necessary. Also, it is shown that the

optical bandgap itself can be diminished by 0.24 eV, which

can be partially due to the enhanced density of defects and to

the tendency of increasing the rutile phase. These effects

attributed to oxygen-related defects are essential in increas-

ing the optical absorption at lower energies and, conse-

quently, to improve the photocatalytic performance of TiO2.

The deposition method and the experimental results are

consistent with the fact that under a 45-s interruption of the

O2 gas supply the oxidation of the Ti-rich deposit is partial,

leaving behind defects (essentially oxygen-related vacancies)

that become apparent in the absorption spectrum. The inter-

ruption of O2 during deposition, associated with the high

reactivity of the oxygen species in the plasma, can be used to

control the introduction of defects in TiO2 films deposited by

sputtering. In fact, the present investigation shows that the

methodical supply of O2 gas during deposition by sputtering

produces better control of the density of defects in TiO2.

Even though the red shift of the absorption edge

observed here is smaller than that reported on extrinsically

doped TiO2 films,3,34–36 the decrease in transmittance at sub-

bandgap energy is significant. This suggests that a combina-

tion of extrinsic doping and O2 gas supply interruption can

be used to produce films with optimized photocatalysis

efficiency.

V. CONCLUDING REMARKS

TiO2 films with enhanced visible and near-infrared opti-

cal absorption tails have been produced by periodically inter-

rupting the O2 gas flow in the reactive plasma during RF

magnetron sputtering deposition. A sudden change in the sub

bandgap absorption of the films with the duration of the

interruptions was observed and associated to the delay neces-

sary for the effective depletion of the oxygen species in the

plasma.

The XRD, HRTEM, and Raman scattering measure-

ments show that the films have a compact columnar mor-

phology and consist of anatase, rutile, and brookite phases.

HRTEM analysis could not detect significant morphology

and composition changes along the growing axis of the films;

instead, the observed changes at the column interface regions

suggest that the modifications occur at the column interfaces.

The results show that intrinsic modifications through defects

produced by oxygen depletion in the films can produce the

large effects observed in the optical absorption tails without

significantly changing the structure of the TiO2 films. The

corresponding optical absorption spectra are consistent with

defect-induced absorption. In particular, DFT calculations

place oxygen-related vacancy states �1 eV below the bottom

of the conduction band and fit the observed absorption when

two vacancies are placed close to each other. It is proposed

that the defects related to the oxygen deficiency are produced

during growth by the partial oxidation of the Ti-rich deposits

formed during the gas supply interruption. As a result, the

density of defects can be controlled by adjusting the interrup-

tion time and the period between interruptions.

The results are potentially important concerning the

applications of TiO2 films, with special mention to photoca-

talysis processes and regarding the magnetic properties of

TiO2 in association with defects and/or doping with transi-

tion metals.
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