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We present a simple procedure to obtain the maximally localized Wannier function of isolated bands in
one-dimensional crystals with or without inversion symmetry. First, we discuss the generality of dealing with
real Wannier functions. Next, we use a transfer-matrix technique to obtain nonoptimal Bloch functions which
are analytic in the wave number. This produces two classes of real Wannier functions. Then, the minimization
of the variance of the Wannier functions is performed, by using the antiderivative of the Berry connection. In
the case of centrosymmetric crystals, this procedure leads to the Wannier-Kohn functions. The asymptotic
behavior of the Wannier functions is also analyzed. The maximally localized Wannier functions show the
expected exponential and power-law decays. Instead, nonoptimal Wannier functions may show reduced expo-
nential and anisotropic power-law decays. The theory is illustrated with numerical calculations of Wannier
functions for conduction electrons in semiconductor superlattices.
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I. INTRODUCTION

The Wannier functions �WFs� form an appropriate basis to
express localized states in crystalline solids. In his seminal
paper of 1959, Kohn reported the basic theory to obtain ex-
ponentially localized WFs for one-dimensional �1D� crystals
with inversion symmetry.1 This kind of WF has been called
a Wannier-Kohn function.2 Recently, the calculation of the
Wannier-Kohn functions of isolated bands has been ad-
dressed.3 The phase of Bloch functions �BFs� was chosen
according to the symmetry class of the band and the WF was
calculated by numerical integration of the BFs. Moreover,
the theory was applied to study conduction states in semi-
conductor superlattices.3,4 He and Vanderbilt5 have analyzed
the asymptotic behavior of the Wannier-Kohn functions.
These authors found a power-law decay besides the exponen-
tial behavior predicted by Kohn1 and claimed their results are
valid for noncentrosymmetric 1D crystals.5

Eilenberger extended the Kohn’s theory to deal with WFs
in 1D crystals without inversion symmetry.6 However, im-
portant aspects of the problem remain unsolved. Marzari and
Vanderbilt7 have established a general procedure to obtain
the maximally localized Wannier functions �MLWFs�. Their
procedure has been successfully applied to three-dimensional
crystals and deals with isolated, as well as composite, bands.
However, they perform the minimization of the total spread
of the WFs numerically. Smirnov and Usvyat8 have reported
a variational method, while Bhattacharjee and Waghmare9

have presented an expression based on parallel transport.
Moreover, Prodan has studied the Bloch functions for linear
molecular chains10 and has called the attention to the exis-
tence of WFs with reduced exponential decay in strictly 1D
crystals.

This work has three main motivations: �i� the need for a
simple procedure to obtain the maximally localized Wannier
function of an isolated band in 1D crystals without inversion
symmetry, �ii� the question on whether a real Wannier func-
tion presents the maximal localization, and �iii� a deeper un-
derstanding of the asymptotic behavior of the Wannier func-
tions in 1D crystals.

In Sec. II we present fundamental concepts on Wannier
functions of simple bands. Their localization is measured by
the variance of the corresponding probability distribution.
Moreover, we give the phase shift one should perform on the
Bloch functions in order to obtain the MLWF. Furthermore,
we explain why we may limit ourselves to deal with real
WFs. It should be noticed, however, that an initial guess for
the Bloch functions is needed. In Sec. III, the BFs are ob-
tained by a transfer-matrix technique. There, the Bloch con-
dition is applied to an initial position x0, which plays a sin-
gular role throughout this paper. In Sec. IV, the phase of the
BFs is fixed in analogy with the theory of Kohn.1,3 This first
stage gives two classes of WF. The second stage, which gives
the MLWF, is explained in Sec. V. There we also discuss
whether the MLWF depends on x0.

In Sec. VI, we approach the asymptotic behavior of the
Wannier functions. There, we analyze the exponential and
the power-law decays and obtain interesting results. More-
over, the particular case of centrosymmetric crystals is ana-
lyzed in Sec. VII. The theory is illustrated in Sec. VIII,
where numerical calculations of Wannier functions for con-
duction electrons in semiconductor superlattices are pre-
sented. Furthermore, in Sec. IX, we emphasize our main re-
sults. The appendixes at the end of the paper contain further
details of the theory.

II. WANNIER FUNCTIONS

For a 1D crystal with lattice period a along the x axis, the
Bloch functions �BFs� satisfy

� j,k�x + a� = eika� j,k�x� , �1�

where j is the band index and k is the wave number. More-
over, the BFs are usually chosen as periodic functions of k,
namely

� j,k+2�/a�x� = � j,k�x� . �2�

Hence, each Bloch state may be expressed by a Fourier se-
ries, i.e.,
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� j,k�x� = �
n

wj,n�x�exp�ikna� , �3�

with wj,n�x�=wj�x−na� and

wj�x� =
a

2�
�

−�/a

�/a

� j,k�x�dk . �4�

The Fourier coefficient wj,n�x� is the Wannier function of the
jth band and the nth cell. We normalize the BFs to unity over
an elementary unit cell. Therefore, we get

�
−�

�

� j,k
* �x�� j�,k��x�dx =

2�

a
� j,j���k� − k� �5�

for k and k� in the first Brillouin zone, and

�
−�

�

wj,n
* �x�wj�,n��x�dx = � j,j��n,n�. �6�

We note that � j,k�x� satisfies the Bloch condition in Eq.
�1� and the time-independent Schrödinger equation. Since
these are linear and homogeneous equations, the function

�̃ j,k�x� = exp�i� j�k��� j,k�x� �7�

describes the same normalized state as � j,k�x� does, provided
� j�k� is a real function. Moreover, in agreement with Eq. �2�,
the phase shift � j�k� should satisfy

� j�k + 2�/a� − � j�k� = 2rj� , �8�

with rj being an integer. In these conditions, the Wannier
function

w̃j�x� =
a

2�
�

−�/a

�/a

�̃ j,k�x�dk =
a

2�
�

−�/a

�/a

exp�i� j�k��� j,k�x�dk

�9�

is not uniquely defined.1,7 Therefore, given the Bloch states
� j,k�x� in the first Brillouin zone, we may look for the func-
tion � j�k� which gives the maximally localized Wannier
function �MLWF�.7

We have found several localization criteria to measure the
spread of the Wannier functions,7,8 but we have chosen the
variance of the probability distribution �wj�x��2. The center
and the variance of �wj�x��2 are

xj = �
−�

�

x�wj�x��2dx �10�

and

� j
2 = �

−�

�

�x − xj�2�wj�x��2dx , �11�

respectively. Moreover, � j is the standard deviation of
�wj�x��2. For short, we will refer to xj, � j

2, and � j as param-
eters of the Wannier function wj�x�.

In terms of the BFs, we obtain the center of wj�x� through
Eqs. �4� and �10� as11,12

xj = �Xj	 =
a

2�
�

−�/a

�/a

Xj�k�dk , �12�

where

Xj�k� = i�
0

a

uj,k
* �x�

�uj,k

�k
�x�dx �13�

and uj,k�x�=exp�−ikx�� j,k�x� is the periodic part of � j,k�x�.
From the normalization and periodicity of the BFs, it is quite
easy to demonstrate that Xj�k� is real and Xj�k+2� /a�
=Xj�k�. It is interesting to note the Xj�k� is the Berry connec-
tion of the jth band12–14 and 2�xj /a is the corresponding
Berry phase.9,13,15 Moreover, the variance of wj�x� may be
expressed in terms of the BFs by substituting Eq. �4� into Eq.
�11�. This leads to 7

� j
2 =

a

2�
�

−�/a

�/a �
0

a 
 �uj,k

�k
�x�
2

dxdk − xj
2. �14�

A. Minimization of the variance

Let us suppose that, for a given j, we have � j,k�x� as a C1

�continuously differentiable� function of k. A procedure to
obtain Bloch functions of this kind is established in the next
section. Moreover, let us shift the phase of the BFs by � j�k�,
according to Eqs. �7� and �8�. To maintain the continuous
differentiability of the BFs, we assume that � j��k� is continu-
ous. The new Bloch functions in Eq. �7� lead to a new Wan-
nier function w̃j�x� in Eq. �9�.

The center x̃j and the variance �̃ j
2 of w̃j�x� are functionals

of � j�k�. In fact, from Eq. �13�, we obtain the new Berry
connection13

X̃j�k� = Xj�k� − � j��k� , �15�

and Eq. �12� leads to the new center

x̃j = xj − rja . �16�

Since rj is an integer, we note that our phase shift may
change the center of the Wannier function. However, such a
change can only be an integer multiple of the lattice period.11

Moreover, Eq. �14� leads to the new variance

�̃ j
2 = � j

2 + xj
2 − x̃j

2 +
a

2�
�

−�/a

�/a

„�� j��k��2 − 2Xj�k�� j��k�…dk .

�17�

On the one hand, it is worth to note that �̃ j
2 has no maxi-

mum value. In fact, due to the term �� j��k��2 in the integral,
one may choose � j�k� to strongly vary within the Brillouin
zone, thus giving as large a variance as required. On the
other hand, we expect �̃ j

2 has a minimum.
The phase shift � j�k� which minimizes �̃ j

2 is obtained
through the Calculus of Variations.16 Let �� j�k� be a varia-
tion of � j�k�. It should satisfy �� j�−� /a�=�� j�� /a�, in
agreement with Eq. �8�. This variation produces a first-order
variation of �̃ j

2 which is given by
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���̃ j
2� =

a

�
�

−�/a

�/a

�� j��k� − Xj�k���� j��k�dk

= −
a

�
�

−�/a

�/a

�� j��k� − Xj��k���� j�k�dk , �18�

where an integration by parts has been performed. Now,
when �̃ j

2 reaches its minimum value, the variation ���̃ j
2�

should vanish, regardless the shape of �� j�k�. This leads to
the differential equation12,16

� j��k� = Xj��k� . �19�

Therefore, taking into account the boundary condition in Eq.
�8� for k=−� /a and Eq. �12�, we obtain

� j
ML�k� = � j

ML�0� + rjak + �
0

k

�Xj�k̄� − xj�dk̄ . �20�

The Berry connection corresponding to a WF of minimum

variance is obtained from Eqs. �15� and �20� as X̃j
ML�k�=xj

−rja. This means that, when the Bloch states of the isolated
band lead to the MLWF, the Berry connection is the constant
x̃j

ML=xj −rja. Furthermore, the minimum variance is derived
from Eqs. �18� and �20� as

min��̃ j
2� = � j

2 + xj
2 −

a

2�
�

−�/a

�/a

Xj
2�k�dk = � j

2 + �Xj	2 − �Xj
2	 .

�21�

It should be noticed that this minimum value is less than or
equal to � j

2, and does not depend on � j
ML�0� or rj in Eq. �20�.

This allows us to choose these latter parameters in the most
convenient way.

B. Real Wannier functions

At this point we discuss whether, to obtain the MLWF, we
may limit ourselves to deal with real Wannier functions. On
the one hand, in agreement with Eq. �9�, the MLWF may be
written as

w̃j
ML�x� =

a

2�
�

0

�/a

��̃ j,k
ML�x� + �̃ j,−k

ML �x��dk , �22�

where �̃ j,k
ML�x�=exp�i� j

ML�k��� j,k�x�. On the other hand, we
remind that � j,−k�x� and � j,k

* �x� are linearly dependent.
Hence, there exists a real phase difference � j�k� between
them, i.e.,

� j,−k�x� = ei�j�k�� j,k
* �x� . �23�

Following Eq. �13�, this leads to

Xj�− k� = Xj�k� + � j��k� . �24�

Moreover, combining this result with Eq. �20�, we obtain

�̃ j,−k
ML �x� = e2isj��̃ j,k

ML�x��*, �25�

where sj =� j
ML�0�+ 1

2� j�0�. Therefore, we may rewrite Eq.
�22� as

w̃j
ML�x� =

a

2�
eisj�

0

�/a

�e−isj�̃ j,k
ML�x� + c.c.�dk , �26�

This means that the maximally localized Wannier function
equals a real function times exp�isj�. Furthermore, since this
factor is physically meaningless, we adopt sj =0. Thus we
obtain � j

ML�0�=− 1
2� j�0� and

w̃j
ML�x� =

a

�
�

0

�/a

Re��̃ j,k
ML�x��dk . �27�

Since our MLWF belongs to the set of real Wannier func-
tions, we may restrict the foregoing study to Bloch states
leading to WFs in this set. To put it another way, the BFs will
have the symmetry property

� j,−k�x� = � j,k
* �x� . �28�

This is Eq. �23� with � j�k�=−2tj� for an integer tj. Hence,
we obtain � j

ML�0�= tj�, which should be substituted in Eq.
�20�. Here we point out that working with real Wannier func-
tions is quite convenient in formal and numerical calcula-
tions, as well as for the graphical representations.

In addition, it should be noted that the phase shift tj�
+rjak, which consists of the first two terms on the right-hand
side of Eq. �20�, transforms wj�x� into �−1�tjwj�x+rja�. Then,
disregarding a possible but meaningless sign inversion, such
a term does not affect the set of WFs of the jth band. For the
sake of convenience and without losing generality, we shall
use tj =0 and choose rj as the integer part of xj /a+1/2. This
way we will get −a /2	 x̃j

ML
a /2, i.e., the center of the
MLWF will be in the unit cell centered at the origin.11 We
also note that the third term in Eq. �20� preserves the center
and minimizes the variance of the Wannier function.

III. ENERGY BANDS AND BLOCH FUNCTIONS

In this section we develop the basic theory of energy
bands and BFs in a quite general type of 1D crystal with
lattice period a. We shall use a transfer-matrix formalism.
Let the electronic motion be described by3

Ĥ = −
�2

2

d

dx

1

m*�x�
d

dx
+ V�x� . �29�

The electron effective mass m*�x� is piecewise continuous
and periodic, with period a. The effective potential V�x� is
taken as6 V�x�=Vs�x�+Vd�x�, where Vs�x� is piecewise
continuous and periodic, with period a, and Vd�x�
= �2

mea
�q,n�q��x− pq−na�, where ��x� is the Dirac’s delta. In

this sum the index n takes all integer values and the positions
pq, with 0
 pq	a, form a finite set. Moreover, each weight
�q may be positive or negative and me is the free-electron
mass.

The eigenfunctions ��x� of Ĥ should be continuous ev-
erywhere. Instead, for the considered effective potential,

�x�=ame���x� /m*�x� is piecewise continuous. In fact, 
�x�
is continuous everywhere except at x= pq+na, with n be-
ing an integer. At such points the condition 
�x+�−
�x−�
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=2�q��x� applies. Here the superscripts + and − indicate lat-
eral limits.

A. Transfer matrix

Let �1,E�x� and �2,E�x� be two real and linearly indepen-
dent eigenfunctions of Ĥ for the eigenvalue E. Since the
Schrödinger equation is a second-order linear differential
equation, the general eigenfunction ��x� for this eigenvalue
may be written as

��x� = C1�1,E�x� + C2�2,E�x� . �30�

For purposes of convenience and without losing generality,
we assume1,6

��1,E�x0� �2,E�x0�

1,E�x0

+� 
2,E�x0
+�
� = �1 0

0 1
� , �31�

where the position x0 may be chosen at will. Taking the
values ��x0� and 
�x0

+� as initial conditions, we eliminate the
constants C1 and C2 in Eq. �30� to obtain the transfer
relation3

� ��x�

�x+�

� = T�E;x,x0����x0�

�x0

+�
� , �32�

where

T�E;x,x0� = � �1,E�x� �2,E�x�

1,E�x+� 
2,E�x+�

� �33�

is the transfer matrix from x0 to x. As shown in Appendix A,
its determinant is 1. Moreover, for real values of E, the ma-
trix T�E ;x ,x0� is a real and C� �infinite times differ-
entiable17� function of E.

To obtain the Bloch states, we consider the primitive
transfer matrix M�E ,x0�=T�E ;x0+a ,x0�. When the Bloch
condition in Eq. �1� is taken into account, we get

M�E,x0���k�x0�

k�x0

+�
� = eika��k�x0�


k�x0
+�
� . �34�

Since �k�x0� and 
k�x0
+� do not vanish simultaneously, this

expression leads to the secular equation ��E ,x0�=cos�ka�,
where

��E,x0� =
M11�E,x0� + M22�E,x0�

2
. �35�

This is one-half of the trace of M�E ,x0�, thus it does not
depend on the initial position x0. To show this, we write the
primitive transfer matrix for the initial position x0

0 as

M�E,x0
0� = T�E;x0

0 + a,x0
0�

= T�E;x0
0 + a,x0 + a�T�E;x0 + a,x0�T�E;x0,x0

0�

= T�E;x0
0,x0�M�E,x0�T−1�E;x0

0,x0� . �36�

This is because T�E ;x0
0+a ,x0+a�=T�E ;x0

0 ,x0�, due to the
periodicity of the 1D crystal, and T�E ;x0 ,x0

0�=T−1�E ;x0
0 ,x0�,

as a consequence of Eq. �32�. According to Eq. �36�,
M�E ,x0� and M�E ,x0

0� are similar matrices. Therefore, they

have the same trace and we get ��E ,x0�=��E�. Moreover,
the secular equation becomes

��E� = cos�ka� . �37�

B. Properties of �„E…

For the purposes of the present work we note that, for real
values of E, the function ��E� is C� everywhere.17 Further-
more, we assume ��E� has the following properties:1

��E� → + � as E → − � , �38�

if ���E� = 0 then E = El�, �39�

where El� is real and increases as l=1,2 , . . .,

��l� � 1, �40�

where �l=��El��,

sign��l� = �− 1� j , �41�

and

sign��l�� = �− 1�l+1. �42�

where �l�=���El��. Most of these properties are apparent in
Fig. 1, where the Kramers plot of ��E� is displayed.

C. Energy bands

According to Eq. �37�, for a real k the energy E should
satisfy ���E� � 
1. Therefore, as the Kramers plot in Fig. 1
suggests, for each real k the secular equation has an infinite
set of real roots Ej,k, where j=1,2 , . . . increases with the
energy value. For fixed j, the function Ej,k gives the jth en-
ergy band. Such a function is continuous in the reciprocal
space, with the periodicity

Ej,k+2�/a = Ej,k �43�

and the inversion symmetry

Ej,−k = Ej,k. �44�

Moreover, when the energies Ej,k are nondegenerate, the jth
band is isolated and Ej,k is continuously differentiable.

FIG. 1. �Color online� The Kramers plot of ��E�. The shaded
regions indicate the lower three bands. The numerical values are for
the structure SL2 in Sec. VIII.
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D. Bloch functions

According to Eq. �32�, the BFs are given by

� j,k�x� = � j,k�x0�T11�Ej,k;x,x0� + 
 j,k�x0
+�T12�Ej,k;x,x0� ,

�45�

where � j,k�x0� and 
 j,k�x0
+� satisfy Eq. �34� and the normal-

ization condition in Appendix B. If M12�Ej,k ,x0��0 then Eq.
�34� leads to


 j,k�x0
+� =

eika − M11�Ej,k,x0�
M12�Ej,k,x0�

� j,k�x0� . �46�

Moreover, according to Eq. �B13�, we get1,3,6

�� j,k�x0�� =
−
meaM12�Ej,k,x0�

�2���Ej,k�
, �47�

provided ���Ej,k��0. However, the phase of the � j,k�x0� re-
mains undetermined. We shall fix this phase in a later sec-
tion.

Similarly, when M21�Ej,k ,x0��0 we may use Eq. �34� to
get

� j,k�x0� =
eika − M22�Ej,k,x0�

M21�Ej,k,x0�

 j,k�x0

+� , �48�

and Eq. �B14� leads to3

�
 j,k�x0
+�� =
meaM21�Ej,k,x0�

�2���Ej,k�
, �49�

whenever ���Ej,k��0.

E. Properties of M12„E ,x0… and M21„E ,x0…

The off-diagonal elements M12�E ,x0�=�2,E�x0+a� and
M21�E ,x0�=
1,E�x0+a� play a central role in the calculation
of the BFs. Therefore, we display some of their main prop-
erties in Figs. 2 and 3. For instance, the off-diagonal ele-
ments do not vanish inside the energy bands. Each of them
has one zero per energy gap, and M21�E ,x0� vanishes once
below the first band.

We assume that M12�E ,x0� and M21�E ,x0� have the fol-
lowing properties:

M12�E,x0� → + � when E → − � , �50�

M21�E,x0� → + � when E → − � , �51�

if M12�E,x0� = 0 then E = Ēl, �52�

where Ēl is real1 and increases as l=1,2 , . . .,

if M21�E,x0� = 0 then E = Ẽl, �53�

where Ẽl is real and increases as l=0,1 ,2 , . . . . Here we

point out that Ẽ0 is below the first band. Moreover,

��̄l� � 1 and ��̃l� � 1, �54�

with �̄l=��Ēl� and �̃l=��Ẽl�, and

M12�E,x0� = M21�E,x0� = 0

if and only if

���E�� = 1 and ���E� = 0. �55�

It is worth noting that, in such a case, E is a degenerate level
which corresponds to a null gap. Furthermore,

sign� �M12

�E
�Ēl,x0�� = sign��̄l� = �− 1�l, �56�

and

sign� �M21

�E
�Ẽl,x0�� = − sign��̃l� = �− 1�l+1. �57�

To explain Eq. �54� we point out that when one of the
off-diagonal elements of M�E ,x0� vanishes we have
M11�E ,x0�M22�E ,x0�=1 �see Appendix A�. Thus
�M11�E ,x0� � + �M22�E ,x0� � �2, since the arithmetic mean is
greater than or equal to the geometric mean. Moreover,
M11�E ,x0� and M22�E ,x0� have the same sign. Therefore, we
obtain ���E� � �1. In addition, the property in Eq. �55� can be
seen as a consequence of Eqs. �B13� and �B14�. To do so, we
should bear in mind that � j,k�x0� and 
 j,k�x0

+� cannot vanish
simultaneously.

IV. THE FIRST STAGE

Here we obtain the Bloch function � j,k�x� of an isolated
band as an everywhere continuously differentiable function

FIG. 2. �Color online� M12�E ,x0� as a function of E for fixed x0.
The shaded regions indicate the lower three bands. The numerical
values are for the structure SL2 in Sec. VIII with x0=50 Å.

FIG. 3. �Color online� The same as Fig. 2, but here M21�E ,x0� is
given as a function of E.
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of the real wave number k. We recall that, for 1D crystals
with inversion symmetry, Kohn1 has conveniently chosen x
=0 as an inversion center. As a result, x=a /2 is also an
inversion center. Then, depending on the band class,3 one
may choose � j,k�x0��0 or 
 j,k�x0��0 for all real k, with x0

being either 0 or a /2. In the present work we use the same
idea, but, of course, x0 needs not be an inversion-symmetry
center.

The property in Eq. �55� guarantees that neither ���E�
=0 nor M12�E ,x0� and M21�E ,x0� vanish simultaneously in
an isolated band. To obtain � j,k�x� as a continuously differ-
entiable function of k, it is convenient to use either Eqs. �46�
and �47� or Eqs. �48� and �49� for the whole jth band. In the
first case, we need M12�Ej,k ,x0��0 to apply for all real k.
Thus, according to Eq. �54�, it is enough to choose x0 such
that the band edges �Ej,0 and Ej,�/a� are not zeros of
M12�E ,x0�. Instead, in the second case the condition
M21�Ej,k ,x0��0 should be fulfilled for all real k. Similarly,
following Eq. �53�, it suffices to choose x0 such that
M21�E ,x0� does not vanish at the band edges.

Let us consider the first case. According to Eq. �47�,
� j,k�x0��0 for all real k. Hence, the phase of the BFs may be
fixed by choosing

� j,k�x0� = �� j,k�x0�� � 0 �58�

for every real k. For short, the resulting Wannier function
will be classified as a P�WF, where P� means positive-�.
Here �� j,k�x0�� and 
 j,k�x0

+� are given by Eqs. �47� and �46�,
respectively. The choice in Eq. �58� produces the BFs nor-
malized to unity over the elementary unit cell and continu-
ously differentiable functions of k. This is because
T�E ;x ,x0�, M�E ,x0� and ���E� are continuously differen-
tiable functions17 of E, and Ej,k depends smoothly on k.

Regarding the periodicity of the BFs in the reciprocal
space, we first note that � j,k+2�/a�x0�=� j,k�x0� and

 j,k+2�/a�x0

+�=
 j,k�x0
+�. This is obtained by combination of

Eqs. �43�, �46�, and �47�. Moreover, we follow Eqs. �43� and
�45� to reach Eq. �2�. The BFs also satisfy � j,−k�x0�
=� j,k

* �x0� and 
 j,−k�x0
+�=
 j,k

* �x0
+�. This is due to Eqs. �44�,

�46�, and �47�, and because M�E ,x0� is real for real E. Fur-
thermore, this latter fact explains why the BFs in Eq. �45�
satisfy Eq. �28�. Therefore, in agreement with Sec. II, the
P�WFs are real WFs.

In the second case Eq. �49� ensures 
 j,k�x0
+��0 for all real

k. Thus the phase of the BFs may be chosen such that


 j,k�x0
+� = �
 j,k�x0

+�� � 0 �59�

for every real k. For short, the resulting Wannier function
will be classified as a P
WF, where P
 means positive-
. In
this case � j,k�x0� is derived through Eq. �48�, and we also
obtain BFs with the properties discussed in Sec. II.

Once � j,k�x0� and 
 j,k�x0
+� have been obtained, the BFs

and the WF are calculated by Eqs. �45� and �4�, respectively.
Moreover, Eqs. �12� and �14� may be used to determine the
center xj and standard deviation � j of wj�x�. However, this
stage will seldom produce a maximally localized WF.

V. THE SECOND STAGE

To optimize the localization of the Wannier function
w̃j�x�, the phase of the BFs is shifted in � j

ML�k�. This shift is
obtained by Eq. �20�, with rj being the integer part of xj /a
+1/2 and � j

ML�0�=0. The resulting BFs are denoted by

�̃ j,k
ML�x� and the MLWF is calculated by Eq. �22�. Moreover,

the center of the MLWF satisfy −a /2	 x̃j
ML
a /2 and its

variance is obtained through Eq. �21�. It should be remarked
that the MLWF produced in this stage does not depend on
the initial position x0. This is discussed in Appendix C.

VI. ASYMPTOTIC BEHAVIOR OF WANNIER
FUNCTIONS

Kohn1 and Eilenberger6 have pointed out that one-
dimensional Wannier functions can be exponentially local-
ized. In doing so, they have considered the Bloch functions
as analytic functions of the complex wave number k. Note
that, contrasting this idea, k and E have been supposed to be
real in the preceding sections of this paper. However, to de-
velop the theory of the asymptotic behavior of WFs, we shall
consider both of them as complex variables in this section.

A. Analytic continuation of energy bands

We first deal with the analytic continuation of the transfer
matrix T�E ;x ,x0� into the complex E-plane. The resulting
function of E have been shown to be entire,1,6 provided
m*�x� is constant and Vd�x�=0. We expect this property re-
mains for the Hamiltonian in Eq. �29�. This way, the ele-
ments of the primitive transfer matrix M�E ,x0� and its trace
��E� are also entire functions over the whole E-plane. Ac-
cording to Eq. �39�, the zeros of ���E� occur at the points El�.
They are simple zeros which correspond to the minima and
maxima in the Kramers plot.1 Moreover, for an isolated
band, we have ��l � �1. Therefore, El� belongs to the lth en-
ergy gap. When m*�x�is constant and Vd�x�=0, it has been
demonstrated that ���E� have no other zeros.1,6 Again, we
expect this applies for the Hamiltonian in Eq. �29�.

Now we perform the analytic continuation of the energy
bands by applying Eq. �37� for complex values of k and E.
To obtain the bands, we should deal with the many-valued
inverse of ��E�. Since the zeros of ���E� are simple, the
values �l are first-order branch points of the function E���.
For odd values of l the branch cut joins �l to −� over the
real axis of the �-plane �with �l	−1�. In turn, for even
values of l the branch cut joins �l to +� over the same axis
�with �l�1�. The energy range of the jth band is produced
by the branch Ej��� with −1
�
1. In fact, the points El�
divide the real-E axis into a sequence of energy ranges, such
that each range is produced by a different branch Ej���. For
instance, the ranges E
E1� and E1�
E
E2� are produced by
the branches E1��� and E2���, respectively. Moreover, each
branch corresponds to a Riemann sheet. The jth and the �j
+1�th sheets are joined along the branch cut at � j. Hence, the
complex-k bands are given by Ej,k=Ej�cos�ka��. We also
note that such bands fulfill Eqs. �43� and �44�.
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Each complex-k band Ej,k is analytic for all k, except for
those k corresponding to the branch points and cuts of the
branch Ej���. For j=1 the branch point is �1. In turn, for j
�2 the branch points are � j−1 and � j. To find the k values
corresponding to �l we remind the reader of Eq. �41� and set
k=k1+ ik2, where k1 and k2 are real numbers. Therefore, Eqs.
�B2� and �B3� become

cos�k1a� = �− 1�l �60�

and

cosh�k2a� = ��l� . �61�

This leads to the branch points1

kl,�,± = �2� +
1 − �− 1�l

2
��

a
± ihl, �62�

where � is an integer and

hl =
1

a
cosh−1���l�� =

1

a
ln���l� + 
�l

2 − 1� . �63�

Moreover, each branch cut joins the point kl,�,± to kl,�,±± i�.
The branch points of E1,k are k1,�,±. In turn, for j�2, the
branch points of Ej,k are kj−1,�,± and kj,�,±.

B. Analytic continuation of Bloch functions

The BFs for complex k are obtained by analytic continu-
ation of the expressions in the preceding sections. To fix
ideas, we deal with Bloch functions leading to a P�WF. As
discussed in Sec. IV, we have

� j,k�x� = �−
meaM12�Ej,k,x0�

�2���Ej,k�
�1/2�T11�Ej,k;x,x0�

+ T12�Ej,k;x,x0�
eika − M11�Ej,k,x0�

M12�Ej,k,x0� � , �64�

for real values of k. In this section, we use Eq. �64� for
complex values of k as well. This expression clearly suggests
that the branch points and cuts of Ej,k apply to � j,k�x� as well.
However, the BF may present additional branching proper-
ties, due to the zeros of ���Ej,k� and M12�Ej,k ,x0�.

The zeros of ���Ej,k� occur at the branch points kl,�,± of
Ej,k. Here l=1 and l= j−1, j for j=1 and j�2, respectively.
In the neighborhood of those points we have ��Ej,k���l

+ 1
2�l��Ej,k−El��

2 and ���Ej,k���l��Ej,k−El��. Therefore, we
obtain

����Ej,k��2 � 2�l����Ej,k� − �l�

=2�l��cos�ka� − cos�kl,�,±a��

�− 2�l� sin�kl,�,±a��k − kl,�,±�

=2��l��sinh�hla��±ia�k − kl,�,±�� , �65�

where we have used Eqs. �37�, �42�, and �62�. We note that
���Ej,k� has a first-order branch point at each kl,�,±. The cor-
responding branch cut joins kl,�,± to kl,�,±± i�. Moreover, in
agreement with the Kramers plot, we obtain

���Ej,k� � �− 1� j
2��l��sinh�hla��±ia�k − kl,�,±�� �66�

for k�kl,�,±.

According to Eq. �52�, M12�E ,x0� vanishes at E= Ēl, with
l=1,2 , . . . . Then, following Eqs. �B2�, �B3�, �54�, and �56�,
the complex wave numbers corresponding to Ēl are

k̄l,�,± = �2� +
1 − �− 1�l

2
��

a
± ih̄l, �67�

with

h̄l =
1

a
ln���̄l� + 
�̄l

2 − 1� . �68�

It should be noted that ��̄l � 
 ��l�, because ��l� is the maxi-

mum value of ��E� in the lth gap. Consequently, h̄l
hl for
all l. Moreover, Eq. �67� leads to

exp�ikl,�,−a� = exp�− ikl,�,+a� . �69�

The function � j,k�x� can have additional branch properties
at k values where M12�Ej,k ,x0� vanishes. However, the real
energies produced by the first complex-k band are in the
range E
E1�. Hence, branch properties due to vanishing M12

occur in �1,k�x� when Ē1
E1�. For higher bands, the real
energies of the jth complex-k band satisfy Ej−1� 
E
Ej�.
Therefore, additional branch properties occur in � j,k�x� when

Ej−1� 
 Ēj−1 or Ēj 
Ej�.
We now analyze the terms M12�Ej,k ,x0� and exp�ika�

−M11�Ej,k ,x0� in Eq. �64�. To do so, we consider k� k̄l,�,±

and Ēl in the jth complex-k band. According to Appendix D

and Eq. �69�, we have exp�ik̄l,�,+a�=M11�Ēl ,x0� or

exp�ik̄l,�,−a�=M11�Ēl ,x0�, depending on whether
�M11�Ēl ,x0� � 	1 or �M11�Ēl ,x0� � �1, respectively. This is be-

cause �exp�ik̄l,�,±a� � =exp��h̄la�.
For the sake of simplicity, we limit our discussion to the

case Ēl�El�, where

Ej,k − Ēl �
dEj,k

dk



k=k̄l,�,±

�k − k̄l,�,±� �70�

for k� k̄l,�,±. Hence, according to Eqs. �B4�, �56�, and �67�,
we have

M12�Ej,k,x0� �
�M12

�E
�Ēl,x0��Ej,k − Ēl�

� −
sinh�h̄la�

���Ēl�

 �M12

�E
�Ēl,x0�
�±ia�k − k̄l,�,±�� ,

�71�

for k� k̄l,�,±. Moreover, if exp�ik̄l,�,+a�=M11�Ēl ,x0� then
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eika − M11�Ej,k,x0� � �− 1�l�ia�k − k̄l,�,+��

� �e−h̄la +

sinh�h̄la�
�M11

�E
�Ēl,x0�

���Ēl�
�
�72�

for k� k̄l,�,+, and

eika − M11�Ej,k,x0� � 2i sin�k̄l,�,−a� = 2�− 1�l sinh�h̄la� .

�73�

for k� k̄l,�,−. Instead, if exp�ik̄l,�,−a�=M11�Ēl ,x0� then

eika − M11�Ej,k,x0� � �− 1�l�− ia�k − k̄l,�,−��

� �− eh̄la +

sinh�h̄la�
�M11

�E
�Ēl,x0�

���Ēl�
�
�74�

for k� k̄l,�,−, and

eika − M11�Ej,k,x0� � 2i sin�k̄l,�,+a� = 2�− 1�l+1 sinh�h̄la�
�75�

for k� k̄l,�,+.

C. Asymptotic behavior of positive-� Wannier functions

Here we obtain simple expressions for w1�x±ma� when m
is a large positive integer. To do so, we approximate the
integral in Eq. �4� by a suitable contour integral in the
complex-k plane.5 This involves an integral representation of
the gamma function which is given in Appendix E.

According to Eq. �2�, Eq. �4� is conveniently written as

wj�x� =
a

2�
�

0

2�/a

� j,k�x�dk =
a

2�
�

�

� j,k�x�dk , �76�

where � is a path from 0 to 2� /a in the complex-k plane,
and � j,k�x� is analytic in the region enclosed by � and the
real-k axis.5 To obtain the asymptotic behavior of the WF, the
main advantage of this procedure comes from Eq. �1�.
Namely,

�� j,k�x ± ma�� = e�Im�k�ma�� j,k�x�� , �77�

with m being a positive integer. The behavior of the Bloch
function to the right-hand �left-hand� corresponds to the +
�−� sign in x±ma. To analyze the asymptotic behavior of the
WF to the right-hand �left-hand� side we choose � in the
region Im�k��0 �Im�k�	0�. This is shown in Fig. 4. Hence,
we obtain an exponential decay of �� j,k�x±ma��, as m in-
creases, with coefficient �Im�k��.

For the first band, we consider the following cases: �1�
Ē1�E1� and �2� Ē1	E1�. For simplicity, � is chosen in the
region 0
Re�k�
2� /a. It should be remarked that �1,k�x�
is analytic for k in this region, with the exception of the

branch points k1,0,±=� /a± ih1 and, in case 2, k̄1,0,±

=� /a± ih̄1.

1. Ē1�E1�

In this case Ē1 is outside the first complex-k band. Thus
the relevant branch points are k1,0,±=� /a± ih1. To determine
the behavior of the WF on the right-hand side we use the
�blue� solid path in Fig. 4. It should be noted that, according
to Eq. �2�, the vertical segments cancel out in Eq. �76�.
Therefore, for large positive values of m, the main contribu-
tion to w1�x+ma� comes from the vicinity of k1,0,+. More-
over, for the same reason, the path � can be simplified to
become the �blue� solid path in Fig. 5. In the simplified path

FIG. 4. �Color online� Branch points ���, branch cuts �dotted-
dashed lines� and integration path � in Eq. �76�. The �blue� solid
and the �red� dashed paths are used to find the asymptotic behavior
of the P�WFs towards +� and −�, respectively.

FIG. 5. �Color online� The same as Fig. 4, but the paths have
been simplified.
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the vertical lines go to infinity.
According to Eqs. �64� and �66�, we have

�1,k�x + ma� � A+�x�exp�ikma��ia�k − k1,0,+��−1/4, �78�

when k�k1,0,+. Here A+�x� is a real function which is defined
for −a /2
x
a /2. For large positive values of m, we make
the substitution t=−ima�k−k1,0,+�. This way the �blue� solid
path � in Fig. 5 becomes the Hankel contour in Appendix E.
Moreover, Eq. �E1� is used to obtain5,18

w1�x + ma� �
A1,+�x�
�� 1

4� �− 1�m exp�− h1am�m−3/4. �79�

Furthermore

�1,k�x − ma� � A−�x�exp�− ikma��− ia�k − k1,0,−��−1/4,

�80�

when k�k1,0,−, with A−�x� being a real function defined for
−a /2
x
a /2. To calculate w1�x−ma�, we use the �red�
dashed path in Fig. 4. This path simplifies to the �red� dashed
path shown in Fig. 5, and we perform the substitution t
= ima�k−k1,0,−�. This transforms the simplified � in the re-
verse of the Hankel contour in Appendix E, and we obtain

w1�x − ma� �
A1,−�x�
�� 1

4� �− 1�m exp�− h1am�m−3/4. �81�

We note that when Ē1�E1� the WF is exponentially
localized,1 and present a power-law decay.5 Moreover, both
kinds of decay are isotropic. These properties have been al-
ready found in Wannier-Kohn functions of 1D crystals with
inversion symmetry.5

2. Ē1	E1�

In this case, we focus the attention on the branch points

k̄1,0,±. This is because the points k1,0,± are farther from the
real-k axis, and its contribution to the integral should be neg-
ligible. Hence, we use the paths in Fig. 4 with branch points

k̄1,0,± and horizontal segments whose distance to real-k axis
is less than hj.

We consider the subcases: �2a� �M11�Ēj ,x0� � 	1 and �2b�
�M11�Ēj ,x0� � �1. In short, we present some details for case

�2a�. If k� k̄1,0,+=� /a+ ih̄1 then Eqs. �64�, �71�, and �72�
lead to

�1,k�x + ma� � B+�x�exp�ikma��ia�k − k̄1,0,+��1/2. �82�

In turn, when k� k̄1,0,−=� /a− ih̄1 we use Eqs. �64�, �71�, and
�73� to obtain

�1,k�x − ma� � B−�x�exp�− ikma��− ia�k − k̄1,0,−��−1/2.

�83�

Here B±�x� are real functions defined for −a /2
x
a /2.
Hence, for large positive values of m, the integral along the
�blue� solid path � in Fig. 4 gives

w1�x + ma� �
B+�x�

��− 1
2� �− 1�m exp�− h̄1am�m−3/2 �84�

and integrating along the �red� dashed path we obtain

w1�x − ma� �
B−�x�
�� 1

2� �− 1�m exp�− h̄1am�m−1/2. �85�

Similarly, in case �2b� we obtain

w1�x + ma� �
C+�x�
�� 1

2� �− 1�m exp�− h̄1am�m−1/2 �86�

and

w1�x − ma� �
C−�x�

��− 1
2� �− 1�m exp�− h̄1am�m−3/2 �87�

for large positive values of m. The real functions D±�x� are
defined for −a /2
x
a /2.

For Ē1	E1� we have obtained interesting results. On the

one hand, the exponential decay occurs with coefficient h̄1,
which is less than h1. This reduction of the exponential lo-
calization has been already commented on by Prodan.10 On
the other hand, the power-law decay is anisotropic. These
properties will be illustrated below.

D. Exponential and power-law localization

We have obtained the asymptotic behavior of P�WFs of

the first band. In case 1 �Ē1�E1�� the exponential and power-

law decays are isotropic. In turn, in case 2 �Ē1	E1�� the
exponential decay is reduced and the power-law decay is
anisotropic. To unify these results we write

�w1�x ± ma�� � G±�x�exp�− �m�m−�±, �88�

where G±�x� are positive functions defined for −a /2
x

a /2. In case 1 we obtain �=h1a and �±=3/4. Instead, in

case 2 we obtain �= h̄1a. Moreover, in case �2a� ��2b�� �+ is
3/2 �1/2� and �− is 1/2 �3/2�.

To study the localization of the Wannier functions, we use
the probability

Pm = �
−a/2

a/2

�w1�x + ma��2dx �89�

to find the electron with �m− 1
2

�a
x
 �m+ 1
2

�a. Moreover,
we take an initial position x0 leading to a WF whose center
x1 satisfies −a /2	x1
a /2. Hence, for large positive values
of m we obtain

P±m � exp�− 2�m�m−2�±�
−a/2

a/2

G±
2�x�dx �90�

and

1

2
ln� P±m

P±�m+1�
� � � + �± ln�1 +

1

m
� . �91�

We shall use this expression to determine the values of � and
�± from the numerical calculations.
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In this section we have dealt with the P�WFs of the first
band. For higher bands �j�2�, the same ideas apply, but we
should consider branch points corresponding to energies in
the two neighboring gaps. Moreover, the asymptotic behav-

ior is dominated by the slower exponential decay. If Ēj−1

	Ej−1� and Ej�	 Ēj then the coefficient � of the exponential
decay will be the smaller value between hj−1a and hja. This
is in agreement with Kohn’s theory.1,3,5 Instead, in other

cases, � may be h̄j−1a or h̄ja. Furthermore, we have dis-
cussed the properties of the P�WFs thoroughly, but similar
ideas apply to P
WFs. In such a case the off-diagonal ele-
ment M21�Ej,k ,x0� plays a central role.

VII. THE INVERSION SYMMETRY

Our theory applies to 1D crystals with or without inver-
sion symmetry. Since the former case has been successfully
approached in the literature,1,3 it is important to consider it in
some detail.

If both m*�x� and V�x� are symmetric about the point x
=xs, i.e., m*�xs−x�=m*�xs+x� and V�xs−x�=V�xs+x�, then
the crystal has inversion symmetry at this point. Due to this
symmetry, the Bloch functions produced in the first stage
have the property6

� j,−k�xs − x� = exp�i� j�k��� j,k�xs + x� , �92�

where � j�k� is real and satisfies � j�k+2� /a�−� j�k�=2� j�
and � j�−k�+� j�k�=2� j�, with � j and � j being integer num-
bers. Then, using Eqs. �13� and �12�, we obtain

Xj�k� = xs +
1

2
� j��k� �93�

and xj =xs+� ja /2, respectively. It should be noted that, in
this case, the center xj of wj�x� is a point of inversion sym-
metry of the crystal.

Now, to obtain the MLWF, we perform the second stage.
The phase shift leading to WFs of minimum variance is
given by Eq. �20� as

� j
ML�k� = tj� + rjak +

� j�k� − � j� − � jak

2
. �94�

Hence, in agreement with Eq. �92�, we find

�̃ j,−k
ML �x0 − x� = �− 1��j�̃ j,k

ML�x0 + x� , �95�

where x0=xj −rja is the center of w̃j
ML�x�. The 1D crystal has

inversion symmetry about this point. In addition, according
to Eqs. �9� and �95�,

w̃j
ML�x0 − x� = �− 1��jw̃j

ML�x0 + x� , �96�

i.e., the MLWF is real and symmetric or antisymmetric about
the point x0, for even and odd values of � j, respectively.
Therefore, the MLWF should be the Wannier-Kohn func-
tion.1–3,6

It is interesting to note that in 1D crystals with inversion
symmetry the MLWF may be chosen as3 either a P�WF or a
P
WF �see Sec. IV�. Thus we may wonder whether the same

applies when the 1D crystal lacks inversion symmetry. If the
answer were positive, then we would obtain the MLWF by
appropriately choosing the initial position x0. Such a choice
would substitute the second stage. Additionally, this would
help to analytically predict the asymptotic behavior of the
MLWF.

VIII. NUMERICAL RESULTS

To illustrate the present theory, we deal with conduction
electrons in periodic superlattices �SLs� grown along the
x-axis direction.3 We use the effective-mass approximation,
where the transversal motion is free and, for simplicity, we
set ky =kz=0. Therefore, the electronic states can be de-
scribed by the Hamiltonian in Eq. �29�.

We consider two superlattices, which are denoted by SL1
and SL2. The unit cell of SL1 is AB, where A and B are 30 Å
GaAs and 30 Å Ga0.9Al0.1As slabs, respectively. In this case,
the crystal has period 60 Å and presents inversion symmetry.
In turn, the unit cell of SL2 is ACB, with C being a 40 Å
Ga0.97Al0.03As layer. Therefore, SL2 lacks inversion symme-
try and has period 100 Å. In both cases, the position x=0 is
chosen at the left-hand interface of layer A. Moreover, in
terms of the Al concentration cl in the lth layer,3 we use the
effective mass m* /me=ml=0.067+0.083cl and the effective
potential Vl=748.2cl meV. The potential profiles for the
structures SL1 and SL2 are depicted in Fig. 6.

These layered systems are suitable to deal with different
values of the initial position x0. However, the general form of
the transfer matrices is quite cumbersome. Therefore, we
give the main principles only. On the one hand, using Eq.
�32� for arbitrary positions x1, x2, and x3, we have

T�E;x3,x1� = T�E;x3,x2�T�E;x2,x1� . �97�

On the other hand, when x1 and x2=x1+�x are in the lth
layer, we get

FIG. 6. �Color online� The potential profiles for the structures
�a� SL1 and �b� SL2.
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T�E;x2,x1� =� cos�ql�x�
ml

aql
sin�ql�x�

−
aql

ml
sin�ql�x� cos�ql�x� � , �98�

where ql=
2meml�E−Vl� /�2.
For each structure, the energy bands have been calculated

for a set of 400 equally spaced values of k in the first Bril-
louin zone. Moreover, following Eq. �4�, the Wannier func-
tions are obtained by numerical integration of the Bloch
functions. Further details on the numerical procedures will
be given elsewhere.

A. One-dimensional crystal with inversion symmetry

We first deal with the structure SL1, which presents in-
version symmetry, as clearly shown in Fig. 6�a�. The edges
of the first band are E1,0�35.46 meV and E1,�/a
�155.2 meV, respectively. In turn, the edges of the second
band are E2,�/a�213.8 meV and E2,0�626.6 meV, respec-
tively. Moreover, the first gap is the energy range E1,�/a


E
E2,�/a and E1��183.1 meV. Figure 7�a� displays Ē1 as
a function of the initial position x0, with 0
x0
a. Of

course, Ē1 is a periodic function of x0, with period a. It

should be noticed that Ē1oscillates between the edges of the
first gap. On the one hand, Ē1=E1,�/a when x0=45 Å. Hence,
we have M12�E1,k ,x0��0 for all real-k, provided x0� �45

+60n� Å for all integer values of n. On the other hand, Ē1

=E2,�/a when x0=15 Å.
Before the calculation of specific Wannier functions, let

us analyze the parameters of the P�WFs. Equations �12� and
�14� are used to obtain the dependence of the center and the
standard deviation of w1�x� on the initial position x0. The
results for the structure SL1 are displayed in Fig. 8�a�. The
center x1 follows a staircase law, with onsets at �45
+60n� Å, where n is an integer. In fact, the center increases
in a when we use the initial position x0+a instead of x0.
Moreover, due to the translational invariance, the standard
deviation �1 is periodic in x0, with period a=60 Å. The �1
tends to infinity as x0→ �45+60n� Å and attains its minimum
value 26.91 Å �as a function of x0� at x0= �15+60n� Å. In
fact, such initial positions produce the MLWF.1,3

We have chosen the initial positions x0=20 Å and x0
=40 Å to study the P�WFs. This choice is based on Fig.

8�a�. Namely, Ē1�209.3 meV�E1� for x0=20 Å and Ē1
�158.6 meV	E1� for x0=40 Å. Therefore, x0=20 Å and
x0=40 Å will illustrate the two kinds of asymptotic behavior
discussed in Sec. VI. Moreover, Fig. 8�a� shows that both
initial positions lead to P�WFs centered at x1=15 Å. Since
a=60 Å, we have −a /2	x1
a /2, in agreement with Sec.
VI D.

Wannier functions of the first band in the structure SL1
are displayed in Fig. 9. The P�WFs, which are obtained in
the first stage for x0=20 Å and x0=40 Å, are the �red�

FIG. 7. �Color online� The first root Ē1 of M12�E ,x0�=0, as a
function of the initial position x0 in the structures �a� SL1 and �b�
SL2. The shaded regions correspond to the first and the second
bands.

FIG. 8. �Color online� The center ��red� dashed line� and stan-
dard deviation ��blue� solid line� of the positive-� Wannier func-
tions of the first band, in terms of the initial position x0 in the
structures �a� SL1 and �b� SL2.
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dashed lines in Figs. 9�a� and 9�b�, respectively. Moreover,
the �blue� solid line represents the MLWF obtained in the
second stage. In agreement with Appendix C, the MLWF is
the same for the two values of x0. We observe that all these
Wannier functions are quite well localized around their com-
mon center x1=15 Å. In fact, the standard deviations of the
P�WFs with x0=20 Å and x0=40 Å, are �1�27.69 Å and
�1�70.83 Å, respectively. In turn, the standard deviation of
the MLWF is �̃1

ML�26.91 Å. It should be noted that the
maximally localized WF in this symmetric structure is a
P�WF.1,3 In fact, it is the P�WF for x0=15 Å, which is a
point of inversion symmetry of the 1D crystal.

The exponential localization of the Wannier functions is
apparent in Fig. 10, where the natural logarithm of the prob-
ability Pm is displayed as a function of the cell index m. In
fact, ln�Pm� varies almost linearly with m, for large values of
�m�. Here we remind the reader that Pm is defined by Eq. �89�
and gives the probability for an electron, in a Wannier state
of the first band, to be found with �m− 1

2
�a
x
 �m+ 1

2
�a. The

�red� diamonds show the results for the P�WFs with x0
=20 Å and x0=40 Å, respectively. Since the slopes are larger
for x0=20 Å than for x0=40 Å, the P�WF is more localized
in the former case. This is in agreement with Fig. 9. More-
over, the P�WF for x0=40 Å show some degree of aniso-
tropy. Namely, the decay to the right-hand side seems to be
faster than to the left-hand side. Furthermore, the �blue�
squares correspond to the MLWF. It nearly reproduces the
behavior of the P�WF for x0=20 Å.

For a quantitative analysis of the asymptotic behavior of
the Wannier functions, we display in Fig. 11 one-half of
ln�P±m / P±�m+1�� as a function of ln�1+1/m�. The �red� dia-

monds ��blue� squares� correspond to the − �+� sign, and
show the behavior of the WF to the left-hand �right-hand�
side. Clearly, the results are in agreement with Eq. �91�. Fig-
ure 11�a� shows the results for the P�WF with x0=20 Å.

Since Ē1�E1�, they correspond to Eqs. �79� and �81� in Sec.
VI. The coefficient of the exponential decay is given by Eq.
�63�, i.e., �=h1a�0.3129. Moreover, the slopes of the iso-
tropic power-law decay are �±=3/4.

More interestingly, the results for the P�WF with x0
=40 Å are shown in Fig. 11�b�. In this case we observe both
a reduction of the exponential coefficient10 and the aniso-
tropic power-law decay with exponents �+=3/2 �to the
right-hand side� and �−=1/2 �to the left-hand side�. Since

Ē1	E1� and M11�Ē1 ,x0��−0.8587, these results correspond
to Eqs. �84� and �85�, respectively. The reduced exponential

coefficient is given by Eq. �68�, i.e., �= h̄1a�0.1524.
The results for the MLWF are displayed in Fig. 11�c�.

Indeed, it is the P�WF for x0=15 Å, with Ē1�213.8 meV
�E1�. Therefore, it has the same asymptotic behavior as the
P�WF shown in Fig. 11�a�. This is the expected result for the
MLWF in a 1D crystal with inversion symmetry.5

B. One-dimensional crystal without inversion symmetry

Now we deal with the structure SL2, which lacks inver-
sion symmetry, as may be observed in Fig. 6�b�. The edges
of the first band are E1,0�28.81 meV and E1,�/a
�66.99 meV, respectively. In turn, the edges of the second
band are E2,�/a�101.1 meV and E2,0�231.2 meV, respec-

FIG. 9. �Color online� Wannier functions, in units of 1 /
a, of
the first band in the structure SL1. The initial position x0 is 20 Å
and 40 Å in �a� and �b�, respectively. The �red� dashed ��blue� solid�
line is the P�WF �MLWF�.

FIG. 10. �Color online� Probability Pm, for an electron in the
Wannier state of the first band of the structure SL1 to be found with
�m− 1

2
�a
x
 �m+ 1

2
�a, as a function of m. The initial position is

20 Å and 40 Å in �a� and �b�, respectively. The �red� diamonds
��blue� squares� are for the P�WF �MLWF�.
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tively. Moreover, the first gap is the energy range E1,�/a


E
E2,�/a and E1��82.68 meV. Figure 7�b� displays Ē1 as
a function of the initial position x0, with 0
x0
a. Again, Ē1
is a periodic function of x0, with period a. As in the symmet-
ric crystal, Ē1 oscillates between the edges of the first gap. It
touches the first band at E1,�/a when x0�79.52 Å. For other
initial positions the off-diagonal element M12�Ej,k ,x0� does

not vanish. Furthermore, Ē1=E2,�/a when x0�29.57 Å.
As for SL1, we first analyze the parameters xj and � j of

the P�WFs. The results for the structure SL2 are displayed in
Fig. 8�b�. The center x1 is piecewise constant and has the
discontinuity near 79.52 Å. Moreover � j tends to infinity as
x0→79.52 Å. The minimum �1, as a function of x0, is about
35.46 Å, and occurs near x0=29.57 Å.

In the structure SL2 we have chosen x0=40 Å and x0
=70 Å as initial positions to study the P�WFs. Such a choice

is based on Fig. 7�b�. On the one hand, Ē1�95.67 meV
�E1� for x0=40 Å. On the other hand, Ē1�69.43 meV
	E1� for x0=70 Å. Hence, these initial positions will illus-
trate the two kinds of asymptotic behavior discussed in Sec.
VI. Furthermore, Fig. 8�b� shows that both values of x0 lead
to P�WFs centered at x1�28.87 Å. Since a=100 Å, we
have −a /2	x1
a /2, in agreement with Sec. VI D.

Figure 12 displays Wannier functions of the first band in
the structure SL2. The P�WFs for x0=40 Å and x0=70 Å
are the �red� dashed lines in Figs. 12�a� and 12�b�, respec-
tively. In turn, the MLWF is the �blue� solid line. All these
Wannier functions are centered at x1�28.87 Å. Moreover,
the standard deviations of the P�WFs with x0=40 Å and
x0=70 Å, are �1�37.07 Å and �1�82.47 Å, respectively.
The standard deviation of the MLWF is �̃1

ML�35.46 Å. It is
worthy to notice that the maximally localized WF in this
nonsymmetric structure seems to be a P�WF. In fact, within
the limits of our numerical calculations, it is the P�WF for
the initial position x0�29.57 Å. Interestingly, this is the ini-

tial position where Ē1 takes its maximum value E2,�/a in Fig.
7�b�.

The exponential localization of the Wannier functions in
the structure SL2 is clearly seen in Fig. 13. There, the natural
logarithm of the probability Pm is displayed as a function of
the cell index m. Note that ln�Pm� varies almost linearly with
m, for large values of �m�. The �red� diamonds show the
results for the P�WFs with x0=40 Å and x0=70 Å, respec-
tively. In agreement with Fig. 12, the slopes for x0=40 Å are
larger, i.e., the corresponding P�WF is much more localized.
Moreover, regarding the P�WF with x0=70 Å in Fig. 13�b�,
the decay to the right-hand side seems to be faster than to the
left-hand side. The �blue� squares correspond to the MLWF.
It resembles the P�WF with x0=40 Å.

FIG. 11. �Color online� One-half of the natural logarithm of the
ratio between the probabilities for an electron, in the Wannier state
of the first band of the structure SL1, to be found in the ±mth and
±�m+1�th cells as a function of ln�1+1/m�. Panel �a� ��b�� corre-
sponds to the P�WF with x0=20 Å �x0=40 Å�. Panel �c� is for the
MLWF. The �blue� squares ��red� diamonds� are for the + �−� sign
and display the asymptotic behavior to the right-hand �left-hand�
side. The slopes of the dashed, solid, and dotted-dashed lines are
1/2, 3/4, and 3/2, respectively.

FIG. 12. �Color online� The same as Fig. 9, but for the structure
SL2. Moreover, x0 is 40 Å and 70 Å in �a� and �b�, respectively.

WANNIER FUNCTIONS OF ISOLATED BANDS IN ONE-… PHYSICAL REVIEW B 75, 115428 �2007�

115428-13



We now analyze the asymptotic behavior of the Wannier
functions quantitatively. Taking into account Eq. �91�, one-
half of ln�P±m / P±�m+1�� is shown as a function of ln�1
+1/m� in Fig. 14. Figure 14�a� shows the results for the

P�WF with x0=40 Å. Since Ē1�E1�, it corresponds to Eqs.
�79� and �81� in Sec. VI. Note that the power-law decay is
isotropic with �±=3/4. Moreover, the coefficient of the ex-
ponential decay is given by Eq. �63�, i.e., �=h1a�0.5020.

The results for the P�WF with x0=70 Å are shown in Fig.
14�b�. The exponential coefficient � is reduced,10 in com-
parison with Fig. 14�a�, and the power-law decay is aniso-

tropic. Since Ē1	E1� and M11�Ē1 ,x0��−0.7573, these re-
sults correspond to Eqs. �84� and �85�, respectively. The
reduced exponential coefficient is given by Eq. �68�, i.e., �

= h̄1a�0.2780, and the power-law exponents are �+=3/2 �to
the right-hand side� and �−=1/2 �to the left-hand side�.

Within our numerical precision, the MLWF of the first

band in SL2 is the P�WF for x0�29.57 Å. Since Ē1
�101.1 meV�E1�, it satisfies Eqs. �79� and �81�, in agree-
ment with Fig. 14�c�. We suspect this is a general property of
the MLWF of isolated bands in a noncentrosymmetric 1D
crystal.5

IX. CONCLUSIONS

We have dealt with Bloch and Wannier functions of iso-
lated bands in 1D crystals with or without inversion symme-
try. First, we obtained the phase shift one should perform on
the Bloch functions to obtain the maximally localized Wan-
nier functions. Such a shift was expressed in terms of the

antiderivative of the Berry connection. Then, we demon-
strated that the MLWF is, except for a meaningless constant
phase, a real function. This is why, when looking for the
MLWF, we may limit ourselves to deal with real WFs.

Before the phase optimization the BFs were obtained by
the transfer-matrix technique and the Bloch condition was
applied to an initial position x0. Following Kohn,1 the phase
of the Bloch states was fixed by imposing that either the
wave function or its position derivative should be positive
for all wave numbers. Therefore, two classes of WF were
obtained. They are denoted as either P�WF or P
WF. In the
second stage, the phase was shifted to obtain the MLWF.
Moreover, we proved that �i� the MLWF does not depend on
x0, and �ii� in a centrosymmetric crystal the MLWFs are
Wannier-Kohn functions.1–3

Furthermore, we have analyzed the asymptotic behavior
of the Wannier functions in symmetric and nonsymmetric
crystals. The maximally localized Wannier functions showed
isotropic exponential and power-law decays. This result has
been claimed before,5 without giving any details or proofs.
Nonoptimal Wannier functions showed reduced
exponential10 and anisotropic power-law decays. This is ex-
plained by the existence of additional branch points in the

FIG. 13. �Color online� The same as Fig. 10, but for the struc-
ture SL2. Moreover, x0 is 40 Å and 70 Å in �a� and �b�,
respectively.

FIG. 14. �Color online� The same as Fig. 11, but for the struc-
ture SL2. Moreover, x0 is 40 Å and 70 Å in �a� and �b�,
respectively.
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analytic continuation of the BFs to the complex wave num-
ber plane.

The theory was illustrated with numerical calculations of
Wannier functions for conduction electrons in semiconductor
superlattices. We already know that Wannier-Kohn func-
tions3 can be classified as P�WF or P
WF. Interestingly, in
the considered noncentrosymmetric structure, the MLWF is a
P�WF. Therefore, we wonder whether the MLWF can al-
ways be found in one of the two classes. This requires further
research. If the answer were positive, the second stage,
where the phase of the BFs is optimized, would be substi-
tuted by a suitable choice of the initial position. Moreover,
this would help to analytically predict the asymptotic behav-
ior of the MLWF. The extension of this formalism to gener-
alized Wannier functions of various bands in one dimension
as well as in higher dimensions is in progress.

ACKNOWLEDGMENTS

The authors are grateful to the Brazilian Agencies
FAPESP and CAPES, for financial support, and to Alexandro
Silveira Florêncio, who participated in the early stages of
this work.

APPENDIX A: DETERMINANT OF THE
TRANSFER MATRIX

The determinant of the transfer matrix T�E ;x ,x0� in Eq.
�33� is

W�E,x� = �1,E�x�
2,E�x� − �2,E�x�
1,E�x� . �A1�

Since 
E�x�=ame�E��x� /m*�x�, we note that W�E ,x� is
ame /m*�x� times the Wronskian of �1,E�x� and �2,E�x�.

On the one hand, we note that W�E ,x� does not depend on
x. In fact, differentiating in x on both sides of Eq. �A1�, we
obtain

�W

�x
�E,x� = �1,E�x�

�
2,E

�x
�x� − �2,E�x�

�
1,E

�x
�x� . �A2�

Moreover, for a given eigenvalue E of the Hamiltonian in
Eq. �29�, the eigenfunctions satisfy

−
�2

2mea

�
E

�x
�x� = �E − V�x���E�x� . �A3�

Hence, we easily get

�W

�x
�E,x� = 0. �A4�

On the other hand, due to Eq. �31�, we have W�E ,x0�=1.
Therefore, W�E ,x�=det�T�E ,x ,x0��=1 for all values of E
and x0. Furthermore, since M�E ,x0�=T�E ;x0+a ,x0�, we also
get

det�M�E,x0�� � 1. �A5�

APPENDIX B: NORMALIZATION OF BLOCH
FUNCTIONS

The Bloch function � j,k�x� satisfies the Schrödinger equa-
tion Ĥ� j,k�x�=E� j,k�x�. Here we allow k to take complex

values, but treat E as a real variable. This imposes restric-
tions on the values of k. If k=k1+ ik2, where k1 and k2 are
real numbers, Eq. �37� leads to

cos�k1a�cosh�k2a� − i sin�k1a�sinh�k2a� = ��Ej,k� .

�B1�

Here, since Ej,k is real, we have k2=0 or sin�k1a�=0. In the
first case k=k1 is real and we return to Eq. �37�, thus obtain-
ing the energy bands. Instead, in the second case k is com-
plex, corresponding to the energy gaps. Moreover, we obtain

cos�k1a� = sign���Ej,k�� �B2�

and

cosh�k2a� = ���Ej,k�� . �B3�

Regarding the derivative of ��E�, differentiation in k on
both sides of Eq. �37� leads to

���Ej,k�
dEj,k

dk
= − a sin�ka� . �B4�

Here, we note that sin�ka�=sin�k1a� is real in the energy
bands, but sin�ka�= i cos�k1a�sinh�k2a� in the energy gaps.

For purposes of convenience, we normalize the BFs ac-
cording to

Nj,k = �
x0

+

�x0 + a�+

�� j,k�x��2dx = 1. �B5�

Therefore, in the energy bands, they are normalized to unity
over any elementary unit cell. In what follows we use the
Schrödinger equation to obtain an analytic expression for
Nj,k.

In agreement with Eq. �A3� we have

−
�2

2mea

�
 j,k

�x
�x� = �Ej,k − V�x��� j,k�x� , �B6�

where 
 j,k�x�=ame� j,k� �x� /m*�x�. On the one hand, differen-
tiation in the variable k and multiplication by � j,k

* �x� on both
sides of Eq. �B6� lead to

−
�2

2mea
� j,k

* �x�
�2
 j,k

�k � x
�x� = �Ej,k − V�x��� j,k

* �x�
�� j,k

�k
�x�

+
dEj,k

dk
�� j,k�x��2. �B7�

On the other hand, performing complex conjugation and
multiplying by

�� j,k

�k �x� on both sides of Eq. �B6�, we get

−
�2

2mea

�
 j,k
*

�x
�x�

�� j,k

�k
�x� = �Ej,k − V�x��� j,k

* �x�
�� j,k

�k
�x� .

�B8�

Combining Eqs. �B7� and �B8� we obtain
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dEj,k

dk
�� j,k�x��2 =

�2

2mea
� �
 j,k

*

�x
�x�

�� j,k

�k
�x� − � j,k

* �x�
�2
 j,k

�k � x
�x��

=
�2

2mea

�

�x
�
 j,k

* �x�
�� j,k

�k
�x� − � j,k

* �x�
�
 j,k

�k
�x�� .

�B9�

Moreover, integration in x between x0
+ and �x0+a�+ on both

sides of this equation gives

dEj,k

dk
Nj,k =

�2

2mea
�
 j,k

* �x�
�� j,k

�k
�x� − � j,k

* �x�
�
 j,k

�k
�x��

x0
+

�x0 + a�+

.

�B10�

Therefore, according to Eqs. �B4� and �B5�, we obtain

���Ej,k��
 j,k
* �x�

�� j,k

�k
�x� − � j,k

* �x�
�
 j,k

�k
�x��

x0
+

�x0 + a�+

= −
2mea

2

�2 sin�ka� . �B11�

Now we take Eq. �1� into account. In the energy bands k
is real and we obtain

���Ej,k�Im�� j,k
* �x0�
 j,k�x0

+�� = −
mea

�2 sin�ka� . �B12�

Consequently, Eqs. �46� and �48� lead to

���Ej,k��� j,k�x0��2 = −
mea

�2 M12�Ej,k,x0� �B13�

and

���Ej,k��
 j,k�x0
+��2 =

mea

�2 M21�Ej,k,x0� , �B14�

respectively. Here we note that M21�Ej,k ,x0� has the sign of
���Ej,k� and M12�Ej,k ,x0�M21�Ej,k ,x0�
0 in the energy
bands.

In the energy gaps Eqs. �1� and �B11� lead to

���Ej,k�Im�� j,k
* �x0�

�
 j,k

�k
�x0

+�� = −
mea

2

2�2 ek2a cos�k1a� .

�B15�

APPENDIX C: UNIQUENESS OF THE MAXIMALLY
LOCALIZED WANNIER FUNCTION

Here we discuss whether the MLWF depends on the
choice of the initial position x0. To answer this question, we
consider the initial positions x0 and x0

0. Also, we denote the
corresponding BFs as � j,k�x� and � j,k

0 �x�, respectively. Of
course, these functions can only differ by a real phase shift
� j�k�, i.e., � j,k

0 �x�=exp�i� j�k��� j,k�x�. To fix ideas, we as-
sume that � j,k�x0��0 for every wave number k. Moreover,
we suppose that � j,k�x0

0� does not vanish for any k. Therefore,
we may choose � j�k�=−arg�� j,k�x0

0��. This leads � j,k
0 �x0

0�

= �� j,k�x0
0� � �0 for every k, just as if � j,k

0 �x� were produced
through the first stage for x0

0.
Now we note that � j�k� is determined up to an additive

constant, which is an integer multiple of 2�. However, it
should be a continuously differentiable function of k. In par-
ticular, it is straightforward to show that � j�k+2� /a�
−� j�k�=2Rj� and � j�−k�+� j�k�=2Tj�, with Rj and Tj be-
ing integer numbers. Then, the relation between � j,k�x� and
� j,k

0 �x� is a phase shift of the type we have considered in Sec.
II. In agreement with Eqs. �15� and �16�, the phase shift
� j�k� produces the changes Xj

0�k�=Xj�k�−� j��k� and xj
0=xj

−Rja.
Aiming the MLWF for the initial position x0

0, which is
denoted as w̃j

0,ML�x�, we use a phase shift � j
0�k� with the

properties � j
0�k+2� /a�−� j

0�k�=2rj
0� and � j

0�−k�+� j
0�k�

=2tj
0�, where rj

0 and tj
0 are integers. Since rj and rj

0 are the
integer parts of xj /a+1/2 and xj

0 /a+1/2, respectively, we
have rj

0=rj −Rj. Moreover, we take tj = tj
0=0 and apply

Eq.�20� to obtain the phase shift leading to the MLWF as

� j
0,ML�k� = rj

0ak + �
0

k

�Xj
0�k̄� − xj

0�dk̄ = � j
ML�k� − � j�k� .

�C1�

The corresponding BFs are

�̃ j,k
0,ML�x� = exp�i� j

0,ML�k��� j,k
0 �x� = exp�i� j

ML�k��� j,k�x�

= �̃ j,k
ML�x� . �C2�

Furthermore, following Eq. �22�, the MLWF is w̃j
0,ML�x�

= w̃j
ML�x�. This means that the MLWF produced in the second

stage does not depend on the initial position x0.

APPENDIX D: MORE ON THE ZEROS OF M12„E ,x0…

Let Ē be a root of M12�E ,x0�, and let ��Ē�=cos�k̄a�. In
this case, Eq. �34� leads to

�eik̄a − M11�Ē,x0���k̄�x0� = 0 �D1�

and

�eik̄a − M22�Ē,x0��
k̄�x0
+� = − M21�Ē,x0��k̄�x0� . �D2�

Moreover, according to Eq. �A5�, we have

M11�Ē ,x0�M22�Ē ,x0�=1.
If �k̄�x0��0 then Eq. �D1� leads to

FIG. 15. �Color online� The Hankel contour in the integral rep-
resentation of the gamma function.
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eik̄a = M11�Ē,x0� =
1

M22�Ē,x0�
. �D3�

In turn, when �k̄�x0�=0 we have 
k̄�x0��0. In fact, due to
Eq. �32�, �k̄�x0� and 
k̄�x0

+� cannot vanish simultaneously.
Therefore, following Eq. �D2�, we obtain

eik̄a = M22�Ē,x0� =
1

M11�Ē,x0�
. �D4�

APPENDIX E: INTEGRAL REPRESENTATION OF
THE GAMMA FUNCTION

To obtain the asymptotic behavior of the Wannier func-
tions in Sec. VI we have used the expression5,18

1

��z�
=

i

2�
�

C

e−t�− t�−zdt , �E1�

where C is the Hankel contour depicted in Fig. 15. Note that
the radius of the circle is an infinitesimal. This is an integral
representation of the gamma function ��z�.
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