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Dirac-like monopoles are studied in three-dimensional Abelian Maxwell and Maxwell-Chern-Simons mod-
els. Their scalar nature is highlighted and discussed through a dimensional reduction of four-dimensional
electrodynamics with electric and magnetic sources. Some general properties and similarities whether consid-
ered in Minkowski or Euclidean space are mentioned. However, by virtue of the structure of the space-time in
which they are studied, a number of differences among them occur. Furthermore, we pay attention to some
consequences of these objects when they act upon the usual particles. Among other subjects, special attention
is given to the study of a Lorentz-violating nonminimal coupling between neutral fermions and the field
generated by a monopole alone. In addition, an analogue of the Aharonov-Casher effect is discussed in this

framework.
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I. INTRODUCTION AND MOTIVATION distance scalewhile its mass is comparable to the magneto-

static potential energy of the core. An excellent review of
The idea that magnetic monopoles, as stable particles caihese subjects may be found in Rpf]. _ _
rying magnetic charges, ought to exist has proved to be re- N tumn, the study of three-dimensional field theories has
markably durable. In 31 dimensions, a persuasive argu- attracted a great deal of interest for nearly two decfés.

: . : Even though such studies were initially motivated by the
ment was first put forward by Dirac in 19301}, who theoretical connection between such models and their four-

mvgked such ObJeCFS in order to provide a theoret!cal explaEjimensional analogues at high temperature, planar physics
nation of why electric charges appear only as multiples of a%njoys nowadays the status of an interesting and self-
elementary one. contained topic in itself. This position was achieved, in part,

Furthermore, 't Hooft[2] and Polyakov[3] discovered thanks to some peculiar features that occur in this space-
that the existence of magnetic monopoles follows from quiteime, such as the coexistence of massive vector gauge bosons
general ideas about the unification of the fundamental interand gauge invariance, and the possibility of having objects
actions. Nowadays, it is well known that such objects emergélisplaying charge and statistical fractionizatiahg]. On the
from genera| “grand unified” theories of partide physics other hand, the.interest in planar phySical models was also
whose gauge group is suitably broken down to tfi&)dac- re_;markably motivated .by condensed matter phenomena that
tor. Indeed, Dirac proved the consistency of structureles§iSPlay planar dynamics. Among these, we may quote the
magnetic monopoles with quantum electrodynamics. On th El;?g]tum Hall effect[9] and highT superconductivity
other hand, some properties of the 't Hooft—Polyakov mono-""~z"

| h Lo ) he di Of particular interest is also the study of topological ob-
pole, such as its size and mass, are determined by the digs(s in this framework. For example, topologically magnetic

tance scale of the spontaneous symmetry breakdown of Grtexlike solutions naturally appear attached to electric
grand unified theory. The magnetic chagef the monopole  charges whenever we are dealing with a Chern-Simons-like
is typically the “Dirac charge,"gp=1/2e, which is distrib-  electrodynamics [the so-called Maxwell-Chern-Simons
uted over a core with a radius of ordéry * (the unification  (MCS) model. In addition, it is well known that this com-
posite entity(electric charget magnetic vortexmay present
anyonic statistics because of the magnetic flux induced by

*Electronic address: everton@feg.unesp.br the vortex[8,11].

"Electronic address: hott@feg.unesp.br Another sort of topological entity shows up whenever the
*Electronic address: helayel@chbpf.br Bianchi identity is broken. These are generally characterized
$Electronic address: winder@stout.ufla.br by a potentialA,, that carries a singular structure. As is well
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known, such potentials first appeared in Dirac’'s paper orbehavior of the electriclike field generated by a pointlike
magnetic monopolegd]. Actually, while in 3+ 1 dimensions  “magnetic source”13,14.

the simplest solution appears as a pointlike magnetic mono- In order to trace back the scalar nature ¢2a 1)D mag-
pole, we shall see that in the ¢21)-dimensional case the netic current to its four-dimensional ancestor, we propose to
breaking of the Bianchi identity leads us to a wider class ofcarry out a plan dimensional reduction of t(&t+1)D Max-
solutions, not restricted to magnetic orfésis is the reason ell theory with electric {#) and magnetic K*) sources,
that we call them Dirac-like objects Egs. (1),(2) below, to the planar case. Hereafter, we shall

Indeed, some work has dealt with such issues in botRyork in Minkowski space-time, but no difficulty arises in
Euchdean[lZ,lﬂ and Mlnkowsklan[l4] three-dimensional Carrying out a similar p|an in the Euclidean case.

spaces. Here, it is worth mentioning that the mass parameter Wwe start off front
was shown to be quantized in the Abelian version of the

Maxwell-Chern-Simons model whenever Dirac-like mono- %F;’“;:j;, 1)
poles interact with the usual chargd<] (similar to the re- -
sult already known for theories whose gauge groups present &&]E,uvz K’ )

the nontrivial third homotopy groufB]). In addition, classi- S B

cal and quantum consequences of the monopole potentiglith Frv=grA?— g"A* andEr"= 1 etV F 15 .

acting upon a charged particle were recently analyed First of all, we reduce the potential and currents as in the
In this article we wish to go further into this subject and «gpjitting” below:

investigate some issues concerning the nature of such objects

in three dimensions, as well as some of their influences on A/;«_)(AM;A3ES)’ 3
the dynamics of particles. Thus, in Sec. Il we introduce a
dimensional reduction of(3+1)D electrodynamics with j,}_)(jﬂ.j35)\) ()

magnetic sources to21 dimensions. This presentation is
interesting for highlighting the scalar nature of these sources
in the planar case. Indeed, such a scheme yields two Abelian
“electrodynamics” which do not have any explicit interplay 1,

- . . en, we realize that thé3+1)-dimensional quantities are
between them. In addition, we point out the differences be- duced to(2+1)D For instanced® vield (24+1)D
tween these models, particularly in their magnetic sectors. reduce Ones. Forinstance,”™ yields a

! ! ! - ) w— (A0 Al A2 aIA3
Section 1l is devoted to the subject of the Dirac-like vector A#=(A"A"A%), and anexira scalar potentialA

monopole itself. There, we present a brief review of suchES' No't|ce, n addition, that ffom the point of view .Of a
objects introduced in Minkowskian and Euclidean spaces(.2+1)'d'mens'°nal frame the fielda” a.”dsé‘re' In prn-
Attention is given to the differences between them. We als§Ple; cqmpletely independefthe same is Va“d. for the cur-
present an analysis of the solutions admitted by the differenr-en_ts' S|m|larly,1/‘_ "%Qdk“ are tge(2+ 1)D electric and mag-
tial equation that shows up whenever the Bianchi identity id'€tiC currents, whilg"=x andk”= x represent the survivors
broken in 2+1 dimensions. of the third components of the electric and magnetic genuine

In Sec. IV, we deal with the interaction between a Dirac_four-currgrjts, respequvely. ) )
like monopole and the usual particle. More precisely, our, In addition, adopting the reduptlon an§atz that Fhe quanti-
attention is focused on a Lorentz-violating nonminimal term,t'eslc d_o nothdepfend on the third spatl_all coordinate, shay,
which couples monopole field strength to neutral matter. Al-93(f) =0, wheref represents any potential or current, the
though violating Lorentz, it is shown to be invariant underf'eld st.rengths take the following forms after the dimensional
CPT symmetry. In addition, the equations of motion are€duction:
similar to those we have for the case of a charged particle

K — (K4 K3= x). (5)

A;/ V. 3

minimally interacting with the vector potential produced by a FA7—(F7F=GF), ©®
magnetic vortex. Indeed, by virtue of this similarity, this in- O

teraction leads us to an Aharonov-Casher-like effect on the FH'— (FE'=GHFR=FF), ()
usual particle, produced by the tangential electric field of the . .

monogole P y 9 where the new field strengths are defined Fs'=d*A”

Finally, our paper is closed by pointing out our conclu- —"A¥, F#=3€*"F,, ., G=d"S, andG""= e""*G,. .

sions and prospects for future investigation. Notice also that the usual planar electric and magnetic

fields are contained in the former field, sdy*=(—B;
—€VED). In turn, the fieldsG*= 9“S and G**= e***G, in-
dicate the appearance of another “electrodynamic” model, as
shown below.

Here, we intend to give an alternative view of the scalar
nature of Dirac-like monopoles in 21 dimensions. The
proper study of the breaking of the Bianchi identity in planar 1our conventions reag,», etc. =0,1,2,3, diag;;=(+,—,—,
Abelian Maxwell and Maxwell-Chern-Simons frameworks —), and €"%=—¢,,.=+1. In addition, u,», etc=0,1,2,
will be the goal of the next section, where we shall paydiagn,,=(+,—,~), ande”?= ey;,= +1; while the planar spatial
attention, among other things, to the tangentaimuthal indices are labeled dsj=1,2 ande'?=e;,= +1.

II. THE ORIGIN OF THE SCALAR NATURE OF PLANAR
DIRAC-LIKE OBJECTS
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Now, taking into account relation&)—(7), expressions case. In addition, it is worth noticing that thecharge is a

(1),(2) lead us to the two following sets of equations: pseudoscalar; it changes its signal under pasty; x©=
_ —x, Which is consistent with the equations of motion and
d,Fr'=j” and 4,Ft=y, with the fact that it appears, after dimensional reduction, as a
reminder of the magnetic four-current, which is a pseudovec-
J,G*=N and aﬂé“”zk”, tor. Similar behavior also occurs for all other currents and
fields above. It would also be interesting to understand now,
from which we may still write down if it is possible to accomplish such a program, how tBe

+1)-dimensional Dirac quantization condition may induce

eldB=gE+]j, an analogue in thg charge.
R So our claim is that, once we start with a 4D Maxwell
V-E=|=p, (8)  theory enriched by the presence of magnetic monopoles, and
o if some physical system is considered such that nonplanar
aB+eld'E'=Y, effects are negligible in comparison with planar effects, the
i i L system may reveal particles thz_it interact via two quantum
eldb=eloe +K, numbers and one of them may induce an electric field with
G azimuthal configuratiorisee Sec. Il for detai)s
élgel=k’=p,, 9)
- Ill. ANALYZING THE BREAKING OF THE
db—V-e=N\,

BIANCHI IDENTITY

where the fields above are defined as Dirac-like objects come about through breaking the Bian-
chi identity, as we have already mentioned. InHB) dimen-
sions, when we consider Maxwell electrodynamics with

e€=—ds and b=4S. migﬂrleticﬂsources, we have the equatimf“”zj” and
9, F#"=Kk”. There, the magnetic Gauss |&wB = x°, when-

Therefore, we realize that after dimensional reduction isever taken for a pointlike sourge?=gs%(x), leads us to the
implemented we get two independent electrodynamic "keconcept of a genuine magnetic monopole singe

models in 2+1 dimensions, each of them with its proper M ER | ith the electric field produced b
electricandmagneticsources. Indeed, the appearance of two— 9X/47|X|”, in analogy with the electric field produced by

noncoupled Abelian factors is nothing but a natural conse” isolated pointlike eIectri(_: charge. CIearIy,.this similarity.
guence of the reduction scheme. For instance, the latter faeeurs because of the duality between electric and magnetic

equivalent to selecting the zero-mode sector of a more gerfectors, i.e.E and B are rank-1 tensorsénotice that this
eral dimensional reduction proposal, namely, the Kaluzahappens only in four dimensions

Klein ansatz that relies on the compactness of the third spa- On the other hand, when considered ift 2 dimensions,
tial coordinate []_5] Thus, the natural S@) symmetry the broken version of the Bianchi Identlty ylelds

associated with such a component is kep{dr-1)D, since _ o

the scalar fieldS is clearly invariant under rotations in the *MF, =B+ e dE'=x. (10
plane. We should also notice that the number of on-shell

degrees of freedom is conserved in the reduction scheméiere, there is no Gauss law for the magnetic field, which
The two physical components - lie, after dimensional implies, in Furn, that' magqetlc monopoles like those we en-
reduction, inA* and inS each of them carrying a unique countered |n_f<_)ur dl_men5|ons are no Ionge_r present. Th'.“'s’
degree of freedom. although arising like genuine magnetic sources in

Furthermore, it is important to stress here that the break(3Jr 1)-dimensional'e_Iectromagr]etism, the present objects
ing down of the Bianchi identity if2+1)D and what we are expected to exhibit several differences when compared to

interpret as its associated magnetic source in the plandP® first ones.

world is the(2+1)D manifestation of the third component of . Furtherm_ore, 'T‘.dea'!“g with the massless case the bfeak'
the genuine magnetic four-currénhis is how we under- N9 of the Bianchi identity causes no effect on the equations

stand the argument by Henneaux and Teitelbpir®] that of motion, i.e., electric current is automatically conserved,
this charge rather behaves like arstantonin the planar

E'=—9dA%—9A" and B=¢€ldAl,

3,0, F17=9,j"=0. (12)

Nevertheless, when the Chern-Simons tefgy= mA,F* is
Faken into account, things change greatly. Now, the equations
ﬁ)f motion acquire an extréopologica) current term,

2For this, notice that we are considering, as is usually done, the s
of equationg8) as being thé¢2+1)-dimensional counterpart of the
standard electrodynamics in four dimensions. The other Abelial
sector, Eq(9), that comes from the scalar potent&ik then merely . ~
considered as being the partner of planar electromagnetism after the ﬁMF’”= j*+mF?, (12
reduction procedure, even though the @tis the one that keeps . o o o
the “genuine” (2+1)D reminiscent of the magnetic four-current. ~ which yieldsV-E=p+mB ande' ¢'B=¢,E'+j'+ me'E".
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Now, contrary to the massless case, if Dirac-like objectshall use a subscripg in order to distinguish these fields
are introduced,&“T:,fX, then current is no longer con- from the usual electric and magnetic ones and from their

served, i.e.,

3,0, F*'=my, (13

Euclidean counterpaits

dBy+ el JEL=x, (22)

and gauge symmetry is lost. Thus, in order to restore sucWhose pointlike solutions may be obtained by considering
Symmetry we should suppose that the appearance of Diraé.pec|al sSituations. FII’St, C0n5|der|ng te&tic limit of the

like entities naturally induces an extra electric current
ju=—mF", (14)
so that Eq.(12) is modified to
9,Frr=J"+ mF”, (15)
and it is now identically conserved,
d,0,F*'=a,3"+ma,F’=0, (16)

whereJ”=]"+ ], is the total(usuak-topologically inducedl
electric currentfor further details, see Reff12,13).

fieldsin the equation above, we obtain
€19 EL=g8(x), (22)

which, when written in terms of the potentiﬁbz -Vo
has the following form:

g»

[9x,0y]® = —g4(X), (23)

whose solution reads[with r=|r|=\x?+y? and 6
=arctang/x), as usudl

-_9
=—5_6. (24)

Py(x)=— ziarctaréz

o

On the other hand, in the three-dimensional Euclidean

space, we have that
J9,Fr=aFo+aF =x. (17)

Now, writing F#=—g*¢ and takingy as being a pointy
=g8%(x), we getd’p=—gs3(x), whose solution reads

G(x)=—gl4m|x|, (18)

where|x| = 72+ X2.
The fields, in turn, are given byF#=—g"¢
=gx*/4m|x|3, or [let us recall thaF“=(—B;— €E/)]:

0

__9x __ 9 &%
B= 477|)2|3 and E;= yp |>Z|3' (19

Notice the remarkable feature of this potential: it has angular
rather than radial dependence. Notice also its singular struc-
ture: the angle function is not well defined at the origin, like
the stringlike structure presented by the vector potential as-
sociated with a genuine magnetic monopole ih B dimen-
sions. In addition, it is a multivalued function and the corre-
sponding electric fieldsee belowis not a conservative one,

a fact already indicated by E@22). Indeed, its associated
electric field reads

. Xj—yi e
=_9x-yi_g¢&

g : (25

_277 X2+y2_ﬁ r

as in Ref[14], which has arazimuthalrather than a radial-
like vector behavior. In addition, by demanding null radia-
tion at this static limit,fd;€;E;B dV=0, it readily follows
that in this cas®, must vanish. Therefore this static solution

which clearly shows us that genuine magnetic monopolesappears to be due to a peculiar topological electric charge,
whose only effect is the production of a magnetic field, suctrather than to a magnetic monopole.

as we realized in four dimensions, no longer occurs here.

Furthermore, if we compare it with the vector potential

The tangential character of the electric field above is parassociated with a magnetic vortesp§ being its magnetic
ticularly noticeabldlike its analogue in the Minkowski case, flux),
below), in contrast to what we expect from the usual electric

or even magnetic poles. When working in the MCS frame-
work, the induced electric current, EQ.4), is readily found

to be

. mg 7 d_i_mgxi -
pM__EW an JM__EWv (20)

. . Dy
A(X)= 5, (26)

we may identify a kind of “duality” between them. Actually,
the magnetic vortex may be obtained from a Dirac-like
monopole, Eq(25), by interchanging the vectos, andE,,
together withg and ®g (let us recall that in the case of the

which presents a radial-like dependence. Further detailgsual electric charge a similar identification requires the in-
about this subject, including investigation of non-Abelianterchanging oA, and the dual of).

versions of such entities, may be found in Rf3].

Before carrying on the analysis of other possible solu-

Now, let us return to Minkowski space-time and let ustions, let us pay attention to tHepologica) electric current

analyze the structure and solutions of EtQ) in detail. Re-
writing this equation in components we gétereafter, we

induced by the appearance of this monopole in the MCS
framework. From Eqs(14) and (25) it follows that
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_ G _mg X M9 e 34
pu=0 and jy=5— S (27) pnm=— ()0 (1), (34
which is radial, and implies that EG16) is satisfied. corresponds to the induced chargexat0, provided byjy .

Let us compare the solution above with that we have in
Euclidean space, E¢19). The monopolelike solution in Eu-
clidean space, Eq19), represents an object that produces a
tangential electric field and a “radial-like” magnetic field,

dBg= x. (28)  both of them proportional to fi¥|2. On the other hand, if we
consider one of its analogues in Minkowskian space-time,
Here, let us take the simplest time-dependent configuratiogolution (32), we realize that in this case the monopolelike
for the y charge,y=g46(t) 52(x), which is similar to the one solution gives us a magnetic field confined to a point in
we have taken in Euclidean space. This case is readily solvespace, a vortex, and a tangentially directed electric field

by taking which is proportional to 1X| and, in addition, occurs only at
- 5, = t=0. Therefore, we conclude that the dimension and struc-
By(x,1)=0g5%(x)0(1), (29 ture (topology, etd). of the space-time are decisive for the
solutions of the fields associated with Dirac-like objects.
Before closing this section, let us pay attention to the
issue concerning the introduction of such entities in electro-
%Iynamiclike models, namely, three-dimensional Abelian
gauge theories. First of all, notice that in the Bianchi identity
> 2 N @ @ breaking scenario, no space is reserved for the appearance of
Be(x,1)=(9/2)5°()[O(1) ~O ()], (30) a mass term, i.e., we could not provide a mass gap for the
which clearly represents a magnetic vortex with fiyg/2 ~ radiation associated with the monopolelike figfior the time
that changes its signal &0, or the destruction of a g/2 being, we are supposing different rad|_at|on for th(_e dynamical
flux vortex att=0 with the simultaneous creation of another @1d geometrical sectors of the equations of motion

The second situation is thadial-like electric field Now,
searching for solutions of Eq21) that present' ¢'E!'=0,
we are left with

which is clearly the magnetic field due to a vortexlike object
with flux equal to 2rg (created at=0).

We may also think about a configuration that reverses th
direction of the magnetic flux, say,

one with fluxg/2. Now, in' the case of .the pure ngwe(hwassles)smodgl_,
For such an object Eq(29), its topologically induced the bregklng of the_Blanchl |dent|t_y causes no a_lddltlonal
electric current, takes the form trouble in the dynamical sector; for instance, electric current
remains conserved. Therefore, in this case, nothing prevents
pm=mgd2(x)@(t) and jiMZO' (31)  us from taking into account that we have indeed a unique

(masslessradiation which mediates the interaction among
which represents a pointlike electric charge of strengttthe usual electric charggghe usual electric and magnetic
—mg created at=0. In addition, sincd andpy, above are fields), among Dirac-like objectsH, and By), and also
located atx=0, we conclude that in the MCS case the ap-among both kinds of particles. It is worth noticing that such
pearance of a composite vortex-electric charge may be altegn identification of apparently distinct sorts of interaction as
natively provided through the introduction of a vortexlike being manifestations of only one kind of radiation is possible
solution, such as Eq29), whenever the Bianchi identity is here because all the required potentials and fields are gapless.
broken. However, if we try to apply a similar identification in the

A more general solutiorassociated with Eq(21) is ob- MCS framework we meet serious trouble. Here, the usual
tained by taking a “mixture” of previous ones. Ley  radiation is naturally massive. For example, the electric field

=g§2(>?)6(t) and let us combine previous solutions, asbetween two static electric charges is proportional to

shown: Ko(m|x]) (with K, being the modified Bessel function of the
second kind at zeroth orderand so it is a short-range inter-
- g, - - g € action. In great contrast, the tangential electric field due to a
By(x,)=55(x)0O(1) and Ey=+— m‘s(t)- monopolelike solution carries no hint about mass; see Egs.

32) (19 and(25). Actually, as far as we have tried, no way was
found to identify both types of interaction as produced by the
As is clear, such expressions bring together the solutionsame radiation. This would require an action which has al-
associated with the vortexlike solution, createdaD, and ready enclosed the usual and monopolelike potentials as its
the Dirac-like monopole, only at=0. The electric field basic ingredients, and so, would answer whether one or two

above induces kinds of radiation are required.
_ X IV. NEUTRAL PARTICLES NONMINIMALLY COUPLED
im =4— ey (1), (33 TO MONOPOLE FIELD AND THE
|| AHARONOV-CASHER EFFECT
which takes electric charges away from the origintat0, In this section we shall consider a nonminimal coupling
while of a spinor field with the electric field generated by a “static
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monopole,” Eq.(25). First, however, we briefly review some Therefore, we have thm(;,t) = yO(x,t)e'?, whered is the
basic aspects of the usual nonminimal case, mainly thosgharonov-CashefAC) phase provided by the electric field
concerning the Aharonov-Casher effect. Indeed, it is a peCLE:q)‘leﬂ_baz (for further details, see Ref§17,19,21, and
liarity of 2+1 dimensions that even spinless particles may,o|ated references therain ' B
carry .anomalous magnetu; m.omentum, whenelver.they INtr- 1 our present case, the counterpart of the electric field
act with an electromagnetic field. The reason lies in the fact . - PO >0

bove reads like Eq(25), Eq=g (x]—yi)/27|x|*. Then,

that the momentum may be naturally supplemented by a dud" e - e _ )
field strength, say, F'g=—e"E’g=gx/27r|x|2 is already radial. In this case, a

similar loop as in the previous cas#,, vanishes:
d,—d,+ihF,, (35) _ hg ¥
0'=h %dliF'z—agdlie—z=0. (41
whereh measures the planar anomalous magnetic momen- 2m x|

tum of the mattefsee, for example, Refgl6,17], for further _ _
details. Thus our monopole does not induce an AC phase on a given

particle if they interact in the usual nonminimal way. In ad-
(~B;e;E;) produced by the usual pointlike electric Charge,dltlon, we should notice that the contrast between the cases

say,B=0 andE = qx/2m|x|2. Then, if we consider the inter- aboye comes from the fact_that., in the first one, ilzs..,
action of such a field with a given particimassm), we find ~ =aX/2m|x|?, the dual operation induced whenever taking
that the energy operator of the latter reads F'=—¢€""E! is exactly compensated by an extra term associ-
ated W|thd||:E|J dXJ .
1 _ 1 In view of this aspect, we shall consider here the
H=5, @i+ hFi)Zzﬁ(ai_H hejEj)®>.  (36)  (Lorentz-odd nonminimal terms like the one below
(coupled, for concreteness, to spinors

Now, let us take the electromagnetic fielﬁlf

In addition, if the “free” wave functions associated with the

" w_ . 0.y
particle satisfy Li=y(io,y*=M+iay y*F )¢, (42

whose equation of motion reads

1
i 2| 40— ~
1ot 5,V )¢ 0. (37) (13,7 —M+iayoyvE ) y=0. 43)

then the WKB approximation yields the new functions Before studying some properties of such a term, like its con-
nection with the AC effect, we shall give attention to its

behavior under special properties, say, gauge invariance,
] (39 charge conjugation(), parity (P), and time reversalT).

For this, let us takey’=0?, y'=ic¢*, and y’=ic¢” as the

representation of the Dirac matrices if-2 dimensions.
Thus we realize that the addition of the fidid to the usual First, analyzing the behavior @i’ under gauge transfor-
momentum is equivalent to introducirigt the WKB level a  mations, we may clearly realize its gauge invariance, since
nonintegrable phase to the former wave functions. Clearly, a

w(i,t)zl/;@)()?,t)ex;{—if dx, hF*

similar plan also holds in the case of the minimal coupling Sp=¢e,

d,—d,+ieA, (see Ref[17]), which is responsible for the

appearance of the celebrated Aharonov-Bot#B) effect Sy=— ey,

[18] and in 2+ 1 dimensions magnetic flux-carrying particles

lead to fractional statisticis3]. SE,=eyly, (44)
The interesting point to be noticed here is that, if we

consider that the particle performs a spatial loop, #ay 5Ey:25727,,

around the chargg, then
6B=e€n,

~. .. h Lox
6=h fﬁ dliF'=h § d'iE"EJZZ—q fﬁ dlie’ —. (39  wheree is a global gauge parameter ands a local auxil-
m 1 iary field which helps in the gauge invariance.
On the other hand, using the identity*y”"= n*”
Now, since dlj=¢; dx; (dx is radia) and V-x/|x|?  —ie*" y,, we may write
=2mw82(x), we finally obtain

iayy?y*F y=—iaByy+ayy Ey. (45)
f= E dsv. ; =ha. (400  Now, let us see how the terms above behave u@ét and
2m]s |x|? T operations. Let us start off from
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_ ¢ — 5E= e%

iaByy— —iaByy, (46)

o= —¢€y,

—_— P —_—

iaByy— —iaByi, (47) SE,= ey’ b, (54)
v 5= e,

iaByy— +iaByi, (48) where ¢ is a local auxiliary field analog to the field de-
_ . _ . scribed above.

then, although breaking and P, this term keepd invari- Now, taking the field generated by a pointlike monopole,

ance and s& PT symmetry is preserved. In addition, let us
notice that this term provides an exflimaginary mass for
the fermions whenB+#0 (while its usual counterpart,

Ei=(Eg)i=geijxj/27r|>Z|2, and working in the WKB ap-
proximation, we have that

fBEyol,b, couples to the electric charge S 0) . i
On the other hand, the spatial components behave as fol- P, D=y (x,)exp —ia | dliEy), (59
lows:
with ¢(©) satisfying Eq.(53) when E is vanishing. Now,
I supposing that the fermion performs a loeg,, around the
ayy-Eg— +ayy-Ey, (499  monopole,
.oa .
N ag=a 3@ dl; E;:—g 3@ & dx; €“Ef=ag,  (56)
ayy-Ey—+ayy-Ey, (50 2m

which clearly represents the AC phase on the fermion wave

— e T function produced by the monopole field,. We should

ayy-By—+ayy-Ei, (5D stress, onpce more, th)allt such a phgse comE;gs frémPk, and
_ _ T-invariant nonminimal coupling.

which tells us that the term above, coupling the current to the |, this way we have carried the duality symmetry found in

electric field, preserves all of these symmetries, @RITis  the previous section between the electric field produced by a

obviously kept. Here, it should be noted that its usual counstatic monopole and the vector potential of a magnetic vortex

terpart,fyy' € E' ¢, which couples the current density to the to the level of quantum mechanics.

dual electric field, isP and T odd (while it respectsCPT, Now, in order to study the behavior of the wave functions

since it isC even. Then, when Lorentz an@PT symmetries it is more convenient to work with the second-order differ-

are taken into account, we recognize profound differencesntial equation in polar coordinatesx<r cose and y

between the present and the usual nonminimal couplings=r sin¢), as follows:

Thus, our proposal may be viewed as a low-energy alterna-

tive to the standard term, particularly in those cases inwhich|1 ¢ [ ¢ 1(a9  \? 1 )

neitherP nor T operation is broken. T o7_r(rﬁ> b £+Ia) —aso, - 5(r)+ KT Y(r, ¢)
Hereafter we shall focus our attention on the field pro-

duced by the monopole, E(5), and its consequences con- =0, (57)

cerning the AC phase as well. Thus, we shall work with the

(Lorentz-violating Lagrangian below: wherea=ag/2m, k?=E?—M?, and we are using= + 1 for

“spin up” and s=—1 for “spin down” (the actual spin of
L=9(i0:/°—id7—M+iay’yE) e, (52)  the spinors iss/2).

This equation is well known from the Aharonov-Bohm
(AB) effect for relativistic particles. In fact, this is a sort of
Aharonov-Casher effect since we have a neutral particle in
R . the presence of an electric field, as we have discussed above.

(X)) =[yoy- (—iV+ak)+Myo]d(x). (53  Furthermore, the presence of spin leads todt® interac-
tion, which mimics the interaction of the spin of the particle
In addition, it is easy to show that the Lagrangi@®) is  with a magnetic vorteXZeeman effedf and may be inter-
invariant under gauge transformations, i.e., preted as a contact interaction of the spin with the monopole
itself. Although this residual interaction term vanishes out-
side the location of the monopole, the influence of the mono-
3Then, in view of its imaginary nature, we should take it away Pole on the dynamics of the particles is still felt by the in-
from Eq. (42) in order to maintain the real character of this La- duction of a nontrivial phase, Eqs(55),(56), and,
grangian. This is done in what followsee Eq.(52) and related consequently, affects the phase shift of the scattered wave
discussioih function.

which leads to the following equations of motion:
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In the work of RefS[ZO—ZZ this prOblem is treated in the (the usual p|anar e|ectr0magnem$ml;|fﬂzx' presents a

context of the AB effect. The authors adopt different ap-pseudoscalar that is the survivor of the third component of
proaches to regularize the delta function potential, which inpe genuine magnetic four-current.

our case is equivalent to supposing that the raéius the
monopole is finite and is taken to zero at the end of the

calculations.

To quote the main results, we consider the upper compo§

nent of (r,¢) and expand it as

m= +o

Y= > fu(r)ems, (58)

wheref,(r) obeys the following equation:

1d d) (m+a)? a5 i o
var\'arl T T2 TR (r=R)+k*|fn(r)=0,
(59
with the boundary conditions
fm(R—e)=fn(R+e),
R(d/dr)f R e=af(R), (60)

which incorporate the effect of the delta function.
By writing the f ,(r) in terms of Bessel functions

AmJ|m+a\(kr)+ BmJ—\m+a|(kr)a
Codm(kr), <R

r>R
fm(r):

and using Eqs(60) to determine the coefficients of the

Furthermore, in analyzing the structure of the solutions of

9,F#=x, we have realized that it admits a wider class of
olutions than so far considered in the literature. Indeed, in
Minkowski space-time, we have seen that not only does the
azimuthal-like electric field show up, but also magnetic vor-
texlike solutions may appear as well.

In addition, when neutral matter interacts nonminimally
with Dirac-like monopoles in a particular way, say, via

iv*y'F;, then an analogue to the Aharonov-Casher effect is
exhibited by such particles. We have also found some subtle-
ties which have to be taken into account carefully because of
the effective delta function potential whose origin rests on
the “contact” interaction between the particle and the mono-
pole. This is still under study, as well as the consequences of
the allowed solutions on the angular momentum of the par-
ticle and perhaps on the quantization of the parameter
Before pointing out our prospects, we would like to ad-
dress once more the issue concerning the Bianchi identity in
2+1 dimensions. First of all, let us suppose it holds. Now,
let us consider a physical system in which magnetic vortices
are created, for instance, when the external magnetic field is
suitably increased in highz superconductor samples. More
precisely, let us imagine that one vortex is created=at;
and at the spatial origin. Then, the superconductor is supple-

mented byB;(x,t)=b;8%(X)®(t—t;). On the other hand,
sinceaﬂﬁ“:&tB—V/\Ezo thenB, above must induce a

Bessel functions, this renormalization method allows for thelangential-like electric fielde,=b,(e,/r)s(t—t4), in order

irregular functiond_,,, | to contribute if the relations
|m|+|m+a|=—as
and
|m|+ as+1>0

are simultaneously satisfi¢@0,21].
The same kind of problem was analyzed[#8-25 by

to prevent the breaking of the Bianchi identity. Hence, we
conclude that the azimuthal-like electric field may appear
even in standard planar electromagnetism, say, without

Dirac-like objects. Actually,E; above survived only at
=t, because we have supposed that the creation of the vor-
tex is also instantaneous. Now, if a finite time is needed for
creating such a vortex, then we expect that this electric field
will also occur during all this time.

As perspectives for future investigation, we may quote,

using the self-adjoint method and found to be equivalent tmMong others, the issue concerning the effect of the dimen-
the renormalization method if some relations between th@onal reduction on the so-called Dirac quantization condi-

self-adjoint parameter and the renormalized coupling contion in 3+1 dimensions and what would be its counterpart in
stant are satisfie[26]. the planar world (as far as we have understood, the
Henneaux-Teitelboim conditiofl12] does not answer for
such a point, since it seems to be valid only when the topo-
logical mass is nonvanishiing

In the present paper, attention was given to Dirac-like The relevance of the scalar fieRlappearing in Sec. Il is
monopoles in three-dimensional Abelian Maxwell andalso under investigation in the context of the so-cabiéat
Maxwell-Chern-Simons models. Initially, we gave an alter-tistical field Actually, by taking an Abelian Lagrangian
native view of the scalar nature of such objects in a planawhich contains the usual Maxwell and titeterm as well,
world. This was done by carrying out the dimensional reduc-gT:;L;Fw, in 3+1 dimensions, we have seen that, after a
tion of four-dimensional Maxwell theory, enriched by mag- suitable dimensional reduction scheme, we naturally gener-
netic sources, to three dimensions. There, we realized thgte in 2+ 1 dimensions a model that encloses the kinetic
appearance of two independent Abelian factors, one relate@rms forA, andS as well as another one that links both of
to the usualA* potential € andB fields), while the other is  these fields by means of a Chern-Simons-like term. Indeed,
implemented by a scalar potenti@l In addition, we have by identifyinga,=4,S, we clearly realize that such a sub-
also verified that the broken Bianchi identity of tA& sector  sequent model is actually that for tfieondynamical statis-

V. CONCLUSIONS AND PROSPECTS
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