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Dirac-like monopoles are studied in three-dimensional Abelian Maxwell and Maxwell-Chern-Simons mod-
els. Their scalar nature is highlighted and discussed through a dimensional reduction of four-dimensional
electrodynamics with electric and magnetic sources. Some general properties and similarities whether consid-
ered in Minkowski or Euclidean space are mentioned. However, by virtue of the structure of the space-time in
which they are studied, a number of differences among them occur. Furthermore, we pay attention to some
consequences of these objects when they act upon the usual particles. Among other subjects, special attention
is given to the study of a Lorentz-violating nonminimal coupling between neutral fermions and the field
generated by a monopole alone. In addition, an analogue of the Aharonov-Casher effect is discussed in this
framework.
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I. INTRODUCTION AND MOTIVATION

The idea that magnetic monopoles, as stable particles
rying magnetic charges, ought to exist has proved to be
markably durable. In 311 dimensions, a persuasive arg
ment was first put forward by Dirac in 1931@1#, who
invoked such objects in order to provide a theoretical exp
nation of why electric charges appear only as multiples of
elementary one.

Furthermore, ’t Hooft@2# and Polyakov@3# discovered
that the existence of magnetic monopoles follows from qu
general ideas about the unification of the fundamental in
actions. Nowadays, it is well known that such objects eme
from general ‘‘grand unified’’ theories of particle physic
whose gauge group is suitably broken down to the U~1! fac-
tor. Indeed, Dirac proved the consistency of structurel
magnetic monopoles with quantum electrodynamics. On
other hand, some properties of the ’t Hooft–Polyakov mo
pole, such as its size and mass, are determined by the
tance scale of the spontaneous symmetry breakdown
grand unified theory. The magnetic chargeg of the monopole
is typically the ‘‘Dirac charge,’’gD51/2e, which is distrib-
uted over a core with a radius of orderMX

21 ~the unification
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distance scale! while its mass is comparable to the magne
static potential energy of the core. An excellent review
these subjects may be found in Ref.@4#.

In turn, the study of three-dimensional field theories h
attracted a great deal of interest for nearly two decades@5,6#.
Even though such studies were initially motivated by t
theoretical connection between such models and their fo
dimensional analogues at high temperature, planar phy
enjoys nowadays the status of an interesting and s
contained topic in itself. This position was achieved, in pa
thanks to some peculiar features that occur in this spa
time, such as the coexistence of massive vector gauge bo
and gauge invariance, and the possibility of having obje
displaying charge and statistical fractionization@7,8#. On the
other hand, the interest in planar physical models was a
remarkably motivated by condensed matter phenomena
display planar dynamics. Among these, we may quote
quantum Hall effect @9# and high-Tc superconductivity
@8,10#.

Of particular interest is also the study of topological o
jects in this framework. For example, topologically magne
vortexlike solutions naturally appear attached to elec
charges whenever we are dealing with a Chern-Simons-
electrodynamics @the so-called Maxwell-Chern-Simon
~MCS! model#. In addition, it is well known that this com
posite entity~electric charge1 magnetic vortex! may present
anyonic statistics because of the magnetic flux induced
the vortex@8,11#.

Another sort of topological entity shows up whenever t
Bianchi identity is broken. These are generally characteri
by a potentialAm that carries a singular structure. As is we
©2002 The American Physical Society24-1
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known, such potentials first appeared in Dirac’s paper
magnetic monopoles@1#. Actually, while in 311 dimensions
the simplest solution appears as a pointlike magnetic mo
pole, we shall see that in the (211)-dimensional case th
breaking of the Bianchi identity leads us to a wider class
solutions, not restricted to magnetic ones~this is the reason
that we call them Dirac-like objects!.

Indeed, some work has dealt with such issues in b
Euclidean@12,13# and Minkowskian@14# three-dimensiona
spaces. Here, it is worth mentioning that the mass param
was shown to be quantized in the Abelian version of
Maxwell-Chern-Simons model whenever Dirac-like mon
poles interact with the usual charges@12# ~similar to the re-
sult already known for theories whose gauge groups pre
the nontrivial third homotopy group@6#!. In addition, classi-
cal and quantum consequences of the monopole pote
acting upon a charged particle were recently analyzed@14#.

In this article we wish to go further into this subject an
investigate some issues concerning the nature of such ob
in three dimensions, as well as some of their influences
the dynamics of particles. Thus, in Sec. II we introduce
dimensional reduction of~311!D electrodynamics with
magnetic sources to 211 dimensions. This presentation
interesting for highlighting the scalar nature of these sour
in the planar case. Indeed, such a scheme yields two Abe
‘‘electrodynamics’’ which do not have any explicit interpla
between them. In addition, we point out the differences
tween these models, particularly in their magnetic sector

Section III is devoted to the subject of the Dirac-lik
monopole itself. There, we present a brief review of su
objects introduced in Minkowskian and Euclidean spac
Attention is given to the differences between them. We a
present an analysis of the solutions admitted by the differ
tial equation that shows up whenever the Bianchi identity
broken in 211 dimensions.

In Sec. IV, we deal with the interaction between a Dira
like monopole and the usual particle. More precisely, o
attention is focused on a Lorentz-violating nonminimal ter
which couples monopole field strength to neutral matter.
though violating Lorentz, it is shown to be invariant und
CPT symmetry. In addition, the equations of motion a
similar to those we have for the case of a charged part
minimally interacting with the vector potential produced by
magnetic vortex. Indeed, by virtue of this similarity, this i
teraction leads us to an Aharonov-Casher-like effect on
usual particle, produced by the tangential electric field of
monopole.

Finally, our paper is closed by pointing out our concl
sions and prospects for future investigation.

II. THE ORIGIN OF THE SCALAR NATURE OF PLANAR
DIRAC-LIKE OBJECTS

Here, we intend to give an alternative view of the sca
nature of Dirac-like monopoles in 211 dimensions. The
proper study of the breaking of the Bianchi identity in plan
Abelian Maxwell and Maxwell-Chern-Simons framewor
will be the goal of the next section, where we shall p
attention, among other things, to the tangential~azimuthal!
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behavior of the electriclike field generated by a pointli
‘‘magnetic source’’@13,14#.

In order to trace back the scalar nature of a~211!D mag-
netic current to its four-dimensional ancestor, we propose
carry out a plan dimensional reduction of the~311!D Max-
well theory with electric (j m̂) and magnetic (km̂) sources,
Eqs. ~1!,~2! below, to the planar case. Hereafter, we sh
work in Minkowski space-time, but no difficulty arises i
carrying out a similar plan in the Euclidean case.

We start off from1

]m̂F m̂n̂5 j n̂, ~1!

]m̂F̃ m̂n̂5kn̂, ~2!

with F m̂n̂5]m̂An̂2]n̂Am̂ and F̃ m̂n̂5 1
2 em̂n̂k̂l̂F k̂l̂ .

First of all, we reduce the potential and currents as in
‘‘splitting’’ below:

Am̂→~Am;A3[S!, ~3!

j m̂→~ j m; j 3[l!, ~4!

km̂→~km;k3[x!. ~5!

Then, we realize that the~311!-dimensional quantities are
reduced to~211!D ones. For instance,Am̂ yields a~211!D
vector Am5(A0,A1,A2), and anextra scalar potentialA3

[S. Notice, in addition, that from the point of view of
~211!-dimensional frame the fieldsAm and S are, in prin-
ciple, completely independent~the same is valid for the cur
rents!. Similarly, j m andkm are the~211!D electric and mag-
netic currents, whilej 3[l andk3[x represent the survivors
of the third components of the electric and magnetic genu
four-currents, respectively.

In addition, adopting the reduction ansatz that the qua
ties do not depend on the third spatial coordinate, s
]3( f )50, where f represents any potential or current, th
field strengths take the following forms after the dimensio
reduction:

F m̂n̂→~Fmn;Fm3[Gm!, ~6!

F̃ m̂n̂→~ F̃mn[G̃mn;F̃m35F̃m!, ~7!

where the new field strengths are defined asFmn5]mAn

2]nAm, F̃m5 1
2 emnkFnk , Gm5]mS, andG̃mn5emnkGk .

Notice also that the usual planar electric and magn
fields are contained in the former field, say,F̃m5(2B;
2e i j Ej ). In turn, the fieldsGm5]mS andG̃mn5emnkGk in-
dicate the appearance of another ‘‘electrodynamic’’ model
shown below.

1Our conventions readm̂,n̂, etc. 50,1,2,3, diaghm̂n̂5(1,2,2,
2), and e012352e0123511. In addition, m,n, etc.50,1,2,
diaghmn5(1,2,2), ande0125e012511; while the planar spatia
indices are labeled asi , j 51,2 ande125e12511.
4-2
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DIRAC-LIKE MONOPOLES IN THREE DIMENSIONS . . . PHYSICAL REVIEW D 65 085024
Now, taking into account relations~4!–~7!, expressions
~1!,~2! lead us to the two following sets of equations:

]mFmn5 j n and ]mF̃m5x,

]mGm5l and ]mG̃mn5kn,

from which we may still write down

e i j ] iB5] tE
j1 j j ,

¹•EW 5 j 05r, ~8!

] tB1e i j ] iEj5x,

e i j ] ib5e i j ] te
i1kj ,

e i j ] iej5k05rm , ~9!

] tb2¹•eW5l,

where the fields above are defined as

Ei52] iA02] tA
i and B5e i j ] iAj ,

ei52] iS and b5] tS.

Therefore, we realize that after dimensional reduction
implemented we get two independent electrodynamic
models in 211 dimensions, each of them with its prop
electricandmagneticsources. Indeed, the appearance of t
noncoupled Abelian factors is nothing but a natural con
quence of the reduction scheme. For instance, the latte
equivalent to selecting the zero-mode sector of a more g
eral dimensional reduction proposal, namely, the Kalu
Klein ansatz that relies on the compactness of the third s
tial coordinate @15#. Thus, the natural SO~2! symmetry
associated with such a component is kept in~211!D, since
the scalar fieldS is clearly invariant under rotations in th
plane. We should also notice that the number of on-s
degrees of freedom is conserved in the reduction sche
The two physical components ofAm̂ lie, after dimensional
reduction, inAm and in S, each of them carrying a uniqu
degree of freedom.

Furthermore, it is important to stress here that the bre
ing down of the Bianchi identity in~211!D and what we
interpret as its associated magnetic source in the pla
world is the~211!D manifestation of the third component o
the genuine magnetic four-current.2 This is how we under-
stand the argument by Henneaux and Teitelboim@12# that
this charge rather behaves like aninstanton in the planar

2For this, notice that we are considering, as is usually done, the
of equations~8! as being the~211!-dimensional counterpart of th
standard electrodynamics in four dimensions. The other Abe
sector, Eq.~9!, that comes from the scalar potentialS is then merely
considered as being the partner of planar electromagnetism afte
reduction procedure, even though the set~9! is the one that keeps
the ‘‘genuine’’ ~211!D reminiscent of the magnetic four-current.
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case. In addition, it is worth noticing that thex charge is a
pseudoscalar; it changes its signal under parity,x→xP5
2x, which is consistent with the equations of motion a
with the fact that it appears, after dimensional reduction, a
reminder of the magnetic four-current, which is a pseudov
tor. Similar behavior also occurs for all other currents a
fields above. It would also be interesting to understand n
if it is possible to accomplish such a program, how the~3
11!-dimensional Dirac quantization condition may indu
an analogue in thex charge.

So our claim is that, once we start with a 4D Maxwe
theory enriched by the presence of magnetic monopoles,
if some physical system is considered such that nonpla
effects are negligible in comparison with planar effects,
system may reveal particles that interact via two quant
numbers and one of them may induce an electric field w
azimuthal configuration~see Sec. III for details!.

III. ANALYZING THE BREAKING OF THE
BIANCHI IDENTITY

Dirac-like objects come about through breaking the Bia
chi identity, as we have already mentioned. In (311) dimen-
sions, when we consider Maxwell electrodynamics w
magnetic sources, we have the equations]m̂F m̂n̂5 j n̂ and
]m̂F̃ m̂n̂5kn̂. There, the magnetic Gauss law¹•BW 5x0, when-
ever taken for a pointlike sourcex05gd3(xW ), leads us to the
concept of a genuine magnetic monopole sinceBW

5gxW /4puxW u3, in analogy with the electric field produced b
an isolated pointlike electric charge. Clearly, this similar
occurs because of the duality between electric and magn
sectors, i.e.,EW and BW are rank-1 tensors~notice that this
happens only in four dimensions!.

On the other hand, when considered in 211 dimensions,
the broken version of the Bianchi identity yields

]mF̃m5] tB1e i j ] iEj5x. ~10!

Here, there is no Gauss law for the magnetic field, wh
implies, in turn, that magnetic monopoles like those we
countered in four dimensions are no longer present. Th
although arising like genuine magnetic sources
(311)-dimensional electromagnetism, the present obje
are expected to exhibit several differences when compare
the first ones.

Furthermore, in dealing with the massless case the bre
ing of the Bianchi identity causes no effect on the equatio
of motion, i.e., electric current is automatically conserved

]n]mFmn5]n j n50. ~11!

Nevertheless, when the Chern-Simons termLCS5mAmF̃m is
taken into account, things change greatly. Now, the equat
of motion acquire an extra~topological! current term,

]mFmn5 j n1mF̃n, ~12!

which yields¹•EW 5r1mB ande i j ] iB5] tE
j1 j j1me i j Ei .

et

n

the
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Now, contrary to the massless case, if Dirac-like obje
are introduced,]mF̃m5x, then current is no longer con
served, i.e.,

]n]mFmn5mx, ~13!

and gauge symmetry is lost. Thus, in order to restore s
symmetry we should suppose that the appearance of D
like entities naturally induces an extra electric current

j M
n 52mF̃n, ~14!

so that Eq.~12! is modified to

]mFmn5Jn1mF̃n, ~15!

and it is now identically conserved,

]n]mFmn5]n Jn1m]nF̃n50, ~16!

whereJn5 j n1 j M
n is the total~usual1topologically induced!

electric current~for further details, see Refs.@12,13#!.
On the other hand, in the three-dimensional Euclide

space, we have that

]mF̃m5]tF̃
01] i F̃

i5x. ~17!

Now, writing F̃m52]mf and takingx as being a point,x
5gd3(xW ), we get]2f52gd3(xW ), whose solution reads

f~xW !52g/4puxW u, ~18!

whereuxW u5At21xi
2.

The fields, in turn, are given by F̃m52]mf

5gxm/4puxW u3, or @let us recall thatF̃m5(2B;2e i j Ej )#:

B52
g

4p

x0

uxW u3
and Ei52

g

4p

e i j xj

uxW u3
, ~19!

which clearly shows us that genuine magnetic monopo
whose only effect is the production of a magnetic field, su
as we realized in four dimensions, no longer occurs here

The tangential character of the electric field above is p
ticularly noticeable~like its analogue in the Minkowski case
below!, in contrast to what we expect from the usual elect
or even magnetic poles. When working in the MCS fram
work, the induced electric current, Eq.~14!, is readily found
to be

rM52
mg

4p

t

uxW u3
and j M

i 52
mg

4p

xi

uxW u3
, ~20!

which presents a radial-like dependence. Further de
about this subject, including investigation of non-Abeli
versions of such entities, may be found in Ref.@13#.

Now, let us return to Minkowski space-time and let
analyze the structure and solutions of Eq.~10! in detail. Re-
writing this equation in components we get~hereafter, we
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shall use a subscriptg in order to distinguish these field
from the usual electric and magnetic ones and from th
Euclidean counterparts!,

] tBg1e i j ] iEg
j 5x, ~21!

whose pointlike solutions may be obtained by consider
special situations. First, considering thestatic limit of the
fields in the equation above, we obtain

e i j ] iEg
j 5gd2~x!, ~22!

which, when written in terms of the potentialEW g52¹Fg ,
has the following form:

@]x ,]y#Fg52gd2~xW !, ~23!

whose solution reads@with r 5urWu5Ax21y2 and u
5arctan(y/x), as usual#

Fg~xW !52
g

2p
arctanS y

xD52
g

2p
u. ~24!

Notice the remarkable feature of this potential: it has angu
rather than radial dependence. Notice also its singular st
ture: the angle function is not well defined at the origin, li
the stringlike structure presented by the vector potential
sociated with a genuine magnetic monopole in 311 dimen-
sions. In addition, it is a multivalued function and the corr
sponding electric field~see below! is not a conservative one
a fact already indicated by Eq.~22!. Indeed, its associate
electric field reads

EW g5
g

2p

x ĵ2y î

x21y2
5

g

2p

êu

r
, ~25!

as in Ref.@14#, which has anazimuthalrather than a radial-
like vector behavior. In addition, by demanding null radi
tion at this static limit,*V] ie i j EjB dV50, it readily follows
that in this caseBg must vanish. Therefore this static solutio
appears to be due to a peculiar topological electric cha
rather than to a magnetic monopole.

Furthermore, if we compare it with the vector potent
associated with a magnetic vortex (FB being its magnetic
flux!,

AW v~xW !5
FB

2pr
êu , ~26!

we may identify a kind of ‘‘duality’’ between them. Actually
the magnetic vortex may be obtained from a Dirac-li
monopole, Eq.~25!, by interchanging the vectorsAW v andEW g ,
together withg andFB ~let us recall that in the case of th
usual electric charge a similar identification requires the
terchanging ofAW v and the dual ofEW ).

Before carrying on the analysis of other possible so
tions, let us pay attention to the~topological! electric current
induced by the appearance of this monopole in the M
framework. From Eqs.~14! and ~25! it follows that
4-4
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DIRAC-LIKE MONOPOLES IN THREE DIMENSIONS . . . PHYSICAL REVIEW D 65 085024
rM50 and j M
i 5

mg

2p

xi

uxW u2
, ~27!

which is radial, and implies that Eq.~16! is satisfied.
The second situation is theradial-like electric field. Now,

searching for solutions of Eq.~21! that presente i j ] iEj50,
we are left with

] tBg5x. ~28!

Here, let us take the simplest time-dependent configura
for thex charge,x5gd(t)d2(xW ), which is similar to the one
we have taken in Euclidean space. This case is readily so
by taking

Bg~xW ,t !5gd2~xW !Q~ t !, ~29!

which is clearly the magnetic field due to a vortexlike obje
with flux equal to 2pg ~created att50).

We may also think about a configuration that reverses
direction of the magnetic flux, say,

Bg~xW ,t !5~g/2!d2~xW !@Q~ t !2Q~2t !#, ~30!

which clearly represents a magnetic vortex with flux2g/2
that changes its signal att50, or the destruction of a2g/2
flux vortex att50 with the simultaneous creation of anoth
one with fluxg/2.

For such an object Eq.~29!, its topologically induced
electric current, takes the form

rM5mgd2~xW !Q~ t ! and j M
i 50, ~31!

which represents a pointlike electric charge of stren
2mg created att50. In addition, sinceB andrM above are
located atxW50, we conclude that in the MCS case the a
pearance of a composite vortex-electric charge may be a
natively provided through the introduction of a vortexlik
solution, such as Eq.~29!, whenever the Bianchi identity is
broken.

A more general solutionassociated with Eq.~21! is ob-
tained by taking a ‘‘mixture’’ of previous ones. Letx
5gd2(xW )d(t) and let us combine previous solutions,
shown:

Bg~xW ,t !5
g

2
d2~xW !Q~ t ! and EW g51

g

4p

êu

uxW u
d~ t !.

~32!

As is clear, such expressions bring together the soluti
associated with the vortexlike solution, created att50, and
the Dirac-like monopole, only att50. The electric field
above induces

jWM5
mg

4p

xW

uxW u2
d~ t !, ~33!

which takes electric charges away from the origin att50,
while
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rM5
mg

2
d2~xW !Q~ t !, ~34!

corresponds to the induced charge atxW50, provided byjWM .
Let us compare the solution above with that we have

Euclidean space, Eq.~19!. The monopolelike solution in Eu
clidean space, Eq.~19!, represents an object that produces
tangential electric field and a ‘‘radial-like’’ magnetic field
both of them proportional to 1/uxW u2. On the other hand, if we
consider one of its analogues in Minkowskian space-tim
solution ~32!, we realize that in this case the monopoleli
solution gives us a magnetic field confined to a point
space, a vortex, and a tangentially directed electric fi
which is proportional to 1/uxW u and, in addition, occurs only a
t50. Therefore, we conclude that the dimension and str
ture ~topology, etc.! of the space-time are decisive for th
solutions of the fields associated with Dirac-like objects.

Before closing this section, let us pay attention to t
issue concerning the introduction of such entities in elec
dynamiclike models, namely, three-dimensional Abeli
gauge theories. First of all, notice that in the Bianchi ident
breaking scenario, no space is reserved for the appearan
a mass term, i.e., we could not provide a mass gap for
radiation associated with the monopolelike field~for the time
being, we are supposing different radiation for the dynami
and geometrical sectors of the equations of motion!.

Now, in the case of the pure Maxwell~massless! model,
the breaking of the Bianchi identity causes no additio
trouble in the dynamical sector; for instance, electric curr
remains conserved. Therefore, in this case, nothing prev
us from taking into account that we have indeed a uniq
~massless! radiation which mediates the interaction amo
the usual electric charges~the usual electric and magnet
fields!, among Dirac-like objects (EW g and Bg), and also
among both kinds of particles. It is worth noticing that su
an identification of apparently distinct sorts of interaction
being manifestations of only one kind of radiation is possi
here because all the required potentials and fields are gap

However, if we try to apply a similar identification in th
MCS framework we meet serious trouble. Here, the us
radiation is naturally massive. For example, the electric fi
between two static electric charges is proportional
K0(muxW u) ~with K0 being the modified Bessel function of th
second kind at zeroth order!, and so it is a short-range inter
action. In great contrast, the tangential electric field due t
monopolelike solution carries no hint about mass; see E
~19! and~25!. Actually, as far as we have tried, no way wa
found to identify both types of interaction as produced by
same radiation. This would require an action which has
ready enclosed the usual and monopolelike potentials a
basic ingredients, and so, would answer whether one or
kinds of radiation are required.

IV. NEUTRAL PARTICLES NONMINIMALLY COUPLED
TO MONOPOLE FIELD AND THE

AHARONOV-CASHER EFFECT

In this section we shall consider a nonminimal coupli
of a spinor field with the electric field generated by a ‘‘sta
4-5
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monopole,’’ Eq.~25!. First, however, we briefly review som
basic aspects of the usual nonminimal case, mainly th
concerning the Aharonov-Casher effect. Indeed, it is a pe
liarity of 211 dimensions that even spinless particles m
carry anomalous magnetic momentum, whenever they in
act with an electromagnetic field. The reason lies in the f
that the momentum may be naturally supplemented by a
field strength, say,

]m→]m1 i hF̃m , ~35!

whereh measures the planar anomalous magnetic mom
tum of the matter~see, for example, Refs.@16,17#, for further
details!.

Now, let us take the electromagnetic fieldF̃m5
(2B;e i j Ej ) produced by the usual pointlike electric charg
say,B50 andEW 5qxW /2puxW u2. Then, if we consider the inter
action of such a field with a given particle~massm), we find
that the energy operator of the latter reads

H5
1

2m
~] i1 i hF̃ i !

25
1

2m
~] i1 i he i j Ej !

2. ~36!

In addition, if the ‘‘free’’ wave functions associated with th
particle satisfy

S i ]01
1

2m
¹2Dc (0)50, ~37!

then the WKB approximation yields the new functions

c~xW ,t !5c (0)~xW ,t !expF2 i E dxm hF̃mG . ~38!

Thus we realize that the addition of the fieldF̃m to the usual
momentum is equivalent to introducing~at the WKB level! a
nonintegrable phase to the former wave functions. Clearl
similar plan also holds in the case of the minimal coupli
]m→]m1 ieAm ~see Ref.@17#!, which is responsible for the
appearance of the celebrated Aharonov-Bohm~AB! effect
@18# and in 211 dimensions magnetic flux-carrying particle
lead to fractional statistics@8#.

The interesting point to be noticed here is that, if w
consider that the particle performs a spatial loop, sayu,
around the chargeq, then

u5h R dli F̃
i5h R dlie

i j Ej5
hq

2p R dlie
i j

xj

uxW u2
. ~39!

Now, since dli5e i j dxj (dxW is radial! and ¹•xW /uxW u2

52pd2(xW ), we finally obtain

u5
hq

2pES
dS ¹•

xW

uxW u2
5hq. ~40!
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Therefore, we have thatc(xW ,t)5c (0)(xW ,t)eiu, whereu is the
Aharonov-Casher~AC! phase provided by the electric fiel
EW 5qxW /2puxW u2 ~for further details, see Refs.@17,19,21#, and
related references therein!.

In our present case, the counterpart of the electric fi
above reads like Eq.~25!, EW g5g (x ĵ2y î )/2puxW u2. Then,
F̃g

i 52e i j Eg
j 5gxW /2puxW u2 is already radial. In this case,

similar loop as in the previous case,u8, vanishes:

u85h R dli F̃
i5

hg

2p R dli
xi

uxW u2
50. ~41!

Thus our monopole does not induce an AC phase on a g
particle if they interact in the usual nonminimal way. In a
dition, we should notice that the contrast between the ca
above comes from the fact that, in the first one, i.e.,EW

5qxW /2puxW u2, the dual operation induced whenever taki
F̃ i52e i j Ej is exactly compensated by an extra term asso
ated withdli5e i j dxj .

In view of this aspect, we shall consider here t
~Lorentz-odd! nonminimal terms like the one below
~coupled, for concreteness, to spinors!:

L85c̄~ i ]mgm2M1 iag0gmF̃m!c, ~42!

whose equation of motion reads

~ i ]mgm2M1 iag0gmF̃m!c50. ~43!

Before studying some properties of such a term, like its c
nection with the AC effect, we shall give attention to i
behavior under special properties, say, gauge invaria
charge conjugation (C), parity (P), and time reversal (T).
For this, let us takeg05sz, g15 isx, and g25 isy as the
representation of the Dirac matrices in 211 dimensions.

First, analyzing the behavior ofL8 under gauge transfor
mations, we may clearly realize its gauge invariance, sin

dc̄5ec̄,

dc52ec,

dEx5eg1h, ~44!

dEy52eg2h,

dB5eh,

wheree is a global gauge parameter andh is a local auxil-
iary field which helps in the gauge invariance.

On the other hand, using the identitygmgn5hmn

2 i emnkgk , we may write

iac̄g0gmF̃mc52 iaBc̄c1ac̄gW •EW c. ~45!

Now, let us see how the terms above behave underC, P, and
T operations. Let us start off from
4-6
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iaBc̄c→
C

2 iaBc̄c, ~46!

iaBc̄c→
P

2 iaBc̄c, ~47!

iaBc̄c→
T

1 iaBc̄c; ~48!

then, although breakingC and P, this term keepsT invari-
ance and soCPT symmetry is preserved. In addition, let u
notice that this term provides an extra~imaginary! mass for
the fermions whenBÞ0 ~while its usual counterpart
f Bc̄g0c, couples to the electric charge!.3

On the other hand, the spatial components behave as
lows:

ac̄gW •EW c→
C

1ac̄gW •EW c, ~49!

ac̄gW •EW c→
P

1ac̄gW •EW c, ~50!

ac̄gW •EW c→
T

1ac̄gW •EW c, ~51!

which tells us that the term above, coupling the current to
electric field, preserves all of these symmetries, andCPT is
obviously kept. Here, it should be noted that its usual co
terpart,f c̄g ie i j Ejc, which couples the current density to th
dual electric field, isP and T odd ~while it respectsCPT,
since it isC even!. Then, when Lorentz andCPTsymmetries
are taken into account, we recognize profound differen
between the present and the usual nonminimal couplin
Thus, our proposal may be viewed as a low-energy alte
tive to the standard term, particularly in those cases in wh
neitherP nor T operation is broken.

Hereafter we shall focus our attention on the field p
duced by the monopole, Eq.~25!, and its consequences co
cerning the AC phase as well. Thus, we shall work with
~Lorentz-violating! Lagrangian below:

L5c̄~ i ] tg
02 i ] ig

i2M1 iag0g i F̃ i !c, ~52!

which leads to the following equations of motion:

i ] tc~x!5@g0gW •~2 i¹W 1aEWg!1Mg0#c~x!. ~53!

In addition, it is easy to show that the Lagrangian~52! is
invariant under gauge transformations, i.e.,

3Then, in view of its imaginary nature, we should take it aw
from Eq. ~42! in order to maintain the real character of this L
grangian. This is done in what follows@see Eq.~52! and related
discussion#.
08502
ol-

e

-

s
s.
a-
h

-

e

dc̄5ec̄,

dc52ec,

dEx5eg2f, ~54!

dEy5eg1f,

wheref is a local auxiliary field analog to theh field de-
scribed above.

Now, taking the field generated by a pointlike monopo
Ei5(Eg) i5ge i j xj /2puxW u2, and working in the WKB ap-
proximation, we have that

c~xW ,t !5c (0)~xW ,t !expF2 iaE dli Eg
i G , ~55!

with c (0) satisfying Eq.~53! when EW g is vanishing. Now,
supposing that the fermion performs a loop,ag , around the
monopole,

ag5a R dli Eg
i 5

ag

2p R e i j dxj e ikEg
k5ag, ~56!

which clearly represents the AC phase on the fermion w
function produced by the monopole fieldEW g . We should
stress, once more, that such a phase comes from aC-, P-, and
T-invariant nonminimal coupling.

In this way we have carried the duality symmetry found
the previous section between the electric field produced b
static monopole and the vector potential of a magnetic vor
to the level of quantum mechanics.

Now, in order to study the behavior of the wave functio
it is more convenient to work with the second-order diffe
ential equation in polar coordinates (x5r cosw and y
5r sinw!, as follows:

F1

r

]

]r S r
]

]r D1
1

r 2 S ]

]w
1 ia D 2

2assz

1

r
d~r !1k2Gc~r ,f!

50, ~57!

wherea5ag/2p, k25E22M2, and we are usings511 for
‘‘spin up’’ and s521 for ‘‘spin down’’ ~the actual spin of
the spinors iss/2).

This equation is well known from the Aharonov-Boh
~AB! effect for relativistic particles. In fact, this is a sort o
Aharonov-Casher effect since we have a neutral particle
the presence of an electric field, as we have discussed ab
Furthermore, the presence of spin leads to thed(r ) interac-
tion, which mimics the interaction of the spin of the partic
with a magnetic vortex~Zeeman effect!, and may be inter-
preted as a contact interaction of the spin with the monop
itself. Although this residual interaction term vanishes o
side the location of the monopole, the influence of the mo
pole on the dynamics of the particles is still felt by the i
duction of a nontrivial phase, Eqs.~55!,~56!, and,
consequently, affects the phase shift of the scattered w
function.
4-7
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In the work of Refs.@20–22# this problem is treated in the
context of the AB effect. The authors adopt different a
proaches to regularize the delta function potential, which
our case is equivalent to supposing that the radiusR of the
monopole is finite and is taken to zero at the end of
calculations.

To quote the main results, we consider the upper com
nent ofc(r ,w) and expand it as

c15 (
2`

m51`

f m~r !eimw, ~58!

where f m(r ) obeys the following equation:

F1

r

d

dr S r
d

dr D2
~m1a!2

r 2
2

a

R
d~r 2R!1k2G f m~r !50,

~59!

with the boundary conditions

f m~R2«!5 f m~R1«!,

R~d/dr ! f muR2«
R1«5a f m~R!, ~60!

which incorporate the effect of the delta function.
By writing the f m(r ) in terms of Bessel functions

f m~r !5H AmJum1au~kr !1BmJ2um1au~kr !, r .R

CmJm~kr !, r ,R

and using Eqs.~60! to determine the coefficients of th
Bessel functions, this renormalization method allows for
irregular functionJ2um1au to contribute if the relations

umu1um1au52as

and

umu1as11.0

are simultaneously satisfied@20,21#.
The same kind of problem was analyzed in@23–25# by

using the self-adjoint method and found to be equivalen
the renormalization method if some relations between
self-adjoint parameter and the renormalized coupling c
stant are satisfied@26#.

V. CONCLUSIONS AND PROSPECTS

In the present paper, attention was given to Dirac-l
monopoles in three-dimensional Abelian Maxwell a
Maxwell-Chern-Simons models. Initially, we gave an alte
native view of the scalar nature of such objects in a pla
world. This was done by carrying out the dimensional red
tion of four-dimensional Maxwell theory, enriched by ma
netic sources, to three dimensions. There, we realized
appearance of two independent Abelian factors, one rel
to the usualAm potential (EW andBW fields!, while the other is
implemented by a scalar potentialS. In addition, we have
also verified that the broken Bianchi identity of theAm sector
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~the usual planar electromagnetism!, ]mF̃m5x, presents a
pseudoscalar that is the survivor of the third componen
the genuine magnetic four-current.

Furthermore, in analyzing the structure of the solutions

]mF̃m5x, we have realized that it admits a wider class
solutions than so far considered in the literature. Indeed
Minkowski space-time, we have seen that not only does
azimuthal-like electric field show up, but also magnetic v
texlike solutions may appear as well.

In addition, when neutral matter interacts nonminima
with Dirac-like monopoles in a particular way, say, v

ig0g i F̃ i , then an analogue to the Aharonov-Casher effec
exhibited by such particles. We have also found some sub
ties which have to be taken into account carefully becaus
the effective delta function potential whose origin rests
the ‘‘contact’’ interaction between the particle and the mon
pole. This is still under study, as well as the consequence
the allowed solutions on the angular momentum of the p
ticle and perhaps on the quantization of the parametera.

Before pointing out our prospects, we would like to a
dress once more the issue concerning the Bianchi identit
211 dimensions. First of all, let us suppose it holds. No
let us consider a physical system in which magnetic vorti
are created, for instance, when the external magnetic fie
suitably increased in high-Tc superconductor samples. Mor
precisely, let us imagine that one vortex is created att5t1
and at the spatial origin. Then, the superconductor is sup
mented byB1(xW ,t)5b1d2(xW )Q(t2t1). On the other hand
since]mF̃m5] tB2¹`EW 50 thenB1 above must induce a
tangential-like electric fieldEW 15b1(êu /r )d(t2t1), in order
to prevent the breaking of the Bianchi identity. Hence,
conclude that the azimuthal-like electric field may appe
even in standard planar electromagnetism, say, with
Dirac-like objects. Actually,EW 1 above survived only att
5t1 because we have supposed that the creation of the
tex is also instantaneous. Now, if a finite time is needed
creating such a vortex, then we expect that this electric fi
will also occur during all this time.

As perspectives for future investigation, we may quo
among others, the issue concerning the effect of the dim
sional reduction on the so-called Dirac quantization con
tion in 311 dimensions and what would be its counterpart
the planar world ~as far as we have understood, th
Henneaux-Teitelboim condition@12# does not answer for
such a point, since it seems to be valid only when the to
logical mass is nonvanishing!.

The relevance of the scalar fieldS appearing in Sec. II is
also under investigation in the context of the so-calledsta-
tistical field. Actually, by taking an Abelian Lagrangia
which contains the usual Maxwell and theu term as well,
uF̃ m̂n̂F m̂n̂, in 311 dimensions, we have seen that, after
suitable dimensional reduction scheme, we naturally ge
ate in 211 dimensions a model that encloses the kine
terms forAm andS as well as another one that links both
these fields by means of a Chern-Simons-like term. Inde
by identifying am5]mS, we clearly realize that such a sub
sequent model is actually that for the~nondynamical! statis-
4-8
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tical field am , into which this field enters in order to resto
parity symmetry. Further results will appear elsewhere@27#.

The discussion raised in the preceding paragraphs
also lead us to interesting results, in particular, for provid
a link between fundamental aspects of planar Abelian e
trodynamics and condensed matter phenomena, namely
up-to-date topic of high-Tc superconductivity. Still in this
line, the study of the interaction between the usual partic
and Dirac-like objects may be useful in connection to lo
energy problems.
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