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Vacuumless kink systems from vacuum systems: An example
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Some years ago, Cho and Vilenkin, introduced a model which presents topological solutions, despite
not having degenerate vacua as is usually expected. Here we present a new model with topological defects,
connecting degenerate vacua but which in a certain limit recovers precisely the one proposed originally by
Cho and Vilenkin. In other words, we found a kind of parent model for the so called vacuumless model.
Then the idea is extended to a model recently introduced by Bazeia et al. Finally, we trace some comments
the case of the Liouville model.
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Usually the topological objects like domain walls,
strings and monopoles appears when the models support
at least two degenerate vacua. Notwithstanding, there are
some models which defy this common sense, like the
Liouville model [1–3], the vacuumless (VL) model intro-
duced originally by Cho and Vilenkin [4–6] and, more
recently a model where the kink interpolates between two
inflection points instead vacua [7]. Here we are going to
concentrate our attention to the VL case, which was origi-
nally studied regarding gravitational aspects of the topo-
logical defect [4], and then regarding its topological
properties [5], and after that make a discussion in general
lines about how to implement a similar procedure in the
other two cited cases. The Lagrangian density of the model
we are going to introduce here is the usual one for a scalar
field,

L �
1

2
@�’@�’� V�’� (1)

where the potential is given by

V�’� �
1

2
�A cosh�’� � Bsech�’��2: (2)

Note that, if A � 0 and B � ��, we recover the usual
vacuumless potential [5]

V�’� �
�2

2
�sech�’��2: (3)

Let us use the BPS approach [8], in order to present the
solution of this and the new model we introduced above.
For this, one can write the potential in terms of the so called
superpotential, which is given by

V��� �
1

2
W2
�; (4)

from which the energy of the static configuration can be
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obtained as

EBPS �
1

2

Z 1
�1

dx
��
d�
dx
�W�

�
2
�W�

d�
dx

�
: (5)

Observing this equation, we note that the field configu-
ration which minimizes the energy will obeys the first-
order differential equation

d�
dx
� W����; (6)

and his energy is written as

EBPS � jW���1�� �W����1��j: (7)

Let us now apply this machinery to the above mentioned
models. In the case of the VL model, one can check that the
superpotential is given by [5]

W��� � �Btan�1�sinh����; (8)

and its slowly divergent kink looks like

��x� � sinh�1�Bx�: (9)

On the other hand, in the case of the model which we are
introducing here (2), the superpotential has the appearance

W��� � A sinh��� � Btan�1�sinh����; (10)

and the corresponding kink and antikink are expressed as

��x� � �sinh�1

� �����������������
�B� A�
A

s
tanh�

��������������������
A�B� A�

p
x�
�
; (11)

from which it can be verified that the expected limit (9)
when A! 0 is really achieved. It is possible to observe
too, from the Fig. 1, that when A! 0 the vacua of the
model becomes more and more far from each other, in such
a way that one can think the VL model [4], as a limit of this
model with usual degenerate vacua. Once in this case, the
limit of the field configuration at x! �1, are the vacua of
the model, we can assure that in these limits, the field given
-1 © 2005 The American Physical Society
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FIG. 2. The energy density dependence in x when B � 2 and
A � 0:5 (thin line) and the vaccumless case.
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FIG. 1. The potential as a function of the scalar field ’. A
typical profile for A significantly different of zero (thin line) and
when A is close to zero.
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in (11) goes to

���1� � �cosh�1

� ����
B
A

s �
: (12)

Note that, for consistency, the model will have two
minima provided that B> _A> 0, up to overall sign.
Otherwise the potential has only one minimum and the
solution of the Eq. (11) presents singularities at finite
points in the space, so rendering itself as a nonphysical
solution.

The BPS energy of this configuration will then be given
by

EBPS�A;B� � 2

��������
�������������
B� A
A

s
� Btan�1

� �������������
B� A
A

s ���������: (13)

Let us now analyze the limit of this energy when A! 0.
The first term vanishes obviously, and in the second we see
that the argument of the function diverges and, as we know,
the inverse function of the hyperbolic cosine diverges too,
but the hyperbolic tangent of infinity is simply one. As a
consequence we conclude that the limit of the above en-
ergy is simply given by

EBPS�0; B� � �B; (14)

which is in absolute accordance with the expected for the
VL model [5]. The energy density of the model we are
studying is

"�x� � �W’��kink�x���2

�
�A� B�2 sech�

�����������������������
A�B� A�x

p
�4

�1� �B=A� 1� tanh�
�����������������������
A�B� A�x

p
�2�
; (15)

and, as expected, have the correct limit when A! 0,
becoming itself equal to that of the VL model

"�x� �
B2

�1� B2x2�
; (16)

but for a fixed value of the parameter B, the VL model have
a bigger and less concentrated energy density, as can be
087701
seen in the Fig. 2. On the other hand, it is interesting to note
that one could introduce an alternative model through the
superpotential

W��� � A sinh��� � jBjtan�1�sinh���� � 2
����������
AjBj

p
�;

(17)

which, for B< 0 and A > 0, and jBj>A, generates a kind
of asymmetrical version of the model above introduced.

Now, we can discuss the linear stability of the model
here presented. In fact, as shown in [9] for the case of
coupled scalar fields, the linear stability of the model with
one scalar field can be done as usual by performing small
perturbations on the kink solution,

��x; t� � �kink�x� � ��x; t�: (18)

Taking into account only up to the first-order terms in the
perturbation, which leads to a Schroedinger-like equation
for the perturbation field�
�
d2

dx2 � V���� 	 �kink�x��
�
�n�x� � !2

n�n�x�; (19)

where ��x; t� 	
P
n�n�x� cos�!nt�. It is not difficult to see

that the above equation can be achieved from the following
ladder operators,

a� 	 �
d
dx
�W��; (20)

whose Hamiltonian operator Ĥ � a�a�, as shown in [10]
for general coupled real scalar fields, have their eigenval-
ues positive definite and, as a consequence, the models are
stable under small quantum fluctuations.

In our case, the potential to which the small fluctuations
feel, once again has the VL one as its limit, coming from
above as can be observed in Fig. 3.

The bosonic ground stated, which is granted by the
translational invariance in this case, in general can be
obtained through the solution of the equation,�

�
d
dx
�W��

�
 0�x� � 0; (21)
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FIG. 3. The potential of the Scroedinger-like stability equation
as a function of the spatial variable, both in the case of potential
with degenerate vacua (thin line, A � 0:9, B � 1) as in the
vacuumless case.
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where, as a simplified notation, from now on we define that
W�� 	 W���� 	 �kink�. Here we note that, one can re-
write the above equations as

d 0�x�
 0�x�

� W��dx; (22)

but we know from the BPS equation that dx � d�
W�

, in such

a way that a direct relation between the bosonic zero-mode
and the superpotential can be obtained,

 0�x� � N0W� � N0

����
A
p
�A� B��sech�

��������������������
A�B� A�

p
x��2���������������������������������������������������������������������

1� �B� A��tanh�
��������������������
A�B� A�

p
x��2

q ;

(23)

where N0 is the normalization constant, and his shape is
quite similar to that of the VL model. This allow us to show
that the normalization of the zero-mode is related to the
BPS energy throughZ

j 0�x�j2dx � N2
0

Z
W2
�dx � N2

0

Z
W�d�

� N2
0EBPS 	 1; (24)

and we get finally the normalized bosonic zero-mode

 0�x� �

�����������
1

EBPS

s
W�; (25)

apart from an arbitrary constant phase factor. Let us now
try to calculate the fermionic zero-mode. Using in this
case, as done by Bazeia in [5], the Yukawa coupling giving
by f��� �  , where it is chosen f��� � gW�� (g � 1, in
order to get a supersymmetric version of the model [11]),
we reach the following equation for Dirac fermions

i�1 d�

dx
� f���� � 0;� �

�
 �
 �

�
; (26)

and using the representation where i�1 ! �3 we obtain the
following equations for the spinor components,
087701
�
d �
dx
� f��� � � 0: (27)

The above equations can be expressed as

d �
 �

� 
f���dx � 
gW��
d�
W�

; (28)

which integration gives us finally the spinor

� �
�C�W�g�
C�W

g
�

�
; (29)

where C� are arbitrary integration constants. However,
supposing that the function W� is well-behaved, vanishing
when x! �1. The normalization of the above spinor,Z
j�j2dx �

Z
dx�jC�j

2W�2g
� � jC�j

2W2g
� � 	 1; (30)

will impose that one of the above arbitrary constants must
be chosen equal to zero. Otherwise, the spinor will be not
square integrable and, as a consequence, we are left with
two possible solutions, depending on the signal of g,

�� � C�W
�g
�

�
1
0

�
; g < 0; �� � C�W

g
�

�
0
1

�
; g > 0:

(31)

In fact, the normalizability of the spinor, implies into
further conditions over the constant g. Let us return to the
normalization integration, now simply given byZ
j��j

2dx � jC�j
2
Z
dxW�
2g�

� � jC�j
2
Z
W�
2g�1�
� d�:

(32)

Once again, we note that jgj � 1
2 or the integration may

diverge. At this point, however, some differences can
appear depending which model is being considered. In
order to be quite clear on this point, let us take for instance
the limiting case g � � 1

2 , where we have

jC�j2
Z
W�
2g�1�
� d� � jC�j2

Z
d�

� jC�j2����1� ���1��: (33)

It is evident that in models like the VL, the zero-mode
fermion can not be normalizable, due to the divergence of
the kink profile [5]. However, for any usual topological
model with different finite vacua, this case is absolutely
admissible. So, the model we have proposed in this work,
can have its fermionic zero-mode well defined for any
value of the parameter A different of zero, when it becomes
equivalent to the VL model. So, we can think this model as
a kind of regularizing potential, where one can make the
vacua arbitrarily far from each other, without losing the
finiteness characteristic of the usual BPS kinks. In fact, in
the VL limit, the normalization constant tends to zero and
the zero-mode wave function vanishes. Only in the VL
limit the g � �1=2 must be avoided.
-3



-2 -1 1 2

-0.1

-0.05

0.05

0.1

FIG. 4. The potential as a function of the scalar field ’. A
typical profile for A significantly different of zero and for the
BLM model (thin line).
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Now, considering the cases where a supersymmetric
extension of the model is allowed [11], g � �1. The
normalization of the fermionic zero-mode, becomes quite
similar to that of its bosonic counterpart,

C� �

�����������
1

EBPS

s
: (34)

Let us now briefly discuss the extension of this idea to
other unusual kink models. For instance we take as our next
example, the model introduced recently by Bazeia, Losano
and Malbouisson (BLM) [7]. This model is unbounded
from below and presents no vacua, just a maximum at
the origin. Notwithstanding, it has a kink (and antikink)
connecting their two inflection points. Concretely, his po-
tential is given by

VBLM��� �
1

2
�1��2�3: (35)

Following the idea above introduced, we now propose an
alternative model which presents two local minima. In fact
it is not yet a standard one, once it is also unbounded from
bellow. For this case the ‘‘parent’’ model is defined as

VP��� �
1

2
�1��2��A� 1��2�2: (36)
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Both potentials are plotted in Fig. 4. Once again, when one
takes the limit A! 0, the BLM model is recovered. Again
there is no problem in consider g � � 1

2 , when calculating
the fermionic zero mode. The kink solution of the parent
model in this case is given by

��x� � � tanh
�
sinh�1

� ����������������
�1� A�
A

s
tanh�

�������������������
A�1� A�

p
x�
��
:

(37)

In fact this is nothing but the deformation of the first model
proposed here, precisely in the same way in which the
BLM model can be viewed as a deformation of the VL
model [7].

Finally, let us make a brief comment about the case of
the Liouville model, where

V��� �
�
m
�

�
2
e��; (38)

which evidently does not presents any vacuum. It is pos-
sible to create a model composing a series of exponential
factors, in such a way that we could have a parent model
also here. However, at least this simple extension is not
exactly solvable. In this case only a numerical solution is
available in principle, and we are not going to consider it.

Our last comment in this work, is that we think that it is
possible to find orthodox parent kink models for those
which unorthodox features, like the VL, BLM and
Liouville models. At least when it is possible, as shown
in the case of the VL model here, we get a kind of
regularization of the kink features, softening some of his
properties.
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