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We devote effort to studying some nonlinear actions, characteristic ofW theories, in the framework of the
soldering formalism. We disclose interesting new results concerning the embedding of the original chiralW
particles in different metrical spaces in the final soldered action; i.e., the metric is modified by the soldering
interference process. The results are presented in a weak field approximation for theWN case whenN>3 and
also in an exact way forW2. We promote a generalization of the interference phenomenon toWN theories of
different chiralities and show that the geometrical features introduced can yield a new understanding of the
interference formalism in quantum field theories.
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I. INTRODUCTION

This paper is devoted to studying the effects of interf
ence between the chiral modes carrying a representatio
conformal spins of order higher than two in the context
the soldering formalism. These modes are described by
ral WN gravities forN>2. This study is a natural and deep
extension of@1# where the soldering of two chiralW2 par-
ticles ~analogous to the Siegel particles@2#! was shown to
produce the action for a nonchiral 2D scalar field coupled
a gravitational background. It is therefore natural to consi
the possibility of soldering chiral modes carrying represen
tions of higher conformal spins.

There are two main reasons for studying extended s
metries in conformal field theory@3#. Certain applications of
conformal field theory in either string theory or statistic
mechanics require some additional symmetry in addition
conformal invariance. Moreover, extended symmetries
help in the analysis of a large class of conformal field th
ries ~called rational conformal field theories! and in classify-
ing certain types of conformal field theories.

Conformal invariance in two dimensions is a power
symmetry that allows certain two-dimensional quantum fi
theories to be solved exactly. Conformal field theories h
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found remarkable applications in string theory~see@4#!. This
study together with the investigation of critical phenome
in statistical mechanics~see @5# for selected reprints! has
produced a large-scale study of conformal field theories
recent years. For example, the study of so-called pertur
conformal field theories has given rise to surprising new
sults for certain massive integrable quantum field theo
@6#.

Additional motivation for a detailed study of the infinite
dimensional algebraic structure of conformal field theor
comes from the study of two-dimensional gravity which r
lies heavily on conformal field theory techniques and fro
two-dimensional topological quantum field theories. Infinit
dimensional symmetry algebras are known to play a cen
role in 2D physics. There is an intrinsic connection of the
algebras with two-dimensional gauge theories or string th
ries, the most important example being the symmetry alge
of two-dimensional conformal field theories, i.e., the Vir
soro algebra.

The Virasoro algebra admits higher spin extensio
known asWN algebras, containing generators with confo
mal spins 2,3,4, . . . ,N @7,8#. A W algebra is an extende
conformal algebra that satisfies the Jacobi identities and c
tains the Virasoro algebra as a subalgebra@3,9#. W algebras
are infinite-dimensional symmetry algebras with the rest
tion that at least one of the generating currents has sps
>2. This algebra is generated by a set of chiral curre
which are our main interest in the present study.

In addition to the above motivation for the present stu
in extended conformal symmetry we would like to menti
that in perturbed conformal field theories the presence ofW
symmetries in the original conformal field theory may lead

:
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additional integrals of motion in the perturbed theory@10#,
and for the relation with topological field theoriesN52 ex-
tended superconformal symmetry is essential@11–13#. Ex-
tended symmetries also appear to be particularly impor
for the coupling of conformal field theory ‘‘matter systems
to two-dimensional gravity@14#. Classical and quantumW
gravity, in particularW3 gravity, have recently been studie
by various groups@3#.

In order to apply the soldering formalism to the oppos
chiral W aspects we need an explicit field theoretical reali
tion of these algebras. Realizations of the chiralWN algebras
have been constructed, for example in terms of (N21) free
bosons via the Miura transformations@8#. Other realizations,
using a generalizing Sugawara construction, have also b
given @15#. This seems important since tentative extensio
of string theory based on extra bosonic symmetry (W sym-
metry! on the worldsheet have been proposed and are ca
W strings@16–18#; these are higher spin generalizations
ordinary string theories, such that the string coordinates
coupled not only to the worldsheet metric but also to a se
higher spin worldsheet gauge fields~for a review see@19#!.
Since ordinary string theory can be considered as a ga
theory based on the Virasoro algebra, one can analogo
define aW string theory as a gauge theory based on aW
algebra@7,8,20# ~or any other higher spin conformally ex
tended algebra@19,21,22#!. The bosonic representations
the chiral algebras will be the starting point for our applic
tion of the soldering formalism.

Recently, there has been great improvement in solde
together distinct manifestations of chiral and duality symm
tries @23–32#. The procedure leads to new physical resu
that include the idea of the interference effect. The solder
formalism was introduced in@31,32# to solder together two
chiral scalars by introducing a nondynamical gauge field
remove the degree of freedom that obstructs the vector ga
invariance. This is connected via chiral bosonization to
necessity that one has to have more than the direct sum
two fermion representations of the Kac-Moody algebra
describe a Dirac fermion. In other words, we can say that
equality of the weights in the two representations is phy
cally connected with the necessity to abandon one of the
separate chiral symmetries and accept that only vector ga
symmetry should be maintained. In addition, being just
auxiliary field, it may be eliminated~integrated! a posteriori
in favor of the physically relevant quantities. This restricti
will force the two independent chiral representations to
long to the same multiplet, effectively soldering them t
gether. This is the main motivation for the introduction of t
soldering field which permeates to the case of higher con
mal spin currents.

In Sec. II we give a review ofW theories. The soldering
formalism is briefly depicted in Sec. III. The fusion of chir
WN particles is accomplished in Sec. IV. Conclusions a
final remarks are given in Sec. V.

II. W GRAVITIES

In order to make this work self-contained, in this secti
we will make a brief review of theW realizations and gaug
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ing, following closely Refs.@9,33–35#.

A.W algebra

Let us consider Lie algebras under Poisson brackets, w
the generatorsta labeled by an indexa ~which may be of
infinite range!,

$ta ,tb%5 f ab
c tc1cab , ~1!

where f ab
c are the structure constants andcab are constants

defining the central extension of the algebra. However,
manyW algebras, the Poisson brackets structures give a
sult nonlinear in the generators,

$ta ,tb%5 f ab
c tc1cab1gab

cdtctd1•••5Fab~ tc!, ~2!

and the algebra is said to close in the sense that the ri
hand side is a function of the generators. Most of theW
algebras that are generated by a finite number of currents
nonlinear algebras of this type. At first sight, it appears t
there might be a problem in trying to realize a nonline
algebra in a field theory, as symmetry algebras are usu
Lie algebras. However, as will be seen, a nonlinear alge
can be realized as a symmetry algebra for which the struc
constants are replaced by field-dependent quantities.

A field theory with actionS0 and conserved symme
tric tensor currentsTmn ,Wm1m2•••msA

A ~where A51,2, . . .

labels the currents, which have spinsA) will be invariant
under global symmetries with constant paramet

km,l
A

m1m2•••msA21 ~translations andW translations! generated

by the Noether chargesPm ,Qm1m2•••msA21

A ~momentum and

W momentum! given by Pm5* tdx0T0m and Qm1m2•••msA21

A

5*dx0Wm1m2•••msA210
A . If the currents are traceless, then t

theory is invariant under an infinite-dimensional extend

conformal symmetry. The parametersl
A

m1m2•••msA21 are then
traceless and the corresponding transformations will be s
metries if the parameters are not constant but satisfy the

ditions that the trace-free parts of] (nkm),] (nl
A

m1m2•••msA21)

are zero. This implies that]7k650 and]7lA
66•••650 so

that the parameters are semilocal,k65k6(x6) and
lA

66•••65lA
66•••6(x6), which are the parameters of con

formal andW conformal transformations.
The soldering formalism, to be developed in the next s

tion, promotes the lift of these global symmetries to th
gauge invariant version. The global symmetries correspo
ing to the currentsTmn ,Wm1m2•••msA

A are promoted to loca

ones by coupling to theW gravity gauge fields

hmn,B
A

m1m2•••msA , which are symmetric tensors transformin
to lowest order in the gauge fields, as

dhmn5] (nkm)1•••,

dBA
m1m2•••ms5] (nlA

m1m2•••ms21)
1••• . ~3!

The action is given by the Noether coupling
8-2
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S5S01E d2x~hmnTmn1B
A

m1m2•••msAWm1m2•••msA

A !1•••

~4!

plus terms nonlinear in the gauge fields. If the curre
Tmn ,Wm1m2•••ms

A are traceless, in the sense that there is

extended conformal symmetry, then the traces of the ga
fields decouple and the theory is invariant under Weyl andW
Weyl transformations given to lowest order in the gau
fields by

dhmn5Vhmn1•••,

dBA
m1m2•••ms5VA

(m1m2•••ms22hms21ms)1•••,
~5!

where V(xn), VA
m1m2•••ms22(xn) are the local parameters

This defines the linearized coupling toW gravity. The full
nonlinear theory is in general nonpolynomial in the gau
fields of spins 2 and higher, which makes matter harder.
nonlinear theory can be constructed to any given order u
the Noether method, but to obtain the full nonlinear struct
requires a deeper understanding of the geometry underl
W gravity, which is beyond the scope of this study.

B.W field theory

Consider a field theory in flat Minkowski space with me
ric hmn and coordinatesx0,x1. The stress-energy tensor is
symmetric tensorTmn which, for a translation invarian
theory, satisfies the conservation law

]mTmn50. ~6!

A spin-s current in flat two-dimensional space is a ranks
symmetric tensorWm1m2•••ms

and will be conserved if

]m1Wm1m2•••ms
50. ~7!

Recall that, in two dimensions, a rank-2 tensor can
decomposed as, e.g.,Vmn5V(mn)1Vemn where V
5 1

2 emnVmn . Thus, without loss of generality, all the con
served currents of a given theory can be taken to be sym
ric tensors. A rank-s symmetric tensor transforms as the sp
s representation of the two-dimensional Lorentz group.

A theory is conformally invariant if the stress tens
is traceless, Tm

m50. Introducing null coordinatesx6

51/A2(x06x1), the tracelessness condition becomesT12

50 and Eq.~6! then implies that the remaining componen
T66 satisfy

]1T2250, ]2T1150. ~8!

If a spin-s current Wm1m2•••ms
is traceless, it will have

only two nonvanishing componentsW11•••1 and
W22•••2 . The conservation condition~7! then implies that

]2W11•••150, ]1W22•••250 ~9!
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so that W11•••15W11•••1(x1) and W22•••2

5W22•••2(x2) are right- and left-moving chiral currents
respectively. For a given conformal field theory, the set of
right-moving chiral currents generates a closed current a
bra, the right-moving chiral algebra, and similarly for le
movers. The right and left chiral algebras are examples oW
algebras that are the main components of our construc
here.

Consider a setS of right-moving chiral currentsT(x1)
5T11(x1),W(x1), . . . of spins 2,sW , . . . . The main ex-
ample that will be of interest here is that in which the cu
rents arise from some field theory and the brackets are P
son brackets in a canonical formalism in whichx2 is
regarded as the time variable. The currentT satisfies the
conformal algebra if

$T~x1!,T~y1!%52d8~x12y1!@T~x1!1T~y1!#,
~10!

in which case its modesLn generate the Virasoro algebra.
currentW is said to be primary of spinsW if

$T~x1!,W~y1!%52d8~x12y1!@W~x1!

1~sW21!W~y1!#. ~11!

The setS of currents will generate aW algebra if the brack-
ets of any two currents give a function of currents inS and if
the brackets satisfy the Jacobi identities.

Consider first the case in which there are just two curre
T andW, whereW is primary of spins5sW , and where the
$W,W% brackets take the form

$W~x1!,W~y1!%522kd8~x12y1!@L~x1!

1L~y1!# ~12!

for someL, wherek is a constant. If the algebra is to clos
the currentL must be a function of the currentsT,W and
their derivatives. Ifs53, thenL is a spin-4 current and the
Jacobi identities are satisfied if

L5TT. ~13!

The algebra then closes nonlinearly. Notice that in the lim
k→0 this contracts to a linear algebra. Fors.3, the algebra
will again close and satisfy the Jacobi identities ifL depends
on T,W but not on their derivatives. Ifs is even, the most
general suchL is of the form

L5aTs211bWTs/221 ~14!

for some constantsa,b, while if s is odd, such aL must be
of the form~14! with b50. The algebra given by Eqs.~10!,
~11!, ~12!, and~14! is the algebraWs/s22 of Ref. @35#.

A large number ofW algebras are now known. TheWN
algebra@36# has currents of spins 2,3, . . . ,N ~so thatW2 is
the Virasoro algebra!, theW` @37,38# algebra has currents o
spins 2,3, . . . ,̀ , while theW11` algebra@38# has currents
of spins 1,2,3, . . . ,̀ .

Consider a theory ofD free scalar fields f i ( i
51, . . . ,D) with action
8-3
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S05E d2x]1f i]2f i ~15!

where the two-dimensional space-time has null coordina
xm5(x1,x2) which are related to the usual Cartesian co
dinates byx651/A2(x06x1). The stress-energy tensor

T115
1

2
]1f i]1f i ~16!

is conserved,]2T1150, and generates the Poisson brac
algebra~10! ~in a canonical treatment regardingx2 as time
@32#!, which is the conformal algebra with vanishing cent
charge. For any rank-s constant symmetric tensordi 1i 2••• i s
one can construct a current

W11•••15
1

s
di 1i 2••• i s

]1f i 1]1f i 2
•••]1f i s, ~17!

which is conserved,]2W50, and which is a spin-s classical
primary field—its Poisson brackets withT are given by Eq.
~11!. The Poisson brackets of twoW’s are Eq.~12!, whereL
is given by

L5
1

4k
di ••• j

m dk••• lm]1f i
•••]1f j]1fk

•••]1f l ~18!

~the indicesi , j ,••• are raised and lowered with the flat me
ric d i j ).

Consider first the cases53. In general, closing the alge
bra generated byT,W will lead to an infinite sequence o
currents (T,W,L, . . . ). However, if L5T2, for some con-
stantk, then the algebra closes nonlinearly onT and W, to
give the so-called classicalW3 algebra depicted above.

In @34#, it was shown that for any numberD of bosons,
the necessary and sufficient condition for Eq.~13! to be sat-
isfied and hence for the classicalW3 algebra to be generate
is that the ‘‘structure constants’’di jk satisfy

d( i j
m dk) lm5kd ( i j dk) l . ~19!

This rather striking algebraic constraint has an interes
algebraic interpretation.1 It implies that thedi jk are the struc-
ture constants for a Jordan algebra~of degree 3)@40#, which
is a commutative algebra for which Eq.~19! plays the role of
the Jacobi identities. Moreover, the set of all such algeb
has been classified@41#, allowing one to write down the gen
eral solution to Eq.~19! @40#. In particular, Eq.~19! has a
solution for any numberD of bosons. Examples of solution
to Eq. ~19! are given forD51 by d1115k and forD58 by
takingdi jk proportional to thed symbol for the group SU(3)
@32#. For D52, the construction of@20# gives a solution of
Eq. ~19! in which the only nonvanishing components ofdi jk
are given byd11252k and d2225k, together with those

1This identity has in fact occurred at least once before in
physics literature, in the study of five-dimensional supergrav
theories@39#.
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related to these by symmetry. The conserved currentsT,W
correspond to the invariance of the free actionS0 under the
conformal symmetries

df i5k2]1f i1l22djk
i ]1f j]1fk, ~20!

where the parameters satisfy

]2k250, ]2l2250. ~21!

Symmetries of this kind whose parameters are functi
only of x1 ~or only of x2) will be referred to here as semilo
cal. The symmetry algebra closes to give

@dk1
1dl1

,dk2
1dl2

#5dk3
1dl3

~22!

where

k35@k2]1k114k~l2]1l1!T11#2~1↔2!,

l35@2l2]1k11k2]1l1#2~1↔2!. ~23!

In particular, the commutator of twol transformations is
a field-dependentk transformation, which is precisely th
transformation generated by the spin-4 currentL5TT. The
gauge algebra structure ‘‘constants’’ are not constant but
pend on the fieldsf through the currentT, reflecting theTT
term in the current algebra.

To gauge these symmetries to a localW diffeomorphism,
the spin-2 and spin-3 conformal Noether currents above
introduced in the model with the corresponding Lagran
multiplier fieldsh22 ~the graviton! andB222 ~theW gravi-
ton!, leading to the Lagrangian of the rightW3 model as

L5]1f i]2f i1
h22

2
]1f i]1f i

1
B222

3
di jk]1f i]1f j]1fk, ~24!

which is the result of the Noether couplings. Notice that t
free action is already invariant under ‘‘right-moving’’ trans
formations.

It is well known that this model is invariant under th
transformations~20! and together with the symmetries

dh225]2k21k2]1h222h22]1k2

12k~l22]1B2222B222]1l22!T11 ,

dB2225]2l2212l22]1h222h22]1l22

22B222]1k21k2]1B222 , ~25!

extends the original theory to aW gravity, so that the origi-
nal semilocal conformal symmetries are promoted to a lo
W diffeomorphism. In a similar way we may also gauge t
left-handedW algebra generated byT22 and W222 with
analogous definitions and results. The terms withH22 and
k2 are analogous to the gauging of the right-handed Viras
algebra. Hence we can see expressions similar to those

e
y
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two-dimensional gravity in the chiral gauge@42# or from
Siegel’s analysis for the chiral boson@2#.

The situation is similar fors.3. The algebra will close
i.e., Eq. ~14! will be satisfied, if thed tensor in Eq.~17!
satisfies a quadratic constraint@35#, and again this constrain
has an algebraic interpretation@35#. Thek andl transforma-
tions become

df i5k]1f i1ldi 1••• i s21

i ]1f i 1
•••]1f i s21, ~26!

where the parameters satisfy]2k50, ]2l50. The symme-
try algebra again has field-dependent structure ‘‘constan
More generally, any set of constant symmetric tensorsdi j •••k

A

labeled by some indexA can be used to construct a set
conserved currents

W11•••1
A 5di j •••k

A ]1f i]1f j
•••]1fk ~27!

which are classical primary fields, i.e., their Poisson brack
with T are given by Eq.~11!. The current algebra will close
if the dA tensors satisfy certain algebraic constraints and
Jacobi identities will automatically be satisfied as the alge
occurs as a symmetry algebra. In this way, a large clas
classicalW algebras can be constructed by seekingdA ten-
sors satisfying the appropriate constraints.D boson realiza-
tions of theWN algebras were constructed in this way in R
@35#, where it was shown that theWN d tensor constraints
had an interpretation in terms of Jordan algebras of degreN,
and this again allowed the explicit construction of solutio
to the d tensor constraints. These realizations of classicac
50 algebras can be generalized to ones withc.0 by intro-
ducing a background chargeai , so that the stress tenso
becomesT5]1f i]1f i1ai]1

2 f i and adding appropriate
higher derivative terms~i.e., ones involving]1

mf i for m
.1) to the other currents. The classical central charge
comesc5a2/12, and, for theN21 boson realization ofWN ,
the structure of the higher derivative terms in the currentsWn
can be derived using Miura transform methods@36,8#.

Another important realization of classicalW algebras is
as the Casimir algebra of Wess-Zumino-Witten-Novik
~WZWN! models@33#. For the WZWN model correspondin
to a groupG, the Lie algebra valued currentsJ15g21]1g
generate a Kac-Moody algebra and are~classically! primary
with respect to the Sugawara stress tensorT5 1

2 tr(J1J1).
Similarly, the higher order Casimir operators allow a gen
alized Sugawara construction of higher spin currents tr(J1

n ).
For example, for G5SU(N) the set of currentsWn

51/ntr(J1
n ) for n52,3, . . . ,N generates a closed algeb

which is a classicalWN algebra@33#; similar results hold for
other groups.

Quantum mechanically, however, the Sugawara exp
sions for the currents need normal ordering and must be
caled@15,43#. For example, in the case of SU(3), thequan-
tum Casimir algebra leads to a closedW algebra~after a
certain truncation! only in the case in which the Kac-Mood
algebra is of level 1@15#.

W algebras also arise as symmetry algebras of many o
field theories, including Toda theories@36#, free-fermion
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theories@33#, and nonlinear sigma models@34,44#, giving
corresponding realizations ofW algebras.

III. THE INTERFERENCE OF CHIRAL W THEORIES

A.W2 gravity in the weak field approximation

Let us analyze theW2 model for right-handed chirality,
which is obtained from Eq.~24! by makingdi jk→0, i.e.,

L1
0 5]1f i]2f i1

h22

2
]1f i]1f i . ~28!

The soldering transformation to be gauged, as describe
the last section, is

f i→f i1a i , ~29!

wherea i is the semilocal gauge parameter.
The corresponding variation of the model under this tra

formation is

dL1
0 5Ji

1]1a i , ~30!

whereJi
1 is the left Noether current given by

Ji
152]2f i1h22]1f i . ~31!

Following the soldering algorithm and computing on
the final steps, we have after two iterations that

dL 1
2 522A1

i dA2
i , ~32!

whereA6
i are the soldering fields.

For the left chirality we can write

L 2
0 5]1r i]2r i1

h11

2
]2r i]2r i . ~33!

Analogously, the variation of the model under this is

r i→r i1a i ~34!

and

dL2
0 5Ji

2]2a i , ~35!

whereJi
2 is the right Noether current

Ji
252]1r i1h11]2r i . ~36!

Again, after two iterations we have that

dL 2
2 522A2

i dA1
i . ~37!

We can see easily that the final soldered action is

LFINAL5L 1
2 1L 2

2 12A2
i A1

i , ~38!

which has the desired vectorial gauge invariance, i.e.,dL
50, as can be easily checked. Substituting all theL 6

(N) pre-
viously computed, we can write the final form of the actio
explicitly as
8-5
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LFINAL5L1
0 1L2

0 2A1
i Ji

12A2
i Ji

2

1
h22

2
~A1

i !21
h11

2
~A2

i !212A2
i A1

i . ~39!

Next, by solving the equations of motion for the solderi
fields we have

A1
i 5

1

2
Ji

22
1

2
h11A2

i , ~40!

A2
i 5

1

2
Ji

12
1

2
h22A1

i ~41!

and these fields can be eliminated in favor of the other v
ables.

Susbstituting theA6
i defined in Eq.~41! into Eq.~40! and

solving the system iteratively we obtain

A1
i 5

1

2
J22

1

4
h11J11h2A1

i

5A1
i (0)1h2A1

i , ~42!

where h25 1
4 h11h22 . Now substituting the second equ

tion in the first and so on we have

A1
i 5A1

i (0)1h2@A1
i (0)1A1

i #

A

5 f `Ai (0) ~43!

where

f `511h21h41h61•••

5
1

12h2
. ~44!

Using the same procedure forA2
i and using Eqs.~31! and

~36!,

A6
i 5

1

12h2 F1

2
J6

i 2
1

4
h66J7

i G . ~45!

Hence, bringing these results back into Eq.~39! we have
finally that

L5
11h2

12h2
]1F i]2F i1

h22

2~12h2!
]1F i]1F i

1
h11

2~12h2!
]2F i]2F i , ~46!

whereF i5f i2r i . In other words

L5
1

2
A2ggmn]mF i]nF i ~47!
10500
i-

where

A2ggmn5
1

12h2 S h22 11h2

11h2 h11
D , ~48!

and the metric has been modified by a constructive inter
ence phenomenon.

To promote a profound investigation into this constructi
interference, let us consider a perturbative solution for t
problem. To this end let us write Eqs.~40! and ~41! as

A1
i 5

1

2
J1

i 2
1

4
h11J2

i 1h2A1
i ,

A2
i 5

1

2
J2

i 2
1

4
h22J1

i 2h2A2
i , ~49!

and consider the weak field approximation~WFA! where
terms ofO(h2)→0. Notice that with this procedure Eq.~49!
gives the same result as Eq.~45!. To simplify the notation we
introduce the vector in the internal space asf5f i êi , A6

5A6
i êi , etc., whereêi êj5d i j is an orthogonal basis. Ex

panding these equations in powers ofh2 we have, in the
zeroth order approximation,

A1
(0)5]1r1

1

2
h11~]2r2]2f!,

A2
(0)5]1f2

1

2
h22~]1r2]1f!. ~50!

The Lagrangian~39! and the Noether currents are, respe
tively,

L5L1
0 1L2

0 2A1J22A2J1

1
h22

2
~A1!21

h11

2
~A2!212A2A1 ~51!

and

Ji
152]2f i1h22]1f i , ~52!

Ji
252]1r i1h11]2r i . ~53!

Substituting all the values in Eq.~51! we have that

LWFA5]1F]2F1
h22

2
]1F]1F

1
h11

2
]2F]2F, ~54!

where, as usual,F5F i êi5(f i2r i)êi . Therefore,

LWFA5
1

2
A2g(0)g(0)

mn]mF]nF, ~55!
8-6
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which is the result obtained from Eq.~47! when A2ggmn

→
h2→0

A2g(0)g(0)
mn . Considering the inclusion of higher orde

of the h2 term in W2 (di jk→0) in

A6
i 5

1

12h2 F1

2
Ji

72
1

4
h66Ji

6G , ~56!

we obtain from Eqs.~56! and ~51!

L h25
11h2

12h2
]1F i]2F i1

h22

2~12h2!
]1F i]1F i

1
h11

2~12h2!
]2F i]2F i . ~57!

We can see clearly that Eq.~54! is the zeroth order approxi
mation of the action~46! with h2→0: i.e.,

LWFA5L h2~h2→0!. ~58!

Hence we can assume that the perturbative procedure in
soldering fields has disclosed an interesting behavior.
zeroth order approximation written in Eq.~50! showed that
in Eq. ~54! the interference between the two distinct chira
ties in W2 is, disregarding a cross term, the simple sum
both actions. However, taking into consideration theh2

terms we see that such a behavior is not true any longer
we have stressed, Eq.~57! is not a trivial result: both chira
particles are now parts of the same multiplet and we hav
modification of the metric through a constructive interfe
ence. We can see clearly that Eq.~54! is just ah2→0 ap-
proximation of the exact action written in Eq.~57! or com-
pactly written in Eq.~46!. Next we will prove in a precise
way that this behavior can be seen in all spin-s W theories.

B. Weak field approach to the soldering of chiralW3

Let us next analyze theW3 model for the right-handed
chirality, Eq. ~24!,

L1
0 5]1f i]2f i1

h22

2
]1f i]1f i

1
B222

3
di jk]1f i]1f j]1fk; ~59!
10500
he
e

f

s

a

this is the action for lowest nonminimal coupling@45# with k,
the expansion parameter for the Noether method, equa
21.

The gauge transformation is

f i→f i1a i , ~60!

leading to a gauge variation of the model as

dL1
0 5Ji

1]1a i , ~61!

whereJi
1 is the left Noether current

Ji
152]2f i1h22]1f i1B222di jk]1f j]1fk. ~62!

Following again the soldering algorithm, we have aft
two iterations that

dL 1
2 522A1

i dA2
i , ~63!

whereA6
i are the soldering fields. For the left chirality w

can write

L 2
0 5]1r i]2r i1

h11

2
]2r i]2r i

1
B111

3
di jk]2r i]2r j]2rk. ~64!

The gauge variation of the model is

dL2
0 5Ji

2]2a i , ~65!

whereJi
2 is the right Noether current

Ji
252]1r i1h11]2r i1B111di jk]2f j]2fk. ~66!

Again, after two iterations we have that

dL 2
2 522A2

i dA1
i , ~67!

and the final soldered action is

LFINAL5L 1
2 1L 2

2 12A2
i A1

i ~68!

which has a vectorial gauge invariance, i.e.,dL50.
Substituting all theL 6

(N) we can write the final form of the
action explicitly as
LFINAL5L1
0 1L2

0 2A1
i Ji

12A2
i Ji

21
h22

2
~A1

i !21
h11

2
~A2

i !21B222di jkFA1
i A1

j ]1fk2
1

3
A1

i A1
j A1

k G
1B111di jkFA2

i A2
j ]2rk2

1

3
A2

i A2
j A2

k G12A2
i A1

i . ~69!

Solving the equations of motion for the soldering fields, these can be eliminated in favor of the other variables,

A1
i 5

1

2
Ji

22
1

2
h11A2

i 1B111di jkA2
j S A2

k

6
2

]1rk

2 D , ~70!
8-7
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A2
i 5

1

2
Ji

12
1

2
h22A1

i 1B222di jkA1
j S A1

k

6
2

]1fk

2 D . ~71!

Substituting Eq.~71! in Eq. ~70! and, to be concise, writing only the solution for theA1
i , we have

A1
i 5

1

2
Ji

22
1

4
h11Ji

11
1

24
B111di jkJj

1Jk
12

1

4
B111di jkJj

1Jk
1]2rk1

1

4
h11h22A1

i 1
1

4
h11B222di jkA1

j ]1fk

2
1

12
h22B111di jkJj

1A1
k 2

1

12
B2di jkdkmnJj

1A1
m]1fn1

1

4
h22B111di jkA1

j ]2rk1
1

4
B2di jkdjmnA1

m]1fn]2rk

2
1

12
h11B222di jkA1

j A1
k 1

1

36
di jkdkmnJj

1A1
mA1

n 1
1

24
h22

2 B111di jkA1
j A1

k 1
1

12
h22B2di jkdkmnA1

j A1
m]1fn

1
1

24
B222B2di jkdjmndkpqA1

mA1
p ]1fn]1fq2

1

12
B2di jkdjmnA1

mA1
n ]2rk2

1

36
h22B2di jkdjmnA1

k A1
mA1

n

2
1

72
B222B2di jkdjmndkpqA1

mA1
p A1

n ~]1fqA1
n 1]1fnA1

q !1
1

216
B222B2di jkdjmndkpqA1

mA1
p A1

n A1
q , ~72!
g
re
ra

di-

he
a-

he
ral
ar-
ew
y
can
ill
.

whereB25B111B222 .
Now we can solder the Lagrangian withdi jkÞ0 and take

the terms of zero order (h2→0) of A1
i in Eq. ~72!, with the

Noether currents

A1
i 5]1r i1

1

2
h11~]2r i2]2f i !

1
1

2
B111di jk]2rk~]2r j2]2f j !

1
1

6
B111di jk]2f j]2fk, ~73!

A2
i 5]2f i1

1

2
h22~]1r i2]1f i !

1
1

2
B222di jk]1fk~]1f j2]2r j !

1
1

6
B222di jk]1r j]1rk. ~74!

Substituting in Eq.~69! and computing the solderin
fields through the equations of motion we have the solde
action for the WFAW3 model and, after an arduous algeb
where we have considered theh2 terms, withF i5f i2r i ,

LWFA5]1F i]2F i1
1

2
h22]1F i]1F i

1
1

2
h11]2F i]2F i1

1

3
B111di jk]2F i]2F j]2Fk

1
1

3
B222di jk]1F i]1F j]1Fk ~75!
10500
d

L h25
11h2

12h2
]1F i]2F i1

h22

2~12h2!
]1F i]1F i

1
h11

2~12h2!
]2F i]2F i

1
1

3~12h2!
B111di jk]2F i]2F j]2Fk

1
1

3~12h2!
B222di jk]1F i]1F j]1Fk, ~76!

where we can see again that

LWFA5L h2~h2→0!, ~77!

demonstrating that what occurred to theW2 theory happened
to W3, and again we have a constructive interference mo
fying the metric.

The first-order action~75! is similar to that found by
Schoutens, Sevrin, and van Nieuwenhuizen~SSN! @45# for
the spin-s theory ~the SSN action!, to describe aW string
propagating on a flat background spacetime metric. T
]6F i substitutes the so-called ‘‘nested covariant deriv
tives.’’ In addition we have also obtained a reduction in t
infinite nonlinearity. The soldered action couples both chi
scalar fields to a dynamical gauge field. This action is ch
acteristic of an interference process which leads to the n
and nontrivial result of the modification of the metric b
constructive interference, and proves that the SSN action
be an approximation of a more general action. Next we w
look at the spin-s.3 generalization of the SSN-like action
8-8
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C.WN , NÐ4

In this section we will write only the final results of th
interference mechanism, i.e., for theW4 algebra, as we
know,

L1
0 5]1f i]2f i1

h22

2
]1f i]1f i

1
B222

3
di jk]1f i]1f j]1fk

1
B2222

4
di jkl ]1f i]1f j]1fk]1f l , ~78!
10500
L 2
0 5]1r i]2r i1

h11

2
]2r i]2r i

1
B111

3
di jk]2r i]2r j]2rk

1
B1111

4
di jkl ]2r i]2r j]2rk]2r l , ~79!

wheredi jkl is another symmetric tensor@35#.
After applying the whole interference method, the WF

andh2-term actions are, respectively,
LWFA5]1F i]2F i1
1

2
h22]1F i]1F i1

1

2
h11]2F i]2F i11

1

3
B111di jk]2F i]2F j]2Fk

1
1

3
B222di jk]1F i]1F j]1Fk1

1

4
B1111di jkl ]2F i]2F j]2Fk]2F l1

1

4
B2222di jkl ]1F i]1F j]1Fk]1F l ,

~80!

L h25
11h2

12h2
]1F i]2F i1

h22

2~12h2!
]1F i]1F i1

h11

2~12h2!
]2F i]2F i1

1

3~12h2!
B111di jk]2F i]2F j]2Fk

1
1

3~12h2!
B222di jk]1F i]1F j]1Fk1

B1111

4~12h2!
di jkl ]2F i]2F j]2Fk]2F l

1
B2222

4~12h2!
di jkl ]1F i]1F j]1Fk]1F l . ~81!

Finally, for aW gravity of spins, for both chiralities, respectively,

L1
0 5]1f i]2f i1

h22

2
]1f i]1f i1

B222

3
di jk]1f i]1f j]1fk1

1

4
B2222di jkl ]1f i]1f j]1fk]1f l1•••

1
1

s
B22•••2di 1i 2••• i s

]1f i 1]1f i 2
•••]1f i s, ~82!

L 2
0 5]1r i]2r i1

h11

2
]2r i]2r i1

B111

3
di jk]2r i]2r j]2rk1

1

4
B1111di jkl ]2r i]2r j]2rk]2r l1•••

1
1

s
B11•••1di 1i 2••• i s

]2f i 1]2f i 2
•••]2f i s, ~83!

and the final actions are

LWFA5]1F i]2F i1
1

2
h22]1F i]1F i1

1

2
h11]2F i]2F i1

1

3
B111di jk]2F i]2F j]2Fk1

1

3
B222di jk]1F i]1F j]1Fk

1
1

4
B1111di jkl ]2F i]2F j]2Fk]2F l1

1

4
B2222di jkl ]1F i]1F j]1Fk]1F l1•••

1
B11•••1

s
di 1i 2••• i s

]2F i 1]2F i 2
•••]2F i s1

B22•••2

s
di 1i 2••• i s

]1F i 1]1F i 2
•••]1F i s, ~84!
8-9
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L h25
11h2

12h2
]1F i]2F i1

h22

2~12h2!
]1F i]1F i1

h11

2~12h2!
]2F i]2F i1

1

3~12h2!
B111di jk]2F i]2F j]2Fk

1
1

3~12h2!
B222di jk]1F i]1F j]1Fk1

1

4~12h2!
B1111di jkl ]2F i]2F j]2Fk]2F l

1
1

4~12h2!
B2222di jkl ]1F i]1F j]1Fk]1F l1•••1

B11•••1

s~12h2!
di 1i 2••• i s

]2F i 1]2F i 2
•••]2F i s

1
B22•••2

s~12h2!
di 1i 2••• i s

]1F i 1]1F i 2
•••]1F i s. ~85!
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Now we have a first-order action for spins>4 theories.
Hence, we can conjecture if the SSN action is anh2→0
approximation of a more general action as can be seen
comparing Eqs.~84! and ~85!.

IV. FINAL REMARKS AND PERSPECTIVES

The quantization of such a system of matter coupled
gravity defines a string theory. This interesting behavior w
rants a study of the fusion ofW algebras coupled to gravity
We have obtained an action similar to that obtained by S
for spin-3 gravities. The result showed us that the SSN ac
can be an approximation of a more general action where
metric is modified. We have demonstrated in a precise w
that this behavior is confirmed in spins.3 gravities.

As a final remark, in particular for further studies, we c
analyze chiralW3 gravity, where to cancel the anomaly w
have to add finite local counterterms. Considering the n
chiral W3 gravity, the relation between the dynamical~chiral!
decomposition and the factorization that occurs in a clo
W3 string can be analyzed. There, the Hilbert space fac
izes as usual into a tensor product of the Hilbert spaces o
left-moving states with those of the right-moving states. T
Hilbert spaceH of the left movers is then the product of th
single-boson Fock spaceFf with the Hilbert space of the
effective conformal field theoryH̃, andH5Ff ^ H̃.
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APPENDIX: A REVIEW OF THE INTERFERENCE
MECHANISM

The technique of soldering~interference! essentially com-
prises simultaneously lifting the gauging of global symme
10500
by

o
r-

N
n
e
y

-

d
r-
he
e

e

t.

of two self-dual and anti-self-dual actions to their local ve
sion @31,29#. We remark that the direct sum of the classic
actions depending on different fields would not give anyth
new. It is the soldering process that leads to a new and n
trivial result.

The basic idea of the soldering procedure is to rais
global Noether symmetry of the constituent actions into
local one, but for an effective composite system, consist
of the dual components and an interference term. This a
rithm, consequently, defines the soldered action. Here
shall adopt an iterative Noether procedure to lift the glo
symmetries. Therefore, assume that the symmetries in q
tion are being described by the local actionsS6(f6

h ), invari-
ant under the global multiparametric transformation

df6
h 5ah. ~A1!

Here h represents the tensorial character of the ba
fields in the dual actionsS6 and, for notational simplicity,
will be dropped from now on. Now, under local transform
tions these actions will not remain invariant, and Noeth
counterterms become necessary to reestablish the invaria
along with appropriate compensatory soldering fieldsB(N),

S6~f6!(0)→S6~f6!(N)

5S6~f6!(N21)2B(N)J6
(N) . ~A2!

HereJ6
(N) are the Noether currents, andN is the iteration

number. For the self- and anti-self-dual systems we m
have in mind that this iterative gauging procedure is~inten-
tionally! constructed not to produce invariant actions for a
finite number of steps. However, if afterN repetitions the
noninvariant piece ends up being dependent only on
gauging parameters, but not on the original fields, there
exist the possibility of mutual cancellation, if both self- an
anti-self-gauged systems are put together. Then, suppose
after N repetitions we arrive at the following simultaneou
conditions:

dS6~f6!(N)Þ0,

dSB~f6!50, ~A3!
8-10
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with

SB~f6!5S1
(N)~f1!1S2

(N)~f2!1contact terms;
~A4!

then we can immediately identify the~soldering! interference
term as

Sint5contact terms2(
N

B(N)J6
(N) , ~A5!

where the contact terms are generally higher order funct
of the soldering fields. Incidentally, these auxiliary fiel
e

7

n-

t-

s-

,

c

10500
s

B(N) may be eliminated, in some cases, from the result
effective action in favor of the physically relevant degrees
freedom. It is important to notice that, after elimination
the soldering fields, the resulting effective action will n
depend on either self- or anti-self-dual fieldsf6 but only in
some collective field, sayF, defined in terms of the origina
ones in a~Noether! invariant way:

SB~f6!→Se f f~F!. ~A6!

Once such an effective action has been established,
physical consequences of the soldering are readily obta
by simple inspection.
ry

ys.

ass
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