Avaliação da estabilidade de produtos obtidos de carne mecanicamente separada de tilápia nilótica

(Oreochromis niloticus)

Peter Gaberz Kirschnik
Zootecnista
Mestre em Aquicultura

Profa. Dra. Elisabete Maria Macedo Viegas
Orientadora

Tese apresentada ao programa de Pós-graduação em Aquicultura, do Centro de Aquicultura da UNESP, Campus de Jaboticabal, como parte das exigências para obtenção do título de Doutor em Aquicultura.

Jaboticabal – SP
2007
Kirschnik, Peter Gaberz
K61a Avaliação da estabilidade de produtos obtidos de carne mecanicamente separada de tilápia nilótica (Oreochromis niloticus) / Peter Gaberz Kirschnik. – – Jaboticabal, 2007.
ix, 92 f. ; 29 cm

Tese (doutorado) - Universidade Estadual Paulista, Centro de Aquicultura da UNESP, 2007.
Orientador: Elisabete Maria Macedo Viegas
Banca examinadora: Alessandra Lopes de Oliveira, Marco Antonio Trindade, Luiz Augusto do Amaral, Lea Silva Sant'Ana

Bibliografia

CDU 639.3:664

Ficha catalográfica elaborada pela Seção Técnica de Aquisição e Tratamento da Informação – Serviço Técnico de Biblioteca e Documentação - UNESP, Câmpus de Jaboticabal.
AGRADECIMENTOS

Aos meus pais Alberto e Ericka (in memorian) por me ensinarem os valores da vida, pelo carinho, amor e total apoio durante a minha formação.

À minha irmã Katia e meu cunhado Evaldo, pelo incentivo e apoio nos momentos difíceis. E à minha querida sobrinha Marina.

À minha esposa Luciana pela paciência, amor e compreensão que foram fundamentais neste período.

À Profa. Dra. Elisabete Maria Macedo Viegas pela orientação competente e dedicada nestes 8 anos de convivência e pelo exemplo de profissionalismo e dedicação demonstrada.

Aos Professores Dra. Alessandra Lopes de Oliveira e Dr. Marco Antonio Trindade pelo auxílio nas análises sensoriais e no desenvolvimento de produtos e pelas valiosas sugestões a este trabalho.

Aos demais membros da Banca Examinadora, Dr. Luiz Augusto do Amaral e Dra. Lea Silva Sant’Ana, pela contribuição nas correções e sugestões, que permitiram o aprimoramento deste trabalho.

Às famílias Nakaghi e Ganeco, em especial ao Sr. Shiguero e a Sra. Cristina pelo apoio e por me acolherem nesses 11 anos de estudo em Jaboticabal.

Ao Professor Dr. Júlio César de Carvalho Balieiro, pela colaboração e orientação nas análises estatísticas.

Aos professores e funcionários da FZEA-USP em especial ao técnico José Apolinário Ferraz pelo apoio e auxílios prestados.

Aos amigos Paulo, Pamela, Franco, Juliana, Carlos, Fernando, Ligia e André, pelo auxílio nos experimentos e pela disposição em sempre ajudar.

Aos amigos de república Marco Aurélio, Leonardo e Ricardo pela amizade e momentos de descontração.

Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq, pela bolsa concedida.

A todos aqueles que de alguma forma contribuíram e participaram de mais uma etapa da minha vida.
<table>
<thead>
<tr>
<th>SUMÁRIO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Lista de Tabelas ... vi</td>
</tr>
<tr>
<td>Lista de Figuras .. viii</td>
</tr>
<tr>
<td>Lista de Anexos ... ix</td>
</tr>
<tr>
<td>Resumo Geral .. 1</td>
</tr>
<tr>
<td>General Abstract .. 2</td>
</tr>
<tr>
<td>Objetivo ... 3</td>
</tr>
<tr>
<td>Introdução Geral ... 4</td>
</tr>
<tr>
<td>1. Consumo de pescado e Produção de tilápia do Nilo (Oreochromis 4</td>
</tr>
<tr>
<td>niloticus).. 4</td>
</tr>
<tr>
<td>2. Composição química e valor nutritivo do pescado....................... 4</td>
</tr>
<tr>
<td>3. Carne Mecanicamente Separada de pescado.................................. 6</td>
</tr>
<tr>
<td>4. Estocagem da Carne Mecanicamente Separada de pescado.............. 10</td>
</tr>
<tr>
<td>5. Estabilidade de produtos elaborados com CMS......................... 14</td>
</tr>
<tr>
<td>6. Referências .. 17</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Capítulo 1 - Efeito da lavagem e da adição de aditivos sobre a estabilidade de Carne Mecanicamente Separada de Tilápia do Nilo (Oreochromis niloticus) durante estocagem a-18°C 22</td>
</tr>
<tr>
<td>Resumo ... 22</td>
</tr>
<tr>
<td>1. Introdução ... 22</td>
</tr>
<tr>
<td>2. Material e Métodos ... 24</td>
</tr>
<tr>
<td>2.1. Armazenamento e Amostragem.. 24</td>
</tr>
<tr>
<td>2.2. Análises físico-químicas... 25</td>
</tr>
<tr>
<td>2.3. Análises Microbiológicas... 27</td>
</tr>
<tr>
<td>2.4. Análises Estatísticas... 27</td>
</tr>
<tr>
<td>3. Resultados e Discussão .. 27</td>
</tr>
<tr>
<td>4. Conclusões ... 35</td>
</tr>
<tr>
<td>5. Referências .. 36</td>
</tr>
</tbody>
</table>
Capítulo 2 - Influência da lavagem e da adição de aditivos na estabilidade de Carne Mecanicamente Separada de carcaças de Tilápia do Nilo (Oreochromis niloticus) durante estocagem

Resumo ... 40
1. Introdução .. 40
2. Material e Métodos .. 42
 2.1. Obtenção da CMS ... 42
 2.2. Processamento e protocolo experimental ... 42
 2.3. Amostragem ... 43
 2.4. Caracterização e avaliação da estabilidade ... 43
 2.5. Análises Estatísticas ... 43
3. Resultados e Discussão ... 45
4. Conclusões .. 52
5. Referências ... 53

Capítulo 3 - Desenvolvimento e avaliação nutricional de nuggets produzidos a partir de Carne Mecanicamente Separada de tilápia do Nilo (Oreochromis niloticus)

Resumo ... 57
1. Introdução .. 58
2. Material e Métodos .. 59
 2.1. Matérias-primas ... 59
 2.2. Obtenção das CMS ... 59
 2.3. Formulações e preparação dos Nuggets ... 59
 2.4. Avaliação da composição centesimal e nutricional ... 61
 2.5. Avaliação sensorial ... 62
 2.6. Análises Estatísticas .. 64
3. Resultados e Discussão ... 64
 3.1. Composição centesimal .. 64
 3.2. Composição mineral ... 67
 3.3. Avaliação microbiológica ... 69
 3.4. Avaliação Sensorial .. 70
 3.5. Avaliação do perfil de aminoácidos e digestibilidade dos nuggets 72
4. Conclusões .. 74
5. Referências ... 74
Capítulo 4 - Avaliação da estabilidade de Nuggets elaborados com Carne Mecanicamente Separada de Tilápia do Nilo (Oreochromis niloticus) durante armazenamento

<table>
<thead>
<tr>
<th>Seção</th>
<th>Título</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resumo</td>
<td></td>
<td>78</td>
</tr>
<tr>
<td>1.</td>
<td>Introdução</td>
<td>79</td>
</tr>
<tr>
<td>2.</td>
<td>Material e Métodos</td>
<td>80</td>
</tr>
<tr>
<td>2.1.</td>
<td>Matérias-primas</td>
<td>80</td>
</tr>
<tr>
<td>2.2.</td>
<td>Formulações e preparação dos Nuggets</td>
<td>80</td>
</tr>
<tr>
<td>2.3.</td>
<td>Amostragem e avaliação da estabilidade</td>
<td>82</td>
</tr>
<tr>
<td>2.4.</td>
<td>Análises Estatísticas</td>
<td>83</td>
</tr>
<tr>
<td>3.</td>
<td>Resultados e Discussão</td>
<td>83</td>
</tr>
<tr>
<td>3.1.</td>
<td>Avaliação microbiológica</td>
<td>83</td>
</tr>
<tr>
<td>3.2.</td>
<td>Oxidação Lipídica</td>
<td>84</td>
</tr>
<tr>
<td>3.2.</td>
<td>Avaliação Sensorial</td>
<td>86</td>
</tr>
<tr>
<td>4.</td>
<td>Conclusões</td>
<td>88</td>
</tr>
<tr>
<td>5.</td>
<td>Referências</td>
<td>88</td>
</tr>
</tbody>
</table>

Considerações Finais | 91 |
LISTA DE TABELAS

Capítulo 1

Tabela 1 – Composição centesimal das CMS lavadas e não lavadas de tilápia do Nilo... 28

Tabela 2 – Nitrogênio Não Protéico (mg N/100g) nas CMS de tilápia do Nilo lavadas e não lavadas, com e sem aditivos durante estocagem... 29

Tabela 3 – Bases Nitrogenadas Voláteis (mg N/100g) nas CMS de tilápia do Nilo lavadas e não lavadas, com e sem aditivos, durante estocagem.. 31

Tabela 4 – Contagem total em placas de psicrotróficos (log UFC/g) avaliados nas CMS de tilápia do Nilo lavadas e não lavadas, com e sem aditivos durante estocagem.................. 35

Capítulo 2

Tabela 1 – Composição centesimal das CMS não lavadas e lavadas de carcaças de tilápia do Nilo... 45

Tabela 2 – Nitrogênio Não Protéico (mg N/100g) nas CMS de carcaças de tilápia do Nilo lavadas e não lavadas, com e sem aditivos durante estocagem.. 47

Tabela 3 – Bases Nitrogenadas Voláteis (mg N/100g) nas CMS de carcaças de tilápia do Nilo lavadas e não lavadas, com e sem aditivos durante estocagem.. 48

Tabela 4 – Contagem total em placas de psicrotróficos (log UFC/g) avaliados nas CMS de carcaças de tilápia do Nilo lavadas e não lavadas, com e sem aditivos durante estocagem............................ 52

Capítulo 3

Tabela 1 – Formulações testadas a partir de CMS de tilápias evisceradas e descabeçadas... 60

Tabela 2 – Formulações testadas a partir de CMS de carcaças de tilápias... 60

Tabela 3 – Valores médios para a composição centesimal da Carne Mecanicamente Separada de tilápia do Nilo obtida de peixes eviscerados e descabeçados e de carcaças e de seus produtos (nuggets).. 65
Tabela 4 – Composição mineral (mg/100g) presente na Carne Mecanicamente Separada de tilápias do Nilo obtida de peixes eviscerados e descabeçados e de carcaças e nos seu produtos (nuggets).. 68

Tabela 5 – Teste de ordenação, somatório dos julgamentos dos provadores das amostras de CMS de peixes eviscerados e descabeçados...... 70

Tabela 6 – Teste de ordenação, somatório dos julgamentos dos provadores das amostras de CMS de carcaça... 70

Tabela 7 – Valores médios atribuídos pelos provadores, para as 2 amostras de nuggets de tilápia do Nilo.. 72

Tabela 8 – Composição em aminoácidos e digestibilidade dos produtos elaborados a partir de CMS de tilápia e os requerimentos da FAO/WHO/UNU (1991).. 73

Capítulo 4

Tabela 1 – Formulações utilizadas para o preparo dos nuggets....................... 81

Tabela 2 – Valores médios dos parâmetros microbiológicos avaliados nos nuggets elaborados... 84

Tabela 3 – Médias dos resultados dos testes de aceitação dos nuggets elaborados com CMS de tilápias evisceradas e descabeçadas e CMS de carcaças de tilápias ao longo da estocagem congelada.. 87
LISTA DE FIGURAS

<table>
<thead>
<tr>
<th>Capítulo 1</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figura 1 – Fluxograma de obtenção e estocagem da CMS</td>
<td>26</td>
</tr>
<tr>
<td>Figura 2 – Valores de pH das CMS de tilápia do Nilo lavadas e não lavadas, com e sem aditivos durante estocagem</td>
<td>32</td>
</tr>
<tr>
<td>Figura 3 – Valores de TBARS (mg de aldeído malônico/kg) nas CMS de tilápia do Nilo lavadas e não lavadas, com e sem aditivos durante estocagem</td>
<td>33</td>
</tr>
<tr>
<td>Figura 4 – “Drip” (%) das CMS de tilápia do Nilo lavadas e não lavadas, com e sem aditivos durante estocagem</td>
<td>34</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Capítulo 2</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figura 1 – Fluxograma de obtenção e estocagem da CMS</td>
<td>44</td>
</tr>
<tr>
<td>Figura 2 – Valores de pH das CMS de carcaças de tilápia do Nilo lavadas e não lavadas, com e sem aditivos durante estocagem</td>
<td>49</td>
</tr>
<tr>
<td>Figura 3 – Valores de TBARS (mg de aldeído malônico/kg) nas CMS de carcaças de tilápia do Nilo lavadas e não lavadas, com e sem aditivos durante estocagem</td>
<td>50</td>
</tr>
<tr>
<td>Figura 4 – Drip (%) das CMS de carcaças de tilápia do Nilo lavadas e não lavadas, com e sem aditivos durante estocagem</td>
<td>51</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Capítulo 3</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figura 1 – Ficha utilizada no teste de ordenação</td>
<td>62</td>
</tr>
<tr>
<td>Figura 2 – Ficha utilizada no teste de aceitação da equipe composta por alunos da 3ª a 4ª série</td>
<td>63</td>
</tr>
<tr>
<td>Figura 3 – Ficha utilizada no teste de aceitação da equipe composta por alunos da 5ª a 8ª série</td>
<td>63</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Capítulo 4</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figura 1 – Substâncias Reativas ao Ácido Tiobarbitúrico (TBARS) nos produtos elaborados com CMS de peixe eviscerados e descabeçados (Nuggets I) e de carcaça (Nuggets II) durante a estocagem</td>
<td>85</td>
</tr>
</tbody>
</table>
LISTA DE ANEXOS

Página

Anexo 1 – Aprovação do Comitê de Ética em Pesquisa da EERP/USP 92
RESUMO GERAL

Este estudo teve por objetivo avaliar o aproveitamento global da tilápia aplicando-se a tecnologia de processamento da Carne Mecanicamente Separada (CMS), a partir de duas matérias-primas: peixes que não atingiram o peso comercial de abate (CMS I) e carcaças obtidas a partir de resíduo de filetagem (CMS II). A partir das CMS geradas pelos processamentos, foram avaliadas a influência da lavagem e da adição de eritorbato de sódio e tripolifosfato de sódio na estabilidade das CMS durante 180 dias de armazenamento a -18ºC e desenvolvidos produtos empanados elaborados a base das CMS estudadas. A estabilidade das CMS foi avaliada por análises químicas, físicas e microbiológicas. Os valores de pH e teores de Bases Nitrogenadas Voláteis, Nitrogênio Não Protéico, Substâncias Reativas ao Ácido Tiobarbitúrico e Perda de líquido no descongelamento, e os parâmetros microbiológicos avaliados, permaneceram constantes ou apresentaram em alguns casos apenas pequenos aumentos ao longo da estocagem, não afetando a qualidade das CMS. Independentemente da lavagem ou da adição de aditivos, as CMS mantiveram-se estáveis durante o período de estocagem a -18ºC por 180 dias. Em geral, o processo de lavagem das CMS ocasionou diminuição dos teores de proteína bruta, lipídios e cinzas, alterou a composição mineral provocando a lixiviação de minerais como Fe, Zn, Na, K e Ca. Para o desenvolvimento dos nuggets foram testadas 4 formulações para cada uma das matérias-primas (CMS I e CMS II), variando-se o teor de proteína isolada de soja (1, 3 e 5%) e amido (2 e 4%). Os produtos foram testados sensorialmente por meio de teste de ordenação de preferência em relação à aceitação global. Identificada a melhor formulação para cada matéria-prima estas foram então avaliadas quanto ao seu valor nutricional, segurança microbiológica e aceitação por crianças e adolescentes da rede pública de ensino de Pirassununga, SP. A matéria-prima utilizada nas formulações dos nuggets não influenciou a aceitação dos produtos pelas crianças mais novas, com idade entre 8 e 10 anos. Entretanto, adolescentes com idade entre 11 e 15 anos, preferiram os nuggets elaborados com CMS I. Nutricionalmente, todos os produtos avaliados demonstraram ser excelente fonte de proteína, por seu conteúdo equilibrado de aminoácidos e elevada digestibilidade. Estudou-se ainda a estabilidade dos nuggets durante armazenamento a -18ºC, através de análises microbiológicas, químicas e sensoriais. Os produtos avaliados mantiveram-se aceitáveis para o consumo durante 180 dias de armazenamento a -18ºC; entretanto os produtos elaborados com CMS de carcaças de tilápia mantiveram o tempo de alta qualidade durante os 4 primeiros meses, permanecendo contudo dentro do tempo prático de estocagem até o final do período avaliado.
Palavras chaves: Tilápia do Nilo, Carcaças, Carne Mecanicamente Separada, Armazenamento, Nuggets, Estabilidade.

GENERAL ABSTRACT

The aim of the present study was to evaluate the global use of tilapia applying a process of minced technology (CMS) from two raw materials: fish that did not reach the slaughter weight (CMS I) and carcass from rest of filleting process (CMS II). From these CMS, were carried out the influence of washing and the increase of sodium erythorbate and sodium tripolyphosphate on the CMS stability during 180 days of storage under -18°C and to develop breaded products. The CMS stability was evaluated for chemical, physical and microbiological analysis. Values of pH, total nitrogen volatile bases, non-proteic nitrogen, substances reactive to thiobarbituric acid and Drip, and the microbiological parameters remained constant or increased a little during the storage. That has not affected the CMS quality. After washing or addition of additives, the CMS kept the stability during the period of storage under -18°C by 180 days. The CMS washing process generally caused the decrease of total protein, lipid and ash value and changed the mineral composition permitting the leaching of minerals like Fe, Zn, Na, K and Ca. As far as the nuggets development is concerned, 4 formulations were tested for each of the raw materials (CMS I and CMS II), with the variation of isolated soy protein (1, 3 and 5%) and starch (2 and 4%) values. The products were tested by sensory analysis with the ordering tests related to the global acceptation. After the identification of the best formulation for each raw material, they were evaluated by the nutritional value, microbiological security and children and teenagers from schools of Pirassununga acceptation. The raw materials used in the formulation of nuggets have not influenced the acceptation of the products by younger children, aged between 8 and 10. However, teenagers between 11 and 15 years old, preferred nuggets made with CMS I. Nutritionally, all the products evaluated could be an excellent font of protein, because of the balanced content of amino acid and high digestibility. Nuggets stability during storage at -18°C was also studied, through microbiological, chemical and sensory analysis. The evaluated product kept good for consumption during 180 days of storage at -18°C. However, products made with CMS of tilapia carcass kept the time of high quality during the 4 first months, but were inside the practical time of storage until the end of the period studied.

Key-words: Nile tilapia, carcass, minced, storage, nuggets, stability
OBJETIVO

OBJETIVO GERAL

Avaliar o aproveitamento global da carne de tilápia do Nilo empregando-se a tecnologia de extração da carne mecanicamente separada, utilizando-se como matérias-primas peixes que não atingiram o peso comercial de abate e carcaças obtidas a partir de resíduo de filetagem de tilápia.

OBJETIVOS ESPECÍFICOS

✓ Determinar o rendimento e as características físico-químicas de carne mecanicamente separada de tilápia (peixes abaixo do peso comercial de abate e resíduos de processamento).

✓ Avaliar a influência do processo de lavagem e da adição de eritrobato de sódio e tripolifosfato de sódio sobre a estabilidade das CMS congeladas de tilápia do Nilo.

✓ Elaborar produtos empanados a partir das CMS obtidas e avaliá-los quanto ao seu valor nutricional e a sua aceitação junto aos consumidores.

✓ Avaliar a estabilidade sob congelamento, dos nuggets produzidos, através do acompanhamento de suas alterações químicas, físicas, microbiológicas e sensoriais, por 180 dias.
INTRODUÇÃO GERAL

1. Consumo de pescado e Produção de tilápia do Nilo
 (*Oreochromis niloticus*)

 Segundo Allen (1994), o aumento ou a diminuição do consumo per capita dos produtos de pescado são influenciados principalmente pelas condições sócio-econômicas da população, pelo grau de desenvolvimento da pesca, pela disponibilidade destes produtos no mercado e seu acesso físico e econômico, pela sua apresentação e qualidade, pelos gostos, preferências e hábitos de consumo, pelo conhecimento que se tenha das espécies, sua manipulação e sua preparação. Entretanto, segundo Oetterer (2002) hoje o consumidor passa a usar cada vez mais produtos que preenchem características de ser convenientes, de fácil preparo, higienicamente corretos e ainda que ofereçam vantagem do ponto de vista nutricional.

 A aqüicultura continental é uma atividade em franca expansão no Brasil. Em 2004 foram produzidas 180.730 toneladas de pescado, apresentando um crescimento de 23,55% quando comparado ao produzido pela aqüicultura continental no ano 2000 quando foram produzidas 138.156 toneladas de pescado. Dentre as espécies mais cultivadas, a tilápia do Nilo vem se destacando, em virtude de suas características zootécnicas e de processamento. Em 2000 a produção de tilápia representava cerca de 18,4% do total produzido pela aqüicultura, e em 2004 já representou 38% do total, com uma produção de 69.078 toneladas (IBAMA, 2005).

2. Composição química e valor nutritivo do pescado

 Diversos fatores afetam a composição química dos pescados, sendo alguns de natureza intrínseca, como fatores genéticos, morfológicos e fisiológicos como espécie,
ciclo metabólico, tamanho, sexo, época do ano, etc. ou fatores ambientais como a alimentação (Contreras-Gusmán, 2002; Suzuki, 1987).

Os produtos de pescados são alimentos com alto valor nutritivo, excelentes fontes de proteína, cálcio, ácidos graxos insaturados (mais saudáveis) e vitaminas do complexo B. As proteínas de pescado apresentam elevado valor nutricional, com digestibilidade ao redor de 90%, coeficiente de eficiência protéica superior ao da caseína (2,9), sendo o escore químico de aminoácidos de 100% para diferentes peixes de água doce (El e Kavas, 1996; Machado e Sgarbieri, 1991).

Segundo Suzuki (1987) as proteínas no pescado podem ser divididas em dois grupos, baseado na solubilidade. Cerca de 10 a 20% das proteínas do músculo de peixe são proteínas sarcoplasmáticas solúveis em água, encontradas principalmente no plasma celular. Ao redor de 70 a 80% são proteínas estruturais designadas de miofibrilares, solúveis em soluções salinas e formadoras das miofibrilas, responsáveis pela atividade muscular, e são compostas principalmente pela actina e miosima. Cerca de 2 a 3% das proteínas estruturais são insolúveis em soluções salinas e formam o tecido conectivo, sendo compostas principalmente pelo colágeno. As proteínas miofibrilares são responsáveis pela capacidade de retenção de água e emulsificação nos músculo de pescados (Kuhn e Soares, 2002).

Apesar da carne de pescado possuir certa semelhança na proporção de proteína em relação à carne bovina, suína e da carne de aves, apresenta digestibilidade de 90 – 98%, valores ligeiramente acima da carne bovina e de frango (Contreras-Guzmán, 2002). Esta vantagem tem sido atribuída a maior contribuição da fração miofibrilar, cuja disponibilidade é superior à das proteínas do tecido conectivo. A baixa quantidade de tecido conjutivo, em torno de 3% (Geromel e Forsters, 1982), certamente contribui para uma melhor qualidade nutricional, uma vez que se trata de uma proteína de difícil digestão, mesmo no pescado.

O conteúdo de lipídios no pescado é muito variável, dependendo da espécie, idade, região do corpo, ciclo sexual e alimentação. Em geral o pescado tem um conteúdo médio-baixo de gordura (0,1 a 7%), sendo grande parte desta gordura composta por ácidos graxos monoinsaturados e polinsaturados, entre eles destacam-se os da série ômega-3, que já tem demonstrado um efeito benéfico para a saúde humana, reduzindo o risco de doenças do coração, câncer e artrite (Madrid, et al. 1999; Eymard, et al., 2005). É importante salientar que estes lipídios do tipo ômega-3 são encontrados principalmente em peixes de origem marinha. Entretanto segundo Pigott (1989), peixes dulcícolas cultivados também podem conter estes lipídios, quando alimentados com dietas enriquecidas com ômega-3.
Segundo Contreras-Guzmán (2002) os teores de cinzas nos peixes de água doce apresentam variações que vão desde 0,1 a 3,3%. Esta diferença no conteúdo de minerais se dá devido ao estado em que o peixe é analisado, ou seja, se é analisado inteiro, com ou sem as “espinhas” ou com ou sem pele (Borgstrom, 1962). Com relação aos minerais, a carne de pescado é considerada uma fonte valiosa de cálcio e fósforo em particular, apresentando também quantidades razoáveis de sódio, potássio, manganês, cobalto, zinco, ferro e iodo. Peixes de água doce contêm, eventualmente, teores mais baixos de sódio e potássio quando comparados a variedades de água salgada (Contreras-Guzmán, 2002).

3. Carne Mecanicamente Separada de Pescado

O processamento industrial da tilápia no Brasil iniciou-se na década de 90, no Oeste do Paraná, priorizando-se apenas uma forma de beneficiamento, ou seja filés de tilápia congelados, a qual permanece até os dias de hoje. O rendimento em filé da tilápia é baixo (30 a 33%) e consequentemente gera uma grande quantidade de resíduos (Oetterer, 2002). Somado a este desperdício, ocorrem perdas devido a não utilização de animais com peso reduzido, uma vez que o crescimento na tilápia não ocorre de forma homogênea, sendo encontrados animais de diversas categorias de peso na despescada. Tradicionalmente, os resíduos da filetagem ou de conservas de pescado são destinados à produção de farinha de peixe para alimentação animal, ou simplesmente descartados em lixões, gerando um problema ambiental. Desta forma, ocorrem perdas econômicas e sociais. Econômicas porque os resíduos são considerados no cálculo do filé, gerando produtos muito caros inacessíveis à maior parte da população; e sociais pelos danos causados ao meio ambiente. Uma alternativa simples para o aproveitamento destes resíduos no Brasil, tem sido a elaboração de silagem de peixe e sua posterior utilização na nutrição animal. No entanto, na carcaça restante após a filetagem sobram ainda músculos de boa qualidade que poderiam ser utilizados para a alimentação humana. A aplicação do processo de extração de Carne Mecanicamente Separada (CMS) por meio do uso de máquinas separadoras de carne e ossos, destaca-se como um processo atraente pela possibilidade de maior recuperação de carne em relação à obtida pelos métodos tradicionais de filetagem e uma boa opção de utilização dos peixes que estão abaixo do peso comercial.

Para se obter uma CMS de boa qualidade, deve-se dispor de matéria-prima em ótimas condições de frescor, aplicando, em seguida, um processo que garanta as normas higiênico-sanitárias para um produto tão perecível que é o pescado (Morais e Martins, 1981). O frescor em pescados diminui com tempo e condições de
armazenamento. Segundo Lee (1986) produtos de melhor qualidade são obtidos quando os peixes são processados com 1 a 2 dias de armazenamento, entretanto se o pescado for adequadamente armazenado com gelo e mantido a 0°C, este período pode ser de até 5 dias. Borderías e Tejada (1987) relataram que o pescado antes de ser processado deve ser descabezado e eviscerado, limpo e livre de restos de intestinos, peritônio, coágulos de sangue e outras impurezas. Para assegurar a limpeza do pescado os autores recomendam lavá-los duas vezes, uma imediatamente depois do descabezamento e evisceração e outra antes de introduzir o pescado na máquina separadora de músculos.

A Carne Mecanicamente Separada (CMS) de pescado pode ser definida como sendo um produto obtido a partir de uma única espécie, ou mistura de espécies de peixes com características sensoriais similares, através do processo de separação mecânica da parte comestível, gerando partículas de músculo isenta de ossos, vísceras, escamas e pele (FAO/WHO, 1994). As principais vantagens de utilizar a CMS de pescado em relação ao filetado são a redução dos custos pelo maior rendimento em carne, a possibilidade de aproveitamento de diversas espécies e uma grande linha de produtos que podem ser comercializados, tais como: “fishburger”, salsichas, empanados e enlatados, tirinhas de peixe, nuggets etc. (Marchi, 1997). A produção de CMS em larga escala permite a elaboração de produtos de alto valor agregado, que possam atingir determinados segmentos de mercado, ou mesmo quando transformados em produtos mais simples, que atendam à necessidade social de demanda por proteína de origem animal de primeira qualidade (Kuhn e Soares, 2002). Os produtos derivados de pescado quando elaborados de forma correta, conservam a maioria das características nutricionais do pescado (Madrid, et al. 1999).

A CMS de pescado pode ser obtida a partir de peixes eviscerados e descabezados e de resíduos de filetagem (Grantham, 1981). A utilização de peixes de baixo valor comercial ou oriundos da pesca de arrasto de camarão vêm sendo estudada por alguns autores como matéria-prima de baixo custo para a obtenção de CMS (Rodríguez e Bello, 1987; Simões et al., 1998; Peixoto et al., 2000; Jesus et al., 2001). A extração de CMS a partir de resíduos do filetamento, aumenta o rendimento em carne, de 9,5 a 20% (Oetterer, 1999). Extrair-se a CMS a partir do peixe inteiro, obtêm-se um rendimento de 47% (Ohshima et al., 1993).

O processo de separação da CMS pode ser realizado em equipamentos de vários tipos. Um modelo frequentemente utilizado é o que separa a carne por meio de pressão exercida por uma cinta de borracha, contra a superfície externa de um cilindro metálico perfurado com orifícios de 3 a 5 mm de diâmetro. A matéria-prima é pressionada pela correia e a CMS passa para o interior do cilindro. Outro modelo que
também pode ser utilizado separa a CMS por meio de pressão exercida por uma rosca no interior de um cilindro perfurado com orifícios de aproximadamente 1mm. O material é pressionado pela rosca contra esse cilindro perfurado e a CMS passa através dos orifícios para fora do cilindro enquanto ossos, pele e escamas são descartados no final da rosca.

As dimensões dos orifícios do cilindro afetam o rendimento e a qualidade da CMS, especialmente quanto à contaminação com ossos e escamas. Segundo Lee, (1986) a utilização de orifícios menores (1-2 mm) resulta em bons rendimentos de extração, obtendo um produto quase livre de tecidos conectivos, peles e ossos. Entretanto, devido ao menor tamanho das partículas musculares, ocorrem maiores perdas de músculo durante o processo de lavagem, diminuindo o rendimento final. Outra conseqüência da utilização de orifícios pequenos na extração da CMS de pescados é uma maior desintegração do músculo, que pode afetar a cor e principalmente a textura da CMS (Tenuta-Filho e Jesus, 2003).

A utilização do processo de lavagem da CMS com água após sua obtenção tem como objetivo a remoção parcial ou total das proteínas sarcoplasmáticas, pigmentos, enzimas, sangue, lipídios e componentes flavorizantes (Tenuta-Filho e Jesus, 2003; Grantham, 1981), aumentando a estabilidade, melhorando a qualidade e mantendo as características funcionais do alimento. A cor e o odor, fatores decisivos para a aceitabilidade da CMS de peixes pelágicos, podem ser melhoradas pela lavagem com água (Kelleher et al., 1992). O processo de lavagem é essencial para a obtenção do surimi, matéria-prima necessária para a elaboração de produtos tipo kamaboko, assim como produtos de imitação de carne de camarão, caranguejo e lula.

Após o processo de lavagem o excesso de água é retirado por meio de prensagem ou centrífugação, até que o produto tenha teor de umidade em torno de 80-84%. Segundo Ohshima et al. (1993) e Lee (1986) a umidade após o processo de desidratação, e a qualidade do produto final dependem de alguns fatores associados à água utilizada na lavagem, como: temperatura, pH e força iônica da água da lavagem e relação CMS:água.

É importante observar que a lavagem da CMS conduz a perdas de proteínas e de outros nutrientes solúveis, incluindo vitaminas, minerais e ácidos graxos livres (Grantham, 1981). Gryschek et al. (2003) observaram diminuições nos teores de proteína, lipídios e cinzas de aproximadamente 26, 70 e 67%, respectivamente durante o processo de lavagem de CMS de tilápia do Nilo. Os autores relataram a diminuição dos teores de P, Mg, K, Na e Fe nas CMS lavadas. Adu et al. (1983) relataram perdas de sólidos de aproximadamente 37% durante a lavagem de CMS de “rockfish” (*Sebastes. sp*), tendo a maior redução sido encontrada nas cinzas (86%) e nos lipídios (76%). Entretanto, os autores observaram que nem a composição dos aminoácidos e nem a taxa da eficiência protéica (PER) foram afetados pelo processo de lavagem, concluindo que apesar da intensa perda de sólidos durante a lavagem ter alterado a composição da CMS, a qualidade da proteína não foi afetada.

Hassan e Mathew, (1999) estudando as características físico-químicas, microbiológicas e sensoriais de CMS elaboradas com carpa comum (*Cyprinus carpio*), tilápia (*Oreochromis mossambicus*), perca (*Nemipterus japonicus*) e tubarão (*Scoliodon sorarakowah*) observaram variação sensorial entre as CMS de peixes estudadas. Os autores relataram a possibilidade de adotar metodologias diferentes para a extração e processamento das CMS, para cada espécie de peixe, com a finalidade de melhorar as qualidades organolépticas do produto.

Eymard et al. (2005) avaliando o desenvolvimento da oxidação lipídica durante a produção de surimi de “Mackerel” (*Trachurus trachurus*) constataram que o processo de lavagem removeu a maior parte dos lipídios, alterando a composição lipídica da CMS. Os autores observaram aumento da concentração de ácidos graxos polinsaturados e diminuição do teor de ácidos graxos monoinsaturados, no surimi em relação a CMS não lavada, sendo que os teores de ácidos graxos saturados mantiveram-se constantes. Os autores relataram ainda que os fosfolipídios (lipídios polares) foram menos lixiviados que os lipídios neutros, durante a lavagem, pois os fosfolipídios se ligam a proteínas e são menos removidos durante o processo de lavagem.

A lixiviação, ocorrida durante a lavagem de CMS de pescado não previne o aumento da rancidez oxidativa ou dos valores de TBARS (Substâncias Reativas ao
Ácido Thiobarbitúrico. Entretanto Tseo et al. (1983) avaliando o efeito da lavagem na qualidade de CMS de mullet (*Mugil cephalus*) relataram valores de TBARS significativamente menores nas CMS lavadas, quando comparadas com CMS não lavadas, indicando que a lavagem aumenta significativamente a qualidade da CMS congelada.

Gryschek (2001) estudando efeito do processo de lavagem da CMS de tilápia do Nilo e tilápia Vermelha durante 180 dias de estocagem a -16°C, observaram menores valores iniciais de TBARS nas CMS lavadas, entretanto, constataram que tanto as CMS lavadas como as não lavadas permaneceram estáveis e próprias para o consumo durante o período avaliado.

É importante observar que o processo de lavagem da CMS gera grande quantidade de efluente líquido, contendo proteínas, ácidos graxos, minerais e outros nutrientes solúveis. E estes efluentes devem ser tratados adequadamente antes de serem descartados, conforme a legislação ambiental em vigor.

4. Estocagem da Carne Mecanicamente Separada de Pescado

A extração da CMS causa a ruptura do tecido muscular, danificando sua estrutura e colocando-o em contato direto com as enzimas intramusculares, sangue, pigmentos e oxigênio, tornando assim a CMS um excelente meio para o desenvolvimento de microorganismos e, portanto um produto altamente deteriorável. Sendo assim, a CMS de pescado deve ser processada imediatamente após seu preparo, ou mantida congelada até seu uso efetivo. A estocagem sob congelamento não interrompe completamente todas as possíveis alterações na qualidade. As reações que induzem as alterações oxidativas continuam a ocorrer, mesmo em baixas temperaturas (Kurade e Barranowski, 1987).

No pescado, a maioria dos lipídios é composta por ácidos graxos altamente insaturados muito suscetíveis à oxidação, formando compostos com sabor característico que causam alterações na cor e são muito reativos com outros compostos, como proteínas causando-lhe a desnaturação (Burt e Hardy, 1992), diminuindo direta ou indiretamente a qualidade sensorial do pescado e de seus produtos (Richards e Hultin, 2002). Ogawa e Maia (1999) relataram que os primeiros compostos produzidos durante a oxidação são os peróxidos sob forma de hidroperóxidos. Os peróxidos são relativamente instáveis, polimerizando-se formando grandes moléculas ou decompondo-se em ácidos graxos de baixo peso molecular, aldeídos, cetonas, compostos carboxílicos, etc. Estes compostos formados têm um gosto ácido, amargo, e
um odor desagradável, fazendo com que o produto adquira um sabor (flavour) desagradável, o ranço.

Durante o congelamento e estocagem da CMS também pode ocorrer a desnaturação das proteínas. Em geral, a desnaturação é uma conseqüência da agregação de proteínas miofibrilares, com a formação de pontes de hidrogénio, ligações iônicas, ligações hidrofóbicas e possivelmente de pontes dissulfeto (Tenuta-Filho e Jesus, 2003). A desnaturação das proteínas afeta suas propriedades funcionais, diminuindo a capacidade de retenção de água e solubilidade, afetando assim a qualidade final do produto (Lanier, 1986). Segundo Ogawa e Maia (1999) a desnaturação das proteínas pode ocorrer através da reação dos ácidos graxos livres, formados pela hidrólise dos lipídios, com as proteínas (actomiosina), ou ainda, os compostos da oxidação dos lipídios podem reagir com as proteínas danificando-as.

Eymar et al. (2005) relatam a dificuldade de manter a qualidade durante os processos de lavagem do surimí de peixes gordos. Inicialmente, durante a mistura e agitação, as membranas celulares são rompidas e as membranas lipídicas são expostas a agentes pró-oxidantes. Oxigênio também é incorporado e a temperatura durante o processo tende a aumentar, promovendo a oxidação lipídica. Os pró-oxidantes e antioxidantes solúveis em água são removidos durante a lavagem. Sendo assim, a CMS de pescado após a lavagem perde a proteção natural ficando mais susceptível a oxidação. Entretanto, segundo os autores, o processo de lavagem também remove significativamente os produtos gerados pela oxidação lipídica.

Martí de Castro et al. (1997) avaliaram os efeitos da temperatura de congelamento (-18 ou -40°C) e da temperatura de estocagem (-12 ou -18) em CMS de sardinha (Sardina pilchardus) armazenadas durante seis meses. Observaram que a evolução da capacidade de retenção de água foi similar em todos os lotes, independentemente das temperaturas de congelamento e estocagem. Entretanto, a oxidação lipídica foi influenciada pela temperatura de congelamento e temperatura de estocagem, observando melhor estabilidade lipídica nas CMS congeladas e estocadas em temperaturas mais baixas. Entretanto, Jesus et al. (2001) estudando a estabilidade de CMS de peixes amazônicos durante 150 dias de estocagem congelada a -36°C e a -18°C, concluíram que as CMS mantiveram-se estáveis sob os aspectos químicos e microbiológicos durante o período, independentemente da temperatura de estocagem, permanecendo em condições de consumo ao fim do período.

Siddaiah et al. (2001) estudando alterações nos lipídios e proteínas em CMS de carpa (Hypophthalmichthys molitrix) durante 180 dias de estocagem a -18°C observaram que os aumentos dos valores de peróxido e dos ácidos graxos livres ao longo da estocagem afetaram significativamente (P<0,01) a solubilidade das proteínas.
miofibrilares, a deterioração do odor e textura. Entretanto os autores constataram que as CMS permaneceram aceitáveis sensorialmente durante o período de estocagem. Segundo Mai e Kinsella (1980) o acúmulo de ácidos graxos livres contribuem para o surgimento do “off flavour” e causam alterações na textura ligando-se as proteínas.

Reddy et al. (1992) avaliando CMS de perca rosa (*Nemipterus japonicus*) congelada e armazenada a -18°C por 180 dias, relataram que durante o armazenamento ocorreram diminuições na capacidade de emulsificação e retenção de água da CMS, além da diminuição das notas dos atributos sensoriais avaliados. Os autores concluíram que apesar da avaliação sensorial da cor e aparência geral das CMS permanecerem aceitáveis durante o período de estocagem, o produto foi rejeitados pelos provadores nos testes de textura, odor e sabor, após 90 dias de armazenamento.

Não é possível evitar a reação de oxidação ou a desnaturação protéica, durante o armazenamento, mas existe a possibilidade de retardá-las. A utilização de crioprotetores e de antioxidantes tradicionais, naturais ou artificiais, associados ou não de outros aditivos, vem sendo estudados por diversos autores (Kurade e Baranowski, 1987; Ramanathan e Das, 1992; Kelleher et al., 1992; Abdel-aal, 2001; Herrera e Mackie, 2004; Herrera et al., 2006) para avaliar a estabilidade lipídica e protéica da CMS de pescado.

Abdel-aal (2001) avaliou o efeito dos antioxidantes tripolifosfato de sódio, ácido ascórbico, ácido cítrico e Na₂EDTA na qualidade de CMS congeladas de “Karmout” (*Claries lazera*) durante 6 meses de estocagem. O autor constatou que a estocagem das CMS por congelamento aumentou a perda por cozimento e diminuiu a solubilidade da proteína e sua capacidade de retenção de água. Entretanto observou que o ácido ascórbico (0,5%) e o Na₂EDTA (0,1%) foram os antioxidantes mais efetivos para retardar a oxidação. O tripolifosfato de sódio diminuiu a perda por cozimento e aumentou a solubilidade da proteína e a capacidade de retenção de água da CMS. Os sais de fosfatos aumentam a capacidade de retenção de água das proteínas, controlando o pH mantendo-o em torno de 7,0-7,3 e ajustando a força iônica entre 0,06 e 0,1. Tais níveis de pH e força iônica são ideais para reduzir a desnaturação das proteínas (Ogawa e Maia, 1999).

O efeito da adição de diferentes níveis de sal (NaCl) e fosfato de potássio (K₂HPO₄) na emulsão de CMS de carpa comum (*Cyprinus carpio L.*) foi avaliado por Ypar et al. (2006). Os autores relataram que a adição de 2% de sal e 0,5% de fosfato na preparação de produtos emulsionados de carpa afeta positivamente a propriedade de emulsão, melhorando o potencial de utilização deste peixe.
Herrera e Mackie (2004) relataram que a polidextrose, lactitol, xarope de
glucose e uma mistura de sacarose e sorbitol foram altamente eficientes como
crioprotetores, prevenindo a alterações no extrato de actomiosina de truta arco-iris
(*Oncorhynchus mykiss*) durante 8 semanas de armazenamento a -20°C, sendo a
polidextrose o crioprotetor mais efetivo. Sultanbawa e Li-Chan (1998) observaram que
misturas contendo 4-12% de sacarose, sorbitol, Litesse™ e lactitol em diversas
proporções asseguraram boa formação de gel em surimi de bacalhau (*Ophiondon
elongatus*) após 4 meses de estocagem a -18°C. Os autores concluíram que a mistura
contendo 4% de crioprotetores (sacarose, sorbitol, Litesse® e lactitol, com a proporção
1:1:1:1) apresentou a vantagem de conter menor doçura e menor custo.

O efeito crioprotetor das misturas sacarose/sorbitol (1:1) e
maltodextrina/sorbitol (1:1) sob a qualidade funcional do “surimi” foram avaliados por
Medina e Garrote (2002) durante o congelamento e armazenamento a -21°C de “surimi”
de surubim (*Pseudoplatystoma coruscans*). Os resultados mostraram que as CMS
contendo as duas misturas crioprotetoras apresentaram ótimo comportamento durante o
armazenamento, entretanto o “surimi” contendo a mistura sacarose/sorbitol apresentou
maior resistência aos 45 e 90 dias de armazenamento, quando comparados com os
“surimi” contendo a mistura maltodextrina/sorbitol.

Segundo Herrera et al. (2006), a adição de 8% de maltodextrina em CMS de
“Mackerel” do atlântico (*Scomber scombrus*) retardou a oxidação lipídica, e preveniu
alterações nas proteínas e na cor da CMS durante armazenamento sob congelamento.
Os autores relataram que apesar da maltodextrina ter mostrado uma alta eficiência na
inibição da oxidação lipídica, ela mostrou uma menor eficiência na prevenção da perda
de solubilidade protéica quando comparada com a mistura de 1:1 de sacarose e sorbitol.
Quando concentrações menores de maltodextrina (5%) foram empregadas, apenas a
oxidação foi efetivamente controlada, ocorrendo entretanto alterações na cor e nas
proteínas.

Rodríguez e Bello (1987) avaliando a estabilidade de CMS de pescado
congeladas a -40°C e estocadas a -10 ou -30°C, relataram que o maior efeito
deteriorativo na CMS durante o armazenamento se relacionou com a desnaturação das
proteínas e a diminuição da capacidade de retenção de água. Entretanto estas
mudanças deteriorativas diminuíram quando a CMS foi armazenada a -30°C. Relataram
ainda que a adição de agentes crioprotetores (tripolifosfato, sal e amido) induziu a
apenas um pequeno efeito protetor nas proteínas, melhorando apenas a capacidade de
retenção de água das mesmas.

Neiva (2003) avaliando a estabilidade de CMS de sardinha (*Sardinella
brasiliensis*) durante 180 dias de estocagem sob congelamento constatou que não
houve diferença entre a CMS sem e com antioxidantes (0,01% de TENOX-TBHQ, 0,1% de eriturbato de sódio e 0,03% de α-tocoferol). O autor relata que apenas a embalagem a vácuo foi suficiente para manter a estabilidade oxidativa durante o período de estocagem.

Segundo Pazos et al. (2005) o α-tocoferol, presente no músculo de pescado é uma barreira endógena importante inibindo a oxidação lipídica. A preservação do α-tocoferol promovida pelos polifenóis presentes na uva parece ser uma relevante maneira de aumentar a estabilidade oxidativa em peixes gordos durante o armazenamento. Os autores avaliaram a utilização de polifenóis obtidos de uva para preservar os antioxidante endógenos nos músculos de “mackerel” Scomber scombrus e Trauchurus trachurus durante armazenamento a -10ºC, e concluíram que as procianidinas oligoméricas (flavanol oligomers) mantiveram estáveis as CMS estudadas durante o armazenamento e preservaram importantes componentes como a vitamina E.

5. Estabilidade de produtos elaborados com CMS

A CMS de pescado pode ser utilizada como matéria-prima para a obtenção de diversos produtos como “fishburger”, salsichas, empanados e enlatados, tirinhas de peixes, nuggets etc. ou como ingredientes na composição de “fish cakes”, lasanhas, risoles e croquetes de pescado. Tais produtos podem ser direcionados para o atendimento do consumidor institucional, como escolas, creches, asilos, restaurantes, hospitais, etc. devido ao seu alto valor nutricional, ausência de espinhas e de sabor suave.

Segundo Morais e Martins (1981) a utilização da CMS na elaboração de produtos de pescado tem a vantagem de propiciar maior flexibilidade de processamento, em termos de se poder controlar a suculência, textura, sabor e aroma, dependendo do tipo de produto desejado e do tipo de pescado utilizado. A recuperação das proteínas de pescado, de espécies de baixo valor comercial ou dos subprodutos de sua industrialização e sua utilização na elaboração de produtos semi-prontos, como o nuggets, constitui-se numa alternativa promissora, considerando que a demanda de produtos alimentícios será cada vez maior, principalmente para aqueles com proteína de alto valor nutricional e valor tecnológico agregado (Simões et al., 1998).

Sehgal e Sehgal (2002) elaboraram três produtos (“fish patty”, “fish finger” e “fish salad”) a partir de CMS de carpas (Cyprinus carpio) e os compararam sensorialmente com um produto referência (“fish pakoura” - prato típico a base de carpa). Os resultados indicaram que o desenvolvimento de produtos de valor agregado
elaborados a partir de CMS de carpa aumentaram significativamente a aceitação global, quando comparados com o produto referência. Segundo os autores, o desenvolvimento de produtos de valor agregado melhora significativamente as condições sócio-econômicas dos aquicultores envolvidos, além de garantir um mercado para o pescado produzido.

Simões et al. (1998) elaboraram hambúrgueres formulados com CMS lavada de pescada olhuda (*Cynoscion striatus*) obtendo boa aceitação sensorial. Os autores concluíram que a CMS de pescado pode ser utilizada na elaboração de produtos alimentícios tendo em vista seu bom conteúdo protéico e boa aceitação sensorial.

A utilização de pescada (*Macrodom ancylodon*) de baixo valor comercial na obtenção de surimi para elaboração de moldado sabor camarão foi estudada por Peixoto et al. (2000). De acordo com os autores, o moldado sabor camarão produzido obteve elevada aceitação sensorial, demonstrando que o surimi pode ser empregado como matéria-prima de boa qualidade na elaboração de produtos processados, constituindo-se uma alternativa viável para o aproveitamento do pescado de baixo valor comercial.

Yerlikaya, et al. (2005) verificaram diminuição na qualidade de “patties” de anchova durante armazenamento a 4°C, sendo que o produto permaneceu aceitável sensorialmente até o 6º dia do estudo. Os autores relataram que a qualidade destes produtos depende diretamente da qualidade da matéria-prima e das condições de estocagem.

Tang et al. (2001) avaliaram a ação antioxidante de catequinas (de chá verde) em “patties” elaboradas com CMS de “mackerel” e de badejo durante 10 dias de armazenamento a 4°C. Teores de 300mg/kg de catequinas controlaram a oxidação lipídica das “patties” armazenadas, e ainda inibiram significativamente (P<0,01) o efeito pró-oxidante do NaCl. Entretanto, nas “patties” elaboradas com “mackerel”, que continham elevados níveis de lipídios (aproximadamente 20%) e elevados teores de ácidos graxos insaturados, os autores sugerem a utilização de concentrações mais elevadas de catequinas para garantir uma melhor estabilidade lipídica.

Tokur et al. (2004) avaliando alterações na qualidade de “fishburger” produzidos a partir de CMS de tilápia (*Oreochromis niloticus*) durante 8 meses de armazenamento a -18°C, constataram pequenos aumentos significativos nos teores de TBARS e ácidos graxos livres durante o período, entretanto os parâmetros sensoriais avaliados (cor, odor, sabor, textura e aceitação geral) permaneceram constantes. Os autores concluíram que os “fishburger” permaneceram com boas qualidades químicas e sensoriais durante o armazenamento.
Cakli et al. (2005) avaliaram mudanças na qualidade de “fish fingers” elaborados com sardinha (*Sardina pilchardus*), badejo (*Merlangius merlangus*) e “pike perch” (*Sander lucioperca*) durante 8 meses de estocagem a -18ºC. Os autores relataram que apesar dos parâmetros microbiológicos e químicos avaliados permanecerem dentro dos limites aceitáveis durante a estocagem para todos os produtos estudados, a análise sensorial mostrou que os “fish fingers” elaborados com sardinha foram rejeitados sensorialmente ao fim da estocagem devido ao desenvolvimento de ranço durante esse período, enquanto que os “fish fingers” de badejo e “pike perch” permaneceram aceitáveis após 8 meses.

Tokur et al. (2006) estudaram as alterações químicas e sensoriais em “fish fingers” elaborados com CMS de carpa (*Cyprinus carpio*) submetida ou não ao processo de lavagem, estocadas a -18ºC por 5 meses. Os autores relataram que os “fish fingers” permaneceram aceitáveis durante o período avaliado, entretanto relataram que os “fish fingers” elaborados com CMS lavada obtiveram melhores notas dos provadores.

A revisão apresentada serviu como ferramenta para o direcionamento deste trabalho que está dividido em quatro capítulos. No primeiro, “Efeito da lavagem e da adição de aditivos sobre a estabilidade de Carne Mecanicamente Separada de tilápia do Nilo (*Oreochromis niloticus*) durante estocagem a -18ºC”, estudou-se a estabilidade durante armazenamento de Carne Mecanicamente Separada de tilápia do Nilo abaixo do peso de comercialização (400 gramas) avaliando o efeito da lavagem e da adição de eritorbato de sódio e tripolifosfato de sódio na CMS. No segundo capítulo, “Influência da lavagem e da adição de aditivos na estabilidade de Carne Mecanicamente Separada de carcaças de tilápia do Nilo (*Oreochromis niloticus*) durante estocagem”, determinou-se o efeito da lavagem e da adição de eritorbato de sódio e tripolifosfato de sódio sobre a estabilidade de Carne Mecanicamente Separada obtida de resíduos do filetamento de Tilápia do Nilo (carcaças) durante 180 dias de armazenamento a -18ºC. No terceiro capítulo, “Desenvolvimento e avaliação nutricional de nuggets produzidos a partir de Carne Mecanicamente Separada de tilápia do Nilo (*Oreochromis niloticus*)”, desenvolveu-se formulações de nuggets com as duas matérias-primas estudadas e avaliou-os quanto ao seu valor nutricional, a sua aceitação sensorial e quanto à segurança microbiológica. No quarto capítulo, “Avaliação da estabilidade de nuggets elaborados com Carne Mecanicamente Separada de tilápia do Nilo (*Oreochromis niloticus*) durante armazenamento”, elaborou-se nuggets a partir das duas matérias-primas estudadas nos capítulos anteriores e avaliou-se a estabilidade destes produtos durante 180 dias de armazenamento a -18ºC.
6. Referências

FAO/WHO *Draft revised Standard for quick frozen blocks of fish fillets, minced fish flesh and mixtures of fillets and minced fish flesh* (Appendix IV). Codex Alimentarius

HERRERA, J. R., MACKIE, I. M. Cryoprotection of frozen-stored actomyosin of farmed rainbow trout (Oncorhynchus mykiss) by some sugars and polyols. Food Chemistry. v. 84, p. 91-97, 2004.

CAPITULO 1 - Efeito da lavagem e da adição de aditivos sobre a estabilidade de Carne Mecanicamente Separada de Tilápia do Nilo (Oreochromis niloticus) durante estocagem a -18°C

RESUMO

Este estudo teve como objetivo avaliar a influência da lavagem e da adição de eritorbato de sódio e tripolifosfato de sódio na estabilidade de Carne Mecanicamente Separada (CMS) de tilápia de Nilo (Oreochromis niloticus) durante 6 meses de armazenamento a -18°C. A estabilidade foi avaliada por análises microbiológicas e análises de nitrogênio não protéico (NNP), bases nitrogenadas voláteis (BNV), substâncias reativas ao ácido tiobarbitúrico (TBARS), determinação do pH e Drip (perda de água no descongelamento). O processo de lavagem ocasionou redução de aproximadamente 41, 44 e 66% nos teores de proteína bruta, lipídeos e cinzas, respectivamente, reduzindo também os valores iniciais de NNP, BNV e TBARS. No armazenamento foram observados aumentos (p≤0,05) nos teores de NNP, BNV e pH em praticamente todos os tratamentos, exceto na CMS lavada com aditivos, que não apresentou aumentos significativos nos teores de NNP e pH. O uso de aditivos nas CMS diminuiu o “drip” ao longo do armazenamento, mas não alterou (p>0,05) os teores de TBARS. Os parâmetros microbiológicos avaliados não ultrapassaram os limites permitidos para o consumo. As CMS permaneceram estáveis e em boas condições para consumo, independentemente da inclusão de aditivo, sendo viável sua estocagem a -18°C por 180 dias.

Palavras chaves: Tilápia do Nilo, Carne Mecanicamente Separada, Armazenamento.

1. INTRODUÇÃO

A aquicultura continental é uma atividade em franca expansão no Brasil. Em 2004 foram produzidas 180.730 toneladas de pescado, apresentando crescimento de 23,55% comparado ao produzido pela aquicultura continental no ano 2000, quando foram produzidas 138.156 toneladas de pescados. Dentre as espécies mais cultivadas, a tilápia do Nilo vem se destacando, em virtude de suas características zootécnicas e de
processamento. Em 2000 a produção de tilápia representava cerca de 18,4% do total produzido pela aquicultura, aumentando para 38% em 2004, com valores próximos a 69.000 toneladas (IBAMA, 2005).

O crescimento das tilápias em cativeiro ocorre de forma heterogênea, de modo que, no momento da despescas encontra-se animais abaixo do peso de comercialização. A produção de Carne Mecanicamente Separada (CMS) utilizando tilápias com peso entre 50 e 200g pode representar uma alternativa tecnologicamente viável para este problema, podendo reduzir os custos de produção. Alem disso, pode-se apresentar como uma boa opção para a indústria de processamento, pois a CMS de pescado pode ser empregada na confecção de uma grande linha de produtos, tais como: fishburger, salsichas, empanados e enlatados, tirinhas de peixe, nuggets etc. (Marchi, 1997; Siddaiah et al. 2001).

O processo de lavagem pode melhorar a qualidade e as características funcionais da CMS de pescado (Hassan e Mathew, 1999), removendo sangue, pigmentos, proteínas sarcoplasmáticas, componentes solúveis, lipídios e outras impurezas que podem catalisar a degradação protéica, a oxidação lipídica e causar coloração indevida no produto final (Adu et al., 1983; Lee, 1986; Suzuki, 1987; Borderías e Tejada, 1987; Ohshima et al., 1993; Tenuta-Filho e Jesus, 2003). Entretanto, essa lavagem conduz a perda de proteína e outros nutrientes solúveis, gerando efluente líquido abundante (Ohshima et al., 1993; Tenuta-Filho e Jesus, 2003). Simões et al. (1998) observaram diminuições nos teores de proteína, lipídios e cinzas de aproximadamente 53%, 62% e 89%, respectivamente durante o processo de lavagem de CMS de pescada olhuda. Adu et al. (1983) relataram perdas de sólidos de aproximadamente 37% durante a lavagem de CMS de “rockfish” (Sebastes. sp), com diminuição dos teores de P, Mg, K e Na nas CMS lavadas. Segundo Eymard et al. (2005) o processo de lavagem remove os pró-oxidantes e antioxidantes solúveis em água, tornando a CMS mais susceptível a oxidação. Entretanto, segundo os autores, o processo de lavagem também remove significativamente os produtos gerados pela oxidação lipídica durante a extração da CMS. Gryschek et al. (2003) observaram que independente da lavagem da CMS de tilápia estas permaneceram estáveis e próprias para o consumo durante 180 dias de armazenamento a -16ºC.

A estocagem sob congelamento não interrompe completamente todas as possíveis alterações na qualidade da CMS de pescado. As reações que induzem as alterações oxidativas e a desnaturação protéica continuam a ocorrer, mesmo em baixas temperaturas (Kurade e Barranowski, 1987; Kuhn e Soares, 2002). A incorporação de antioxidantes e crioprotetores nas CMS de pescado pode melhorar a estabilidade durante o congelamento (Anese e Gormley, 1996; Tenuta-Filho e Jesus, 2003). Muitas...
substâncias incluindo ácido ascórbico, eritorbato de sódio, polifosfatos, ácido cítrico e sorbitol, entre outras, tem sido avaliadas para controlar a oxidação lipídica e aumentar a estabilidade protéica em CMS de pescados durante o congelamento (Rodríguez e Bello, 1987; Castro et al., 1997; Sultanbawa e Li-Chan, 1998; Abdel-aal, 2001; Herrera e Mackie, 2004).

O objetivo deste trabalho foi avaliar a estabilidade durante armazenamento de Carne Mecanicamente Separada congelada de tilápia do Nilo abaixo do peso de comercialização avaliando o efeito da lavagem e da adição de eritorbato de sódio e tripolifosfato de sódio na CMS.

2. MATERIAL E MÉTODOS

2.5. Armazenamento e Amostragem

Foram utilizadas aproximadamente 400 tilápias do Nilo (*Oreochromis niloticus*), com peso médio de 136 g (±23g), provenientes de pisciculturas da região de Pirassununga (São Paulo, Brasil). Os peixes foram retirados dos viveiros, lavados com água corrente e abatidos por choque térmico. As tilápias foram então colocadas em caixas térmicas com gelo e levadas ao Laboratório de Processamento de Produtos Aquáticos da PCAPS/USP, em Pirassununga/SP. No laboratório, os peixes foram lavados com água clorada (5ppm), descabeçados, eviscerados e lavados novamente. Logo após a limpeza, a CMS de tilápia foi extraída em despolpadora mecânica Hi-Tech 250 obtendo-se aproximadamente 25 kg de CMS.

Após este processo inicial a CMS obtida foi dividida em dois tratamentos:

Tratamento A → CMS NÃO LAVADA. Foram separados em dois tratamentos: no primeiro (tratamento A I) a CMS foi embalada em saco de polietileno em porções de 200g, congelada em ultra-congelador a – 40°C e estocadas a –18°C durante 6 meses; no segundo tratamento (A II), eritorbato de sódio (0,1%) e tripolifosfato de sódio (0,5%) foram adicionados e homogeneizados à CMS, que posteriormente foi embalada, congelada e armazenada nas mesmas condições que o tratamento A I.

Tratamento B → CMS LAVADA. a CMS obtida foi lavada com água gelada na proporção de 3L de água para 1kg de CMS. Agitou-se por 2 minutos e deixou-se em repouso por 3 minutos. Logo após, a mistura foi filtrada através de um tecido de nylon para retirada do excesso de água. Para uma melhor lavagem, este processo foi repetido por duas vezes. Então, a CMS lavada foi dividida em dois tratamentos. No primeiro (tratamento B I), foi embalada em saco de polietileno em porções de 200g, congelada
em congelador de placas a – 40ºC e estocadas a –18ºC durante 6 meses; no segundo tratamento (B II), foram adicionados e homogeneizados à CMS: eritrobato de sódio (0,1%) e tripolifosfato de sódio (0,5%). Em seguida a CMS foi embalada, congelada e armazenada nas mesmas condições que o primeiro tratamento (B I) (Figura 1).

Três amostragens (±200g cada) de cada tratamento foram realizadas no início do armazenamento (tempo 0) e a intervalos de 30, 60, 90, 120, 150 e 180 dias de estocagem para realização de análises físico-químicas e microbiológicas.

2.6. Análises físico-químicas

A leitura do pH foi feita em peagômetro VDSF (modelo F-1002) com eletrodo VDSF (modelo 9411), após homogeneização de 10g de CMS com 40mL de água destilada. Análises de Nitrogênio de Bases Nitrogenadas Voláteis (N-BNV) foram realizadas de acordo com Howgate (1976), as de Nitrogênio Não-Protéico (NNP) segundo a AOAC (1995) e as de Substâncias Reativas ao Ácido Tiobarbitúrico (TBARS) conforme Vyncke (1970), utilizando-se o Tetrametoxipropano para a obtenção da equação da reta utilizada no cálculo dos valores de TBARS (y = 66,023x + 0,0077). Teores de umidade, cinza, extrato etéreo e proteína bruta foram determinados de acordo com AOAC (1995).

O teste de “drip” realizado na CMS de tilápia foi baseado em Santo et al. (1980). Três amostras congeladas de cada tratamento com peso de 50g cada, foram colocadas individualmente em funis sob tubos de ensaios graduados. Os funis e os tubos foram cobertos com filme plástico para prevenir a evaporação de líquidos, e o conjunto permaneceu durante 48 horas a uma temperatura de 10ºC, sendo o “drip” medido e calculado em porcentagem de volume em relação ao peso da amostra.
Figura 1 - Fluxograma de obtenção e estocagem da CMS
2.7. Análises Microbiológicas

O desenvolvimento microbiológico foi avaliado por meio das análises de contagem total de psicrotróficos em placas, pela técnica do “pour plate”; detecção da Salmonella foi realizada seguindo metodologia sugerida pelo Ministério da Agricultura (Brasil, 1981); detecção de Staphylococcus aureus (APHA, 1992); Determinações dos números mais prováveis de coliformes termotolerantes e totais (APHA, 1992).

2.8. Análises Estatísticas

O estudo foi realizado em um delineamento inteiramente casualizado com quatro tratamentos e três repetições. As médias foram comparadas pelo teste de Tukey em nível de 5% de probabilidade. As análises foram realizadas pelo programa SAS (SAS Institute, 1999).

3. RESULTADOS E DISCUSSÃO

O rendimento da extração da CMS de tilápia do Nilo encontrado foi de 46,90% em relação ao peixe inteiro e 78,60% em relação ao peixe eviscerado e descabeçado. Os valores reportados neste trabalho são superiores aos encontrados por Gryschek et al., 2003, que observaram rendimentos de 42,56 e 33,57% em relação ao peixe inteiro e 65,96 e 51,73%, em relação ao peixe eviscerado e descabeçado, respectivamente para tilápia Vermelha e tilápia do Nilo. Ohshima et al. (1993) relataram um rendimento médio de 47% da extração da CMS de “alaska pollock” (Theragra chalcogramma), em relação aos peixes inteiros. O rendimento após o processo de lavagem pode ser influenciado pela eficiência da retirada de água, número de lavagens e tipo de equipamento utilizado. Neste estudo o rendimento após o processo de lavagem foi de 84,7%.

Os valores referentes à composição centesimal da CMS de tilápia estão expostos na Tabela 1. O processo de lavagem propiciou remoção de proteínas hidrossolúveis, minerais e lipídios, tornando a CMS lavada uma matéria-prima diferente da CMS não lavada. Foi observado aumento nos teores de umidade na CMS após o processo de lavagem. Este comportamento também foi observado por outros autores (Rodriguez e Bello, 1987; Neiva, 2003; Gryschek et al., 2003;). Isto ocorreu provavelmente devido ao aumento na capacidade de hidratação das proteínas miofibrilares, que estão presentes
em grande quantidade na CMS, com a remoção das proteínas sarcoplasmáticas durante a lavagem (Suzuki, 1987).

Tabela 1: Composição centesimal das CMS lavadas e não lavadas de tilápia do Nilo.

<table>
<thead>
<tr>
<th>CMS avaliadas</th>
<th>Umidade (%)</th>
<th>Proteína bruta (%)</th>
<th>Lipídeos (%)</th>
<th>Cinzas (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMS não lavada</td>
<td>79.83±0.35<sup>B</sup></td>
<td>15.13±0.17<sup>A</sup></td>
<td>2.91±0.32<sup>A</sup></td>
<td>1.35±0.04<sup>A</sup></td>
</tr>
<tr>
<td>CMS lavada</td>
<td>88.78±0.19<sup>A</sup></td>
<td>8.93±0.22<sup>B</sup></td>
<td>1.63±0.07<sup>B</sup></td>
<td>0.46±0.02<sup>B</sup></td>
</tr>
</tbody>
</table>

Médias (n=3) de análises em triplicata. Médias dos mesmos parâmetros nas mesmas colunas, seguidas por letras maiúsculas distintas, diferem significativamente entre si pelo teste de Tukey (p≤0,05).

Os valores de umidade encontrados nas CMS lavadas neste estudo estão próximos aos observados por Lanfer-Marquez e Mira (2005), entre 79,58% a 88,70% em amostras de surimi de peixes marinhos de baixo valor comercial (*Paralonchurus brasiliensis* e *Cynoscion virescens*). Porém encontram-se abaixo do verificado por Simões et al. (1998) que relataram teores 92,78% de umidade em CMS lavada de pescada (*Cynoscion striatus*). Valores de umidade em CMS lavadas podem diferir muito entre si, dependendo do processo de lavagem e retirada de água utilizados.

Observou-se diminuição nos teores de proteína nas CMS lavadas, que provavelmente ocorreu devido à remoção da maioria das proteínas solúveis sarcoplasmáticas. Tal fato também foi observado por outros autores (Gryschek et al. 2003; Adu et al., 1983), que reportaram consideráveis perdas de proteína e outros componentes hidrossolúveis após o processo de lavagem de CMS de tilápia e "rockfish".

No presente estudo, o processo de lavagem reduziu significativamente os teores de lipídios de 2,91% para 1,63%, fato também observado por Eymard et al. (2005) cujo valores diminuíram de 3,6% para 1,2% após a lavagem de CMS de “horse mackerel”. Gryschek et al. (2003) observaram teores de lipídios de 4,23% e 1,70% em CMS de tilápia do Nilo, não lavada e lavada respectivamente.

Os teores de cinzas encontrados na CMS não lavada deste trabalho estão próximos ao 1,5% de cinzas encontrados por Marchi (1997), em CMS de tilápias do Nilo. Após a lavagem observou-se uma redução de significativa nos teores de cinzas de 65,9%, indicando grande perda de minerais durante este processo devido a lixiviação ocorrida através da água da lavagem. Gryschek et al. (2003) e Marchi (1997) reportaram reduções de 70% e 80% respectivamente nos teores de cinzas após o processo de lavagem em CMS de tilápia do Nilo. Segundo Lee (1986), a grande perda de sólidos (25
a 40%) que ocorre durante as operações de lavagens se deve a perda de lipídios e cinzas.

Observou-se diminuição (p≤0,05) nos teores de NNP após o processo de lavagem da CMS (Tabela 2), fato que pode ser atribuído à lixiviação dos compostos nitrogenados solúveis, formadores do NNP, que ocorre durante o processo (Hassan e Mathew, 1999). Valores de NNP ao redor de 344 mg NNP/100g de músculo de tilápia do Nilo foram relatados por Contreras-Guzmán (2002). Os teores de NNP nas CMS não lavadas com e sem aditivos foram semelhantes entre si, apresentando aumento significativo (p≤0,05) ao longo da estocagem de 180 dias. Isto pode ser atribuído à hidrólise de proteínas por enzimas bacterianas ou por proteases musculares (Contreras-Guzmán, 2002).

Tabela 2: Nitrogênio Não Protéico (mg N/100g) nas CMS de tilápia do Nilo lavadas e não lavadas, com e sem aditivos durante estocagem.

<table>
<thead>
<tr>
<th>CMS avaliadas</th>
<th>Dias de estocagem</th>
<th>0</th>
<th>30</th>
<th>60</th>
<th>90</th>
<th>120</th>
<th>150</th>
<th>180</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMS não lavadas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tilápias inteiras sem aditivos</td>
<td></td>
<td>295.2 ±2.6</td>
<td>299.8 ±8.6</td>
<td>300.9 ±5.4</td>
<td>303.6 ±5.4</td>
<td>297.4 ±4.1</td>
<td>295.8 ±1.4</td>
<td>315.7 ±2.9</td>
</tr>
<tr>
<td>CMS não lavadas</td>
<td></td>
<td>299.7 ±2.8</td>
<td>296.5 ±5.0</td>
<td>300.0 ±4.4</td>
<td>300.5 ±11.7</td>
<td>296.6 ±3.4</td>
<td>295.0 ±4.1</td>
<td>319.7 ±1.7</td>
</tr>
<tr>
<td>tilápias inteiras com aditivos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMS lavada de tilápias</td>
<td></td>
<td>53.0 ±0.6</td>
<td>50.6 ±2.4</td>
<td>45.8 ±2.4</td>
<td>51.4 ±1.4</td>
<td>45.8 ±2.4</td>
<td>48.2 ±2.4</td>
<td>57.2 ±3.9</td>
</tr>
<tr>
<td>inteiras sem aditivos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMS lavada de tilápias</td>
<td></td>
<td>50.5 ±2.4</td>
<td>50.5 ±2.4</td>
<td>47.3 ±2.4</td>
<td>48.9 ±3.7</td>
<td>45.7 ±1.7</td>
<td>51.3 ±3.4</td>
<td>51.5 ±4.2</td>
</tr>
<tr>
<td>inteiras com aditivos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Médias (n=3) de análises em triplicata. Médi nas mesmas linhas seguidas por letras Maiúsculas distintas, diferem significativamente pelo teste de Tukey (p≤0,05) entre si. Médias nas mesmas colunas, seguidas de letras minúsculas distintas, diferem significativamente pelo teste de Tukey (p≤0,05) entre si.

Abdel-aal (2001) estudando CMS de “Karmout” (Clarias lazera) estocada a -18ºC por 180 dias, relatou aumento no teor de NNP ao longo da estocagem, com valores iniciais de 276,4 mg/100g e finais de 403,2 mg/100g de CMS. Neste estudo CMS lavadas com e sem aditivos apresentaram teores de NNP bem menores que a CMS não lavada durante o armazenamento, indicando que este processo retirou grande parte das enzimas e proteases musculares que poderiam hidrolisar as proteínas e aumentar os valores de NNP.
A produção de BNV durante a estocagem do pescado é resultante da ação de enzimas dos tecidos e da atividade microbiológica, sendo composta principalmente por amônia, trimetilamina, dimetilamina e, provavelmente por traços de monometilamina e propilamina, que se formariam em etapas mais avançadas de decomposição (Contreras-Guzmán, 2002). Os teores de BNV encontrados nos diferentes tratamentos para CMS ao longo de 180 dias de estocagem, estão mostrados na Tabela 3. Os menores teores iniciais de BNV observados nas CMS lavadas, quando comparadas com as CMS não lavadas podem ser justificados pela provável perda de compostos nitrogenados voláteis durante o processo de lavagem. Diminuição nos teores de BNV durante o processo de lavagem também foram observadas por Neiva (2003) e Rodríguez e Bello (1987), que constataram diminuição de 83,3 e 34,8% de BNV após o processo de lavagem de CMS de sardinha (*Sardinella brasiliensis*) e CMS de peixes da fauna acompanhante de pesca de camarão, respectivamente.

O teor de BNV nas CMS não lavadas, com e sem aditivos apresentaram comportamento semelhantes, tendo aumentos significativos (*p* ≤ 0,05) após 30 dias de estocagem, com pequenas oscilações até fim do período. Nas CMS lavadas com e sem aditivos os teores de BNV aumentaram (*p* ≤ 0,05) somente após 120 dias de estocagem, atingindo valores um pouco maiores para a CMS sem aditivos (3,02 mg/100g) do que a CMS com aditivos (2,63 mg/100g) aos 180 dias. Os pequenos aumentos observados nos teores de BNV nas CMS estudadas indicam que o processo de congelamento e armazenamento ao qual as CMS foram submetidas inibiram ou limitaram o desenvolvimento da atividade microbiológica e a ação de enzimas endógenas.

Aumentos mais expressivos de BNV foram observados por Siddaiah et al. (2001) em CMS de carpas armazenadas a -18°C, relatando aumento de 1,98 para 32,85 mg/100g ao final do período de 180 dias de estocagem. Resultados similares foram relatados por Reddy et al. (1992), com aumentos nas BNV de 4,0 para 18,4 mg/100g ao final do período de 180 dias de estocagem congelada de CMS de perca rosa (*Nemipterus japonicus*). Entretanto, Jesus et al. (2001) avaliando a estabilidade química e microbiológica de CMS congeladas de peixes amazônicos, observaram tendência decrescente (*p* > 0,05) das BNV ao longo da estocagem de 150 dias, justificando este comportamento devido a diminuição da atividade microbiiana durante este período. O valor máximo de BNV observado nas CMS estudadas permaneceu abaixo de 30mg BNV/100g, que é o limite estabelecido pela legislação de pescados e derivados para efeito de consumo (Brasil, 1997).
Tabela 3: Bases Nitrogenadas Voláteis (mg N/100g) nas CMS de tilápia do Nilo lavadas e não lavadas, com e sem aditivos durante estocagem.

<table>
<thead>
<tr>
<th>CMS avaliadas</th>
<th>Dias de estocagem</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>CMS não lavadas tilápias</td>
<td></td>
</tr>
<tr>
<td>sem aditivos</td>
<td>8.63</td>
</tr>
<tr>
<td>±0.44</td>
<td>±0.32</td>
</tr>
<tr>
<td>com aditivos</td>
<td>±0.76</td>
</tr>
<tr>
<td>CMS lavada de tilápias</td>
<td>0.26</td>
</tr>
<tr>
<td>sem aditivos</td>
<td>±0.45</td>
</tr>
<tr>
<td>CMS lavada de tilápias</td>
<td>0.26</td>
</tr>
<tr>
<td>com aditivos</td>
<td>±0.44</td>
</tr>
</tbody>
</table>

Médias (n=3) de análises em triplicata. Médias nas mesmas linhas seguidas por letras Maiúsculas distintas, diferem significativamente pelo teste de Tukey (p≤0,05) entre si. Médias nas mesmas colunas, seguidas de letras minúsculas distintas, diferem significativamente pelo teste de Tukey (p≤0,05) entre si.

Os resultados dos valores de pH nas CMS podem ser observados na Figura 2. Em geral, os valores de pH aumentaram significativamente (p≤0,05) durante os primeiros 60 dias de estocagem, permanecendo então praticamente constantes até o fim do período. O aumento do pH pode indicar degradação protéica, com produção de substâncias como amônia e outras aminas. Rodríguez e Bello (1987) trabalhando com CMS congelada de peixes da fauna acompanhante da pesca de camarões, estocados a -10°C e –30°C, durante 180 dias, verificaram que não ocorreram alterações significativas nos valores de pH em ambas as temperaturas. Entretanto, Jesus et al. (2001) encontraram aumentos nos valores de pH de 6,50 para até 7,07 em CMS de peixes amazônicos estocados por 150 dias sob congelamento. O comportamento do pH durante o armazenamento, sob congelamento, é dependente da temperatura de estocagem, composição em sais, estado fisiológico, poder tampão das proteínas e ação enzimática (Gryschek et al., 2003). Neste estudo, o processo de lavagem provavelmente alterou a composição de sais e enzimas presentes na CMS e provocou mudanças no pH durante o período de armazenamento.
A adição de tripolifosfato de sódio e eritrobato de sódio nas CMS do presente estudo elevaram os teores de pH das mesmas. A adição de polifosfatos ao surimi de pescado melhora sua qualidade durante estocagem sob congelamento, devido ao seu efeito crioprotetor e a propriedade de manter o pH próximo à neutralidade (Konno, 1992). Tendo em vista os valores próximos de pH observados nas CMS lavadas sem aditivos e não lavadas com aditivos, pode-se sugerir que o processo de lavagem teria o mesmo efeito que a adição de tripolifosfato na CMS sem lavar. Talvez como uma forma de diminuir efluentes gerados pela lavagem, o tripolifosfato possa ser utilizado na CMS como forma alternativa de manter o pH em valores aceitáveis, de acordo com a legislação (Brasil, 1997).

Os valores do TBARS são utilizados como indicador do grau de oxidação lipídica, quantificando o malonaldeído, que é um dos principais produtos formados durante o processo oxidativo. Todas as CMS estudadas mostraram um gradual aumento nos valores de TBARS ao longo da estocagem. Foram observados teores significativamente menores de TBARS nas CMS lavadas quando comparadas com as não lavadas (Figura 3). Este fato pode ser explicado devido a remoção durante o processo de lavagem da maior parte dos produtos primários e secundários da oxidação lipídica (Eymard et al, 2005). O processo de lavagem também promove a remoção de pigmentos, sangue, lipídios e compostos heme, que causam a oxidação lipídica (Tenuta Filho e Jesus, 2003). Isto justifica os menores valores de TBARS observados nas CMS lavadas (0,25 mg de malonaldeído/kg) ao final do período de estocagem.

Neste estudo, o maior valor de TBARS observado após 180 dias de estocagem foi 0,49 mg de malonaldeído/kg na CMS não lavada com aditivos. Segundo Al-Kahtani et al, (1996) o pescado pode ser considerado em bom estado de consumo, quando apresentar valores abaixo de 3mg de malonaldeído/kg de amostra. Os baixos valores de
TBARS observados podem ser atribuídos ao pequeno teor de lipídio encontrado nas CMS (Tabela 1), indicando que a rancidez oxidativa não constituiu-se em um fator determinante para a redução de qualidade do produto. Jesus et al. (2001) estudando a estabilidade de CMS de mapará (*Hypophthalmus edentatus*) sob congelamento, também obtiveram pequenas variações nos valores de TBARS durante a estocagem, com valores iniciais de 0,22 e finais de 0,64 mg de malonaldeído/kg.

![Gráfico 3](image)

Figura 3: Valores de TBARS (mg de aldeído malônico/kg) nas CMS de tilápia do Nilo lavadas e não lavadas, com e sem aditivos durante estocagem.

A adição de eritorbato de sódio nas CMS lavadas e não lavadas não teve efeito significativo ($p \leq 0,05$) sobre os valores do TBARS durante a estocagem. Neiva (2003) não constatou alterações nos valores de TBARS durante a estocagem sob congelamento de CMS lavadas de sardinha com ou sem a adição de TBHQ, α-tocoferol e eritorbato de sódio, concluindo que a embalagem a vácuo foi suficiente para manter a estabilidade lipídica.

Durante o descongelamento e a cocção, ocorrem perdas de líquido (“drip”) que contem vitaminas e minerais, o que resulta em uma perda no valor nutritivo e de qualidade sensorial, tornando os produtos secos e rígidos (Gonçalves, 2004). Os valores do “drip” durante o descongelamento ao longo da estocagem podem ser observados na Figura 4. A CMS não lavada sem aditivos apresentou aumento significativo ($p \leq 0,05$) nos valores do “drip” após 60 dias de estocagem. Os valores praticamente constantes do “drip” na CMS não lavada com aditivos indicam que a incorporação de 0,5% de tripolifosfato de sódio inibiu o aumento da perda de água no descongelamento. A CMS lavada sem aditivos apresentou maiores valores de “drip” ($p \leq 0,05$) que as CMS não lavadas sem aditivo, possivelmente devido ao maior teor de umidade inicial observados nas mesmas (Tabela 1). Nas CMS lavadas com e sem aditivos a perda de “drip” permanece praticamente constantes ($p > 0,05$) ao longo do
período. Entretanto, a adição de 0,5% de tripolifosfato de sódio nas CMS diminuiu significativamente a formação do “drip” durante o descongelamento. Segundo Gonçalves (2004) os fosfatos tem a propriedade de devolver às proteínas sua capacidade de retenção de água, mantendo assim a umidade natural do produto levando a uma perda mínima de água durante o armazenamento por congelamento, no descongelamento e na cocção.

Figura 4: “Drip” (%) das CMS de tilápia do Nilo lavadas e não lavadas, com e sem aditivos durante estocagem.

A diminuição da capacidade de retenção de água na CMS está diretamente ligada com o grau de desnaturação das proteínas durante o armazenamento e os tripolifosfatos melhoram significativamente esta capacidade. Os tripolifosfatos tem a propriedade de afetar a estrutura das proteínas por três vias: aumentando o pH, a força iônica e através de sua interação com as proteínas (Rodríguez e Bello, 1987).

Reddy et al. (1992) estudando a estabilidade na estocagem a -18ºC de CMS de perca rosa durante 180 dias, observaram aumento do “drip” ao longo do período, sendo encontrados valores de 4,8% aos 30 dias e 20% ao fim do período. Os autores relataram que todas as propriedades funcionais das CMS foram afetadas pela perda de solubilidade das proteínas, que é depende da desnaturação e agregação das estruturas protéicas originais. Abdel-aal (2001) observou que a adição de 0,5% de tripolifosfato de sódio, manteve alta a capacidade de retenção de água durante a estocagem de 180 dias a -18ºC de CMS de “Karmout” (Claries lazera). O autor justificou este aumento devido ao aumento do pH das CMS após a adição do tripolifosfato de sódio.

A contagem total de psicrotróficos permaneceu com valores semelhantes ao longo da estocagem nas CMS não lavadas com e sem aditivos (Tabela 4). Nas CMS lavadas com e sem aditivos os valores aumentaram \(p \leq 0,05 \) durante os primeiros 90 dias de estocagem diminuindo até final do período. Contagens de psicrotróficos iniciais mais elevadas foram reportadas por Hassan e Mathew (1999) e Marchi (1997), que
encontraram contagem total de psicrotróficos de log 5,53 e 3,3 UFC/g, respectivamente em CMS lavadas de tilápia do Nilo. Rodríguez e Bello (1987) avaliando a estocagem a – 10 e – 30ºC de CMS de peixes da fauna acompanhante da pesca de camarão observaram diminuição nas contagens de psicrotróficos ao longo da estocagem de 180 dias, em ambas temperaturas.

Tabela 4: Contagem total em placas de psicrotróficos (log UFC/g) avaliados nas CMS de tilápia do Nilo lavadas e não lavadas, com e sem aditivos durante estocagem.

<table>
<thead>
<tr>
<th>Dias de estocagem</th>
<th>CMS de tilápia sem aditivos</th>
<th>CMS de tilápia com aditivos</th>
<th>CMS lavada de tilápia sem aditivos</th>
<th>CMS lavada de tilápia com aditivos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.54±0.4^A</td>
<td>2.62±0.5^A</td>
<td>1.42±0.4^B</td>
<td>1.44±0.2^B</td>
</tr>
<tr>
<td>0</td>
<td>3.37±0.2^A</td>
<td>3.11±0.1^A</td>
<td>2.20±0.2^A</td>
<td>1.56±0.1^A</td>
</tr>
<tr>
<td>90</td>
<td>2.77±0.3^A</td>
<td>3.01±0.1^A</td>
<td>1.49±0.2^B</td>
<td>1.10±0.2^B</td>
</tr>
<tr>
<td>180</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Médias (n=3) de análises em triplicata. Médias nas mesmas linhas, seguidas por letras maiúsculas distintas, diferem significativamente entre si pelo teste de Tukey (p≤0,05).

Foi observada menor contagem total de psicrotróficos nas CMS lavadas, sugerindo que o processo de lavagem pode exercer um efeito benéfico de remoção de microorganismos. Tal efeito também foi constatado por Gryschek (2001).

Os resultados da contagem total de psicrotróficos observados nas CMS mantiveram-se abaixo do limite permitido (log 7,0 UFC/g) pela ICMSF (1986), para contagem padrão em placas de microrganismos aeróbicos. Não foram constatadas a presença de coliformes fecais, *Salmonella* e *Staphylococcus aureus* nas CMS durante o período de estocagem, estando dentro dos padrões estabelecidos pela legislação brasileira (Brasil, 2001).

4. CONCLUSÕES

Os resultados indicam que a Carne Mecanicamente Separada de tilápia do Nilo abaixo do peso de abate é uma alternativa viável para o aproveitamento de peixes abaixo do peso comercial. Independentemente do processo de lavagem ou da adição de aditivos as CMS mantiveram-se estáveis durante o período de estocagem a -18ºC por 180 dias. Os parâmetros químicos, físicos e microbiológicos avaliados permaneceram
constantes ou apresentaram em alguns casos apenas pequenos aumentos ao longo da estocagem, não afetando a qualidade das CMS.

5. REFERÊNCIAS

CAPÍTULO 2 - Influência da lavagem e da adição de aditivos na estabilidade de Carne Mecanicamente Separada de carcaças de Tilápia do Nilo (*Oreochromis niloticus*) durante estocagem

RESUMO

O objetivo deste estudo foi avaliar a influência da lavagem e da adição de eritorbato de sódio e tripolifosfato de sódio na estabilidade de Carne Mecanicamente Separada (CMS) obtidas das carcaças resultantes do processo de filetagem de tilápia de Nilo (*Oreochromis niloticus*) durante 6 meses de armazenamento a -18ºC. O processo de lavagem alterou a composição centesimal das CMS, ocorrendo aumento no teor da umidade e diminuição nos teores de proteína bruta, lipídios e cinzas. Foram observadas também diminuições nos valores de Nitrogênio Não-Protéico (NNP), Bases Nitrogenadas Voláteis (BNV) e Substâncias Reativas ao Ácido Tiobarbitúrico (TBARS) após a lavagem. Durante o armazenamento, os teores de NNP, pH e Drip (perda de água no descongeloamento) permaneceram estáveis, enquanto que os valores de BNV aumentaram independentemente do processo de lavagem ou da adição aditivos. O comportamento dos teores de TBARS ao longo do armazenamento demonstrou que a inclusão de aditivos nas CMS inibiu a oxidação lipídica somente nas CMS não lavadas. Não foi constatada a presença de Coliformes termotolerantes, *Salmonella* e *Staphylococcus aureus* antes e durante o armazenamento. As contagens para bactérias psicrotróficas não ultrapassaram os limites permitidos para o consumo. Os resultados indicaram que as CMS estudadas permaneceram estáveis, independentemente da inclusão de aditivo, sendo viável sua estocagem a -18ºC por 180 dias.

Palavras chaves: Tilápia do Nilo, Carcaças, Carne Mecanicamente Separada, Armazenamento, Aproveitamento de resíduos.

1. INTRODUÇÃO

A tilápia do Nilo é uma das espécies de peixes mais cultivadas no Brasil. Em 2004 a produção desta espécie foi de 69.078 toneladas, representando cerca de 38% do total produzido pela aquicultura neste período (IBAMA, 2005). Grande parte da produção é direcionada ao processamento industrial principalmente na forma de filés congelados.
O rendimento em filé da tilápia é baixo (30 a 33%) e consequentemente gera uma grande quantidade de resíduos (Oetterer, 2002). Tradicionalmente os resíduos da filetagem são destinados à produção de farinha de peixe para alimentação animal, ou simplesmente descartados em lixões, gerando um problema ambiental. Na carcaça restante após a filetagem sobram ainda músculos de boa qualidade que poderiam ser utilizados para a alimentação humana. A aplicação do processo de extração da Carne Mecanicamente Separada (CMS), destaca-se como um processo atraente pela possibilidade de maior recuperação de carne em relação à obtida pelos métodos tradicionais de filetagem diminuindo o custo de produção e a quantidade de resíduo gerada. A CMS de pescado permite maior possibilidade de diversificação de produtos da indústria pesqueira (Morais e Martins, 1981) podendo ser produzidos e comercializados produtos como: fishburger, salsichas, empanados, tirinhas de peixe, nuggets e outros (Marchi, 1997).

A CMS pode ser submetida a um processo de lavagem com a finalidade de remover sangue, pigmentos, proteínas sarcoplasmáticas, componentes solúveis, lipídios e outras impurezas que podem catalisar a degradação protéica e a oxidação lipídica (Suzuki, 1987; Lee, 1986; Borderías e Tejada, 1987; Tenuta-Filho e Jesus, 2003). Entretanto, o processo de lavagem conduz à perda de proteína e outros nutrientes solúveis, levando sempre à geração de efluente líquido abundante (Ohshima et al., 1993; Tenuta-Filho e Jesus, 2003).

O congelamento e a estocagem sob congelamento são importantes métodos utilizados para a preservação de peixes e seus produtos (Siddaiah, et al. 2001). Entretanto algumas mudanças indesejáveis podem ocorrer, como a desnaturação de proteínas e a oxidação lipídica (Kurade e Barranowski, 1987; Kuhn e Soares, 2002). A utilização de antioxidantes e crioprotetores para aumentar a estabilidade da CMS de pescado durante a estocagem, vem sendo estudada por diversos autores (Rodríguez e Bello, 1987; Castro et al., 1997; Sultanbawa e Li-Chan, 1998; Abdel-aal, 2001; Herrera e Mackie, 2004). Herrera e Mackie (2004) relataram que a polidextrose, lactitol, xarope de glucose e uma mistura de sacarose e sorbitol foram altamente efficientes como crioprotetores, prevenindo a alterações no extrato de actomiosina de truta arco-íris (Oncorhynchus mykiss) durante 8 semanas de armazenamento a -20°C, sendo a polidextrose o crioprotetor mais efetivo. Abdel-aal, (2001) observou que 0,5% de ácido ascórbico e 0,1% de Na2EDTA foram os antioxidantes mais efetivos durante o armazenamento de CMS de Clarias lazera por 6 meses. Neiva (2003) avaliando a estabilidade de CMS de sardinha (Sardinella brasiliensis) durante 180 dias de estocagem sob congelamento constatou que não houve diferença entre a CMS sem e com antioxidantes (0,01% de TENOX-TBHQ, 0,1% de eritorbato de sódio e 0,03% de α-
tocoferol). A autora relata que apenas a embalagem a vácuo foi suficiente para manter a estabilidade oxidativa durante o período de estocagem.

Realizou-se este trabalho com o objetivo de acompanhar a estabilidade durante o armazenamento de Carne Mecanicamente Separada de carcaças de Tilápia do Nilo (*Oreochromis niloticus*), avaliando o efeito do processo de lavagem e da adição de eritorbato de sódio e tripolifosfato de sódio sobre a estabilidade das CMS durante 6 meses a –18°C.

2. MATERIAL E MÉTODOS

2.1. Obtenção da CMS

Foram adquiridos 40kg de resíduos da filetagem de tilápias do Nilo (*Oreochromis niloticus*) congeladas, provenientes de abatedouro da região de Pirassununga (São Paulo, Brasil). O transporte deste material congelado até o Laboratório de Processamento de Produtos Aquáticos da PCAPS/USP, em Pirassununga/SP foi realizado em caixas térmicas. No laboratório os resíduos foram descongelados à temperatura ambiente e lavados com água clorada (5ppm). Logo após a limpeza, a CMS das carcaças foi obtida por meio de despulpadora mecânica Hi-Tech 250. Para a realização do estudo foi extraída aproximadamente 23 kg de CMS.

2.2. Processamento e protocolo experimental

Após a extração, a CMS foi separada em dois tratamentos:

Tratamento A – CMS sem lavar: a CMS foi dividida em dois lotes. No primeiro foi embalada em saco de polietileno em porções de 200g, congelada em congelador de placas a – 40°C e estocados a –18°C durante 6 meses; no segundo lote foram adicionados e homogeneizados à CMS: eritorbato de sódio (0,1%) e tripolifosfato de sódio (0,5%). Em seguida a CMS foi embalada, congelada e armazenada nas mesmas condições que o primeiro lote.

Tratamento B – CMS lavada: a lavagem foi realizada adicionando-se água clorada gelada na proporção de 3L de água para 1kg de CMS, agitação por 2 minutos seguida de repouso por 3 minutos. Logo após, a mistura foi filtrada através de um tecido de nylon para retirada do excesso de água. A CMS lavada foi dividida em dois lotes. No primeiro, a CMS lavada foi embalada em sacos de polietileno em porções de 200g, congeladas em congelador de placas a – 40°C e estocados a –18°C durante 6 meses; no segundo lote foram adicionados e homogeneizados à CMS, eritorbato de sódio
(0,1%) e tripolifosfato de sódio (0,5%). Em seguida a CMS foi e embalada, congelada e armazenada nas mesmas condições que o primeiro lote. (Figura 1).

2.3. Amostragem

Para cada tratamento e a cada tempo determinado, foram retiradas três amostras (cerca de 200g cada) para realização de análises químicas, físicas e microbiológicas. As amostras foram retiradas do freezer e descongeladas à temperatura de 10ºC, no dia da extração da CMS (tempo 0) e a intervalos de 30, 60, 90, 120,150 e 180 dias de estocagem.

2.4. Caracterização e avaliação da estabilidade

Teores de umidade, cinza, extrato etéreo e proteína bruta foram determinados de acordo com a metodologia oficial da AOAC (1984). Medidas de pH foram feitas em peagômetro VDSF (modelo F-1002) com eletrodo VDSF (modelo 9411), após homogeneização de 10g de CMS com 40 mL de água destilada. Análises de Nitrogênio de Bases Nitrogenadas Voláteis (N-BNV) foram realizadas de acordo com Howgate (1976), Nitrogênio Não-Protéico (NNP) segundo a AOAC (1984), desenvolvimento de Substâncias Reativas ao Ácido Tiobarbitúrico (TBARS) conforme Vyncke (1970), utilizando-se o Tetrametoxipropano para a obtenção da equação da reta utilizada no cálculo dos valores de TBARS (y = 66,023x + 0,0077) e a perda de líquido por descongelamento (“drip”) foi determinada em g/100g de amostra, de acordo com Santo et al. (1980).

O desenvolvimento microbiológico foi avaliado por meio das análises de contagem total de psicrotróficos em placas, pela técnica do “pour plate”; detecção de Salmonella foram utilizadas metodologias descritas por Brasil (1981); detecção de Staphylococcus aureus (APHA, 1992); e contagens de coliformes termotolerantes e totais, segundo o Número Mais Provável (NMP) (APHA, 1992).

2.5. Análises Estatísticas

O estudo foi realizado em um delineamento inteiramente casualizado com quatro tratamentos e três repetições. As médias foram comparadas pelo teste de Tukey em nível de 5% de probabilidade. As análises foram realizadas pelo programa SAS (SAS Institute, 1992).
Figura 1 - Fluxograma de obtenção e estocagem da CMS

1. Carcaças de tilápia
2. Limpeza com água clorada 5ppm
3. Extração da CMS
4. CMS não lavada
 - Tratamento A I
 - (0,1%) eritornato de sódio e (0,5%) tripolifosfato de sódio
 - Tratamento A II
6. Tratamento B I
7. Tratamento B II
 - 1 ciclo de lavagem
8. Congelamento a -40°C
9. Armazenamento a -18°C
3. RESULTADOS E DISCUSSÃO

O rendimento da extração da CMS de carcaças de tilápia foi de 57,7% (±1,06) e após o processo de lavagem foi de 84,7%. Os resultados são próximos aos relatados por Morais e Martins (1981) que observaram rendimentos de 54% para extração de CMS de carcaças de cavalinha (Scomber japonicus) e 68% para carcaças de truta arco-íris (Onchorynchus mykiss). O rendimento do processo de lavagem pode ser influenciado pela eficiência do método de desidratação, número de lavagens e tipo de equipamento utilizado.

Os teores de umidade encontrados neste trabalho (Tabela 1) ficaram próximos aos teores de umidade normalmente encontrados em CMS de pescado, de acordo com resultados obtidos por diversos autores (Marchi, 1997; Hassan e Mathew, 1999; Abdelaal, 2001; Eymard et al., 2005) que observaram teores entre 72,9 a 81,8% em CMS de pescado. Observou-se aumento significativo na umidade da CMS após o processo de lavagem. Segundo Suzuki (1987) o aumento de umidade após a lavagem de CMS ocorre devido ao aumento na capacidade de retenção de água das proteínas miofibrilares, que estão presentes em grande quantidade na CMS, e devido a remoção das proteínas sarcoplasmáticas durante a lavagem. Adu et al., (1983), Simões et al. (1998) e Neiva (2003) também relataram aumentos significativos nos teores de umidade após o processo de lavagem em CMS de sardinha (76,08 a 82,25%), pescada-olhuda (80,90 a 92,78%) e “rockfish” (77,31 a 90,30%), respectivamente.

Tabela 1: Composição centesimal das CMS não lavadas e lavadas de carcaças de tilápia do Nilo.

<table>
<thead>
<tr>
<th>CMS avaliadas</th>
<th>Umidade (%)</th>
<th>Proteína bruta (%)</th>
<th>Lipídios (%)</th>
<th>Cinzas (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMS não lavada</td>
<td>78.31B±0.22</td>
<td>14.09A±0.12</td>
<td>6.27A±0.20</td>
<td>1.11A±0.01</td>
</tr>
<tr>
<td>CMS lavada</td>
<td>81.28A±0.33</td>
<td>12.03B±0.23</td>
<td>5.83B±0.21</td>
<td>0.66B±0.03</td>
</tr>
</tbody>
</table>

Médias (n=3) de análises em triplicata. Médias dos mesmos parâmetros nas mesmas colunas, seguidas por letras maiúsculas distintas, diferem significativamente entre si pelo teste de Tukey (p≤0,05).

O teor de proteína diminuiu após o processo de lavagem, provavelmente devido à remoção de proteínas sarcoplasmáticas solúveis durante a lavagem. A diminuição nos teores de proteína bruta durante o processo de lavagem também foi observada por Gryschek et al., (2003) de 14,93 para 11,09% na lavagem de CMS de tilápia do Nilo.
Adu et al. (1983) encontraram redução mais drástica de proteína bruta após a lavagem de CMS de “rockfish” (18,17 a 9,50%).

A porcentagem de lipídios (6,27%) encontrada nas CMS, foi maior que 1,85% reportado por Marchi (1997) para CMS de tilápia do Nilo, mas está próxima a 5,7% observada por Clement e Lovell (1994) em CMS de tilápia vermelha. O alto teor de gordura observado na CMS deve-se a presença na carcaça, de porções ventrais musculares que normalmente contém mais gordura, e durante a obtenção da CMS parte desta gordura é extraída juntamente com a CMS. O processo de lavagem alterou significativamente o teor de extrato etéreo na CMS, reduzindo cerca de 7% do teor lipídico originalmente presente. Gryschek et al. (2003) e Marchi (1997) observaram diminuição respectivamente de 53 e 46%, no teor de lipídios após o processo de lavagem de CMS de tilápias do Nilo. Entretanto, reduções menores (15 e 10%) foram reportadas por Neiva (2003) e Bentis et al. (2005) respectivamente, após o processo de lavagem de CMS de sardinha.

Os teores de cinzas encontrados na CMS não lavada estão próximos ao encontrados por Marchi (1997) e Adu et al. (1983), que observaram valores de 1,5 e 1,06% de cinzas em CMS de tilápias do Nilo e “rockfish”, respectivamente. Neste estudo, o processo de lavagem da CMS propiciou uma redução de 40,5% no teor de cinzas. Tal fato também foi observado por Gryschek et al., (2003) que reportaram diminuição de 67,6% de cinzas após o processo de lavagem. Entretanto, Rodríguez e Bello (1987) observaram redução de apenas 15,8% nos teores de cinzas após a lavagem da CMS de peixes da fauna acompanhante da pesca de camarão.

Após o processo de lavagem observou-se diminuição significativa (p<0,05) nos teores de NNP nas CMS (Tabela 2). Isso pode ser atribuído a lixiviação dos compostos nitrogenados solúveis formadores do NNP, ocorrida durante o processo de lavagem das CMS (Hassan e Mathew, 1999). Valores de NNP ao redor de 344 mg NNP/100g de músculo de tilápia do Nilo foram relatados por Contreras-Guzmán (2002). Hassan e Mathew (1999) encontraram valores de 170, 200 e 330 mg NNP/100g de CMS lavada de carpa comum (Cyprinus carpio), tilápia (Oreochromis mossambidus) e tubarão (Scoliodon sorakowah), respectivamente. Não houve aumento significativo (p>0,05) nos teores de NNP nas CMS estudadas ao longo da estocagem de 180 dias. Entretanto teores de NNP aumentaram durante a estocagem de CMS de “Karmout” (Clarias lazera) a -18°C por 180 dias, em estudo realizado por Abdel-aal (2001). A autor relatou valores iniciais de 276,4 mg/100g e finais de 403,2 mg/100g de CMS. Aumentos nos teores de NNP podem ser atribuídos à hidrólise de proteínas por enzimas bacterianas ou por proteases musculares (Contreras-Guzmán, 2002).
Tabela 2: Nitrogênio Não Protéico (mg N/100g) nas CMS de carcaças de tilápia do Nilo lavadas e não lavadas, com e sem aditivos durante estocagem.

<table>
<thead>
<tr>
<th>CMS avaliadas</th>
<th>Dias de estocagem</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>CMS não lavada</td>
<td></td>
</tr>
<tr>
<td>sem aditivos</td>
<td>161.4 Aa</td>
</tr>
<tr>
<td>±2.0</td>
<td>±4.7</td>
</tr>
<tr>
<td>CMS não lavada</td>
<td>162.0 Ab</td>
</tr>
<tr>
<td>com aditivos</td>
<td>±5.2</td>
</tr>
<tr>
<td>CMS lavada</td>
<td></td>
</tr>
<tr>
<td>sem aditivos</td>
<td>52.5 Ab</td>
</tr>
<tr>
<td>±2.0</td>
<td>±2.4</td>
</tr>
<tr>
<td>CMS lavada</td>
<td>50.1 Ab</td>
</tr>
<tr>
<td>com aditivos</td>
<td>±2.4</td>
</tr>
</tbody>
</table>

Médias (n=3) de análises em triplicata.
Médias nas mesmas linhas seguidas por letras Maiúsculas distintas, diferem significativamente pelo teste de Tukey (p≤0,05) entre si.
Médias nas mesmas colunas, seguidas de letras minúsculas distintas, diferem significativamente pelo teste de Tukey (p≤0,05) entre si.

De acordo com Contreras-Guzmán (2002) BNV, inclui principalmente a amônia, seguida de bases como a trimetilamina, dimetilamina e provavelmente traços de monometilamina e propilamina. Foram observados teores iniciais mais elevados de BNV nas CMS não lavadas (Tabela 3). Tal fato provavelmente ocorreu devido a eliminação durante o processo de lavagem de bases nitrogenadas solúveis em água. O mesmo foi observado por Neiva (2003), onde foi constatada diminuição (35,41 para 5,91 mg/100g de CMS) nos teores de BNV após o processo de lavagem de CMS de sardinhas. Hassan e Mathew (1999) encontraram valores de 4,5, 2,7 e 6,2 mg N/100g de CMS lavada de carpa comum (Cyprinus carpio), tilápia (Oreochromis mossambidus) e tubarão (Scoliodon sorarakowah), respectivamente.

Não ocorreram alterações significativas nos teores de BNV até 30 dias de estocagem, aumentando significativamente (p≤0,05) após este período. Nas CMS não lavadas sem aditivos e com aditivos os valores de BNV aumentaram de 4,68 para 6,07 mg/100g e 4,25 para 6,40 mg/100g, respectivamente dos 30 aos 180 dias de estocagem. As CMS lavadas apresentaram aumentos menores atingindo valores de 2,82 e 2,99 mg/100g nas CMS sem aditivos e com aditivos, respectivamente, ao fim do período de estocagem. A produção de BNV durante o armazenamento de pescado é resultante da ação de enzimas endógenas e da atividade microbiológica. Reddy et al. (1992) relataram aumentos nos teores de BNV de 4,0 para 18,4 mg/100g durante a estocagem congelada de 180 dias de CMS de perca rosa (Nemipterus japonicus).
Siddaiah et al. (2001) observaram aumentos nas BNV de 1,98 para 32,85 mg/100g de CMS de carpa (*Hypophthalmichihys molitrix*) estocados congelados durante 180 dias. Os autores atribuíram o aumento das BNV durante a estocagem a degradação do nitrogênio muscular por microorganismos.

Os níveis detectados no presente estudo para o BNV estão bem abaixo do limite de aceitabilidade indicado para pescado em geral, que é de 30mg/100g (Brasil, 1997).

Tabela 3: Bases Nitrogenadas Voláteis (mg N/100g) nas CMS de carcaças de tilápia do Nilo lavadas e não lavadas, com e sem aditivos durante estocagem.

<table>
<thead>
<tr>
<th>Dias de estocagem</th>
<th>CMS avaliadas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>CMS não lavada</td>
<td></td>
</tr>
<tr>
<td>sem aditivos</td>
<td>4.81 ±0.44</td>
</tr>
<tr>
<td>CMS não lavada</td>
<td>4.57 ±0.76</td>
</tr>
<tr>
<td>com aditivos</td>
<td>0.15 ±0.07</td>
</tr>
<tr>
<td>CMS lavada</td>
<td>0.19 ±0.13</td>
</tr>
<tr>
<td>sem aditivos</td>
<td>0.15 ±0.07</td>
</tr>
<tr>
<td>CMS lavada</td>
<td>0.19 ±0.13</td>
</tr>
<tr>
<td>com aditivos</td>
<td>0.15 ±0.07</td>
</tr>
</tbody>
</table>

Médias (n=3) de análises em triplicata.
Médias nas mesmas linhas seguidas por letras Maiúsculas distintas, diferem significativamente pelo teste de Tukey (p≤0,05) entre si.
Médias nas mesmas colunas, seguidas de letras minúsculas distintas, diferem significativamente pelo teste de Tukey (p≤0,05) entre si.

0,5% de fosfato (\(K_2HPO_4\)) em CMS de carpa, justificando o aumento devido a característica alcalina do fosfato.

Figura 2: Valores de pH das CMS de carcaças de tilápia do Nilo lavadas e não lavadas, com e sem aditivos durante estocagem.

A degradação dos lipídios é o problema de qualidade mais sério que afeta a CMS de pescado (Tenuta Filho e Jesus, 2003). O teste de TBARS quantifica o malonaldeído, um dos principais produtos de decomposição dos hidroperóxidos de ácidos graxos poliinsaturados, formado durante o processo oxidativo. Os valores de TBARS observados nas CMS estão demonstrados na Figura 3. Os menores valores iniciais de TBARS observados nas CMS lavadas, indicam que o processo de lavagem eliminou a maior parte dos produtos primários e secundários da oxidação lipídica (Eymard et al., 2005). Não foram observadas alterações relevantes nos valores de TBARS nas CMS lavadas com e sem aditivos, indicando que a presença dos aditivos não influenciou na estabilidade lipídica nas CMS lavadas, e que apenas o processo de lavagem ao qual foi submetida foi suficiente para retardar a oxidação lipídica. Tenuta Filho e Jesus (2003) relataram que o processo de lavagem contribui para uma redução na oxidação durante a estocagem, devido à remoção de pigmentos, sangue, parte dos lipídios e compostos heme, que causam a oxidação lipídica. Gryschek et al. (2003) avaliaram a estabilidade da CMS de tilápia do Nilo durante estocagem de 180 dias sob congelamento, e observaram valores de TBARS próximos a 1,5 mg de malonaldeído/kg nas CMS não lavadas e 0,30 mg de malonaldeído/kg nas CMS lavadas, ao final da estocagem.

Aumentos significativos nos valores de TBARS foram observados somente na CMS não lavada sem aditivo, indicando que a adição de eritorbato de sódio (0,1%) e tripolifosfato de sódio (0,5%) inibiram a oxidação lipídica nas CMS não lavadas. Abdel-aal, (2001), avaliando a estabilidade de CMS de “karmout” (Claries lazera) congelado
durante 180 dias, relatou que a adição de 0,5% eritorbato de sódio reduziu a oxidação durante a estocagem, enquanto que a adição de 0,5% de tripolifosfato de sódio não retardou a oxidação.

Figura 3: Valores de TBARS (mg de aldeído malônico/kg) nas CMS de carcaças de tilápia do Nilo lavadas e não lavadas, com e sem aditivos durante estocagem.

O volume do “drip” resultante do descongelamento em todas as CMS estudadas não sofreu alterações significativas ao longo do período de estocagem (Figura 4). Entretanto foi observada diferença significativa no volume do “drip” entre as CMS lavadas e não lavadas. Tal fato pode ser justificado devido a redução das proteínas sarcoplasmáticas durante o processo de lavagem, levando a um aumento na concentração de proteínas miofibrilares aumentando também a capacidade de retenção de água da CMS. O mesmo comportamento foi observado por Gryschek et al. (2003) em CMS de tilápia do Nilo, encontrando perdas de “drip” de 6,03 e 11,07% em CMS lavada e não lavada, respectivamente, após 30 dias de estocagem a -18ºC. Os valores estáveis do “drip” observados ao longo do armazenamento sugerem que ocorreu apenas pequena desnaturação protéica, indicando que o processo de congelamento rápido e a temperatura de estocagem utilizada (-18ºC) foram suficientes para inibir a desnaturação. A adição de 0,5% de tripolifosfato de sódio nas CMS não
alterou significativamente os valores do “drip” ao longo da estocagem. Os tripolifosfatos previnem a agregação da actomiosina, aumentam a capacidade de retenção de água da CMS e seqüestram os cátions metálicos Ca^{2+}, Mg^{2+}, Fe^{2+} e Fe^{3+} contribuindo para inibir a oxidação lipídica e a desnaturação das proteínas (Grantham, 1981; Gonçalves, 2004).

Reddy et al. (1992) estudando a estabilidade na estocagem a -18°C de CMS de perca rosa (*Nemipterus japonicus*) durante 180 dias, observaram um aumento do “drip” ao longo do período, sendo encontrados valores de 4,8% aos 30 dias e 20% ao fim do período. Rodríguez e Bello (1987) relataram alterações mínimas na desnaturação da proteína e na diminuição da retenção de água em CMS de pescado (peixes da fauna acompanhante da pesca de camarão) estocadas a -30°C durante 180 dias. Os autores observaram que a adição de crioprotetores (tripolifosfato de sódio e NaCl) teve apenas um pequeno efeito protetor sobre o sistema protéico na CMS.

![Figura 4: “Drip” (%) das CMS de carcaças de tilápia do Nilo lavadas e não lavadas, com e sem aditivos durante estocagem.](image)

Ocorreu aumento na contagem total de psicrotróficos durante os três primeiros meses de estocagem em todas as CMS, sendo significativo ($p \leq 0,05$) entretanto somente nas CMS não lavadas sem aditivo e CMS lavadas com aditivos. Após este período, os valores permaneceram com pequenas variações mostrando uma tendência de redução.
Os resultados iniciais encontrados estão abaixo dos reportados por Jesus et al. (2001), que constataram valores médios de log 6,45 e 4,93 UFC/g em CMS de peixes amazônicos no início da estocagem a -18ºC e após 120 dias, respectivamente. Gryschek (2001) relatou valores iniciais entre log 2,60 a 3,60 UFC/g e finais de log 2,65 a 4,30 UFC/g, em CMS lavada e não lavada de tilápia do Nilo e tilápia Vermelha, estocada a – 18ºC por 180 dias.

Tabela 4: Contagem total em placas de psicrotróficos (log UFC/g) avaliadas nas CMS de carcaças de tilápia do Nilo lavadas e não lavadas, com e sem aditivos durante estocagem.

<table>
<thead>
<tr>
<th>CMS avaliadas</th>
<th>Dias de estocagem</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>CMS não lavada sem aditivos</td>
<td>3.75±0.2B</td>
</tr>
<tr>
<td>CMS não lavada com aditivos</td>
<td>3.65±0.4A</td>
</tr>
<tr>
<td>CMS lavada sem aditivos</td>
<td>2.74±0.4A</td>
</tr>
<tr>
<td>CMS lavada com aditivos</td>
<td>2.77±0.3B</td>
</tr>
</tbody>
</table>

Médias (n=3) de análises em triplicata. Médias nas mesmas linhas, seguidas por letras maiúsculas distintas, diferem significativamente entre si pelo teste de Tukey (p≤0,05).

Embora a Agência Nacional de Vigilância Sanitária (Brasil, 2001) não estabeleça limites para psicrotróficos, níveis elevados podem reduzir a qualidade da CMS. Os resultados observados mantiveram-se abaixo do limite permitido (log 7,0 UFC/g) pela ICMSF (1986), para contagem padrão em placas de microrganismos aeróbicos.

4. CONCLUSÕES

Os resultados deste estudo indicam que é viável a obtenção de Carne Mecanicamente Separada de resíduo de filetagem de tilápia do Nilo. As CMS obtidas mantiveram-se estáveis durante o período de estocagem a -18ºC por 180 dias, independente do processo de lavagem ou da adição de aditivos. Os teores de pH, BNV, NNP, TBARS e Drip, e os parâmetros microbiológicos avaliados, permaneceram constantes ou apresentaram em alguns casos apenas pequenos aumentos ao longo da estocagem, não afetando a qualidade das CMS.
5. REFERÊNCIAS

HERRERA, J. R., MACKIE, I. M. Cryoprotection of frozen-stored actomyosin of farmed rainbow trout (Oncorhynchus mykiss) by some sugars and polyols. Food Chemistry. v. 84, n. 91-97, 2004.

CAPITULO 3 - Desenvolvimento e avaliação nutricional de nuggets produzidos a partir de Carne Mecanicamente Separada de tilápia do Nilo (*Oreochromis niloticus*)

RESUMO
Este estudo teve como objetivo elaborar nuggets de peixe a partir de Carne Mecanicamente Separada (CMS) obtida de duas matérias-primas: tilápia do Nilo (*Oreochromis niloticus*) abaixo do peso comercial de abate (CMS I) e carcaças obtidas a partir de resíduo de filetagem de tilápia (CMS II). Os produtos foram avaliados quanto ao seu valor nutricional, aceitação sensorial e segurança microbiológica. O valor nutricional dos nuggets foi determinado por meio de análise de minerais, perfil de aminoácidos e avaliação da digestibilidade. De uma forma geral, o processo de lavagem das CMS alterou a composição mineral provocando a lixiviação de minerais como Fe, Zn, Na, K e Ca. Alterações nos teores de P e Mg foram observadas apenas na CMS I. Nutricionalmente, todos os produtos avaliados demonstraram serem excelentes fontes de proteína, por seus conteúdos equilibrados de aminoácidos e elevadas digestibilidades. Na análise sensorial os provadores com idade de 8 a 10 anos apresentaram notas próximas a 7 (Gostei muitíssimo) para ambos os produtos, enquanto que os provadores de 11 a 15 anos demonstraram melhor aceitação para os nuggets elaborados a partir da CMS I apresentando notas acima de 6 (gostei muito), e notas próximas a 5 (gostei) para os nuggets elaborados com CMS II. Os parâmetros microbiológicos avaliados não ultrapassaram os limites permitidos para o consumo. Os resultados experimentais levam a concluir que a carne mecanicamente separada obtida de tilápias do Nilo abaixo do peso de comercialização e de carcaças de tilápia pode ser empregada como matéria-prima para a elaboração de nuggets de peixe obtendo-se um produto de ótima aceitação sensorial e elevado valor nutricional.

Palavras chaves: Tilápia do Nilo, Carcaças, Carne Mecanicamente Separada, Análise sensorial, Nuggets.

1. INTRODUÇÃO

Pescados são alimentos de alto valor nutricional, de fácil digestão, fontes de proteínas, minerais, principalmente cálcio e fósforo, vitaminas lipossolúveis A e D e hidrossolúveis do complexo B, além de ser fonte de ácidos graxos monoinsaturados e polinsaturados, entre eles os ômegas-3 (Suzuki, 1987; Ogawa e Maia, 1999; Eymard, et
al., 2005). Devido a estas características, o consumo de pescado é associado com a diminuição dos riscos de doenças cardiovasculares, câncer e artrite (Madrid, et al., 1999; Eymard, et al., 2005).

O consumo de pescado no Brasil ainda é muito baixo (5,64 kg/habitante/ano) quando comparado com outros países como Japão (41,71 kg/habitante/ano), Inglaterra (16,46 kg/habitante/ano) ou Espanha (29,99 kg/habitante/ano) (FAO, 2006). Segundo Moreira (2005) este fato pode ser atribuído à falta de tradição (gostos e hábitos do consumidor), à pequena oferta do produto, bem como falhas na indústria processadora em oferecer produtos de conveniência, de fácil preparo e diversificados.

A utilização de espécies de baixo valor comercial, abaixo do peso de abate ou dos subprodutos da industrialização de pescados para a obtenção de CMS constitui-se em uma alternativa viável para a obtenção de produtos semi-prontos de baixo custo, alto valor agregado e de elevado teor nutricional que poderiam ser direcionados para o atendimento de consumidores institucionais como escolas, creches, asilos e hospitais. A utilização de peixes de baixo valor comercial ou oriundos da pesca de arrasto de camarão vêm sendo estudada por alguns autores como matéria-prima de baixo custo para a obtenção de CMS (Rodrigues e Bello, 1987; Simões et al., 1998; Peixoto et al., 2000; Jesus et al., 2001). Segundo Morais e Martins (1981) é possível obter um rendimento de 54% e 68%, em CMS de carcaças de cavailinha (Scomber japonicus) e truta arco-íris (Onchorhyncus mykiss), e cerca de 47% partindo-se do pescado inteiro (Ohshima et al., 1993). A produção de CMS em larga escala permite a elaboração de produtos de alto valor agregado, que possam atingir determinados segmentos de mercado, ou mesmo quando transformados em produtos mais simples, atender à necessidade social de demanda por proteína de origem animal de primeira qualidade, pois quando os produtos são elaborados de forma correta, conservam a maioria das características nutricionais do pescado (Madrid, et al. 1999; Kuhn e Soares 2002).

A CMS de pescado oferece grandes possibilidades para a diversificação de produtos na indústria pesqueira, podendo-se controlar e modificar a suculência, textura, sabor, aroma e estabilidade da CMS, dependendo do tipo de produto desejado e do tipo de pescado utilizado (Morais e Martins, 1981).

O processo de lavagem da CMS de pescado tem como finalidade melhorar a qualidade e as características funcionais da CMS (Hassan e Mathew, 1999). Durante o processo acorre a remoção de sangue, pigmentos, lipídeos, proteínas sarcoplasmáticas e componentes solúveis como algumas vitaminas (Grantham, 1981 Lee, 1986; Ohshima et al., 1993; Tenuta-Filho e Jesus, 2003). Adu et al. (1983) relataram perdas de sólidos de aproximadamente 37% durante a lavagem de CMS de “rockfish” (Sebastes. sp), com diminuição dos teores de P, Mg, K e Na.
O objetivo deste estudo foi elaborar um produto (nuggets de peixe) a partir de Carne Mecanicamente Separada obtida de duas matérias-primas: tilápia do Nilo abaixo do peso comercial de abate e carcaças obtidas a partir de resíduo de filetagem de tilápia e avaliá-los quanto ao seu valor nutricional, aceitação sensorial e segurança microbiológica e ainda, avaliar a influência do processo de lavagem na composição mineral das matérias-primas.

2. MATERIAL E MÉTODOS

2.1. Matérias-primas

Foram utilizadas para a obtenção das CMS, tilápias nilóticas (*Oreochromis niloticus*) inteiras com peso médio de 143g, provenientes de pisciculturas da região de Pirassununga e carcaças de tilápias, resultantes de resíduo de filetagem de um abatedouro próximo a Pirassununga. O estudo foi desenvolvido no Laboratório de Processamento de Produtos Aquáticos da PCAPS/USP, em Pirassununga/SP.

2.2. Obtenção das CMS

As tilápias inteiras e os resíduos do processamento (carcaças) foram limpos e lavados com água clorada (5ppm). Os peixes inteiros foram eviscerados, descabeçados e lavados novamente. Após a limpeza das matérias-primas, a CMS foi extraída em despolpadora mecânica HT-250. As CMS obtidas foram estão lavadas com água gelada na proporção de 3L de água para 1kg de CMS. A mistura foi agitada por 2 minutos e permaneceu em repouso por 3 minutos. Logo após, a mistura foi filtrada através de um tecido de nylon para retirada do excesso de água. As CMS de peixes eviscerados e descabeçados foram submetidas a este processo por duas vezes, devido a maior quantidade de sangue e pigmentos. Após o processo de lavagem foram adicionados e homogeneizados às CMS 0,1%, eritrobato de sódio e 0,5%, tripolífosfato de sódio, e em seguida foram embaladas em sacos de polietileno em porções de 500g, congeladas em supercongelador a –40°C e mantidas a –18°C até a confecção dos nuggets.

2.3. Formulações e preparação dos nuggets

Neste estudo foram testadas quatro formulações de nuggets para cada matéria-prima (CMS de peixes eviscerados e descabeçados e CMS de carcaças). Nas formulações foram testados três níveis de Proteína Isolada de Soja (PIS) e dois níveis...
de amido. No preparo das formulações foram utilizados: proteína isolada de soja (BUNGE), condimentos para pescado (KRAKI), fécula de mandioca e sal (Tabela 1 e 2).

Tabela 1: Formulações testadas a partir de CMS de tilápias evisceradas e descabeçadas.

<table>
<thead>
<tr>
<th>Ingredientes (%)</th>
<th>Formulação A</th>
<th>Formulação B</th>
<th>Formulação C</th>
<th>Formulação D</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMS I</td>
<td>90,25</td>
<td>92,25</td>
<td>94,25</td>
<td>90,25</td>
</tr>
<tr>
<td>Proteína isolada de soja</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Fécula de mandioca</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Sal</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Condimentos</td>
<td>0,75</td>
<td>0,75</td>
<td>0,75</td>
<td>0,75</td>
</tr>
</tbody>
</table>

CMS I – CMS lavada de peixes eviscerados e descabeçados.

Tabela 2: Formulações testadas a partir de CMS de carcaças de tilápias.

<table>
<thead>
<tr>
<th>Ingredientes (%)</th>
<th>Formulação A</th>
<th>Formulação B</th>
<th>Formulação C</th>
<th>Formulação D</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMS II</td>
<td>90,25</td>
<td>92,25</td>
<td>94,25</td>
<td>90,25</td>
</tr>
<tr>
<td>Proteína isolada de soja</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Fécula de mandioca</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Sal</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Condimentos</td>
<td>0,75</td>
<td>0,75</td>
<td>0,75</td>
<td>0,75</td>
</tr>
</tbody>
</table>

CMS II – CMS lavada de carcaças de tilápia.

Para o preparo da massa, as CMS foram descongeladas a temperatura de 8ºC e homogeneizadas manualmente, com os ingredientes durante aproximadamente 10 minutos, mantendo a temperatura próxima a 10ºC. A massa foi separada em porções de 80g, moldadas em moldador de hambúrguer e divididas em seis nuggets. Os nuggets moldados foram empanados, passando primeiro no batter (“Batter 1514”), que foi dissolvido em água numa proporção de 1:1,7 (de acordo com recomendação do fabricante), e por último no breading (mistura para empanado “Farinha 1515”), todos da marca Kraki. Depois de empanados, os nuggets foram congelados em ultracongelador e posteriormente pré-fritos em gordura vegetal (BUNGE) a uma temperatura de 180ºC/2 minutos. O tempo foi estabelecido para que a temperatura interna chegasse a 72ºC. Em seguida, os nuggets foram resfriados e congelados em ultracongelador a -40ºC,
embalados em sacos de polietileno e mantidos à temperatura de -18ºC até a realização das análises.

Os nuggets foram avaliados por análise sensorial de ordenação para verificar a preferência do consumidor, quanto a melhor formulação. Os provadores foram solicitados a ordenar as amostras em ordem crescente de sua preferência com relação à aceitação global. Assim, a melhor formulação, para cada matéria-prima, foi selecionada para ser avaliada quanto ao seu valor nutricional, segurança microbiológica e aceitação por crianças e adolescentes da rede pública de ensino de Pirassununga.

2.4. Avaliação da composição centesimal e nutricional

Os teores de umidade, cinzas, extrato etéreo e proteína bruta foram determinados em triplicada, nas matérias-primas e nos nuggets elaborados de acordo com a metodologia oficial da AOAC (1995).

A análise para a determinação de minerais foram realizadas em duplica nas duas matérias-primas e nos nuggets. Para realização da análise de minerais, 2 gramas de cada amostra foram incineradas em mufla (marca QUIMIS) a 550ºC por 4 horas. Nas cinzas obtidas adicionou-se 20 a 30 mL de HCl 50%. Após repouso de 20 minutos, o volume foi transferido para balão volumétrico de 100 mL e ajustado o volume com água deionizada. Todas as análises de minerais foram realizadas em aliquotas desta solução. A análise dos minerais Fe, Zn, Ca, Mg e Mn foram realizadas em espectrofotômetro de absorção atômica (modelo AA100). Os minerais Na e K, foram analisados em espectrofotômetro de chama (ANALYSER-910) e o P foi analisado em espectrofotômetro colorimétrico (marca FEMTO).

A análise de perfil de aminoácidos foi realizada nos nuggets produzidos a partir da melhor formulação obtida para cada matéria-prima. Para quantificação dos aminoácidos, as amostras foram hidrolisadas com HCl 6N a 110ºC por 24 horas. A análise de perfil de aminoácidos foi realizada por cromatografia líquida de alta resolução (analisador Hitachi L8500 A), com coluna de troca iônica sódica e reação pós-coluna com ninidrina. Os aminoácidos foram quantificados usando-se como referência solução de aminoácidos Pickering. O aminoácido triptofano não foi mensurado neste estudo.

A determinação da digestibilidade foi realizada em triplicata nas amostras de nuggets elaboradas a partir das duas matérias-primas estudadas, utilizando-se metodologia descrita por Akeson e Stahmann (1964).

O desenvolvimento microbiológico foi acompanhado em todas as amostras das CMS e nos nuggets, por meio das análises de contagem total de psicrotróficos em placas, pela técnica do “pour plate”; detecção de *Salmonella* seguindo metodologia

2.5. Avaliação sensorial

Para a avaliação sensorial foram utilizados testes de preferência e aceitação do consumidor. Estes testes afetivos medem a preferência que os consumidores assumem sobre um produto com relação a outro e o grau com que os provadores gostam ou desgostam de determinado produto, respectivamente (Stone e Sidel, 1993; Meilgaard et al., 1987). Os testes foram feitos no Laboratório de Análise Sensorial da FZEA/USP.

- Teste de ordenação

Foram realizados dois testes de ordenação separadamente, um para avaliação dos nuggets produzidos com CMS de tilápias evisceradas e descabeceadas e outro para os nuggets produzidos a partir de CMS de carcaças de tilápia. Nestes testes os provadores foram solicitados a ordenar as amostras em ordem crescente de sua preferência. A equipe sensorial foi composta por 43 indivíduos não treinados, maiores de idade, integrantes da comunidade da FZEA. A ficha de análise sensorial (Figura 1) e as quatro amostras de cada matéria-prima, codificadas com 3 dígitos em ordem casualizada foram apresentadas aos provadores em uma bandeja juntamente com um copo de água, à temperatura ambiente, para ser tomada entre cada prova.

Nome: ___________________________ Idade: ________ Data: __/__/__

Você está recebendo 4 amostras codificadas de nuggets de peixe (Tilápia do Nilo). Por favor, prove as amostras da esquerda para a direita. Ordene-as em ordem crescente em relação à sua preferência.

Gostei Mais | __________ | __________ | Desgostei mais

Comentários: __

Figura 1: Ficha utilizada no teste de ordenação.

- Teste de aceitação

Após a realização do teste de ordenação, foram definidas a melhor formulação para cada tipo de matéria-prima, CMS. Realizou-se então o teste de aceitação com os consumidores em potencial, crianças consumidoras de merenda escolar, sendo um
grupo composto por alunos de 3ª a 4ª série do ensino fundamental, com idade entre 8 a 10 anos (n=47), e outro, composto por alunos de 5ª a 8ª série do ensino fundamental com idade entre 11 a 15 anos (n=39).

Para o primeiro grupo o teste de aceitação foi realizado utilizando-se uma escala hedônica facial de sete pontos (Figura 2) para avaliar a aceitação global. Os provadores receberam e avaliaram as 2 amostras separadamente (apresentação monádica), uma elaborada com CMS de tilápias evisceradas e descabeçadas e outra com CMS de carcaça. Os provadores receberam também um copo de água, à temperatura ambiente, para enxaguar a boca entre cada avaliação. O segundo grupo usou a escala hedônica verbal de sete pontos (Figura 3), para avaliar a aceitação global nas mesmas condições da primeira equipe.

Nome:...Idade:.........................Data:.............................

Avalie a amostra de nuggets de peixes (Tilápia do Nilo), e use a escala abaixo para indicar o quanto você gostou ou desgostou da amostra.

7-Gostei muitíssimo
6-Gostei muito
5-Gostei
4-Não gostei / nem desgostei
3-Desgostei
2-Desgostei muito
1-Desgostei muitíssimo

Figura 2: Ficha utilizada no teste de aceitação da equipe composta por alunos da 3ª a 4ª série.

Nome: ... Idade:.............Data:

Avalie a amostra de nuggets de peixe (Tilápia do Nilo), e use a escala abaixo para indicar o quanto você gostou ou desgostou da amostra.

7-Gostei muitíssimo
6-Gostei muito
5-Gostei
4-Não gostei / nem desgostei
3-Desgostei
2-Desgostei muito
1-Desgostei muitíssimo

Figura 3: Ficha utilizada no teste de aceitação da equipe composta por alunos de 5ª a 8ª série.
2.6. Análises Estatísticas

A análise estatística do teste de ordenação foi realizada pelo teste de Friedman \((p \leq 0.05)\). Os dados obtidos foram avaliados pela Tabela de Newell e Mac Farlane ao nível de 5 % de significância, considerando o número de tratamentos (amostras) e provadores de acordo com esta Tabela. As amostras que apresentaram uma diferença igual ou maior que 31 entre a somatória dos resultados, apresentam diferença \((p \leq 0.05)\) entre si.

Para os outros parâmetros avaliados, os dados obtidos foram analisados por análises de variância (ANOVA) e as médias foram comparadas pelo teste de Tukey em nível de 5% de probabilidade. As análises foram utilizando o programa Statistical Analysis System (SAS Institute, 1999).

3. RESULTADOS E DISCUSSÃO

3.1. Composição centesimal

Os valores referentes à composição centesimal das CMS de tilápia e dos nuggets estão expostos na Tabela 3. As diferentes composições químicas observadas entre as CMS podem ser justificadas pelas diferentes matérias-primas utilizadas.

Os teores de umidade observados nas CMS I e CMS II (80,88 e 76,71%, respectivamente) estão próximos aos relatados por Eymard et al. (2005) e Siddaiah et al. (2001) que relataram valores entre 76,30 e 80,97% em CMS de “mackerel” e carpa, respectivamente. Após o processo de lavagem observou-se aumento \((p \leq 0.05)\) no teor de umidade na CMS I e enquanto que na CMS II este parâmetro não se alterou de maneira significativa. Aumentos nos teores de umidade após o processo de lavagem de CMS de pescado também foram observados por Gryschek et al. (2003) e Martí de Castro et al. (1997). Durante o processo de lavagem ocorre remoção das proteínas sarcoplasmáticas e a concentração de proteínas miofibrilares, responsáveis pela capacidade de retenção de água do músculo, aumentando assim umidade da CMS. Entretanto, Ohshima et al. (1993) relatam que o teor de umidade observado em CMS de pescado após o processo de lavagem depende de alguns parâmetros relacionados a água de lavagem como temperatura, pH e força iônica.
Tabela 3: Valores médios para a composição centesimal da Carne Mecanicamente Separada de tilápia do Nilo obtida de peixes eviscerados e descabeçados e de carcaças e de seus produtos (nuggets).

<table>
<thead>
<tr>
<th>Produtos avaliados</th>
<th>Umidade (%)</th>
<th>Proteína (%)</th>
<th>Lipídeos (%)</th>
<th>Cinzas (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMS I sem lavar</td>
<td>80.88 A±0,51</td>
<td>16.20 A±0,76</td>
<td>1.41 C±0,08</td>
<td>1.46 A±0,10</td>
</tr>
<tr>
<td>CMS I lavada</td>
<td>88.33 B±0,34</td>
<td>10.46 B±0,19</td>
<td>0.22 D±0,01</td>
<td>0.51 C±0,08</td>
</tr>
<tr>
<td>CMS II sem lavar</td>
<td>76.61 C±0,41</td>
<td>10.60 B±0,33</td>
<td>11.97 A±0,18</td>
<td>0.83 B±0,01</td>
</tr>
<tr>
<td>CMS II lavada</td>
<td>77.29 C±0,81</td>
<td>10.51 B±0,40</td>
<td>11.30 B±0,10</td>
<td>0.73 B±0,01</td>
</tr>
<tr>
<td>Nugget I</td>
<td>52.19 A±0,25</td>
<td>10.02 A±0,62</td>
<td>11.12 A±0,77</td>
<td>2.50 A±0,15</td>
</tr>
<tr>
<td>Nugget II</td>
<td>46.30 B±0,33</td>
<td>9.50 A±0,38</td>
<td>17.75 B±0,66</td>
<td>2.77 A±0,12</td>
</tr>
</tbody>
</table>

Médias (n=3) de análises em triplicata. Médias dos mesmos parâmetros nas mesmas colunas, seguidas por letras maiúsculas distintas, diferem significativamente pelo teste de Tukey (p≤0,05) entre si.

CMS I - Carne Mecanicamente Separada de tilápia eviscerada e descabeçada;
CMS II - Carne Mecanicamente Separada de carcaça de tilápia;
Nugget I – elaborado com CMS I lavada; Nugget II – elaborado com CMS II lavada.

Os teores de proteína bruta encontrados na CMS I não lavada (16,20%) foram maiores que os observados na CMS II não lavada (10,60%). De acordo com Contreras-Guzmán (2002), a composição química dos peixes com relação aos teores de umidade, proteína e lipídios, obedece de forma geral, a seguinte distribuição: umidade maior na zona caudal e menor na ventral; gordura, maior na ventral e menor na caudal e proteína maior na dorsal e menor na ventral. No processo de filetagem da tilápia do Nilo, fica retida na carcaça, a porção muscular ventral, que provavelmente apresenta maior teor de gordura e menor de proteína, bem como, menores quantidades de água. Desta forma, é esperado que na CMS de carcaça, estejam presentes maiores quantidade de gordura e menores de proteína, o que pode ser observado neste trabalho (Tabela 3). Os níveis de proteína da CMS I estão próximos ao reportados por Gryschek et al. (2003) e Siddaiah et al. (2001) que encontraram teores de 16,03 e 16,68 % de proteína em CMS de tilápia do Nilo e carpa, respectivamente.

O processo de lavagem ao qual as CMS foram submetidas reduziu significativamente os teores de proteínas nas CMS I, entretanto o mesmo não foi observado na CMS II. Alguns autores reportaram que durante o processo de lavagem ocorre lixiviação de sangue, pigmentos, componentes solúveis em água e lipídios (Adu et al. 1983; Lee 1986, Grantham, 1981). Entretanto, a intensidade de remoção destes componentes depende do número de lavagens que a CMS é submetida (Gryschek et al., 2003). A redução do teor de proteína na CMS I ocorreu provavelmente devido à remoção de proteínas solúveis sarcoplasmáticas durante a lavagem. É provável que
apenas um ciclo de lavagem que a CMS II foi submetida não tenha sido o suficiente para reduzir significativamente seu teor de proteína. Diminuição dos teores de proteína durante o processo de lavagem também foram observadas por Gryschek et al. (2003) e Adu et al. (1983) que relataram valores de 10,98 e 9,50%, respectivamente em CMS lavada de pescado (tilápia do Nilo e “rockfish”).

Os valores de lipídeos encontrados na CMS I estão próximos aos 1,85% relatados por Marchi (1997) em CMS de tilápia, mas abaixo dos 5,46% observados por Gryschek et al. (2003). O alto teor de gordura observado na CMS II (11,97%) deve-se a presença na carcaça de porções ventrais musculares que normalmente contém mais gordura, e durante a obtenção da CMS parte desta gordura é extraída juntamente com a CMS. O processo de lavagem reduziu (p≤0,05) o teor lipídico da CMS I, apresentando diminuição de 84% dos lipídeos. Gryschek et al. (2003) e Adu et al. (1983) reportaram redução de 70 e 76%, respectivamente durante a lavagem de CMS de pescado. Entretanto, na CMS II o processo de lavagem não alterou significativamente o teor de lipídeos. É provável que devido ao elevado teor de lipídeos observado na CMS II, o processo de lavagem e a subseqüente retirada de água utilizados, assim como o número de lavagem que a CMS foi submetida não tenham sido eficiente para uma diminuição mais significativa de seus teores.

A CMS II apresentou menores teores de cinzas que a CMS I. Entretanto os valores estão próximos aos 0,97% relatados por Rodríguez e Bello (1987) e 1,50% encontrados por Marchi (1997). Neste estudo, o processo de lavagem da CMS propiciou uma redução no teor de cinzas de 65,05% na CMS I e de 12,04% na CMS II. A diminuição nos teores de cinzas durante o processo de lavagem também foram observadas por Martí de Castro et al. (1997) e Adu et al. (1983) que reportaram diminuição de 35,70% e 86,79%, respectivamente. Entretanto, Rodríguez e Bello (1983) observaram redução de apenas 15,8% nos teores de cinzas após a lavagem da CMS de peixes da fauna acompanhante da pesca de camarão.

Observou-se diminuição nos teores de umidade e aumentos dos teores de lipídios nos nuggets, quando comparados com suas matérias-primas. As diminuições nos teores de umidade podem ser justificadas pela adição de ingredientes secos durante confecção dos nuggets e a perda de água durante a pré-fritura. Provavelmente durante a pré-fritura também deve ter ocorrido absorção de gordura, aumentando os valores de lipídios nos nuggets. Diminuição nos valores de umidade e aumentos nos teores de lipídios também foram observados por Cakli et al. (2005) e Marchi (1997) durante a elaboração de “fish fingers” e nuggets de pescados, respectivamente. Cakli et al. (2005) relataram diminuição média de 19% na umidade e aumento de 682% no teor de lipídios durante o processamento dos “fish fingers” de badejo (Merlangius merlangus) e perca rosa.
(Sander lucioperca). Reportaram ainda valores de 52,04 e 14,39% de umidade e lipídios, respectivamente, para “fish fingers” de sardinha, valores próximos aos encontrados neste estudo. Os teores mais elevados de lipídios observados nos nuggets II podem ser atribuídos a característica de sua matéria-prima (CMS II), que apresentou os níveis de lipídios mais elevados (11,30%).

Os teores de proteína e cinzas observados nos nuggets elaborados não diferiram significativamente entre si, e estão próximos aos encontrados por Peixoto et al. (2000) em moldado sabor camarão elaborado com CMS de pescada (Macrodom ancylodon). Resultados similares também foram reportados por Tokur et al. (2006) em “fish fingers” de CMS de carpa (Cyprinus carpio).

3.2. Composição mineral

A composição mineral dos peixes pode variar em função da espécie, tamanho e região do corpo analisada. A CMS I apresentou teores mais elevados de todos os minerais analisados, com exceção do Ca, que foi encontrado em maior quantidade na CMS II (Tabela 4). A maior concentração de minerais observada na CMS I que na CMS II já era esperada, devido a menor quantidade de cinzas presente na CMS II.

Os teores de Fe mais elevados encontrados nas CMS I quando comparados com a CMS II (1,42 e 0,90 mg/100g, respectivamente) podem ser atribuídos provavelmente a maior presença de sangue no músculo das tilápias processadas descabeçadas e evisceradas. Entretanto os valores encontrados estão próximos aos observados por Córser et al. (2000) e Marchi (1997), que reportaram valores de 1,40 e 1,02 mg/100g, respectivamente em músculo de tilápia do Nilo.

O conteúdo de Zn apresentou pouca alteração entre as CMS, sendo encontrados valores de 0,85 e 0,76 mg/100g nas CMS I e CMS II, respectivamente. Estes valores estão acima dos 0,51 mg/100g reportados por Marchi (1997). Güner et al. (1998) reportaram teores de Zn que oscilaram entre 0,33 a 2,11 g/100g em sete espécies de peixes do Mar Negro. O nível de Na na CMS I não lavada foi ligeiramente superior ao encontrado na CMS II não lavada (67,51 e 59,71 mg/100g respectivamente), estando próximo aos 60,98 e 72,00 mg/100g reportados por Gryschek et al. (2003) e Otitologbon et al. (1997) em CMS de tilápia do Nilo.

Ottitologbon et al. (1997) relataram teores de K de 269 mg/100g em CMS de tilápia do Nilo. Neste estudo, a CMS I apresentou teores de 287,76 mg/100g de K, enquanto que na CMS II foram encontrados 91,14 mg/100g, onde foi observada uma diferença de 68,3% no teor de K entre as CMS. Martínez-Valverde et al. (2000) observaram redução média 52,53% nos teores de K em CMS de bacalhau (Micromessistius poutassou),
merluza (*Merluccius merluccius*) e linguado (*Solea vulgaris vulgaris*) quando comparam teores de K no músculo e no músculo moído com os ossos dos peixes.

Tabela 4: Composição mineral (mg/100g) na Carne Mecanicamente Separada de tilápias do Nilo obtida de peixes eviscerados e descabeçados, de carcaças e nos seus produtos (nuggets).

<table>
<thead>
<tr>
<th>Produtos</th>
<th>Fe</th>
<th>Zn</th>
<th>Na</th>
<th>K</th>
<th>Ca</th>
<th>P</th>
<th>Mg</th>
<th>Mn</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMS I não lavada</td>
<td>1.42</td>
<td>0.85</td>
<td>67.51</td>
<td>287.76</td>
<td>49.66</td>
<td>199.80</td>
<td>23.18</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>±0.15</td>
<td>±0.00</td>
<td>±0.00</td>
<td>±1.35</td>
<td>±2.54</td>
<td>±1.35</td>
<td>±0.26</td>
<td>±0.00</td>
</tr>
<tr>
<td>CMS I lavada</td>
<td>0.75</td>
<td>0.52</td>
<td>15.65</td>
<td>25.56</td>
<td>37.57</td>
<td>85.77</td>
<td>9.98</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>±0.02</td>
<td>±0.02</td>
<td>±0.82</td>
<td>±0.74</td>
<td>±0.14</td>
<td>±0.00</td>
<td>±0.28</td>
<td>±0.00</td>
</tr>
<tr>
<td>CMS II não lavada</td>
<td>0.90</td>
<td>0.76</td>
<td>59.71</td>
<td>91.14</td>
<td>80.80</td>
<td>130.38</td>
<td>12.34</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>±0.02</td>
<td>±0.00</td>
<td>±1.72</td>
<td>±1.72</td>
<td>±2.50</td>
<td>±1.72</td>
<td>±0.03</td>
<td>±0.00</td>
</tr>
<tr>
<td>CMS II lavada</td>
<td>0.74</td>
<td>0.56</td>
<td>30.67</td>
<td>32.20</td>
<td>61.29</td>
<td>127.39</td>
<td>11.12</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>±0.02</td>
<td>±0.00</td>
<td>±0.00</td>
<td>±0.50</td>
<td>±1.90</td>
<td>±3.34</td>
<td>±0.15</td>
<td>±0.00</td>
</tr>
<tr>
<td>Nuggets I</td>
<td>1.69</td>
<td>0.58</td>
<td>1220.66</td>
<td>24.86</td>
<td>32.24</td>
<td>135.36</td>
<td>14.78</td>
<td>0.22</td>
</tr>
<tr>
<td></td>
<td>±0.01</td>
<td>±0.01</td>
<td>±6.96</td>
<td>±0.35</td>
<td>±0.35</td>
<td>±3.48</td>
<td>±0.15</td>
<td>±0.01</td>
</tr>
<tr>
<td>Nuggets II</td>
<td>1.60</td>
<td>0.62</td>
<td>1420.37</td>
<td>27.39</td>
<td>37.86</td>
<td>151.10</td>
<td>12.69</td>
<td>0.19</td>
</tr>
<tr>
<td></td>
<td>±0.00</td>
<td>±0.01</td>
<td>±11.39</td>
<td>±0.00</td>
<td>±1.14</td>
<td>±7.59</td>
<td>±0.18</td>
<td>±0.00</td>
</tr>
</tbody>
</table>

Médias (n=2) de análises em duplicata;
CMS I - Carne Mecanicamente Separada de tilápia eviscerada e descabeçada;
CMS II - Carne Mecanicamente Separada de carcaça de tilápia.

Os teores de Ca observados nas CMS I e CMS II variaram de 49,66 a 80,80 mg/100g, respectivamente. Maiores teores de Ca na CMS II provavelmente ocorreram devido à incorporação de pequenos fragmentos de ossos a CMS durante a sua extração devido à maior proporção de espinhos presentes na matéria prima utilizada (carcaças). Gryschek et al. (2003) relataram teores de 64,47 mg/100g de Ca em CMS de tilápias do Nilo, enquanto que Córser et al. (2000) encontraram valores de 10,00 a 79,33 mg/100g de Ca em doze espécies de pescado.

A CMS I apresentou teores de P e Mg mais elevados que a CMS II (199,80 e 130,38 mg/100g para P e 23,18 e 12,34 para Mg, respectivamente). Teores de 180,51 e 27,22 mg/100g de P e Mg, foram relatados por Gryschek, et al. (2003) em CMS de tilápias do Nilo.

composição mineral e temperatura da água utilizada no processo de lavagem bem como os tipos de equipamento utilizado podem afetar a composição mineral, cor e textura do produto final. Quando se compara a CMS I lavada com a CMS I não lavada, os elementos ferro, zinco, sódio, potássio, cálcio, fósforo e magnésio sofreram redução em seus níveis, enquanto que o conteúdo de manganês manteve-se praticamente constante, mesmo após a lavagem. Na CMS II lavada os teores de magnésio, fósforo e manganês apresentaram pequenas alterações durante a lavagem, sendo observada diminuição mais severas dos elementos ferro, zinco, sódio, potássio e cálcio. O processo de lavagem propiciou drástica lixiviação do potássio (91,1% na CMS I e 64,7% na CMS II) e moderadas reduções de Fe, Zn, Na e Ca, o que também foi observada por Gryschek, et al. (2003) e Marchi, (1997).

Adu et al. (1983) avaliando o efeito da lavagem na qualidade nutricional de CMS de “rockfish”, revelou que as concentrações de P, K e Na foram reduzidas após as lavagens, enquanto que as concentrações de Fe, Zn, Cl e Co foram aumentadas em relação as CMS não lavadas. Segundo os autores a qualidade da água bem como o tipo de equipamento utilizado no processo de lavagem pode alterar a composição da CMS lavada.

A composição mineral dos nuggets foi muito semelhante não evidenciando diferenças entre os nuggets produzidos com CMS I e CMS II. Os elevados teores de Na podem ser justificados devido a adição de condimentos durante o processo de elaboração dos nuggets.

3.3. Avaliação microbiológica

A CMS I lavada e a CMS II lavada apresentaram valores de 1,42 e 2,74 log UFC/g de psicrotróficos, respectivamente, enquanto que nos nuggets I e nuggets II os valores encontrados foram de 1,43 e 1,48 log UFC/g, respectivamente. Os resultados obtidos para contagens de psicrotróficos ficaram abaixo do limite permitido (log 7,0 UFC/g) pela ICMSF (1986), para contagem padrão em placas de microrganismos aeróbicos. Não foi constatada a presença de Coliformes termotolerantes, Coliformes totais, Salmonella e Staphylococcus aureus, estando de acordo com os padrões microbiológicos estabelecidos pela Secretaria de Vigilância Sanitária para pescado (Brasil, 2001).

A realização da pré-fritura, a 180ºC/2 minutos, permite que a temperatura interna nos nuggets chegue à 72ºC, a qual promove a pasteurização do produto. Estes resultados evidenciam a eficiência do processamento de maneira geral, indicando que os processos de obtenção das matérias-primas e da elaboração dos nuggets primaram...
pela higiene seguindo as boas práticas de fabricação fornecendo produtos seguros para o consumidor.

3.4. Avaliação sensorial

- Teste de preferência do consumidor

Os dados do teste de ordenação para as amostras elaboradas com CMS lavada de tilápia evisceradas e descabeçadas, quando analisados pelo método de Friedman ao nível de 5% de significância não apresentaram diferença em relação à preferência global do consumidor (Tabela 5). Observou-se que a Formulação A, embora tenha apresentado maior aceitação pelos consumidores, não diferiu significativamente das demais. Assim, embora diferentes concentrações de ingredientes tenham sido utilizadas, isto não interferiu significativamente na preferência do consumidor.

Tabela 5: Teste de ordenação, somatório* dos julgamentos dos provadores das amostras de CMS de peixes eviscerados e descabeçados.

<table>
<thead>
<tr>
<th>Formulações</th>
<th>Somatório</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>116ª</td>
</tr>
<tr>
<td>B</td>
<td>99ª</td>
</tr>
<tr>
<td>C</td>
<td>109ª</td>
</tr>
<tr>
<td>D</td>
<td>106ª</td>
</tr>
</tbody>
</table>

* Os somatórios com letras em comum não diferiram entre si (p ≤ 0,05) segundo o método de Friedman.

Também foram avaliadas, através do teste de ordenação, as 4 formulações de CMS lavada de carcaça de tilápia. Os somatórios (Tabela 6) não diferiram entre si ao nível de 5% de significância pelo método de Friedman em relação à preferência global. E novamente neste caso, mesmo as amostras apresentando concentrações diferentes dos ingredientes, não houve interferência significativa na preferência do consumidor.

Tabela 6: Teste de ordenação, somatório* dos julgamentos dos provadores das amostras de CMS de carcaça.

<table>
<thead>
<tr>
<th>Formulações</th>
<th>Somatório</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>108ª</td>
</tr>
<tr>
<td>B</td>
<td>112ª</td>
</tr>
<tr>
<td>C</td>
<td>102ª</td>
</tr>
<tr>
<td>D</td>
<td>108ª</td>
</tr>
</tbody>
</table>

* Os somatórios com letras em comum não diferiram entre si (p ≤ 0,05) segundo o método de Friedman.
Com base nos resultados do teste de ordenação em relação a aceitação global não foi possível escolher a melhor formulação para a massa dos nuggets. Sendo assim foram considerados outros parâmetros de escolha baseados em características físico-químicas e tecnológicas.

As diferentes matérias-primas apresentaram diferença no teor de umidade. A CMS lavada de carcaça apresentou 77,29% de umidade, teor significativamente abaixo do 88,4% observado na CMS lavada de tilápia evisceradas e descabeçadas. Com base nestes dados e nos somatórios do teste de ordenação embora não significativos, a Formulação “A” foi escolhida para a CMS de tilápia evisceradas e descabeçadas para elaboração dos nuggets (Tabela 1). Devido ao elevado teor de umidade a adição de 5% de proteína isolada de soja a CMS contribuiu para o produto apresentar melhor textura e melhor retenção de água pois este ingrediente tem importantes propriedades funcionais que aumentam a capacidade de retenção água e auxiliam na emulsificação de produtos cárneos. Quantidades superiores a 5% de PIS, não são recomendadas em razão de alterações no sabor do produto (Marchi, 1997).

Para os nuggets elaborados com CMS lavada de carcaça também escolheu-se a melhor formulação segundo o teste de ordenação aplicado (formulação “B”), apesar de não significativa (Tabela 2). A umidade relativamente mais baixa desta matéria prima, sugere que a adição de 3% de proteína isolada de soja foi o suficiente para que o produto apresentasse uma textura adequada.

- Teste de aceitação

Os resultados do teste de aceitação global realizado com crianças de idade entre 8 e 10 anos e 11 e 15 anos estão apresentados na Tabela 7. Não foi observada diferença significativa (P > 0,05) nos resultados do teste de aceitação global entre os nuggets elaborados com CMS I e II lavada realizado pelos provadores com idade entre 8 e 10 anos (3ª e 4ª séries). Ambos os produtos foram muito bem aceitos pelas crianças desta faixa etária, apresentando notas próximas a 7, nota máxima da escala hedônica utilizada.

A equipe composta por consumidores com idade entre 11 e 15 anos (5ª a 8ª séries) mostrou melhor aceitação pelo nuggets elaborado com CMS de tilápia eviscerada e descabeçada (Tabela 7). Considerando escala hedônica verbal de 7 pontos, nota-se que o nuggets composto por CMS I obteve um valor médio acima de 6 (6,33) indicando um valor acima do termo “Gostei muito”. Já os nuggets II valor médio de 5,35, o que é também uma boa aceitação, uma vez que este valor na escala hedônica encontra-se acima do termo “Gostei”. A diferença nas notas do atributo aceitação global nos nuggets II, observada entre os provadores com idade entre 8 e 10
anos e 11 a 15 anos, indica que a idade dos provadores pode influenciar a aceitação do produto. Tal fato provavelmente pode ser atribuído a melhor capacidade de discriminação observada nos provadores com idade entre 11 e 15 anos.

Tabela 7: Valores médios atribuídos pelos provadores, para as 2 amostras de nuggets de tilápias do Nilo.

<table>
<thead>
<tr>
<th>Amostras</th>
<th>Aceitação global</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Equipe de 8 a 10 anos.</td>
</tr>
<tr>
<td>Nuggets I</td>
<td>6,95<sup>A</sup></td>
</tr>
<tr>
<td>Nuggets II</td>
<td>6,93<sup>A</sup></td>
</tr>
</tbody>
</table>

As amostras com letras em comum não diferiram significativamente entre si à p ≤ 0,05; Nuggets I – Nuggets elaborados com CMS obtida de tilápias evisceradas e descabeçadas; Nuggets II – Nuggets elaborados com CMS obtida de carcaças de tilápias.

3.5. Avaliação do perfil de aminoácidos e digestibilidade dos nuggets

O perfil de aminoácidos dos nuggets produzidos a partir das duas matérias-primas estudadas estão mostrados na Tabela 8. Em geral, os nuggets II apresentaram teores de aminoácidos ligeiramente mais elevados que os nuggets elaborados com a CMS I. Tal fato pode estar relacionado com as formulações dos produtos, pois na formulação do nuggets I a porcentagem de CMS utilizada foi de 90,25% enquanto que nos nuggets II foi de 92,25%. Além disso, foram também utilizadas diferentes concentrações de proteína isolada de soja utilizada (nuggets I - 5% e nuggets II - 3%).

Os teores de aminoácidos essenciais dos nuggets foram comparados com os níveis recomendados pela FAO/WHO/UNU (1991) para crianças de 3 a 8 anos de idade. Os nuggets elaborados a partir das CMS de tilápias evisceradas e descabeçadas mostraram-se ligeiramente deficientes em histidina, para crianças de 3 a 8 anos de idade. Os nuggets II, elaborados a partir da CMS de carcaças, apresentaram maior adequação aos níveis de referência utilizados neste trabalho, não apresentando aminoácidos limitantes.

Outro critério de grande relevância do ponto de vista nutricional a ser considerado, além da composição adequada e balanceada em aminoácidos essenciais, é o grau de digestibilidade da proteína. Cabe ressaltar que a adequação da proteína em aminoácidos essenciais acompanhada da elevada digestibilidade, reforça a qualidade nutricional dos produtos elaborados a partir da CMS de tilápias, pois assegura uma eficiente absorção destes nutrientes pelo organismo.

<table>
<thead>
<tr>
<th>Aminoácidos (g/100g de proteína)</th>
<th>Nuggets I<sup>1</sup></th>
<th>Nuggets II<sup>2</sup></th>
<th>Aminoácidos essenciais FAO<sup>3</sup> 3-8 anos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA essenciais</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isoleucina</td>
<td>2,93</td>
<td>3,07</td>
<td>1,3</td>
</tr>
<tr>
<td>Leucina</td>
<td>5,65</td>
<td>6,07</td>
<td>1,9</td>
</tr>
<tr>
<td>Lisina</td>
<td>4,93</td>
<td>5,44</td>
<td>1,6</td>
</tr>
<tr>
<td>Metionina + Cisteina</td>
<td>2,45</td>
<td>2,66</td>
<td>1,7</td>
</tr>
<tr>
<td>Fenilalanina + Tirosina</td>
<td>5,53</td>
<td>5,99</td>
<td>1,9</td>
</tr>
<tr>
<td>Treonina</td>
<td>3,13</td>
<td>3,47</td>
<td>0,9</td>
</tr>
<tr>
<td>Valina</td>
<td>2,95</td>
<td>3,09</td>
<td>1,3</td>
</tr>
<tr>
<td>Histidina</td>
<td>1,53</td>
<td>1,62</td>
<td>1,6</td>
</tr>
<tr>
<td>AA não essenciais</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alanina</td>
<td>4,33</td>
<td>4,93</td>
<td>-</td>
</tr>
<tr>
<td>Arginina</td>
<td>4,87</td>
<td>4,39</td>
<td>-</td>
</tr>
<tr>
<td>Ác. Aspártico</td>
<td>6,90</td>
<td>7,51</td>
<td>-</td>
</tr>
<tr>
<td>Glicina</td>
<td>3,46</td>
<td>4,31</td>
<td>-</td>
</tr>
<tr>
<td>Ác. Glutâmico</td>
<td>14,77</td>
<td>14,89</td>
<td>-</td>
</tr>
<tr>
<td>Cisteina</td>
<td>1,01</td>
<td>1,03</td>
<td>-</td>
</tr>
<tr>
<td>Tirosina</td>
<td>2,36</td>
<td>2,68</td>
<td>-</td>
</tr>
<tr>
<td>Prolina</td>
<td>4,12</td>
<td>4,38</td>
<td>-</td>
</tr>
<tr>
<td>Serina</td>
<td>3,20</td>
<td>3,47</td>
<td>-</td>
</tr>
<tr>
<td>Digestibilidade (%)</td>
<td>91,89</td>
<td>89,87</td>
<td>-</td>
</tr>
</tbody>
</table>

¹ Nuggets I – nuggets elaborado com CMS I;
² Nuggets II - nuggets elaborado com CMS II;
³ Recomendações de aminoácidos essenciais da FAO/WHO/UNU, para crianças de 3 a 8 anos;

Os valores de digestibilidade encontrados nos produtos, próximos a 90%, são satisfatórios e correspondem ao esperado, pois a proteína de pescado possui pouco tecido conjuntivo, o qual, mesmo em pescado, trata-se de uma proteína de difícil digestão (Geromel e Forsters, 1982). Segundo Contreras-Guzmán, (2002) a carne de pescado possui alta digestibilidade, em torno de 90 e 98%, valores ligeiramente acima dos observados para carne de bovinos e frango.

De forma geral, os nuggets apresentam-se como excelente fonte de proteína, por seu conteúdo equilibrado de aminoácidos essenciais e elevada digestibilidade,
considerando as recomendações nutricionais para crianças na faixa etária de 3 a 8 anos (FAO/WHO/UNU, 1991).

4. CONCLUSÕES

• O processo de lavagem ao qual as CMS foram submetidas promoveu lixiviação de minerais como Fe, Zn, Na, K e Ca nas duas CMS avaliadas; entretanto, a lixiviação dos minerais P e Mg foram observadas apenas na CMS de carcaças.

• A carne mecanicamente separada obtida de tilápias do Nilo abaixo do peso de comercialização e de carcaças de tilápia pode ser empregada como matéria-prima para a elaboração de nuggets de peixe obtendo-se um produto de ótima aceitação sensorial e elevado valor nutricional devido seu conteúdo equilibrado de aminoácidos e alta digestibilidade.

5. REFERÊNCIAS

CAPÍTULO 4 - Avaliação da estabilidade de nuggets elaborados com Carne Mecanicamente Separada de Tilápia do Nilo (*Oreochromis niloticus*) durante armazenamento

RESUMO

Neste trabalho avaliou-se a estabilidade de nuggets elaborados a partir de Carne Mecanicamente Separada (CMS) obtida de tilápias do Nilo (*Oreochromis niloticus*) abaixo do peso comercial (nuggets I) e CMS de carcaças de tilápias (nuggets II) durante 180 dias de armazenamento a -18ºC. A estabilidade dos nuggets foi avaliada por meio de análises de substâncias reativas ao ácido tiobarbitúrico (TBARS), análises microbiológicas e avaliação sensorial. Para analise sensorial foi utilizada escala hedônica estruturada de nove pontos (extremos de 1=desgostei muito e 9=gostei muito) com 45 provadores não treinados. Durante o armazenamento os valores de TBARS tiveram aumentos (p≤0,05) somente após 120 dias de armazenamento, atingindo valores de 1,15 e 1,91 mg malonaldeído/kg ao final do período, para os nuggets I e nuggets II, respectivamente. Os parâmetros microbiológicos avaliados não ultrapassaram os limites permitidos para o consumo. As notas do atributo sabor permaneceram constantes ao longo do armazenamento nos nuggets I e diminuíram significativamente nos nuggets II passando de “gostei moderadamente” (média de 7,11) para “gostei ligeiramente” (média de 6,07) ao final do período. Os atributos textura e aceitação global não se alteraram significativamente ao longo do tempo para ambos os produtos, entretanto os nuggets II apresentaram diminuição (p≤0,05) na aceitação global aos 180 dias de armazenamento quando comparados com os nuggets I, apresentando notas de 7,35 para os nuggets I e 6,07 para os nuggets II. As CMS de tilápias do Nilo abaixo do peso comercial e de carcaças de tilápias podem ser empregadas como matérias-primas de qualidade para a elaboração de produtos a base de pescado. Os nuggets elaborados com estas CMS mantiveram-se aptos para o consumo durante 180 dias de armazenamento a -18ºC.

Palavras chaves: Tilápia do Nilo, Carcaças, Carne Mecanicamente Separada, Estabilidade, Nuggets de pescado.
1. INTRODUÇÃO

Apesar do Brasil apresentar um dos mais baixos índices mundiais de consumo de pescado é de suma importância o investimento em produtos que visem um maior aproveitamento de sua carne, assim como de espécies subutilizadas, de baixo valor comercial ou exemplares de pequeno porte. A aplicação do processo de extração de carne mecanicamente separada (CMS) por meio do uso de máquinas separadoras de carne e ossos, destaca-se como um processo atraente, pois permite uma maior recuperação de carne em relação à obtida pelos métodos convencionais. Após o processo de filetagem, restam ainda nas carcaças porções musculares de boa qualidade que podem ser aproveitadas para a obtenção de CMS. Morais e Martins (1981) constataram rendimentos de 54% e 68% para extração de CMS de carcaças de cavalinha (*Scomber japonicus*) e truta arco-íris (*Onchorynchus mykiss*). O processamento da CMS de pescado proporciona um aumento adicional de rendimento próximo a 50%, em relação aos produtos tradicionais de pescado (Tenuta-Filho e Jesus, 2003).

Uma vantagem importante da utilização da CMS de pescado é a maior flexibilidade de processamento, podendo-se controlar a suculência, textura, sabor, aroma e estabilidade da CMS, dependendo do tipo de produto desejado e do tipo de pescado que é utilizado (Morais e Martins, 1981). A utilização da CMS de pescado na elaboração de produtos semi-prontos, como o nuggets, é uma boa opção, considerando que a demanda de produtos alimentícios será cada vez maior, principalmente para aqueles com proteína de alto valor nutricional e valor tecnológico agregado (Simões et al., 1998).

No Brasil, normalmente produtos empanados são armazenados e vendidos congelados. Entretanto, peixes e seus produtos derivados mesmo congelados podem sofrer mudanças indesejáveis durante a estocagem, diminuindo sua estabilidade, ocorrendo consequentemente perda na qualidade. Alterações indesejáveis que induzem à desnaturação protéica e à oxidação lipídica continuam a ocorrer, mesmo em baixas temperaturas (Kurade e Barranowski, 1987; Kuhn e Soares, 2002; Yerlikaya, et al. 2005; Tokur et al., 2006), podendo ocasionar mudanças no sabor e textura.

Tokur et al. 2006 avaliando a estabilidade de “fish fingers”, elaborados com CMS de carpa, durante o armazenamento a -18°C, constataram que os produtos avaliados permaneceram aceitáveis para o consumo durante os 5 meses avaliados. Cakli et al. (2005) relataram a formação de ranço ao longo de 8 meses de armazenamento de “fish fingers” elaborados com CMS de sardinha, impossibilitando seu consumo. Entretanto os
“fish fingers” elaborados com CMS de badejo e perca, permaneceram aceitáveis durante o período avaliado. Bonacina (2006) estudando a vida útil de empanado elaborado a partir de corvina (*Micropogonias furnieri*), armazenado durante 135 dias a -18ºC, relatou um período de vida útil de aproximadamente 7 meses.

O objetivo deste estudo foi produzir nuggets de pescado a partir de Carne Mecanicamente Separada de carcaças resultantes da filetagem de tilápias do Nilo e de tilápias abaixo do peso comercial. E avaliar-l-os quanto a sua estabilidade química, microbiológica e sensorial durante armazenamento de 180 dias a temperatura de -18ºC.

2. MATERIAL E MÉTODOS

2.1. Matérias-primas

Para a obtenção das CMS foram utilizadas aproximadamente 160 tilápias do Nilo (*Oreochromis niloticus*) com peso médio de 143g e 19kg de resíduos de filetagem de tilápia provenientes de pisciculturas e abatedouro da região de Pirassununga (São Paulo, Brasil). O experimento foi realizado no Laboratório de Processamento de Produtos Aquáticos da PCAPS/USP, em Pirassununga/SP. As tilápias foram lavadas com água clorada (5ppm), descabeçadas, evisceradas e lavadas novamente. Os resíduos de filetagem foram lavados com água clorada (5ppm). Após a limpeza das matérias-primas, a CMS foi extraída em despolpadora mecânica HT-250. As CMS obtidas foram então lavadas com água gelada na proporção de 3L de água para 1kg de CMS. A mistura foi agitada por 2 minutos e deixou-se em repouso por 3 minutos. Logo após, a mistura foi filtrada através de um tecido de nylon para retirada do excesso de água. As CMS de peixes descabeçados e eviscerados foram submetidas a este processo por duas vezes, devido a maior quantidade de sangue e pigmentos presentes na CMS. Após o processo de lavagem foram adicionados e homogeneizados às CMS 0,1%, eritrobato de sódio e 0,5% de tripolifosfato de sódio. Em seguida as CMS foram embaladas em sacos de polietileno em porções de 500g, congeladas em ultra congelador a – 40ºC e mantidas a –18ºC até a confecção dos nuggets.

2.2. Formulações e preparação dos Nuggets

Para o preparo das formulações foram utilizados os seguintes ingredientes: proteína isolada de soja (BUNGE), condimentos para pescado (KRAKI), fécula de mandioca e sal (Tabela 1).
Tabela 1: Formulações utilizadas para o preparo dos nuggets.

<table>
<thead>
<tr>
<th>Ingredientes (%)</th>
<th>Nuggets I 1</th>
<th>Nuggets II 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMS de carcaças</td>
<td>-</td>
<td>92,25</td>
</tr>
<tr>
<td>CMS de peixes eviscerados e descabeçados</td>
<td>90,25</td>
<td>-</td>
</tr>
<tr>
<td>Proteína isolada de soja</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Fécula de mandioca</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Sal</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Condimentos</td>
<td>0,75</td>
<td>0,75</td>
</tr>
</tbody>
</table>

1 Nuggets elaborados com CMS de tilápias evisceradas e descabeçadas;
2 Nuggets elaborados com CMS de Carcaça.

A CMS de carcaça apresentou teores de 77,29% de umidade, 10,51% de proteína, 11,30% de lipídios e 0,73% de cinzas, enquanto que nas CMS de peixes eviscerados e descabeçados foram observados teores de 88,33% de umidade, 10,46% de proteína, 0,22% de lipídios e 0,51% de cinzas. Para o preparo da massa, as CMS foram descongeladas à temperatura de 8ºC e pesadas. Todos os ingredientes também foram pesados separadamente. As massas foram homogeneizadas manualmente durante aproximadamente 10 minutos, à temperatura próxima a 10ºC. A massa foi separada em porções de 80g, moldadas em moldador de hambúrguer e estes divididos em seis nuggets. Os nuggets moldados foram empanados, passando primeiro no batter (“Batter 1514”), que foi dissolvido em água numa proporção de 1:1,7 (de acordo com recomendação do fabricante), e por último no breading (mistura para empanado “Farinha 1515”), todos da marca Kraki. Depois de empanados, os nuggets foram congelados em ultracongelador e posteriormente pré-fritos em gordura vegetal (BUNGE) a uma temperatura de 180ºC/2 minutos. O tempo de fritura foi estabelecido para que a temperatura interna chegasse a 72ºC. Em seguida, os nuggets foram resfriados e congelados em ultracongelador a -40ºC, embalados em sacos de polietileno com aproximadamente 400 gramas de nuggets cada e mantidos à temperatura de -18ºC durante 180 dias. Foram produzidos aproximadamente 10 kg de nuggets I (elaborados com CMS de tilápia evisceradas e descabeçadas) e 11 kg de nuggets II (elaborados com CMS de carcaças de tilápia).
2.3. Amostragem e avaliação da estabilidade

As análises para a determinação dos parâmetros de qualidade dos nuggets foram realizadas em triplicata no dia seguinte da sua produção e ao longo do armazenamento. A avaliação da estabilidade dos nuggets foi realizada por meio de análises de oxidação lipídica (TBARs), microbiológicas e sensoriais, sendo retiradas amostragens no tempo 0 (dia seguinte de sua produção) e aos 60, 120 e 180 dias de armazenamento. Para as análises de TBARS e microbiológicas, 10 nuggets de cada tratamento foram aleatoriamente escolhidos e descongelados a 10°C para posterior realização das análises.

Para avaliação sensorial dos nuggets produzidos a partir de CMS de tilápia inteiras ou de carcaças foi utilizado o teste de aceitação do consumidor. Este teste afetivo mede o grau com que os provadores gostam ou desgostam de determinado produto (Stone e Sidel, 1993; Meilgaard et al., 1987). Os testes foram realizados por uma equipe composta por no máximo 45 provadores não treinados, maiores de idade e integrantes da comunidade FZEA. Antes de serem servidos aos provadores os nuggets pré-fritos e congelados foram aquecidos em forno elétrico a uma temperatura de 170°C por 10 minutos. As amostras foram codificadas com algarismos de três dígitos e servidas de forma monádica aos provadores. Aos provadores foi solicitado que avaliassem as amostras em relação aos atributos sabor, textura e aceitação global, por meio de uma escala hedônica estruturada de nove pontos (1=desgostei muitíssimo, 2=desgostei muito, 3=desgostei moderadamente, 4=desgostei ligeiramente, 5=nem gostei/nem desgostei, 6=gostei ligeiramente, 7=gostei moderadamente, 8=gostei muito, 9=gostei muitíssimo). Os testes foram realizados no Laboratório de Análise Sensorial da FZEA-USP.

Durante o armazenamento de produtos congelados dois fatores relacionados a qualidade dos produtos vem sendo estudados: o TAQ (Tempo de alta qualidade) e o TPE (Tempo prático de estocagem). O TAQ é aquele em que um alimento é armazenado sem que ocorram alterações sensoriais perceptíveis (IIR, 1986). Neste estudo o TAQ foi considerado o período de tempo em que os nuggets permaneceram...
sem alterações sensoriais nos atributos avaliados (sabor, textura e aceitacao global), enquanto que o TPE foi considerado o período em que os produtos permaneceram aptos para o consumo, independentemente das alterações sensoriais sofridas.

2.4. Análises Estatísticas

Os dados obtidos foram submetidos à Análise de Variância (ANOVA) e as médias foram comparadas pelo teste de Tukey em nível de 5% de probabilidade. As análises foram realizadas utilizando o programa Statistical Analysis System (SAS Institute, 1999). A análise estatística dos dados da avaliação sensorial foi realizada através do procedimento proc GLM do SAS v 8.2.

3. RESULTADOS E DISCUSSÃO

3.1. Avaliação microbiológica

Os resultados da avaliação da estabilidade microbiológica dos nuggets elaborados com CMS I e CMS II estão apresentados na Tabela 2. Foram observadas diminuições nas contagens médias de psicrotróficos nos dois nuggets avaliados durante o período de estocagem. Os resultados observados mantiveram-se abaixo do limite máximo determinado (log 7,0 UFC/g) pela ICMSF (1986), para contagem padrão em placas de microrganismos aeróbicos. Cakli et al, (2005) avaliando mudanças na qualidade microbiológica de “fish fingers” de sardinha, badejo e perca rosa estocados a -18ºC durante 240 dias, também observaram diminuição nas contagens de microrganismos aeróbicos, encontrando valores próximos a 5 e 3 log UFC/g respectivamente, no início e ao final da estocagem.

Com base nos resultados das análises microbiológicas de todas as amostras de nuggets os valores encontrados estão de acordo com os padrões estabelecidos pela Secretaria de Vigilância Sanitária para empanado de pescado (BRASIL, 2001), que estabelece a ausência de Salmonella sp em 25 gr de amostra, bem como no máximo 10² /g de coliformes fecais e 10³ /g no máximo de S. aureus. Estes resultados indicam que o tratamento térmico sofrido pelos nuggets foi eficiente no objetivo da pasteurização dos produtos e que as práticas adotadas para a confecção dos mesmos, primaram pela higiene fornecendo produtos seguros para o consumidor.
Tabela 2: Valores médios dos parâmetros microbiológicos avaliados nos nuggets elaborados.

<table>
<thead>
<tr>
<th>Produto</th>
<th>Análise</th>
<th>Dias de estocagem</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Nuggets I</td>
<td>Psicrotróficos (log UFC/g)</td>
<td>1,43</td>
</tr>
<tr>
<td></td>
<td>Coliformes totais/g</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>Coliformes fecais/g</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>Salmonella/25g</td>
<td>Ausente</td>
</tr>
<tr>
<td></td>
<td>Staphylococcus aureus/g</td>
<td>Ausente</td>
</tr>
<tr>
<td>Nuggets II</td>
<td>Psicrotróficos (log UFC/g)</td>
<td>1,45</td>
</tr>
<tr>
<td></td>
<td>Coliformes totais/g</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>Coliformes fecais/g</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>Salmonella/25g</td>
<td>Ausente</td>
</tr>
<tr>
<td></td>
<td>Staphylococcus aureus/g</td>
<td>Ausente</td>
</tr>
</tbody>
</table>

1 Não detectado;
2 Log de Unidades Formadoras de Colônia por grama de produto;
Nugget I – Nuggets elaborados com CMS de tilápias descabeçadas e evisceradas;
Nugget II – Nuggets elaborados com CMS de carcaças de tilápias.

3.2. Oxidação Lipídica

Alterações nos valores de TBARS estão associadas a mudanças no sabor e odor do produto. Durante a oxidação lipídica são formados diversos compostos, entre eles os hidroperóxidos, que podem dar origem a novos compostos responsáveis pelo surgimento do odor e sabor de ranço em óleos de peixes (Yerlikaya et al., 2005). Estes compostos podem ainda ligar-se as proteínas formando complexos insolúveis (Ogawa e Maia, 1999).

Os resultados de TBARS ao longo do armazenamento dos nuggets I e nuggets II estão apresentados na Figura 1. Os valores iniciais de TBARS observados nos nuggets I e nuggets II foram de 0,90 e 1,22, respectivamente. Foram constatadas poucas alterações nesses valores durante o período de 0 a 120 dias, porém aos 180 dias os valores aumentaram significativamente para os dois nuggets, alcançando valores de 1,15 e 1,91 ao final do armazenamento, para os nuggets I e nuggets II respectivamente. Bonacina (2006) avaliou a vida útil de empanado elaborado a partir de corvina
(Micropogonias furnieri), armazenado durante 135 dias a -18°C. O autor relatou que os valores de TBARS variaram de 0,33 à 1,59 mg malonaldeído/kg durante o período, apresentando aumento significativo somente a partir de 90 dias de armazenamento, quando apresentou valores de 0,596 mg/kg.

Aumentos menores de TBARS foram observados por Tokur et al. (2004) e Tokur et al. (2006) durante armazenamento a -18°C de “fish burger” produzidos com CMS de tilápias e “fish fingers” elaborados com CMS de carpa, respectivamente. Os autores relataram alterações nos valores de TBARS de 0,028 para 0,142 mg malonaldeído/kg durante 8 meses de armazenamento de “fish burger” de tilápias e de 0,16 a 0,27 mg malonaldeído/kg em “fish fingers” de carpa durante 5 meses de armazenamento.

![Graph](image)

Figura 1 - Substâncias Reativas ao Ácido Tiobarbitúrico (TBARS) nos produtos elaborados com CMS de peixe eviscerados e descabeçados (nuggets I) e de carcaça (nuggets II) durante a estocagem.

Yerlikaya et al., 2005 avaliando alterações na qualidade de “patties” de anchova armazenadas a 4°C durante 6 dias, observaram valores de TBARS (10,61 a 27,21mg/kg) mais elevados que os encontrados neste estudo. Apesar dos altos valores de TBARS encontrados no estudo de Yerlikaya et al., 2005, as notas da avaliação sensorial apenas passaram de “muito bom” para “Bom” ao 6º dia de armazenamento. Entretanto, de acordo com Al-kahtani et al, (1996) o produto pode ser considerado em bom estado de consumo, quando apresentar valores abaixo de 3mg de malonaldeído/kg de amostra.

A detecção de maiores valores de aldeído malônico nos nuggets II durante a estocagem, provavelmente ocorreu devido ao maior teor de lipídios (17%), quando comparado aos nuggets I (11%). Tang et al. (2001) avaliado a estocagem sob
refrigeração (4°C) durante 10 dias de “patties” elaboradas com CMS de “mackerel” e badejo, observaram maior oxidação lipídica nas “patties” de “mackerel” (12,27 a 25,5 mg malonaldeído/kg) do que nas de badejo (0,20 a 1,81 mg malonaldeído/kg), no início e no final do armazenamento. Este comportamento foi justificado devido ao elevado teor de lipídios observado na CMS de “mackerel” (20%) quando comparada com a CMS de badejo (3,94%) utilizadas como matérias-primas.

3.3. Avaliação Sensorial

Os resultados das análises sensoriais para avaliação de estabilidade dos nuggets durante a estocagem congelada estão apresentados na Tabela 3. Foram observadas alterações significativas (p ≤ 0,05) em relação as notas de sabor ao longo do armazenamento apenas nos nuggets II (elaborados com CMS de carcaça). No início do armazenamento os provadores avaliaram os nuggets II como gostei moderadamente (média de 7,11), enquanto que no final do período, a nota desses mesmos nuggets abaixou para 6,07, nota descrita na ficha de aceitação da vida de prateleira como “gostei ligeiramente”. Nos nuggets I (elaborados com CMS de peixes descabeçados e eviscerados) o atributo sabor permaneceu constante durante o período avaliado. Foi observada diferença significativa (p ≤ 0,05) entre os nuggets I e nuggets II aos 60 e 180 dias de estocagem. A diminuição nas notas de sabor nos nuggets II, podem ser justificadas pelos valores elevados de TBARS encontrados principalmente após 120 dias de estocagem, o que indicam uma maior oxidação lipídica levando provavelmente a formação de um leve sabor de ranço.

Os provadores não detectaram diferenças (p ≥ 0,05) no atributo textura ao longo do armazenamento e entre os nuggets estudados, apresentando notas próximas a 7 (“gostei moderadamente”). As médias obtidas para o atributo aceitação global, não se alteraram significativamente durante a estocagem, para ambos os produtos, entretanto, os nuggets I apresentaram valores de aceitação global significativamente (p ≤ 0,05) maiores aos 180 dias de armazenamento ao redor de 7 na escala hedônica de nove pontos o que indica “gostei moderadamente”, quando comparados com os nuggets II, que apresentaram valores médios próximos 6, o que indica “gostei ligeiramente”. O comportamento do atributo aceitação global e do atributo sabor ao longo do tempo, observado nos nuggets II, demonstra que o sabor não foi um fator limitante para que ocorresse uma menor aceitação global do produto pelos provadores. Com relação ao atributo textura não foi observado, nenhuma influência na aceitação global do produto com o passar do tempo.
Tabela 3: Médias dos resultados dos testes de aceitação dos nuggets elaborados com CMS de tilápias evisceradas e descabeçadas e CMS de carcaças de tilápias ao longo da estocagem congelada.

<table>
<thead>
<tr>
<th>Dias de estocagem</th>
<th>Sabor</th>
<th>Textura</th>
<th>Aceitação Global</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nuggets I</td>
<td>Nuggets II</td>
<td>Nuggets I</td>
</tr>
<tr>
<td>0</td>
<td>7,24<sup>Aa</sup></td>
<td>7,11<sup>Aa</sup></td>
<td>6,91<sup>Aa</sup></td>
</tr>
<tr>
<td>60</td>
<td>7,51<sup>Aa</sup></td>
<td>6,31<sup>ABb</sup></td>
<td>6,91<sup>Aa</sup></td>
</tr>
<tr>
<td>120</td>
<td>7,05<sup>Aa</sup></td>
<td>7,05<sup>ABa</sup></td>
<td>6,99<sup>Aa</sup></td>
</tr>
<tr>
<td>180</td>
<td>7,35<sup>Aa</sup></td>
<td>6,07<sup>BBb</sup></td>
<td>6,90<sup>Aa</sup></td>
</tr>
</tbody>
</table>

Nugget I – Nuggets elaborados com CMS de tilápias evisceradas e descabeçadas; Nugget II – Nuggets elaborados com CMS de carcaças de tilápias.

Médias dos mesmos parâmetros nas mesmas linhas seguidas por letras minúsculas distintas, e médias, nas mesmas colunas, seguidas de letras maiúsculas distintas diferem significativamente pelo teste de Tukey (p ≤ 0,05) entre si;

(Escala hedônica: 1=desgostei muitíssimo, 2=desgostei muito, 3=desgostei moderadamente, 4=desgostei ligeiramente, 5=nem gostei/nem desgostei, 6=gostei ligeiramente, 7=gostei moderadamente, 8=gostei muito, 9=gostei multíssimo)

Cakli et al. (2005) avaliando fish fingers de sardinha, perca rosa e badejo durante 8 meses de estocagem a -18°C observaram diminuição significativa da aceitação global somente nos fish fingers de sardinha e atribuíram esta diminuição ao desenvolvimento de ranço ao longo da estocagem (devido ao alto teor lipídico da CMS utilizada como matéria-prima). Tokur et al. (2004) também relataram apenas pequenas alterações sensoriais em fish burger de CMS de tilápia do Nilo, sob estocagem a -18°C, durante 8 meses.

Ao longo do período de armazenamento estudado a aceitação por parte dos provadores em relação ao sabor (odor + gosto) permaneceu constante nos nuggets I e diminuiu significativamente após quarto mês nos nuggets II. Assim, com relação ao tempo de estocagem, para os nuggets I, o TAQ (Tempo de alta qualidade) se estendeu durante os seis meses avaliados. Enquanto que para os nuggets II, o TAQ não ultrapassou quatro meses devido as alterações observadas no atributo sabor, embora sua aceitação sensorial ainda esteja entre os termos “gostei ligeiramente” e “gostei moderadamente”. Entretanto, o TPE (Tempo prático de estocagem) pode ser empregado até o final do período de armazenamento, já que os nuggets mantiveram-se aptos para o consumo mantendo suas características microbiológicas dentro das especificações legais.
4. CONCLUSÕES

A Carne Mecanicamente Separada elaborada com carcaças de tilápia do Nilo e de tilápias abaixo do peso de comercialização pode ser empregada como matéria-prima de qualidade para a elaboração de produtos a base de pescado, sendo uma alternativa viável para o aproveitamento de resíduos de filé e de peixes abaixo do peso comercial. Os nuggets elaborados com CMS de peixes abaixo do peso de comercialização e de carcaças de tilápia mantiveram-se aceitáveis para o consumo durante 180 dias de estocagem a -18ºC, entretanto os produtos elaborados com CMS de carcaças de tilápia mantiveram o tempo de alta qualidade durante os 4 primeiros meses, permanecendo contudo dentro do tempo prático de estocagem até o final do período avaliado.

5. REFERÊNCIAS

CONSIDERAÇÕES FINAIS

O processo de obtenção de Carne Mecanicamente Separada (CMS) demonstrou que é possível maior recuperação de carne comparativamente ao processo de filetagem. O rendimento em CMS a partir de tilápias inteiras abaixo do peso de comercialização foi de 46,90%, bem acima dos 30-33% normalmente obtidos na filetagem da tilápia do Nilo. O rendimento em CMS a partir de carcaças obtidas de resíduo de filetagem de tilápia foi de 57,7%.

Em geral, as CMS estudadas mantiveram-se estáveis durante o armazenamento a -18°C, independentemente do processo de lavagem a da adição de eritrobato de sódio e tripolifosfato de sódio. A elaboração de produtos empanados (nuggets) a partir das CMS estudadas mostrou-se viável, obtendo-se um produto de elevado valor nutritivo, com boa estabilidade quando armazenado a -18°C, e com elevada aceitação sensorial entre os provadores.

Tendo-se observado que o processo de lavagem não alterou a estabilidade das CMS durante o armazenamento, sugere-se a realização de outros estudos que possam avaliar o desenvolvimento de produtos elaborados com CMS não lavadas, verificando sua estabilidade e aceitação sensorial, uma vez que este processo levou a lixiviação de minerais, proteínas e possivelmente de vitaminas hidrossolúveis, diminuindo seu rendimento e levando a produção de efluentes.
COMITÊ DE ÉTICA EM PESQUISA DA EERP/USP

Of. CEP-EERP/USP – 076/2005

Ribeirão Preto, 21 de junho de 2005

Prezada Senhora,

Comunicamos que o projeto de pesquisa, abaixo especificado, foi analisado e considerado APROVADO pelo Comitê de Ética em Pesquisa da Escola de Enfermagem de Ribeirão Preto da Universidade de São Paulo, em sua 76ª Reunião Ordinária, realizada em 15 de junho de 2005.

Protocolo: nº 0530/2005

Projeto: Análise sensorial de produtos semi-prontos para merenda escolar a partir de carne mecanicamente separada de Tilápia do Nilo (Oreochromis niloticus).

Pesquisadores: Alessandra Lopes de Oliveira

Coordenadora do CEP-EERP/USP

Ilh. Sra.
Prof.ª Dr.ª Claudia Benedicta dos Santos

Prof.ª Dr.ª Alessandra Lopes de Oliveira
Engenharia de Alimentos
Faculdade de Zootecnia e Engenharia Alimentos-USP