APLICAÇÃO DE INVERSOR DE FREQUÊNCIA PARA ECONOMIA DE ENERGIA ELÉTRICA, EM SISTEMA DE IRRIGAÇÃO POR ASPERSÃO

JOÃO ALBERTO BORGES DE ARAÚJO

Tese apresentada à Faculdade de Ciências Agronômicas do Campus de Botucatu - UNESP, para obtenção do título de Doutor em Agronomia, Área de Concentração - Irrigação e Drenagem.

BOTUCATU - SP
Dezembro - 2003
UNIVERSIDADE ESTADUAL PAULISTA “JÚLIO DE MESQUITA FILHO”
FACULDADE DE CIÊNCIAS AGRONÔMICAS
CAMPUS DE BOTUCATU

APLICAÇÃO DE INVERSOR DE FREQÜÊNCIA PARA ECONOMIA DE ENERGIA ELÉTRICA, EM SISTEMA DE IRRIGAÇÃO POR ASPERSÃO

JOÃO ALBERTO BORGES DE ARAÚJO

Orientador: Prof. Dr. Odivaldo José Seraphim

Tese apresentada à Faculdade de Ciências Agronômicas do Campus de Botucatu - UNESP, para obtenção do título de Doutor em Agronomia, Área de Concentração - Irrigação e Drenagem.

BOTUCATU - SP
Dezembro – 2003
À minha esposa Diva Maria,
aos meus filhos Juninho e Mariana
pelo apoio, carinho e compreensão.
AGRADECIMENTOS

• Primeiro a Deus, nosso Pai.

• Aos meus pais Sérgio Borges de Araújo (in memorian) e Maria de Lourdes (in memorian).

• Aos meus irmãos Antonio Sérgio e Marisa que tanto se esforçaram para que eu pudesse completar meus estudos, apoiando-me e incentivando-me.

• Ao Prof. Dr. Odivaldo José Seraphim pela orientação, colaboração e amizade durante o curso e na realização deste trabalho.

• Ao Prof. Dr. Raimundo Leite Cruz, pela colaboração e ao Prof. DR. João Carlos Cury Saad, pelo apoio e compreensão durante o curso.

• Aos amigos Jair Siqueira, Carliane Diniz e Silva José Fernado Presenço e Antonio Ricardo, pelo apoio e colaboração na realização deste trabalho.

• Aos funcionários, colegas de curso e professores do Departamento de Engenharia Rural.

• Aos amigos da Escola Técnica Industrial pelo apoio e incentivo.

• À Faculdade de Ciências Agronômicas e ao curso de Pós-Graduação em Irrigação e Drenagem pela oportunidade da realização deste trabalho.

• Ao CNPq, pela bolsa concedida durante o curso.
SUMÁRIO

LISTA DE TABELAS .. VIII
LISTAS DE FIGURAS .. XI
1 RESUMO .. 1
2 INTRODUÇÃO .. 5
3 REVISÃO DE LITERATURA .. 7
 3.1 Caracterização da situação energética de sistemas de irrigação.. 7
 3.2 Estrutura Tarifária ... 14
 3.2.1 Estrutura Tarifária Convencional ... 15
 3.2.2 Estrutura Tarifária Horo-Sazonal ... 15
 3.2.3 Critérios de inclusão ... 16
 3.3 Aspectos econômicos relacionados a equipamentos de irrigação.. 17
 3.4 Conservação de Energia .. 18
 3.5 Considerações sobre motores elétricos assíncronos .. 24
 3.6 Motores elétricos de indução .. 26
 3.6.1 Princípio de Funcionamento ... 27
 3.6.2 Rotação de sincronismo .. 30
 3.6.3 Escorregamento de fase .. 31
 3.6.4 Freqüência do Rotor .. 32
 3.6.5 Momento de torção (conjugado) ... 33
 3.6.6 Motor tipo gaiola de esquilo ... 34
 3.7 Fator de potência ... 35
 3.8 Rendimento de uma máquina elétrica ... 39
3.9 Bombas hidráulicas

3.9.1 Classificação das bombas

3.9.2 Potência absorvida e rendimento de bombas hidráulicas

3.9.3 Curvas características de bombas centrífugas

3.9.4 Bombas centrífugas

3.10 Medidas de pressão e vazão

3.10.1 Medidas de pressão

3.10.2 Medidas de vazão

3.11 Acionamento de motores de indução

3.11.1 Controle de rotação por regulação de tensão

3.11.2 Controle de rotação com o uso de inversores

3.11.3 Inversor de frequência

3.11.4 Acionamento a frequência fixa

3.11.5 Acionamento por inversor a corrente constante

3.11.6 Acionamento por meio de cicloconverters

3.11.7 Acionamento com inversor transistorizado

3.11.8 Inversores escalares e inversores de fluxo vetoriais

3.12 Acionamentos com rotação controlada para bombeamento

3.12.1 Fundamentos teóricos

3.13 Caracterização de um Sistema de Controle

4 MATERIAL E MÉTODOS

4.1 Material

4.2 Métodos
4.2.1 Sistema de Irrigação por Aspersão com Acionamento Convencional.................82
4.2.2 Sistema de Irrigação por Aspersão com Utilização de Inversor de Freqüência.84
4.2.3 Análise de Investimento para Utilização de Inversor de Freqüência em Sistema de
Irrigação por Aspersão. ..89

5 RESULTADOS E DISCUSSÃO...92
5.1 Comportamento dos Parâmetros Elétricos e Hidráulicos do Sistema de Irrigação....92
 5.1.1 Comportamento dos Parâmetros Elétricos ...99
 5.1.2 Comportamento dos Parâmetros Hidráulicos ...112
5.2 Análise de Investimentos do Sistema Com Inversor ...119

6. CONCLUSÕES..133

7 REFERÊNCIA BIBLIOGRÁFICAS..135
LISTA DE TABELAS

Tabela 1. Relação dos componentes do sistema de irrigação convencional utilizado no experimento. ... 77

Tabela 2. Relação dos componentes do sistema de irrigação automatizado com inversor de freqüência, utilizado no experimento. ... 78

Tabela 3. Especificação técnica do Aspersor, marca FABRIMAR. .. 79

Tabela 4. Relação dos equipamentos de medição utilizados para medir e registrar os parâmetros elétricos e hidráulicos. ... 79

Tabela 5. Situações de operação do sistema de irrigação em função das aberturas das linhas de irrigação. ... 83

Figura 18. Esquema elétrico das instalações dos equipamentos par medições dos parâmetros elétricos, na condição de operação do sistema de irrigação convencional. ... 84

Tabela 6. Custo para Implantação de Inversores de Freqüência em Sistemas de Irrigação por Aspersão, em Função da Potência dos Motores Elétricos Trifásicos.(preços fornecido pelo fabricante yaskawa). ... 91

Tabela 7. Valores médios dos parâmetros elétricos e hidráulicos medidos na condição do sistema operando com acionamento convencional. ... 93

Tabela 8. Valores médios dos parâmetros elétricos e hidráulicos medidos na condição de acionamento do sistema de irrigação com a utilização do inversor, na pressão de 235,35 kPa, medidos diretamente na saída da bomba centrifuga. ... 94

Tabela 9. Valores médios dos parâmetros elétricos e hidráulicos medidos na condição de acionamento do sistema de irrigação com a utilização do inversor, na pressão de 215,74, medidos diretamente na saída da bomba centrifuga. ... 95
Tabela 10. Comparativo do consumo de energia elétrica em função da pressão de saída da bomba. ... 96

Tabela 11. Análise de investimento do sistema com inversor de 5 cv na pressão de 235,35 kPa. ...120

Tabela 12. Análise de investimento do sistema com inversor de 5 cv na pressão de 235,35 kPa. ...120

Tabela 13. Análise de investimento do sistema com inversor de 12,5 cv na pressão de 235,35 kPa. ...121

Tabela 14. Análise de investimento do sistema com inversor de 12,5 cv na pressão de 215,74 kPa. ...121

Tabela 15. Análise de investimento do sistema com inversor de 15 cv na pressão de 235,35 kPa. ...122

Tabela 16. Análise de investimento do sistema com inversor de 15 cv na pressão de 215,74 kPa. ...122

Tabela 17. Análise de investimento do sistema com inversor de 20 cv na pressão de 235,35 kPa. ...123

Tabela 18. Análise de investimento do sistema com inversor de 20 cv na pressão de 215,74 kPa. ...123

Tabela 19. Análise de investimento do sistema com inversor de 25 cv na pressão de 235,35 kPa. ...124

Tabela 20. Análise de investimento do sistema com inversor de 25 cv na pressão de 215,74 kPa. ...124
Tabela 21. Análise de investimento do sistema com inversor de 30 cv na pressão de 235,35 kPa. ...125

Tabela 22. Análise de investimento do sistema com inversor de 30 cv na pressão de 215,74 kPa. ..125

Tabela 23. Ponto de nivelamento em horas de funcionamento para amortização total dos custos de implantação do sistema com inversor de frequência, operando com pressão de 215,74 kPa na saída da bomba...132

Tabela 24. Ponto de nivelamento em horas de funcionamento para amortização total dos custos de implantação do sistema com inversor de frequência, operando com pressão de 235,35 kPa na saída da bomba...132
LISTA DE FIGURAS

Figura 1. Variação da curva característica do sistema motivada pelo fechamento parcial da válvula de gaveta. ..9

Figura 2. Representação da economia de energia (parte hachurada) com o uso do inverso de frequência em relação à manobra de válvula. ... 10

Figura 3. Representação da variação do ponto de trabalho da bomba sob redução de rotação para controle de pressão e economia potencial de energia (área hachurada). 12

Figura 4. Curva real de um motor elétrico. .. 33

Figura 5. Triângulo de potência. .. 36

Figura 6. Curvas características das bombas hidráulicas. .. 43

Figura 7. Controle de rotação por regulação de tensão (Soft start). .. 50

Figura 8. Inversor de frequência para motores assíncronos. ... 57

Figura 9. Acionamento a frequência vertical. ... 58

Figura 10. Curva característica dos inversores escalar e vetorial. .. 62

Figura 11. Diagrama simplificado de blocos de um conversor VSI PWM. 64

Figuras 12. (A) Sistema de controle de malha aberta, (B) Sistema de controle de malha fechada. ... 71

Figura 13. Sistema de controle de malha fechada realimentado. ... 71

Figura 14. Esquema elétrico e hidráulico do sistema de irrigação convencional e com a utilização de inversor de frequência. ... 75

Figura 15. Sistema de irrigação por aspersão, montado em campo. 76

Figura 17: Curvas características do motor trifásico de indução de 5 cv. (KOHLBACH, 2003).

Figura 19: Esquema elétrico das instalações dos equipamentos par medições dos parâmetros elétricos, com a utilização do inversor de freqüência.

Figura 20: Analisador de redes, marca ESB, modelo SAGA 4000.

Figura 21: Inversor de freqüência e tacômetro, montado em painel.

Figura 22: Sistema moto-bomba e acessórios utilizados no experimento.

Figura 23: Tabela geral com acessórios, montado para controlar experimento.

Figura 24: Curva de operação original da bomba, com inversor de freqüência e sem inversor.

Figura 25: Consumo de Energia e corrente elétrica medidos na rede trifásica de alimentação do conjunto moto-bomba, sem o inversor de freqüência para as 4 combinações de linhas de irrigação abertas com pressões variáveis.

Figura 26: Consumo de Energia e Corrente Elétrica medidos na rede trifásica de alimentação do inversor de freqüência para as 4 combinações de linhas de irrigação abertas com pressão constante de 235,35 kPa.

Figura 27: Curva de Torque x Escorregamento nas 04 condições de operação do motor (4L, 3L, 2L e 1L) linhas abertas.

Figura 28: Consumo de energia medido na rede trifásica de alimentação do conjunto motobomba, com e sem o inversor de freqüência para as 4 combinações de linhas de irrigação abertas, para pressão de 235,35 kPa.

Figura 29: Consumo de energia no sistema com inversor nas pressões de 235,35 kPa e 215,74 kPa – medição com analisador de rede marca SAGA antes do inversor.
Figura 30. Corrente medida com analisador de rede marca SAGA no sistema com inversor nas pressões de 235,35 kPa e 215,74 kPa antes do inversor.

Figura 31. Corrente medida no inversor nas pressões de 235,35 kPa e 215,74 kPa para as 4 combinações de linhas de irrigação abertas.

Figura 32. Corrente elétrica medida na rede trifásica de alimentação do conjunto moto-bomba, com e sem o inversor de frequência para as 4 combinações de linhas de irrigação abertas, para pressão de 235,35 kPa.

Figura 33. Rotação do motor e corrente elétrica medida na rede trifásica de alimentação do conjunto moto-bomba, sem o inversor de frequência para as 4 combinações de linhas de irrigação abertas com pressões variáveis.

Figura 34. Rotação do motor e corrente elétrica medida na rede trifásica de alimentação do inversor de frequência para as 4 combinações de linhas de irrigação abertas com pressão constante de 235,35 kPa.

Figura 35. Vazão medida na tubulação de saída e corrente elétrica medida na rede trifásica de alimentação do conjunto moto-bomba, sem o inversor de frequência para as 4 combinações de linhas de irrigação abertas com pressões variáveis.

Figura 36. Vazão medida na tubulação de saída do conjunto moto-bomba e corrente elétrica medida na rede trifásica de alimentação do inversor de frequência para as 4 combinações de linhas de irrigação abertas com pressão constante de 235,35 kPa.

Figura 37. Altura manométrica medida na tubulação de saída no conjunto moto-bomba e consumo de energia medida na rede trifásica de alimentação do inversor de frequência para as 4 combinações de linhas de irrigação abertas sem inversor com pressões variáveis.
Figura 38. Altura manométrica medida na tubulação de saída no conjunto moto-bomba e consumo de energia medida na rede trifásica de alimentação do inversor de freqüência para as 4 combinações de linhas de irrigação abertas com inversor e pressão constante de 235,35 kPa. ..107

Figura 39. Rotação do conjunto motobomba e consumo de energia medida na rede trifásica de alimentação do motor para as 4 combinações de linhas de irrigação abertas com pressões variáveis..107

Figura 40. Rotação do conjunto moto-bomba e consumo de energia medida na rede trifásica de alimentação do inversor de freqüência para as 4 combinações de linhas de irrigação abertas com pressão constante de 235,35 kPa. ..108

Figura 41. Vazão medida na tubulação de saída no conjunto moto-bomba e consumo de energia medido na rede trifásica de alimentação do motor para as 4 combinações de linhas de irrigação abertas com pressões variáveis..108

Figura 42. Vazão medida na tubulação de saída no conjunto moto-bomba e consumo de energia medido na rede trifásica de alimentação do inversor de freqüência para as 4 combinações de linhas de irrigação abertas com pressão constante de 235,35 kPa.109

Figura 43. Fator de potência medido na rede trifásica de alimentação do conjunto moto-bomba, com e sem o inversor de freqüência para as 4 combinações de linhas de irrigação abertas. ..111

Figura 44. Altura manométrica medida na tubulação de saída no conjunto moto-bomba, com e sem o inversor de freqüência para as 4 combinações de linhas de irrigação abertas.114

Figura 45. Rotação do conjunto moto-bomba, com e sem o inversor de freqüência para as 4 combinações de linhas de irrigação abertas. ..114
Figura 46. Vazão medida na tubulação de saída do conjunto moto-bomba, com e sem o inversor de frequência para as 4 combinações de linhas de irrigação abertas..................115

Figura 47. Altura manométrica e vazão medida na tubulação de saída do conjunto moto-bomba, sem inversor de frequência para as 4 combinações de linhas de irrigação abertas. ..115

Figura 48. Altura manométrica e vazão medida na tubulação de saída do conjunto moto-bomba, com inversor de frequência para as 4 combinações de linhas de irrigação abertas. ..116

Figura 49. Rotação do motor e altura manométrica na tubulação de saída do conjunto moto-bomba, sem inversor de frequência para as 4 combinações de linhas de irrigação abertas. ..116

Figura 50. Rotação do motor e altura manométrica na tubulação de saída do conjunto moto-bomba, com inversor de frequência para as 4 combinações de linhas de irrigação abertas. ..117

Figura 51. Rotação do motor e vazão medida na tubulação de saída do conjunto moto-bomba, sem inversor de frequência para as 4 combinações de linhas de irrigação abertas.117

Figura 52. Rotação do motor e vazão medida na tubulação de saída do conjunto moto-bomba, com inversor de frequência para as 4 combinações de linhas de irrigação abertas.118

Figura 53. Análise de investimento do sistema de irrigação por aspersão com inversor de frequência de 5 cv na pressão de 235,35 kPa na tubulação de saída da bomba.126

Figura 54. Análise de investimento do sistema de irrigação por aspersão com inversor de frequência de 5 cv na pressão de 215,74 kPa na tubulação de saída da bomba.126
Figura 55. Análise de investimento do sistema de irrigação por aspersão com inversor de freqüência de 12,5 cv na pressão de 235,35 kPa na tubulação de saída da bomba.127

Figura 56. Análise de investimento do sistema de irrigação por aspersão com inversor de freqüência de 12,5 cv na pressão de 215,74 kPa na tubulação de saída da bomba.127

Figura 57. Análise de investimento do sistema de irrigação por aspersão com inversor de freqüência de 15 cv na pressão de 235,35 kPa na tubulação de saída da bomba.128

Figura 58. Análise de investimento do sistema de irrigação por aspersão com inversor de freqüência de 15 cv na pressão de 215,74 kPa na tubulação de saída da bomba.128

Figura 59. Análise de investimento do sistema de irrigação por aspersão com inversor de freqüência de 20 cv na pressão de 235,35 kPa na tubulação de saída da bomba.129

Figura 60. Análise de investimento do sistema de irrigação por aspersão com inversor de freqüência de 20 cv na pressão de 215,74 kPa na tubulação de saída da bomba.129

Figura 61. Análise de investimento do sistema de irrigação por aspersão com inversor de freqüência de 25 cv na pressão de 235,35 kPa na tubulação de saída da bomba.130

Figura 62. Análise de investimento do sistema de irrigação por aspersão com inversor de freqüência de 25 cv na pressão de 215,74 kPa na tubulação de saída da bomba.130

Figura 63. Análise de investimento do sistema de irrigação por aspersão com inversor de freqüência de 30 cv na pressão de 253,35 kPa na tubulação de saída da bomba.131

Figura 64. Análise de investimento do sistema de irrigação por aspersão com inversor de freqüência de 30 cv na pressão de 215,74 kPa na tubulação de saída da bomba.131
1 RESUMO

A crise energética ocorrida durante o ano de 2001 alertou todos os setores produtivos, em especial o setor rural, onde o consumo de energia elétrica aumentou acentuadamente na irrigação nos últimos anos. A maior parte da energia consumida está no acionamento de conjuntos motobomba para irrigação. Inúmeras pesquisas realizadas relatam que a maioria dos desperdícios está no superdimensionamento dos sistemas moto-bombas e nos controles de vazão e pressão necessários ao manejo da irrigação. Tais manobras introduzem perdas de carga no sistema promovendo desperdícios de energia elétrica e consequentemente aumentando os custos de produção.

Com base neste contexto, esta pesquisa teve por objetivo avaliar o comportamento elétrico e hidráulico de um conjunto motobomba em um sistema de irrigação por aspersão em condições de acionamento convencional com rotação constante e variável através do uso de um inversor de freqüência.

Para a realização do experimento em uma primeira fase, instalou-se um sistema de bombeamento convencional por aspersão operando com rotação constante. Em
uma segunda fase instalou-se um sistema de acionamento com rotação variável, composto de um transdutor de pressão e um inversor de frequência o qual atuou adequando a pressão pré-estabelecida em relação à variação de vazão.

O confronto técnico entre os dois sistemas, demonstrou a viabilidade econômica da instalação de inversores de frequência no acionamento de motores elétricos trifásicos nos sistemas de irrigação por aspersão.

Com a implantação do sistema em campo, pode-se avaliar e quantificar a economia de energia elétrica, entre os dois sistemas avaliados, demonstrando a viabilidade técnica e econômica, do inversor de frequência em função do números de horas anuais de funcionamento.

O sistema operando com inversor de frequência manteve a pressão de serviços dos aspersores constante beneficiando o seu funcionamento hidráulico e com isso propiciando uma economia de energia elétrica da ordem de aproximadamente 30%.

Author: João Alberto Borges de Araújo.

Advisor: Prof. Dr. Odivaldo José Seraphim.

SUMMARY

The energy crisis happened during the year of 2001 alerted all the productive sectors, especially the rural sector, where the consumption of electric energy increased strongly in the irrigation in the last years. Most of the consumed energy is in the starting of water pumping for irrigation. Countless accomplished researches tell that most of the wastes is in the sizing of the water pumping systems and in the water flow controls and necessary pressure to the handling of the irrigation. Such maneuvers introduce load losses in the system promoting wastes of electric energy and consequently increasing the production costs.

With base in this context, this research had for objective to evaluate the electric and hydraulic behavior of a water pumping in an irrigation system for aspersion in conditions of conventional start with constant and variable rotation through the use of a inverter frequency drive.
For the accomplishment of the experiment in a first phase settled a pumping system for aspersion operating with constant rotation. In a second phase settled an starting system with variable rotation, composed of a pressure transducer and a inverter frequency drive which acted adapting the pressure firstly established in relation to water flow variation.

The confront technician among the two systems, showed the economic viability of the installation of inverter frequency drive in the of induction motors in the irrigation systems for aspersion.

With the installation of the system in field, can be evaluated and to quantify the economy of electric energy, among the two appraised systems, demonstrating the technical and economic viability, of the inverter driver frequency in function of the numbers of annual hours of operation.

The system operating with inverter frequency driver maintained the pressure of services of the constant sprinkler benefiting hydraulic operation and with that propitiating an economy of electric energy of the order of approximately 30%.

Keywords: water pumping, inverter frequency drive, sprinkling irrigation
2 INTRODUÇÃO

A disponibilidade de energia elétrica no meio rural é de fundamental importância em sistemas de irrigação, para o acionamento de conjuntos moto-bombas. Por outro lado, objetivando reduzir o impacto causado pelo custo da energia elétrica na produção, com sistemas de irrigação e, também, contribuir para a redução do consumo de energia elétrica no setor rural, faz-se necessária a racionalização da energia elétrica consumida na força motriz dos referidos sistemas.

Os sistemas de irrigação são projetados para fornecer a máxima vazão requerida quando todas as linha estão em funcionamento simultâneo. A potência demandada no bombeamento é estimada para a máxima condição de operação, quando seleciona-se uma única linha ou mais, desde que sendo inferior ao número máximo de linhas possíveis, tem-se o sistema operando de forma superdimensionada em termos de energia elétrica requerida pela
força motriz do sistema. Com isto, verifica-se um potencial significativo de racionalização do uso da energia elétrica nestas condições de operação.

Com o advento dos inversores de frequência que possibilitam a variação de velocidade nos motores de indução trifásicos, utilizados em sistemas de irrigação por aspersão, surgiu a possibilidade de variação de rotação do conjunto motobomba em sistemas de irrigação. Com isto, regula-se a rotação do sistema adequando-a à vazão requerida em função da pressão constante nas linhas em operação. Desta forma, pode-se reduzir o consumo de energia elétrica em sistemas de irrigação que necessitem variação de vazão sem prejudicar a pressão estabelecida em projeto.

Em vista do exposto, é objetivo deste trabalho avaliar a utilização de inversor de frequência para acionamento de conjunto motobomba em sistema de irrigação por aspersão com a finalidade de avaliar o comportamento hidráulico e elétrico, visando o potencial de racionalização do consumo de energia, analisando a viabilidade técnica e econômica para sua implantação.
3 REVISÃO DE LITERATURA

Economizar eletricidade significa obter o melhor resultado com menor consumo possível, pois garante a energia para o futuro, preserva o meio ambiente e reduz despesas, sem que haja prejuízo de qualidade.

3.1 Caracterização da situação energética de sistemas de irrigação

No Brasil, a energia elétrica é quase que totalmente gerada por fonte hidráulica, correspondendo a 95% da geração total, devido às características físicas dos rios, especialmente da região Sudeste, e por ser a forma mais econômica de geração (Ventura Filho, 1988).
Para Teixeira, Oliveira Filho e Lacerda Filho (2001), a falta de investimento no setor energético aliado à escassez de recursos naturais, faz da racionalização do uso de energia elétrica uma ferramenta de apoio imprescindível para o crescimento do país.

De acordo com Cordeiro (1988), há necessidade de que sejam feitos investimentos no setor energético, com a finalidade de aumentar a capacidade de geração visando à irrigação, uma vez que o setor trabalha com grande possibilidade de racionamento e as demandas por irrigação têm aumentado, pois a agricultura está exigindo a adoção desta tecnologia para manter a produção estável em praticamente todo o ano.

Associado ao problema da capacidade de geração de energia elétrica e aumento do consumo em sistemas de irrigação, Hanson et al. (1996) citam que ocorrem problemas relacionados ao manejo da irrigação, onde se perde quantidade razoável de energia devido às características de um sistema de irrigação e ao desperdício proveniente de maus dimensionamentos.

Gilley e Watts (1977) avaliaram a possibilidade de redução do consumo energético em sistemas de irrigação por aspersão nos Estados Unidos, trabalhando sob diversas condições operacionais. Concluíram que é possível economizar de 40 a 50%, observando que a necessidade de investimento em equipamentos.

Com relação ao manejo da irrigação, o problema está na condição, técnica de seu funcionamento. Este manejo está relacionado às necessidades hídricas de uma cultura e aos problemas gerados pela condição topográfica.

Basicamente, trabalha-se com dois procedimentos para controle de vazão. Bernardo (1989) e Azevedo Neto e Alvarez (1992) citam-no, através de registros nas saídas das moto-bombas, que é uma prática mais comum. A Figura 1 mostra a operação de
controle de vazão através de fechamento de válvulas. Nota-se que há introdução de perda de carga na curva do sistema, proporcionando desperdício de energia.

Outro manejo consiste em trabalhar com tempos menores de irrigação, aplicando-se a maior vazão, que proporciona a aplicação de volumes menores, não introduzindo perda de carga (Olitta, 1989; Vieira, 1986).

Conzett e Robechek (1983) afirmam que uma das formas de manejo adequado de um sistema de bombeamento visa reduzir vazão, isto é alterar a rotação da bomba até a obtenção da vazão necessária, de acordo com as leis de Rateaux. Isto não implica introdução de perda de carga e o tempo de funcionamento não é alterado.
Tiago Filho (1996) apresenta um equipamento próprio a produzir este efeito com rapidez e eficiência, o inversor de frequência, que é um equipamento eletro-eletrônico capaz de controlar a rotação de motores elétricos de indução mantendo-se uma relação entre frequência e tensão constante, onde reduzindo-se a tensão, através de transformador de tensão, reduz-se automaticamente a frequência, com conseqüente redução da corrente. Pela Figura 2, observa-se a economia potencial de energia que o inversor de frequência é capaz de proporcionar.

Segundo Viana et al. (1992), o uso do inversor de frequência na indústria em sistemas de bombeamento visando controlar vazão é uma prática bastante comum, pois sua aplicabilidade econômica é justificável pela redução do consumo energético, em comparação a outros procedimentos, especialmente de fechamento de válvula. Deve-se ressaltar que na indústria, o tempo de funcionamento é alto, pois trabalha-se ao longo de todo o ano, durante 24 horas por dia.

Figura 2. Representação da economia de energia (parte hachurada) com o uso do inverso de frequência em relação à manobra de válvula.
Relativo às características de relevo, é típico o problema de irrigar áreas declivosas, em que pontos mais baixos recebem pressão além do necessário, que será desperdiçada a fim de manter o valor adequado ao equipamento de irrigação (Hanson et al., 1996). Esse é um problema que o técnico não pode resolver totalmente, a não ser que se adotem outras tecnologias.

Segundo Gomes (1997) é comum instalar válvulas ao longo de linhas de irrigação, para se obter valores de pressão necessários ao funcionamento dos equipamentos de irrigação, especialmente na aspersão, visando manter o grau de pulverização projetado para a respectiva cultura, implicando em perdas de carga adicionais ao sistema. Esta necessidade surge, porque no dimensionamento considera-se a maior cota topográfica a ser irrigada como referência para os cálculos hidráulicos.

Segundo Tiago Filho (1996), pode-se alterar o ponto de trabalho de uma motobomba sem introduzir perda de carga ou reduzir seu rendimento, proporcionando menor potência demandada. Assim, pode-se obter o ponto de trabalho adequado, mantendo-se a vazão necessária ao sistema e reduzindo-se a pressão a um nível compatível com o desnível topográfico.

Em termos hidráulicos, esta manobra significa que haverá uma curva de tubulação e uma curva característica da bomba, sob dada rotação, para cada tomada de irrigação e, consequentemente, um ponto de trabalho adequado. A Figura 3 permite verificar a alteração do ponto de trabalho da bomba mediante diminuição da sua rotação, proporcionando um valor menor de altura manométrica, mantendo a vazão projetada, e gerando economia substancial de energia (área hachurada).
Figura 3. Representação da variação do ponto de trabalho da bomba sob redução de rotação para controle de pressão e economia potencial de energia (área hachurada).

A tendência atual de estudos na área de projetos agrícolas, especialmente irrigação, está concentrado na avaliação técnica e econômica de tecnologias que visam ao aumento de eficiência, uma vez que a globalização da economia exige do setor agrícola, que seja mais produtivo e ao mesmo tempo rentável. Para isto, há de ressaltar que é de suma importância o estudo de novos equipamentos que poderão influir tanto na produção quanto na redução de custos de produção, especialmente quando geram diminuição do consumo energético, que é um dos grandes desafios do País para o próximo século.

Segundo Poole & Geller (1997), durante muito tempo o preço da energia elétrica foi um fator inibidor da adoção de medidas de conservação. Sucessivos governos reduziram as tarifas de energia elétrica como parte de políticas para baixar a inflação a curto prazo. O preço médio da energia elétrica no Brasil caiu quase 50% desde o início da década de 70 até 1993, quando ficou abaixo de US$35/MWh. Entretanto, este processo não foi contínuo. Ocasionalmente predominava uma política contrária, que buscava o realismo tarifário, o que resultou em grandes oscilações na tarifa média. Estas oscilações, somadas à
alta inflação, criaram problemas adicionais de planejamento, tanto para os fornecedores de energia como para os consumidores.

A política de preços tomou um novo rumo em 1993, como parte do início da reforma do setor energético. Esta reforma vem tomando impulso e será de largo alcance, considerando tanto o aspecto de regulamentação do setor energético quanto às questões de sua propriedade.

Um dos primeiros passos foi a descentralização da fixação e do controle de tarifas. De 1974 a 1993, havia uma tabela única para todo o país, nas diferentes categorias de consumo. Desde 1993, as tarifas passaram a ser diferenciadas ao nível das concessionárias. Muito embora as consequências até agora tenham sido pequenas, em termos das diferenças entre concessionárias, a tendência é que estas diferenças aumentem.

O consumo de eletricidade teve um crescimento médio anual de somente 2,6% no período 1985-95. Esta pequena taxa de crescimento reflete a estagnação econômica do final da década de 80 e no início da década de 90. No entanto, com o início da estabilização econômica em 1994, as taxas de crescimento da economia e da demanda elétrica aumentaram. A taxa média de crescimento anual da demanda elétrica entre 1993 e 1996 foi de 5,1%.

Eletrobrás (2001), o programa nacional de energia elétrica, originalmente instituído pela portaria interministerial n° 1877, de 30.12.85, e posteriormente mantido pelo decreto de 18/07/91, é uma iniciativa do governo federal para promover o uso eficiente e o combate ao desperdício de energia elétrica no país. A secretaria executiva do Procel (1998) está a cargo da Eletrobrás, que é responsável pelo planejamento e por sua execução.
Em 2001, o Procel (1998) apresentou resultados que contribuíram para uma economia no consumo de energia da ordem de 2500 GWh, e uma correspondente redução de 690 MW na demanda de ponta do sistema. A economia obtida equivale à geração de uma usina hidrelétrica de 580 MW que, se fosse construída, custaria R$ 2,17 bilhões.

Eletrobrás (2000), no período 2000/2009, a previsão de crescimento do consumo total de energia elétrica das concessionárias adotado como referencia para todo o país é de 4,7% ao ano. A oferta de energia elétrica deverá crescer de 64.300 MW para 109.400 MW incluindo as parcelas de energia importadas através de interligação com países vizinhos. A participação termoelétrica crescerá de 9,2% para 25% no período. Serão instaladas cerca de 49 mil Km de linhas de transmissão em todo o país e cerca de 92 mil MVA em subestações. Este reforço exigirá nos primeiros cinco anos, investimentos totais de ordem de R$ 8,5 bilhões por ano.

3.2 Estrutura Tarifária

A estrutura tarifária é um conjunto de tarifas aplicáveis aos componentes de consumo de energia elétrica e/ou à demanda de potência ativa, de acordo com a modalidade de fornecimento de energia elétrica.
3.2.1 Estrutura Tarifária Convencional

Esta estrutura é caracterizada pela aplicação de tarifas de consumo de energia elétrica e/ou demanda de potência, independentemente, das horas de utilização do dia e dos períodos do ano.

3.2.2 Estrutura Tarifária Horo-Sazonal

Esta estrutura tarifária se caracteriza pela aplicação de tarifas diferenciadas de consumo de energia elétrica e de demanda de potência de acordo com as horas de utilização do dia e dos períodos do ano, conforme especificação a seguir:

a) Tarifa Azul: modalidade estruturada para aplicação de tarifas diferenciadas de consumo de energia elétrica de acordo com as horas de utilização do dia e os períodos do ano, bem como de tarifas diferenciadas de demanda de potência de acordo com as horas de utilização do dia;

b) Tarifa Verde: modalidade estruturada para aplicação de tarifas diferenciadas de consumo de energia elétrica de acordo com as horas de utilização do dia e os períodos do ano, bem como de uma única tarifa de demanda de potência.
3.2.3 Critérios de inclusão

Os critérios de inclusão na estrutura tarifária convencional ou horo-sazonal aplicam-se às unidades consumidoras do Grupo "A", conforme as condições apresentadas a seguir, estabelecidas na Resolução ANEEL n° 456 (2000):

I - na estrutura tarifária convencional: para as unidades consumidoras atendidas em tensão de fornecimento inferior a 69 kV, sempre que for contratada demanda inferior a 300 kW e não tenha havido opção pela estrutura tarifária horo-sazonal nos termos do item IV;

II - compulsoriamente na estrutura tarifária horo-sazonal, com aplicação da Tarifa Azul: para as unidades consumidoras atendidas pelo sistema elétrico interligado e com tensão de fornecimento igual ou superior a 69 kV;

III - compulsoriamente na estrutura tarifária horo-sazonal, com aplicação da Tarifa Azul, ou Verde se houver opção do consumidor para as unidades consumidoras atendidas pelo sistema elétrico interligado e com tensão de fornecimento inferior a 69 kV, quando: (a) a demanda contratada for igual ou superior a 300 kW em qualquer segmento horo-sazonal; (b) a unidade consumidora faturada na estrutura tarifária convencional houver apresentado, nos últimos 11 (onze) ciclos de faturamento, 3 (três) registros consecutivos ou 6 (seis) alternados de demandas medidas iguais ou superiores a 300 kW; e

IV - opcionalmente na estrutura tarifária horo-sazonal, com aplicação da Tarifa Azul ou Verde, conforme opção do consumidor: para as unidades consumidoras atendidas pelo sistema elétrico interligado e com tensão de fornecimento inferior a 69 kV, sempre que a demanda contratada for inferior a 300 kW.
O consumidor poderá optar pelo retorno à estrutura tarifária convencional, desde que seja verificado, nos últimos 11 (onze) ciclos de faturamento, a ocorrência de 9 (nove) registros, consecutivos ou alternados, de demandas medidas inferiores a 300 kW.

3.3 Aspectos econômicos relacionados a equipamentos de irrigação

A análise econômica verifica se os bens e serviços resultantes do projeto em análise justificam os investimentos realizados (Dorfman, 1988). Nessa linha de raciocínio, o estudo de uma determinada tecnologia não deve ser direcionado apenas aos resultados técnicos da avaliação, uma vez que é indispensável uma ferramenta que possa ser utilizada para tomada de decisão, sendo esta a análise econômica (Reis, 1997).

Segundo Dorfman (1988), é de suma importância o conhecimento da vida útil do equipamento a ser utilizado, pois esse parâmetro pode influenciar diretamente na tomada de decisão. Sendo assim, o referido autor a define como sendo “o intervalo de tempo que vai do início da operação do projeto até o instante em que essa operação se realiza de forma não-econômica.” Em se tratando de equipamentos, a vida útil pode ser considerada aproximadamente igual à vida física do mesmo, uma vez que o uso deste terá retorno somente enquanto estiver, tecnicamente, em condições de funcionar. Define, ainda, período de análise como sendo o tempo que será considerado para avaliação econômica, devendo ser no máximo igual à vida útil do equipamento ou aquele exigido pelo financiamento.

Em se tratando de um equipamento, o custo para sua aquisição pode ser de período anual, considerando-se um determinado período de depreciação, igual à sua
vida útil e taxas de juros compatíveis com o mercado de aplicações financeiras (Hanson et al., 1996; Frizzone et al., 1994; Gomes, 1997; Coelho, 1979). Esta situação pode ser entendida como uma aquisição do equipamento, sem necessidade de empréstimo, com o irrigante dispondo de capital, podendo depreciá-lo ao longo de toda a sua vida útil.

Pode-se trabalhar, porém com um período anual de equipamentos, considerando-se um financiamento. Negocia-se um período para o seu pagamento, na maioria das vezes, inferior à vida útil do equipamento, trabalhando-se com uma certa taxa de juros sobre o valor do financiamento. Este período anual caracteriza um fator de recuperação de capital superior à situação descrita anteriormente (Dorfman, 1988).

A análise de viabilidade é realizada comparando-se custos aos benefícios, podendo-se, segundo Dorfman (1988), calcular a relação entre ambos e interpretar este fator, conhecido como “relação custo-benefício”. É comum, também, simplesmente calcular a diferença entre o benefício e o custo, como realizado por Frizzone et al. (1994).

3.4 Conservação de Energia

A preocupação quanto à possibilidade da falta de suprimento de energia elétrica remete à necessidade de se avaliar de que forma esse tipo de energia vem sendo utilizado. Na realidade, o problema não se restringe apenas à necessidade de gerar cada vez mais energia, mas, primeiramente, a eliminar desperdícios, buscando o máximo desempenho com o mínimo de consumo, avalia a ELETROBRÁS (1998).

Considerando a importância da energia elétrica no acionamento de máquinas no setor agroindustrial, Rodriguez (1990) avalia o uso da mesma citando que o uso e
os custos da energia elétrica num país, com constantes variações no plano econômico, com sensíveis mudanças de tarifas em função do tempo, carecem da definição de alguns conceitos fundamentais para sua análise.

O conjunto de atividades que compreendem o sistema energético pode ser dividido em três níveis, relata Januzzi & Swisher (1997): a) produção e conversão de fontes em vetores energéticos, b) armazenamento e distribuição dos vetores, e c) consumo final. Cada nível inclui uma complexa rede de atividades com o objetivo de extrair energia das fontes encontradas na natureza e entregá-la ao ponto de consumo.

Dos mais variados obstáculos para a introdução da eficiência energética e conservação de energia no setor elétrico pode-se citar os seguintes fatores: falta de conhecimento das melhorias efetivas na utilização da energia elétrica por parte dos consumidores; má qualidade de fornecimento de energia e a falta de padronização das tensões obscurecem a qualidade do produto eficiente; subsídios tarifários e falta de capital dos consumidores diminuem os recursos para novos investimentos, aplicação de programas de eficiência e adoção de medidas tecnológicas eficientes.

O primeiro programa de conservação e substituição de energéticos que se implementou no Brasil foi o CONSERVE, do Ministério da Indústria e Comércio, na primeira metade da década de 80, cita Bajay (1994).

O Procel (1998) – Programa Nacional de Conservação de Energia, foi instituído a partir de uma ação conjunta dos Ministérios das Minas e Energia e da Indústria e Comércio, sendo considerado o primeiro esforço sistematizado e amplo de implantação de uma política de conservação de energia no país.
O programa foi criado via portaria interministerial nº 1877/85, em 30 de dezembro de 1985, com objetivo de racionalizar o uso de energia elétrica, através da eliminação do desperdício e aumento da eficiência de equipamentos, sistemas e processos, proporcionando menor consumo de energia.

O plano original de metas de conservação de energia elétrica previa que, em 2010, 13% da demanda não deveria ser atendida com investimentos em novas instalações do sistema elétrico, e sim com a energia conservada que estaria disponível para atendimento desta, cita Haddad et al. (1994); e segundo o mesmo autor, a conservação de energia provocou uma redução significativa na intensidade do consumo de energia em diversos países do mundo no período de 1973 a 1985.

Leite (1997), relata que a maior de todas as fontes de energia para o futuro está na sua conservação. Cita que a avaliação dos desperdícios e perdas técnicas internas do setor estariam em 1995, em nível de 15% da energia total disponível. Nesse total se incluem perdas técnicas intrínsecas, da ordem de 30 milhões de MWh, ou 10% da energia disponível. Os desperdícios corrigíveis, de ordem comercial, somavam 10 milhões de MWh e os de natureza técnica 6 milhões de MWh, alcançando 5%. Do lado da demanda, a previsão para o ano de 2015 é de um potencial de conservação da ordem de 11%. Para a demanda total mínima de 600 milhões de MWh, prevista pra o ano 2015, um programa continuado e persistente de conservação de eletricidade na base do potencial de 16% poderá representar quase 100 milhões de MWh. Se realizável tal programa, seria possivelmente evitada a construção de usinas com a potência total de 20 mil MW.

Baseado nos levantamentos realizados pela ELETROBRÁS (1998), o consumo de energia elétrica vem crescendo de forma acelerada no país nas últimas décadas -
de 38 TWh em 1970, passou para 274,3 TWh em 1997. A iluminação pública representa aproximadamente 3,5% do consumo total de energia elétrica nacional. Estima-se que existam no país 12,3 milhões de pontos de iluminação pública, o que corresponde a uma potência instalada de 2.470 MW, equivalente a um consumo anual de 10.670 GWh/ano. O potencial de combate ao desperdício de energia elétrica no setor de iluminação pública, considerando-se apenas a substituição de lâmpadas é da ordem de 27% da potência instalada, ou seja, 600MW.

Da pesquisa realizada pela Copel – Companhia Paranaense de Energia, segundo Marach (2001), com diagnósticos energéticos em aproximadamente 200 unidades industriais pertencentes ao grupo tarifário A1, constatou que uma parcela significativa de indústrias possuía equipamentos acionados por motores dimensionados inadequadamente. Observou que de um universo de 6.108 motores avaliados, 37,75% encontravam-se superdimensionados para a carga que acionavam, ou seja, com um carregamento abaixo de 70% da potência nominal. O autor cita também que do consumo total de energia elétrica no Estado do Paraná, aproximadamente 44% é empregada no uso industrial e desta, 87% é utilizada em motores elétricos.

A conservação de energia através de motores elétricos também pode ser realizado através da utilização de conversores eletrônicos. Sanguedo & Stephan (1997), citam que os acionamentos eletrônicos (combinação de um conversor eletrônico com uma máquina elétrica) podem ser empregados em diferentes processos industriais onde é necessário o controle de velocidade, abrindo espaço para o uso de máquinas de corrente alternada, trazendo como benefícios elevado rendimento e alto fator de potência.

Em se tratando de média tensão, conforme Hickok & Wickiser (1989), relatam em seus trabalhos que os inversores de freqüência com tiristores tornaram-se a
tecnologia padrão para inversores de frequência. Porém Hammond & Penteado (1997), argumentam que esses inversores apresentam algumas desvantagens em sua utilização, pois injetam uma quantidade significativa de harmônicos de corrente na rede e operam com fator de potência baixo quando a velocidade é reduzida.

A substituição de motores superdimensionados, Arruda (1971), conclui que 16,35% das perdas totais em motores elétricos poderiam ser evitadas. Extrapolando esse índice para a substituição em todo o país, representaria uma economia de mais de 1,5% da energia total consumida no país.

A preocupação com a conservação de energia não é recente, de modo que a Associação Brasileira da indústria de Iluminação (1992), alertava para o fato de que conservar energia é uma questão colocada na ordem do dia para o Brasil. O desafio de participar dos avanços tecnológicos da competitividade internacional é uma necessidade inquestionável, não basta crescer, é preciso crescer com inteligência e qualidade.

A elaboração de estratégias devem tornar viável a efetiva penetração e utilização normas de acordo com as características dos consumidores. A introdução de tecnologias de uso mais eficiente de energia é um importante passo para a conservação de energia, relata Januzzi (1989), porém em muitos casos não existe uma produção local de tecnologias eficientes e via de regras elas representam um investimento muito mais alto, comparado com aquelas correntemente em uso.

Para a ELETROBRÁS (1995), em termos estratégicos, a médio e em longo prazo, fundamentalmente o setor elétrico deverá ter continuidade quanto ao aproveitamento do potencial disponível com maiores perspectiva de aproveitamento no horizonte temporal do Plano 2015. São apresentados os seguintes motivos: grande potencial
disponível a custos inferiores aos das outras opções; fonte energética renovável; experiência existente no país em planejamento, projeto, construção, fabricação de equipamentos e operação de usinas hidrelétricas; reservatórios hidrelétricos planejados num contexto de uso múltiplo do recurso hídrico, contemplando energia, navegação, controle de cheia, piscicultura, irrigação, etc., beneficiando outros setores da economia e viabilizando a inserção regional dos empreendimentos quanto aos aspectos sócio-ambientais; e viabilidade técnico-econômica e experiência existente no país em sistemas de transmissão de longa distância.

Os racionamentos de energia elétrica no Brasil, tem exigido vários sacrifícios na nação, como os presenciados atualmente. O aumento do consumo final e a deficiência nas condições hidrológicas para a geração de energia elétrica, poderiam ser evitadas caso os planejamentos para a expansão dos vários setores de geração e transmissão de energia elétrica fosse obedecidos conforme cronograma de execução de obras.

Este fato foi observado em racionamentos ocorridos na região nordeste do Brasil conforme relato da COELBA (1988), onde o racionamento é uma medida operacional de curto prazo, insubstituível, na hipótese de indisponibilidade de novas fontes de energia, foi entendida e bem aceita pela maioria da população, razão pela qual o objetivo principal do racionamento foi alcançado, qual seja superar todo o período seco do ano de 1987 sem cortes no fornecimento e sem comprometer a operação normal das usinas da CHESF (Centrais Hidrelétricas de São Francisco).

Para COELBA (1988) a conservação de energia é buscar novas e modernas tecnologias e manter constantes programas educativos de conservação de energia levam a resultados surpreendentes de economia de custo do produto industrial e evita a necessidade de investimento do setor elétrico para suprir a crescente demanda.
Freqüentemente não percebe-se que conservar energia é, na realidade, introduzir mais uma opção de suprimento e que a política de conservação é uma atividade muito diferente da geração, são as considerações de Goldemberg (1985). No Brasil, principalmente, o usual é que as pessoas estão acostumadas a discutir opções de suprimento e se limitam a examinar a substituição de energéticos, em vez de falar em conservação. A grande parte dos energéticos utilizados no Brasil é financiado pelo governo, o que cria uma situação em que as decisões são centralizadas e, por isso, acabam-se tornando extremamente simples. Mas, em torno destas decisões, o sistema acabou criando uma lógica própria, onde há um conjunto de interesses, em particular os das grandes empresas, envolvendo poucas pessoas e, sobretudo, dinheiro do governo. Já a conservação é uma fonte de energia, onde milhares de decisões precisam ser tomados, para que a conservação torne-se significativa. E uma decisão descentralizada, que envolve a conscientização das pessoas.

3.5 Considerações sobre motores elétricos assíncronos

O acionamento de máquinas e equipamentos mecânicos por motores elétricos é um assunto de extraordinária importância econômica. Estima-se que o mercado mundial de motores elétricos de todos os tipos seja da ordem de uma dezena de bilhões de dólares por ano. No campo dos acionamentos industriais, avalia-se que de 70 a 80% da energia elétrica consumida pelo conjunto de todas as indústrias seja transformada em energia mecânica através de motores elétricos, conclui Lobosco & Dias (1988). Complementa a afirmação, que se admitindo um rendimento médio da ordem de 80% do universo de motores
em aplicações industriais, cerca de 15% da energia elétrica industrial, transforma-se em perdas nos motores.

Conforme a publicação do Catálogo Geral de Motores Elétricos da WEG (2000) o motor elétrico é a máquina destinada a transformar energia elétrica em energia mecânica. É o mais usado de todos os tipos de motores, pois combina as vantagens da utilização de energia elétrica baixo custo, facilidade de transporte, limpeza e simplicidade de comando com sua construção simples, custo reduzido, grande versatilidade de adaptação às cargas dos mais diversos tipos e melhores rendimentos.

Seu funcionamento normalmente é com velocidade constante, variando ligeiramente com a carga mecânica aplicada ao eixo, de acordo com WEG (2000), e devido a sua grande simplicidade, robustez e baixo custo, é o motor mais utilizado de todos, sendo adequado para quase todos os tipos de máquinas acionadas, encontradas na prática.

De todos os tipos de motores, o motor de indução de rotor de gaiola de esquilo é o mais simples no aspecto construtivo, segundo Kosow (1982), pois não tem comutador, nem anéis coletores, nem quaisquer contatos móveis entre o rotor e o estator. Esse tipo de construção leva muitas vantagens, inclusive a uma operação isenta de manutenção, indicando-se sua aplicação em localizações remotas, e sua operação em situações severas de trabalho onde a poeira e outros materiais abrasivos sejam fatores a serem considerados.

Earp (1950), relata a facilidade de partida, ampla faixa de temperatura de operação e baixo custo operacional, a escolha dos motores trifásicos é desejável para o acionamento de um grande número de máquinas no meio rural.

Na seleção de motores a serem utilizados em acionamentos de máquinas, devem ser utilizados critérios técnicos para que o mesmo não seja
sobredimensionado, funcionando com carga parcial, que segundo Kuznetsov (1979), resultam em baixo fator de potência, devido à quase toda corrente absorvida ser utilizada para a magnetização do motor. Nem subdimensionado, a ponto de uma sobrecarga momentânea exceder seu torque máximo, saindo de seu ponto de funcionamento e estabilidade. Segundo Lobosco (1988), este fato tem como consequência o aparecimento de um conjugado frenante que reduzirá a velocidade do sistema até a completa parada.

Os motores considerados de alto rendimento, conforme WEG (2000), são os motores projetados para, fornecendo a mesma potência útil (na ponta do eixo) que outros tipos de motores, consumirem menos energia elétrica da rede. Construtivamente os motores de alto rendimento possuem as seguintes características: chapas magnéticas de melhor qualidade (aço silício); maior volume de cobre, que reduz a temperatura de operação; enrolamentos especiais, que produzem menos perdas estatóricas; rotores tratados termicamente, reduzindo perdas rotóricas; altos fatores de enchimento das ranhuras, que provêm melhor dissipação do calor gerado; anéis de curto circuito dimensionados para reduzir as perdas Joule; e projetos de ranhuras do motor são otimizadas para incrementar o rendimento.

3.6 Motores elétricos de indução

De acordo com Martignoni (1978), a maioria dos motores elétricos empregados são do tipo assíncrono, também chamados motores de indução e devido ao fato de os mesmos possuírem importantes qualidades, tais como: construção simples, custo reduzido, vida útil longa, facilidade de manobra de manutenção, Segundo Fitzgerald et al
(1977), o motor de indução trifásico consiste em um enrolamento no estator e de um rotor. O motor de gaiola é formado por barras condutoras colocadas em ranhuras de ferro e curto-circuitados em cada extremidade por anéis condutores.

Segundo Mammede Filho (1989) o motor elétrico é uma máquina que transforma energia elétrica em energia mecânica disponível no eixo do mesmo. Há vários tipos de motor elétrico empregado em instalações elétricas, porém, devido à sua simplicidade e ausência de coletor, o mais usado é o motor assíncrono de indução.

O motor de indução é constituído por duas partes básicas distintas:

- Estator - formado por 3 elementos: carcaça, que corresponde à estrutura de suporte do rotor; núcleo, constituído de chapas magnéticas e enrolamentos, adequadamente dimensionados e dispostos sobre o núcleo;
- Rotor - também formado por 3 elementos básicos: núcleo, enrolamentos e o eixo.

Segundo Dawes (1969), o motor de indução, dentre os motores de corrente alternada, é o de mais extenso uso. Deve-se esta preferência a sua robustez, simplicidade, ausência de coletor.

3.6.1 Princípio de Funcionamento

Segundo Mammede Filho (1989), o funcionamento de um motor de indução baseia-se no princípio da formação de um campo magnético rotativo produzindo no estator pela passagem da corrente alternada em suas bobinas, cujo fluxo, por efeito de sua
variação, desloca-se em torno do rotor, gerando neste, corrente induzida que tende a opor-se ao campo rotativo, sendo, o rotor, arrastado por este.

Segundo Martignoni (1978), o efeito da variação do fluxo, produzido pelo campo rotativo que se desloca no enrolamento do estator, geram no rotor correntes induzidas que tentam se opor à causa que o produz. O rotor não pode alcançar a rotação do campo rotativo, pois se isso ocorresse, não haveria mais geração de correntes induzidas e desaparecia o efeito magnético rotórico necessário para manter o rotor em movimento. O sistema induzido pode acompanhar a rotação do campo indutor, mas a sua rotação inferior, a fim de gerar a corrente induzida e, por conseguinte a reação motora.

Compreende-se que o motor assíncrono é constituído por um sistema estatórico promovido de enrolamentos indutores, que são ligados com a linha de alimentação e de um sistema rotórico que constitui o induzido. O sistema estatórico produz o campo rotativo, enquanto o sistema rotórico é constituído por sistemas elétrico fechados percorrido pelas correntes produzidas pelo efeito eletromagnético do campo rotativo. Os sistemas indutores e induzidos são chamados respectivamente de primário e secundário como nos transformadores.

Motores elétricos são equipamentos que dentro de certos limites técnicos fornecem a quantidade de energia mecânica demandada pela carga (Fitzgerald 1977). Isto significa que o rendimento do motor poderá ser insatisfatório e seu funcionamento pode ser otimizado. Dentre os fatores que afetam o desempenho dos motores elétricos citam-se: dimensionamento incorreto, desequilíbrio entre fases e variação da tensão de alimentação em relação a nominal.

Segundo WEG (1998), quando em regime contínuo, deve-se especificar o motor para operar entre 75% e 100% da potência nominal, o que corresponde a
faixa de melhor rendimento. Na especificação de motores elétricos não basta medir a corrente consumida e substituir o motor por um de menor potência baseado na proporção de corrente absorvida x corrente nominal. Além da curva de corrente não ser totalmente linear em função da potência fornecida, deve-se avaliar as condições de partida do motor. Existem vários fatores que podem provocar o superdimensionamento de motores elétricos, dentre eles podem ser citados: (1) Falta de informação sobre métodos de dimensionamento motores elétricos; (2) Desconhecimento das características da própria carga; (3) Sucessivos fatores de segurança nas diversas etapas de projeto; (4) Expectativa de futuro aumento de carga. E como conseqüência deste superdimensionamento, verifica-se a redução do rendimento e fator de potência e o aumento da corrente de partida.

Em motores de indução a operação desequilibrada das tensões nas fases ocorre quando as tensões aplicadas ao estator não constituem um conjunto polifásico simétrico, ou quando os enrolamentos do estator ou rotor não constituem um conjunto polifásico simétrico relativo as fases (Fitzgerald 1977).

No Brasil a NBR 7094 define como desequilibrado o sistema trifásico que opere com a componente sequência zero acima de 1% da sequência positiva, ou ainda, componente de sequência negativa acima de 1% e 1,5% da sequência positiva durante períodos prolongados e curtos, respectivamente. Em motores elétricos o desequilíbrio de tensão causa, dentre outras:

a) Redução da eficiência;
b) Redução do conjugado disponível para carga;
c) Redução do fator de potência;
d) Aumento da temperatura,
e) Redução da vida útil.

Para motores operando a vazio e a plena carga um desequilíbrio entre cargas da ordem de 2,5% causa um desequilíbrio de corrente em média de 35% e 20%, respectivamente. Um desequilíbrio da ordem de 5% na tensão reduz a potência disponível no eixo do motor elétrico em 25% (PROCEL 1998). Deve-se pois avaliar o desequilíbrio entre fases para a determinação indireta do rendimento de máquinas elétricas.

3.6.2 Rotação de sincronismo

\[
N = 120 \cdot \frac{f}{P}
\]

\((1)\)

Onde:

\(N = \) rotação de sincronismo, em rpm;

\(f = \) frequência, em Hertz;

\(P = \) número de pólos da máquina.
3.6.3 Escorregamento de fase

Segundo Martignoni (1978), a força eletromotriz é gerada por efeito de variação do fluxo produzido no campo rotórico sobre os condutores induzidos tais variações de fluxo são máximas quando o rotor está parado.

Nestas condições as variações de fluxo que os condutores induzidos sofrem, correspondem ao número de rotação por minuto do campo rotativo, dado pela Equação 2.

\[
\text{n}_1 = \frac{60 \cdot f_1}{p}
\]

(2)

Onde:

\(n_1 \) = rotação do campo rotativo, em rpm;

\(f_1 \) = frequência da rede de alimentação, em Hertz;

\(p \) = número de pares de pôlos.

Uma vez o rotor em movimento, acompanhando o sentido do campo rotativo, o número de variações de fluxo que os condutores induzidos sofrem, diminui. Assim, se o motor rodar com \(n_2 \) rotações por minuto, nos condutores induzidos resulta \(n_1 - n_2 \). O número de rotações por minuto do rotor é sempre inferior a \(n_1 \), pois se \(n_2 \) fosse igual a \(n_1 \) não se verificaria mais variação de fluxo nos condutores induzidos e deixaria de gerar a força eletromotriz e a corrente rotórica, ficando nula a ação motora. A diferença \(n_1 - n_2 \) representa o
número de rotações por minuto com que o campo rotórico desliza com respeito aos condutores induzidos, pelo que se chama rotação de escorregamento.

Representa-se o número de rotações por minuto que o rotor perde, em relação ao campo rotativo. Portanto, o escorregamento pode ser dado percentualmente utilizando-se a Equação 3:

\[S\% = \frac{n_1 - n_2}{n_1} \cdot 100 \]

(3)

Condições de escorregamento:

- Quando o rotor estiver parado temos: \(n_2 = 0; S = 1; S\% = 100\% \);
- Quando o rotor estiver em vazio: \(n_2 \approx n_1; S\% = 0 \);
- Com carga nominal, os motores possuem escorregamento que varia entre 1% até 5%.

3.6.4 Freqüência do Rotor

Segundo Dawes (1969), a freqüência das correntes induzidas no rotor \((f_2) \) é igual ao produto da freqüência do estator \((f_1) \) pelo escorregamento de fase, conforme a Equação 4.

\[f_2 = S \cdot f_1 \]

(4)
3.6.5 Momento de torção (conjugado)

Segundo Mamede (1989), o momento de torção (torque), mede o esforço necessário que deve ter o motor para girar o seu eixo, podendo ser definido em diferentes fases de acionamento do motor:

i) *Conjugado nominal* (C_N) - É aquele que o motor desenvolve a potência nominal, quando submetido à frequência e tensão nominal.

ii) *Conjugado de partida* (C_p) - É aquele desenvolvido pelo motor sob condições de frequência e tensão nominais durante a partida. Deve ser de valor elevado, a fim de o motor poder acionar a carga desde a posição de inércia até a rotação nominal.

iii) *Conjugado máximo* (C_{max}) - É o maior conjugado produzido pelo motor, sem ficar sujeito a variações bruscas de rotação.

iv) *Conjugado mínimo* (C_{min}) - É o menor conjugado obtido, na faixa de rotação compreendida entre o valor zero e conjugado máximo.

![Figura 4. Curva real de um motor elétrico.](image-url)
3.6.6 Motor tipo gaiola de esquilo

Segundo Dawes (1969), é o mais simples, e de uso generalizado. O núcleo do rotor fabrica-se em aço ranhurado. A armadura é feita com barras de cobre ou de alumínio fundido. Possui as seguintes características:

♦ Escorregamento de fase (s), em motores até 50 HP, da ordem de 1 a 2%. Para motores maiores pode atingir de 8 a 10%;
♦ Fator de potência (cos φ), cresce com a carga e alcança o seu valor máximo próximo a condição nominal de funcionamento do motor. Daí em diante, o fator de potência volta a baixar com aumento adicional de carga;
♦ Rendimento (n), sobe com rapidez até atingir seu maior valor, próximo à carga nominal; após decresce com o aumento da carga;
♦ Corrente de partida (I_p), consome uma alta corrente de partida, sob baixo fator de potência, o que faz desenvolver um baixo torque de partida;
♦ Torque; o motor desenvolve um torque para determinado deslizamento de fase que é proporcional ao quadrado da tensão de linha, é dado pela Equação 5.

\[T = k \cdot V_l^2 \]

Onde:

$T =$ torque motor;
$k =$ constante da máquina;
$V_l =$ tensão da linha de alimentação.
3.7 Fator de potência

Mamede (1986) destaca que a energia elétrica que aciona as máquinas ou outros equipamentos industriais é composta, em geral de duas parcelas; energia ativa e energia reativa.

Quando a carga é aplicada a um motor elétrico, a potência aparente de alimentação se decompõe em potência ativa que é transformada em potência mecânica e em potência reativa que é necessária para manter o campo girante, cita Golovach (1967).

A utilização de motores elétricos é uma das aplicações mais comuns na indústria para a produção de energia mecânica e apesar da sua elevada eficiência, estes artefatos nem sempre são perfeitamente compatíveis com a tarefa que executam. Muitas vezes, não são utilizadas de maneira racional e eficiente, afirma Porto (1991).

Para Kosow (1982) o fator de potência a vazio corresponde a um baixo valor, sendo que nestas circunstâncias quase toda a corrente absorvida é empregada para a magnetização do motor requerido para produzir o campo girante do estator. Ao se aumentar a potência fornecida, precisa-se então de mais potência ativa absorvida, que é aquela transformada em potência útil, e isto melhora o fator de potência.

Lipkin (1978) justifica a substituição de motores que estão carregados com menos de 45% de sua potência nominal, tendo em vista o alto consumo de energia reativa.

Kuznetsov (1979) cita que equipamentos elétricos trabalhando com carga parcial resultam em baixo fator de potência. E motor que opera abaixo da condição de carga máxima, pela qual ele foi selecionado constituindo em um desvantagem.
Dentre as vantagens oferecidas pela melhoria do fator de potência é a liberação da capacidade do sistema, cita Cotrim (1982).

A liberação de capacidade é importante para a concessionária do ponto de vista de dispor de uma energia adicional e para o consumidor do ponto de vista de diminuir custos, afirma Sales (1998).

Segundo Spitta (1978), os usuários de energia elétrica são providos de cargas resitivas e indutivas. As cargas resistivas absorvem potência ativa e as cargas indutivas, potência reativa, e a soma geométrica destas potências resulta na potência aparente, podendo ser representada pela Figura 5.

![Figura 5. Triângulo de potência.](image)

Onde:

- \(P \) = potência ativa (kW);
- \(Q \) = potência reativa (kVAR);
- \(S \) = potência aparente (kVA).

O coseno do ângulo \(\varphi \) é chamado de fator de potência.
A potência ativa é a potência que gera trabalho e a potência reativa é usada para magnetizar enrolamentos e produzir campo magnético girante.

A potência reativa é uma carga adicional aos geradores, às linhas de distribuição e aos transformadores. Logo as companhias de energia exigem que o fator de potência seja superior a um valor mínimo, caso contrário, será cobrado multas do consumidor. Os motores e as lâmpadas fluorescentes são grandes consumidores de potência reativa.

Com a diminuição do fator de potência, ocorre a redução do aproveitamento da energia ativa. A portaria nº 1569 do Departamento nacional de energia elétrica de 23/12/93, aumentou o limite mínimo do fator de potência de 0,85 para 0,92 a partir de março/94. A energia reativa excedente é faturada como consumo e a partir de março/96, o período de avaliação do fator de potência passou de média mensal para média horária. As principais causas do baixo fator de potência são:

a) Motores e transformadores superdimensionados;
b) Motores ou transformadores operando “em vazio” ou com pequenas cargas;
c) Grande quantidade de motores de pequena potência;
d) Máquinas de solda;
e) Lâmpadas de descarga, utilização de reatores de baixo fator de potência;
f) Excesso de energia reativa capacitiva. Para algumas estruturas tarifárias identificar a quantidade necessária de capacitores no período das 06:00 às 24:00 e no período das 0:00 às 06:00 horas.

As principais consequências do baixo fator de potência são:

a) Flutuação de tensão, podendo ocasionar a queima de motores;
b) Perdas na rede em forma de calor proporcional ao quadrado da corrente;

c) Queda de tensão provocando sobrecarga dos equipamentos;

d) Desgaste nos dispositivos de proteção e manobra;

e) Aumento de investimento em condutores e equipamentos elétricos sujeitos a limitação térmica;

f) Subutilização da capacidade instalada, impedindo a instalação de novas cargas.

Para a correção do fator de potência através de capacitores:

a) Correção fixa: bancos de capacitores fixos instalados na Tabelas alimentadores, chaves geral no lado de baixa tensão para suprir os reativos de transformadores e motores de grande potência;

b) Correção Automática: Utilização de bancos automáticos de correção de fator de potência, com unidade eletrônica de controle reativo;

c) Correção Mista: Utilização de correção por grupo ou individual, e somente a complementação na entrada através da correção automática;

d) Correção individual, apresenta-se em muitos casos inviável, pois a carga exata aplicada ao motor será conhecida apenas quando da eletiva operação do equipamento, tornando difícil o dimensionamento do capacitor, pois o fator de potência varia de acordo com a carga aplicada ao mesmo. (WEG, 1999).
3.8 Rendimento de uma máquina elétrica

Segundo Natale (1996), o rendimento de um sistema é o quociente da potência oferecida \(P_S \) pela recebida \(P_E \), valor esse dado em porcentagem pela Equação 6.

\[
\eta = \frac{P_S}{P_E} \cdot 100 \tag{6}
\]

Para o caso de um motor elétrico, é o quociente da potência mecânica \(P_M \) que oferece, pela potência elétrica \(P_E \) recebida, dado pela Equação 7.

\[
\eta = \frac{P_M}{P_E} \cdot 100 \tag{7}
\]

Se tivermos dois sistemas, ou duas máquinas \(M_1 \) e \(M_2 \), o rendimento do conjunto é igual ao produto de cada uma das máquinas, conforme Equação 8.

\[
\eta_c = \eta_1 \cdot \eta_2 \tag{8}
\]

3.9 Bombas hidráulicas

Segundo Manual de treinamento da KSB (1991), bombas hidráulicas são máquinas operatrizes hidráulicas que transferem energia ao fluido com a finalidade de
transportá-lo de um ponto a outro. Recebem energia de uma fonte motora qualquer e cedem parte desta energia ao fluido, sob forma de energia de pressão, energia cinética ou ambas.

3.9.1 Classificação das bombas

Segundo Manual de treinamento da KSB (1991), as bombas hidráulicas podem ser classificadas em duas grandes categorias:

♦ Bombas centrífugas (turbobombas);
♦ Bombas volumétricas (deslocamento positivo).

3.9.2 Potência absorvida e rendimento de bombas hidráulicas

De acordo com Paiva (1993) a eficiência de uma bomba é dada pela relação entre os valores equivalentes da potência hidráulica fornecida pela bomba e a potência exigida pela mesma numa determinada condição de funcionamento. Portanto conclui-se que bombas mal dimensionadas poderão elevar a vazão desejada com baixa eficiência consumindo mais energia que a necessária.
3.9.2.1 Potência absorvida

É a energia que a bomba hidráulica consome ao transportar o líquido na vazão desejada, à altura estabelecida, com o rendimento esperado.

É função de duas outras potências envolvidas no funcionamento de uma bomba:

i) Potência hidráulica;

ii) Potência útil.

Na prática diária usa-se apenas a potência motriz para determinar a potência do motor elétrico, necessário ao acionamento da bomba, dado pela Equação 9.

\[P_M = \frac{Q \cdot H \cdot 0,37}{\eta} \] \hspace{1cm} (9)

Onde:

\[P_M \] = Potência motriz absorvida, em (cv);

\[Q \] = vazão pretendida, em (m³/h);

\[H \] = altura de elevação, em metros;

0,37 = constante de ajuste das unidades;

\[\eta \] = rendimento da bomba(%).
3.9.2.2. Rendimento de uma bomba hidráulica

É a relação entre a energia oferecida pela máquina motriz (motor) e a absorvida pela máquina operatriz (bomba). O rendimento global de uma bomba hidráulica se divide em:

- **Rendimento hidráulico**: leva em consideração o acabamento interno superficial do rotor e da carcaça. Variando com o tamanho da bomba de 50 a 90%.

- **Rendimento mecânico**: leva em consideração que apenas uma parte da potência necessária ao acionamento da bomba é usado para bombear. O restante se perde por atrito.

3.9.2.3. Rendimento global

O rendimento global, relação entre a potência hidráulica e a potência absorvida pela bomba é dada pela Equação 10 (Schneider, 1990).

\[\eta = \frac{Q \cdot H \cdot 0.37}{P_M} \]

(10)

3.9.3. Curvas características de bombas centrífugas

Segundo Schneider (1990), a curva característica de uma bomba é a expressão cartesiana de suas características de funcionamento, com altura manométrica na
ordenada, e a vazão na abscissa, em torno dos quais se expressam o rendimento, as perdas internas e a potência absorvida. É função particular do projeto e da aplicação requerida de cada bomba, dependendo do tipo e quantidade de rotor utilizado, tipo de carcaça, sentido de fluxo, rotação específica, etc.

A curva possui um ponto de trabalho característico (ponto ótimo de funcionamento), onde apresenta o melhor rendimento. As curvas características podem ser *estáveis* ou *instáveis*:

a) **Estáveis**: são aquelas que para uma determinada altura corresponde a uma única vazão;

b) **Instáveis**: são aquelas que para uma determinada altura corresponde a duas ou mais vazões.

Figura 6. Curvas características das bombas hidráulicas.
3.9.4 Bombas centrífugas

É a bomba que tem por princípio de funcionamento, a transferência de energia mecânica para o fluido a ser bombeado em forma de energia cinética. Esta energia é transformada em energia potencial (energia de pressão), sendo esta sua característica principal. O movimento rotacional de um motor inserido em uma carcaça é o órgão responsável por tal transformação.

3.9.4.1 Bombas centrífugas radiais

É quando a direção do fluido bombeado é perpendicular ao eixo de rotação.

a) Bomba centrífuga de fluxo misto - Quando a direção do fluido bombeado é inclinada em relação ao eixo de rotação.

b) Bomba centrífuga de fluxo axial - Quando a direção do fluido bombeado é paralela em relação ao eixo.

c) Bomba volumétrica (deslocamento positivo) - É o tipo de bomba que tem por característica de funcionamento a transferência direta de energia mecânica cedida pela fonte motora em energia potencial. Esta transferência é obtida pela movimentação de um órgão mecânico da bomba que obriga fluido a executar o mesmo movimento do qual ele está animado.

d) Bombas de êmbolo - O órgão que produz o movimento do fluido é um pistão que, em movimentos alternativos, aspira e expulsa o fluido bombeado.
e) **Bombas rotativa** - É a bomba comandada por um movimento de rotação, o funcionamento consiste no preenchimento dos interstícios entre o rotor e a carcaça, sendo que o somatório de todos corresponde a vazão total fornecida pela bomba.

3.10 Medidas de pressão e vazão

3.10.1 Medidas de pressão

De acordo com Zoerb (1991), pressão é a força por unidade de área exercida por um gás, líquido ou sólido.

Normalmente a pressão é medida em relação à pressão atmosférica (P_{atm}) existente no local. Pode ser medida como pressão absoluta (P_{abs}), pressão manométrica (P_{man}) ou pressão efetiva.

A pressão absoluta é a pressão positiva a partir do vácuo perfeito, ou seja, a soma da pressão atmosférica do local e a pressão manométrica, conforme Equação 11:

$$P_{abs} = P_{atm} + P_{man}$$

Onde:

- P_{Abs} = Pressão absoluta;
- P_{atm} = Pressão atmosférica local;
- P_{man} = Pressão manométrica.
Vácuo ou depressão pode ser definido como um espaço gasoso onde a pressão está abaixo da atmosférica, de acordo com a Equação 12:

\[V = P_{atm} - P_{man} \]

(12)

Onde:

\[V = \text{Vácuo ou depressão}; \]

\[P_{atm} = \text{Pressão atmosférica local}; \]

\[P_{man} = \text{Pressão manométrica}. \]

Correspondendo ao tipo de pressão a que se destina a medição, existem três categorias de medidores de pressão:

i) Medidores de pressão absoluta;

ii) Medidores de pressão efetiva;

iii) Medidores de pressão diferencial.

3.10.1.1 Elementos de medição de pressão

Segundo Sighieri & Nishinari (1977), os dispositivos utilizados nas tomadas de impulso (medição de pressão), podem ser classificados de acordo com seu princípio de funcionamento:

- Por equilíbrio de uma pressão desconhecida contra força conhecida: Colunas de líquido e Campânula;

- Por meio de deformação de um material elástico: Tubo de Bourdon; Membrana e Fole;
• Por meio de uma variação de uma propriedade física: Strain gage e Material piezoresistivo.

3.10.1.2 Tubo de Bourdon

Conforme Zoerb (1991), o tubo de Bourdon, é um dos mais comuns elementos de medição de pressão. É formado por um tubo metálico de secção transversal elíptica que tende a tornar-se circular quando uma pressão interna é aplicada.

De acordo com Sighieri & Nishinari (1977), o do tipo C é para uso geral até 1000 kg/cm². O tipo espiral é para pressão entre 1 e 15 kg/cm² e o tipo helicoidal é para pressões acima de 15 kg/cm². Os tipos espiral e helicoidal são para manômetros de maior precisão.

3.10.1.3 Sensor de pressão piezoresistivo

Segundo Zoerb (1991), durante os anos 80, os sensores constituídos com base no silício foram substituindo os outros tipos em diversas aplicações. Apresenta várias vantagens como maior elasticidade, menor fadiga e custo, porque pode ser feito com o mesmo material e a mesma técnica empregada em circuitos integrados. Entretanto, são mais sensíveis à variação de temperatura necessitando de circuitos de compensação.

O sensor de pressão piezoresistivo consiste de um diafragma de silício no qual é difundido (difusão) resistores.
Fisicamente os resistores fazem parte de um diafragma mas eletricamente funcionam como strain-gages.

3.10.1.4 Transdutor de pressão

Um transdutor pode ser definido como um dispositivo eletro-mecânico que produz uma saída proporcional ao fenômeno, como uma pressão a ser medida. Converte uma forma de energia em uma corrente ou voltagem elétrica proporcional. Geralmente manômetros para líquidos, tubos de Bourdon ou outro meio mecânico de medição são usados quando uma “pressão estática” está sendo medida. Nos casos de uma pressão dinâmica, ou de leituras remotas, é necessário o uso de transdutores associados a equipamentos eletrônicos.

3.10.2 Medidas de vazão

De acordo Sighieri & Nishinari (1977), a vazão é a quantidade do fluxo em relação ao tempo, a medição de vazão é a única que deve ser feita com fluido em movimento, ao passo que as outras medições, como pressão e temperatura podem ser feitas com o fluido estático. Para se medir vazão, na maioria dos casos, deve-se colocar algum obstáculo ao fluxo na tubulação, o que irá provocar perturbação no mesmo, causando perdas de carga. Existem três tipos fundamentais de medidores de vazão: Diretos, Indiretos, Especiais.
i) Medidores diretos
Disco mutante, Pistão flutuante, Rodas ovais, Roots, Hélice e Turbina.

ii) Medidores indiretos
Orifício, Bocal, Venturi, Dall, Pitot, Cotovelo especial; Rotânero, Vertedor, Calha de Parshall.

iii) Medidores especiais

3.11 Acionamento de motores de indução

3.11.1 Controle de rotação por regulação de tensão

Segundo Lander (1988), é possível algum ajuste de rotação no motor de indução em gaiola pela redução da tensão no estator com um consequente aumento no escorregamento. Podem ser utilizados tiristores, onde o controle do ângulo de disparo alteram a tensão reduzindo o valor eficaz total sobre o motor, conforme a Figura 7.
Essa forma de ajuste de rotação deve ser utilizada somente em cargas onde o aumento da rotação não necessita de um torque constante, como em ventiladores.

Sabe-se que os motores elétricos são equipamentos que, dentro de certos limites técnicos fornecem a quantidade de energia mecânica demandada em função da condição de carga (Fitzgerald et al. 1977; Dorf, 1993) isto significa que o rendimento do motor poderá ser insatisfatório, o que ocorre quando a carga demandada é muito inferior a potência nominal. Nesse caso o uso de força motriz poderá ser racionalizado por meio do dimensionamento adequado dos motores elétricos, do uso de motores eficientes e, ou do uso de inversores de frequência que são dispositivos da eletrônica de potência, que permite mudar, dentre outras variáveis, a frequência de alimentação de determinada carga elétrica, numa faixa de variação de 1,5 a 400Hz (YASKAWA, 1997).

Os inversores ajustam a frequência de motores elétricos de modo a manter, no mínimo, o rendimento nominal, isto é, o rendimento do motor para a condição de 100% da carga nominal, Hanson; Weigand & Orloff (1996). Esta característica, portanto, faz
Os inversores de frequência apresentam outras vantagens, como: (i) controle do tempo de aceleração, e consequentemente da corrente de partida, que pode corresponder entre 0,8 a 1,5 vezes a corrente nominal do motor e (ii) baixo consumo de potência reativa. Sendo que o baixo consumo de potência reativa em função da diminuição da demanda em kVA, eleva o fator de potência para um valor maior que o mínimo exigido pelas concessionárias de energia elétrica, podendo atingir valores próximos a 1,00.

3.11.2 Controle de rotação com o uso de inversores

Segundo Fingini (1982), os inversores estáticos podem ser empregados para a alimentação de motores assíncronos, geralmente trifásicos essencialmente em três casos: alimentação de emergência, por meio de baterias; alimentação de motores que devem funcionar a frequências diferentes da rede, alimentação de motores assíncronos a fim de regular sua rotação.

Em todas estas aplicações, em geral, são empregados motores trifásicos, é necessário, portanto prever inversores trifásicos onde seja exigida a variação de rotação à frequência e tensão variáveis.

conforme Araújo (2000), a utilização de inversores de frequência no acionamento de sistemas de bombeamento para irrigação, pode ser viável, desde que, as características de funcionamento do sistema apresente condições de operação que tenha
variações de vazão e pressão nas tubulações, necessitando de controle sobre a rotação, partida e desligamento do motor elétrico, com a finalidade principal de conservação e racionalização de energia elétrica.

3.11.3 Inversor de frequência

O objetivo dos acionamentos (variadores de velocidade) do tipo inversores de frequência é alimentar os motores assíncronos trifásicos, de forma a obter características de funcionamento radicalmente diferentes de sua utilização normal (motores alimentados diretamente pela rede), com amplitude e frequência constante.

De acordo com Hanson et al. (1996), o benefício gerado pelo inversor de frequência é a economia nos custos com energia, pois proporcionará uma redução na potência consumida pelo motor elétrico. A economia anual é obtida em função da redução de potência, número de horas de funcionamento durante o ano e do preço da energia elétrica (Arruda, 1988).

Ottoboni (2002), baseado na performance dos acionamentos de corrente continua (CC), a tecnologia de conversores correntes alternadas evoluiu proporcionando as mesmas características de controle de velocidade e de torque, mas usufruindo das vantagens oferecidas pelos motores assíncronos trifásicos. O primeiro passo desta evolução foram os conversores de frequência com controle escalar [ou V/f] e chaveamento PWM, e posteriormente visando melhorar a performance dos conversores de frequência foi desenvolvido o modelo de controle vetorial.
Nas aplicações onde há uma grande variação da carga dos motores, acionamentos eletrônicos de velocidade variável (ASD - Adjustable Speed Drives) podem ser viáveis, com tempos de retorno do investimento tipicamente de um a quatro anos. ASDs de última geração são fabricados por uma empresa brasileira (Weg Acionamentos) e importados por grandes multinacionais como Siemens, ABB, Reliance e Toshiba.

Para a adequação de potência deve-se mensurar o rendimento do motor elétrico na condição de carga, o que não é uma tarefa simples, já que seriam necessários equipamentos caros, sofisticados e específicos. Atualmente, a avaliação do rendimento é feita de forma indireta. Dentre os parâmetros mais utilizados citam-se: 1) Potência de entrada; 2) Corrente; 3) Escorregamento e 4) Fator de potência. Assim a avaliação do rendimento é feita a partir das curvas característica dos motores.

WEG – (Transformando energia em solução), o advento de acionamento de velocidade variável, confiáveis e de custo efetivo, mudaram rapidamente os procedimentos antigos de uso de meios mecânicos e motores de corrente contínua (CC) para controles.

Estes acionamentos, que regulam a velocidade do motor, controlando a tensão e a frequência da rede, tem alargado vastamente a abrangência das aplicações e capacidades dos motores de corrente alternada (AC). Muitos efeitos são positivos, velocidades baixas significam ciclos menores (portanto fadiga minimizada) dos rolamentos, ventoinhas e outros elementos girantes.

Acionamento de frequência ajustável pode influenciar positivamente na vida útil do motor, quando adequadamente aplicados. Há, contudo, uns poucos fatores importantes que devem ser considerados quando do uso de motores com acionamentos. Estes
problemas são bem definidos e administráveis e devem ser levados atualmente em consideração:

a) Tensão de modo comum;
b) Harmônicas;
c) Frequência de chaveamento de ondas estacionárias;
d) Faixa de velocidade e aspectos na partida.

Com a utilização dos inversores de frequência pode-se utilizar os motores de corrente alternada (CA) com as mesmas vantagens em relação ao de corrente contínua (CC):

a) Baixa manutenção do consumo de escovas comutadoras;
b) Ausência de faiscamento;
c) Baixo ruído elétrico;
d) Custo inferior;
e) Velocidade de rotação superior.

Campana et al (2000b), verificou a viabilidade técnica e econômica da utilização de inversores de frequência para racionalização do uso de energia elétrica em um sistema de irrigação tipo pivô central de média pressão. Também foi avaliada que com a aplicação do inversor de frequência foi liberada carga no transformador.

CAMPANA (2000), os inversores de frequência são equipamentos da eletrônica de potência que permitem o controle de velocidade e, consequentemente, de torque em motores assíncronos trifásicos tipo gaiola de esquilo. Esses dispositivos encontram-se
disponíveis para as potências comerciais dos motores elétricos existentes no mercado, permitindo alterar, dentre outras variáveis, a frequência de alimentação de determinada carga elétrica, em uma faixa entre 1,5 e 400 Hz. Os inversores de frequência ajustam a frequência de motores elétricos de modo a terem rendimentos próximos ao nominal, isto é, rendimento do motor para a condição de 100% de carregamento nominal (HANSON et al., 1996), garantindo fator de potência superior a 92%, que é atualmente o valor mínimo exigido por lei.

Apesar dos inversores de frequência adicionarem uma quantidade significativa de harmônicos na rede, apresentam algumas vantagens adicionais que possibilitam:

a) A utilização de motores trifásicos em redes de distribuição monofásicas, desde que a capacidade de corrente do inversor seja 50% superior àquela da corrente nominal do motor;

b) A minimização do prejuízo decorrente da variação de tensão na rede elétrica sem que haja, dentro de certos limites, prejuízos ao motor e ao controlador;

c) A proteção do motor e do inversor, incluindo relé térmico de sobrecarga e proteção para evitar fuga de corrente para a terra;

d) A frenagem e partida com aceleração controlada e, ou, frenagem rápida;

e) A partida já com o motor em funcionamento;

f) A utilização de velocidades já pré-selecionadas;

g) controle da corrente de partida e regulagem de velocidades;

h) Obter baixo consumo de potência reativa (Groupe e Yaskawa, citados por CAMPANA, 2000).
Desta forma, a utilização de inversores de frequência proporciona um grande potencial de economia de energia elétrica por meio do controle da frequência de alimentação dos motores elétricos, adequando-os à solicitação de carga.

Atualmente é possível operar os motores de indução com velocidade variável, através da utilização dos conversores de frequência. Estes conversores tem a característica de fornecer tensão e frequência variáveis, a partir de uma fonte de alimentação com tensão e frequência constantes (ANDREAS, 1992).

O simples uso de inversores de frequência para variação de velocidade de motores já implica em reduzir o consumo de energia elétrica, já que, ao se reduzir a velocidade, reduz-se também a tensão do motor e o consumo de energia.

3.11.3.1 Inversores de frequência para motores assíncronos

Seu princípio de funcionamento consiste em fornecer ao motor uma onda da tensão de amplitude e frequência variáveis mantendo a relação tensão/frequência sensivelmente constante (Figura 8). Esta onda de tensão é gerada por um dispositivo eletrônico de potência. O inversor compreende:

- Uma ponte retificadora de diodos mono ou trifásicas associadas a um capacitor, formando uma fonte de tensão contínua (barramento a tensão contínua ou barramento CC);
- Uma ponte inversora, geralmente a IGBT (do inglês Insulated Gate Bipolar Transistor), alimentado pela tensão contínua e gerando uma onda da tensão alternada de amplitude e frequência variáveis pela técnica de modulação de largura de pulsos (PWM, do inglês Pulse Width Modulation);
Uma unidade de controle que fornece os sinais de condução aos IGBTs, em função das referências fornecidas pelo operador (colocação em marcha, sentido de marcha, referência de velocidade, etc.) e da medida de grandezas elétricas, (tensão da rede, corrente do motor).

O princípio PWM utilizado na ponte inversora, consiste em aplicar aos enrolamentos do motor uma sucessão de pulsos de tensão, de amplitude igual a tensão contínua fornecida pelo retificador. Os pulsos são modulados na largura, de forma a criar uma tensão alternada de amplitude variável.

Figura 8. Inversor de frequência para motores assíncronos.

3.11.3.2 Inversores trifásicos

Segundo Fingini (1982), os inversores trifásicos podem ser executados reagrupando-se três inversores monofásicos, ou realizando-se diretamente uma ligação trifásica.
3.11.4 Acionamento a frequência fixa

Segundo Fingini (1982), os acionamentos a frequência fixa se compõem de um conversor trifásico AC/AC, ou seja, de um grupo retificador e de um inversor. Deve-se considerar que os motores assíncronos apresentam uma corrente de partida 5 a 6 vezes a corrente nominal. Portanto, o inversor deve ser dimensionado para fornecer a corrente em questão, Figura 9.

![Figura 9. Acionamento a frequência vertical.](image)

De acordo com Lander (1988), em um projeto de acionamento de motores de indução deve-se levar em conta a relação tensão / frequência constante para a manutenção do fluxo no estator.

Em baixas frequências, a tensão no estator deverá ser um pouco acrescida para manter o fluxo constante, levando em conta a perda na impedância do mesmo. Essa regulagem pode ser efetuada das seguintes maneiras:

1) regulando o valor da tensão contínua;
2) pulsando uma tensão contínua;
3) parcializando a tensão alternada;
4) ligando-se na saída um autotransformador de relação variável.

3.11.5 Acionamento por inversor a corrente constante

3.11.6 Acionamento por meio de cicloconversores

Conforme Fingini (1982), este tipo de acionamento é empregado, especialmente para acionar motores assíncronos de grande potência com frequências relativamente baixas.

Consta de um inversor que fornece uma tensão alternada em onda quadrada, com frequência cerca de 10 vezes superior aquela que se quer obter, três conversores monofásicos reversíveis que modulam a tensão alternada conforme a frequência que se quer obter na saída, uma harmônica fundamental na frequência que se deseja para os motores.

De acordo com Lander (1988), a técnica de aplicação de cicloconversor é atraente pelo fato de existir a capacidade de regeneração e operação em
quatro quadrantes, mas por outro lado, é de custo muito elevado pelo número de tiristores e pelo complexo circuito de disparo usado.

3.11.7 Acionamento com inversor transistorizado

Segundo Lander (1988), é possível a utilização de transmissores para o acionamento de motores de corrente alternada.

Os transmissores podem ser chaveados de maneira a gerar uma onda próxima a quadrada ou modulação por largura de pulso (PWM).

3.11.8 Inversores escalares e inversores de fluxo vetoriais

3.11.8.1 Inversores escalares

Segundo Di Grazia (1998), grande parte das aplicações de inversores de freqüência, como bombas e ventiladores, necessitam apenas de variação de rotação e partidas suaves, sendo atendidas plenamente com o uso de inversores com tecnologia escalar ou tensão / freqüência.

Os inversores escalares produzem uma saída trifásica com tensão (V) e freqüência (f) variáveis de acordo com uma curva (V/f) pré definidas. Dependendo do fabricante, os inversores podem possuir diversas curvas de tensão/freqüência destinadas às aplicações como bombas e ventiladores. Em linha geral, podemos dizer que os inversores escalares são fontes de alimentação com valores de tensão/freqüência pré-determinados dentro
de toda a faixa de variação de rotação. Considerando-se que o torque no eixo do motor é proporcional à relação tensão/freqüência, os inversores escalares irão disponibilizar ao motor torques pré-definidos, não compensando as necessidades de torque adicionais requeridos por determinadas cargas.

Masiero (1999), sugere a aplicação de inversores de freqüência em outros tipos de sistemas de irrigação e de bombeamento de água, que apresentam viabilidade ainda maior em sistemas de irrigação por aspersão, apesar do custo inicial do inversor é necessário considerar que economizar energia é um benefício social, principalmente em períodos de menor oferta de energia, isto é período seco.

3.11.8.2 Inversores de fluxo vetoriais

Segundo Di Grazia (1998), os inversores vetoriais de fluxo produzem uma saída trifásica com tensão (V) e freqüência (f) controladas independentemente, não seguindo a curva \(\frac{V}{f} \) pré-fixada.

Os inversores escalares são utilizados para acionamento de bombas, ventiladores, e outras máquinas de fluxo, e os inversores vetoriais são utilizados em elevadores, pórticos, laminadores etc. A Figura 10, apresenta as curvas características desses inversores.
Figura 10. Curva característica dos inversores escalar e vetorial.

3.12 Acionamentos com rotação controlada para bombeamento

É usual encontrar motores elétricos em condições operacionais que favorecem o desperdício de energia. O conjunto motobomba ou motoventilador, tradicionalmente, opera com a rotação nominal fixa. E a válvula de controle, dimensionada para uma capacidade de vazão em média 40% a 68% superior à vazão máxima do processo, normalmente opera entreaberta, restringindo ou circulando o fluxo para determinar as condições operacionais desejadas.

Os acionadores eletrônicos têm revolucionado o uso da eletricidade como força motriz. O primeiro impacto surgiu com substituição do sistema ward-leonard de controle de rotação de motores de corrente contínua pelo retificador a SCR’s. No entanto, o maior impacto se deu com o aparecimento dos semicondutores de última geração, que têm permitido a construção de conversores eletrônicos de tensão e frequência com melhores desempenho.
O motor síncrono e o de indução deixaram de ser motores de rotação constante e passaram a poder operar com rotação variável, viabilizando o controle final da vazão de fluxo por meio do motocompressor, ou do motoventilador, em substituição à válvulas de controle.

A utilização de acionadores eletrônicos de frequência variável, em substituição à válvula de controle, apresenta um potencial médio teórico de conservação de energia da ordem 30%, segundo Alves (1989). E adquiriu viabilidade técnico-econômica devido aos recentes avanços em dispositivos semicondutores de potência como o transistor bipolar de porta-gatilho isolada (IGBT), aplicado no estágio inversor dos conversores eletrônicos de frequência CA-CA com elevadas freqüências de chaveamento, para modulação por largura de pulso (PWM).

Os primeiros estudos sobre a viabilidade de aplicação de conservadores eletrônicos de frequência na Petrobras foram iniciados na década de 80. Após a realização de vários testes, eles vêm sendo utilizados progressivamente, com diversos objetivos e funções que vão além do uso racional de energia elétrica. Atualmente, o conversor eletrônico frequência mais utilizado em baixa e média potência é o VSI PWM, devido a razões técnico-econômicas.

3.12.1 Fundamentos teóricos

3.12.1.1 Conversão eletrônica da frequência

Um acionador eletrônico de frequência variável é um equipamento destinado à variação de rotação, controle e proteção de motores elétricos de indução. Existem
três tipos básicos de conversores eletrônicos de freqüência, que se diferem pelo modelo de
controle:

i) CSI - inversor de corrente imposta;

ii) VSI PAM - inversor de tensão com modulação por amplitude de pulsos;

iii) VSI PWM - inversor de tensão com modulação por largura de pulsos.

Um conversor VSI PWM é composto por uma ponte trifásica de
entrada não controlada, de seis ou 12 diodos, que retifica a tensão trifásica da rede e alimenta
um barramento intermediário chamado circuito intermediário de corrente contínua. Nesse
circuito, existe um filtro LC ou RC passa baixas que, além de filtrar as ondulações (ripple) do
sinal de tensão que vêm do estágio retificador, também protege a rede contra harmônicos
gerados pelo estágio inversor.

O circuito intermediário de corrente contínua alimenta com tensão fixa
a ponte inversora VSI que, por meio de um controle chamado modulação por largura de pulsos
(PWM), entrega uma tensão PWM trifásica com valor eficaz variável, proporcional
linearmente à sua freqüência. A Figura 11, ilustra o diagrama simplificado de blocos de um
conversor eletrônico de freqüência VSI PWM em malha de controle externa aberta.

Figura 11. Diagrama simplificado de blocos de um conversor VSI PWM.
O princípio de controle utilizado pelos conversores eletrônicos de frequência VSI - PWM baseia-se na necessidade de variar a rotação dos motores sem que o torque seja comprometido. Para tanto, basta assegurar que o fluxo magnético girante produzido no interior da máquina de indução mantenha-se constante, independentemente da frequência.

Por meio de modelos matemáticos aplicados às máquinas de indução, prova-se que o fluxo magnético depende da relação entre a tensão e frequência que alimentam o estator, (Bose, 1997). Como o torque é obtido a partir da interação magnética do fluxo com a corrente rotórica (dependente da carga), podemos afirmar que, para que uma determinada carga mantenha o torque constante, basta manter a relação tensão e frequência constante. Entretanto, em baixa frequência, o fluxo magnético no air-gap é reduzido, devido à redução da impedância do estator, e a tensão deve ser aumentada para manter o torque nominal. Esse tipo de controle é conhecido como volts/hertz.

O controle em malha fechada é normalmente requerido para satisfazer as especificações de desempenho em regime permanente e transitório dos acionadores eletrônicos AC/AC. As estratégias de controle podem ser a escalar, a vetorial ou a adaptativa:

♦ No controle escalar, apenas as amplitudes das variáveis são controladas;
♦ No controle vetorial, as amplitudes e fases das variáveis são controladas;
♦ No controle adaptativo, os parâmetros do controlador são continuamente auto-ajustados, adaptando-se às variações do sistema.

O sistema de controle é geralmente caracterizado por uma hierarquia de controle, em que os elos externos controlam os internos. Assim, numa aplicação de controle do nível de um líquido em um vaso de pressão, o elo externo é originado no transmissor de
nível e, após a comparação com a referência de nível no controlador proporcional, integral e derivativo (PID), o sinal de correção passa a ser a referência de frequência para os elos de controle interno, volts/hertz constante, do inversor VSI PWM.

3.12.1.2 Efeitos da modulação PWM

O modulador por largura de pulso (PWM) é um circuito que transforma um sinal contínuo em pulsos. Esses pulsos devem representar o nível de corrente contínua do sinal mais suas variações no tempo. Os pulsos possuem frequência fixa e as suas larguras variam conforme o sinal de entrada e de referência. É necessário que exista uma relação entre o sinal de entrada e os pulsos.

Usando um transistor (IGBT) estaremos limitados a 30 kHz, com 400 A e 1200 V. Para a construção de inversores que usam a técnica da eliminação de harmônicos, são usados circuitos com microprocessadores para gerar a comutação em tempo real. Mesmo os microprocessadores mais rápidos não possuem tempo disponível para resolver esse sistema a cada ciclo.

A razão de modulação de frequência (mf) é a razão entre a frequência de comutação e a frequência do sinal senoidal fundamental de saída. Com o aumento de (mf), muitos harmônicos podem ser eliminados e um filtro LC pode ser usado com vistas a obter uma onda senoidal para o estator do motor elétrico.

Quando o acionador está operando em condições de vazio, a tensão intermediária de corrente contínua (Vd), que é aproximadamente 1,41 V$_{\text{rede}}$, é comutada pelo estágio inversor gerando um trem de pulsos. Esses pulsos de tensão na saída são propagados
como onda ao longo do cabo, com impedância característica \(Z_c \), e são refletidos nos terminais do motor elétrico devido a uma maior impedância característica do motor \(Z_m \gg Z_c \).

0 valor da tensão nos terminais do motor \(V_m \) é máximo se o tempo de subida dos pulsos de tensão for menor que o dobro do tempo de propagação da onda de tensão entre o inversor e o motor. Esse valor máximo da tensão nos terminais do motor é dimensionado pela Equação 13, dada por:

\[V_m = r \cdot V_d \quad (13) \]

Sendo o fator de reflexão \(r = 2 \frac{Z_m}{Z_m + Z_c} \)

Onde:

\(V_m = \) tensão nos terminais do motor;
\(r = \) fator de reflexão;
\(V_d = \) tensão intermediária de corrente contínua;
\(Z_m = \) impedância característica do motor;
\(Z_c = \) impedância característica.

Para cabos longos, a tensão nos terminais do motor é quase duas vezes a tensão intermediária \(V_d \). Em princípio, a isolação do motor está sujeita ao mesmo efeito de uma sobretensão de chaveamento ou de descarga atmosférica. São diferenciados três tipos de falha: falha de isolamento de fase, falha de isolamento principal e falha de isolamento do enrolamento.
3.12.1.3 Efeito das harmônicas

Por se tratar de acionamento não-linear, o conversor eletrônico de frequência comporta-se como fonte que injeta correntes harmônicas no sistema elétrico, distorcendo a forma de onda senoidal de frequência fundamental igual a 60 Hz (ANTIPOFF, 1992).

Essas correntes elétricas distorcidas, fluindo através das impedâncias, produzem formas de onda de tensão também distorcidas no sistema elétrico, embora essas formas de onda de tensão sejam muito menos distorcidas que as das correntes elétricas.

Num conversor eletrônico de frequência com retificador de seis pulsos, as harmônicas características são as harmônicas ímpares não múltiplas de três: por exemplo: 5ª ordem, 7ª ordem, 11ª ordem e 13ª ordem. As amplitudes teóricas por unidade das correntes elétricas harmônicas produzidas por um conversor eletrônico são iguais ao inverso da ordem harmônica h. Em outras palavras, a da 5ª ordem é 0,20 pu e a da 7ª ordem é 0,14 pu. Esses são os valores para uma forma de onda quadrada ideal.

A capacitância dos cabos, transformadores e redes de distribuição nos sistemas elétricos industriais normalmente é pequena. Essa capacitância, em associação com os valores em regime das indutâncias dos transformadores, cabos e redes de distribuição é ressonante em frequências muito altas, da ordem de kHz.

Entretanto, quando a compensação de potência reativa, implementada com capacitores para melhoria do fator de potência, é usada com esses conversores eletrônicos de frequência, condições de ressonância podem ocorrer e resultar em elevados níveis de
distorção harmônica de corrente e de tensão caso a condição de ressonância acontecer em uma harmônica associada às cargas não-lineares.

A ordem da harmônica de ressonância de um sistema elétrico, com relação à frequência fundamental de 60 Hz, pode ser determinada a partir da Equação 14.

$$ h_{R} = \sqrt{\frac{MVA_{cc}}{MVA_{rc}}} \quad (14) $$

Onde:

$$ h_{R} = \text{ordem da harmônica ressonante}; $$

$$ MVA_{cc} = \text{potência de curto-circuito}; $$

$$ MVA_{rc} = \text{potência do banco de capacitores}. $$

Há elevada probabilidade de efeitos indesejados com a injeção de harmônicas quando, simultaneamente, a frequência de ressonância do sistema elétrico coincidir ou estiver próxima da frequência das correntes injetadas pelo conversor eletrônico e a relação de curto-circuito (RCC) for menor que 20.

O dimensionamento dos efeitos das harmônicas nos vários elementos de um sistema elétrico de potência e as suas tolerâncias estão especificados na norma IEEE 519 de 1992. Os requisitos para interligação com o motor de indução dotado de rotor curto-circuitado tipo gaiola de esquilo são determinados na publicação nema nº MG 1.
3.13 Caracterização de um Sistema de Controle

De acordo com Distefano et al. (1978), um sistema de controle é uma disposição de componentes físicos, conectados ou relacionados de tal forma a comandar, dirigir ou regular a si mesmo ou a outros sistemas.

Estímulo, ou excitação, aplicado a um sistema é conhecido como entrada, e a resposta obtida de um sistema de controle é chamado de saída.

Os sistemas de controle podem ter mais do que uma entrada ou saída.

Definem-se, também, três tipos básicos de sistemas de controle:

i) Sistema de controle artificiais;
ii) Sistema de controle naturais;
iii) Sistema de controle naturais-artificiais.

Nos sistemas artificiais não há a interferência humana no controle. Em sistemas naturais-artificiais há uma interação entre o homem e o equipamento de controle. Nos sistemas naturais o controle é conseguido através da ação exclusivamente humana.

Classificam-se, também, os sistemas de controle em sistemas de (A) malha aberta e sistemas de (B)malha fechada, dados pelos diagramas da Figura 12.

No sistema de malha aberta, a ação de controle é independente da saída. No sistema de malha fechada, a ação de controle depende, de alguma maneira, da saída.
De acordo com Bolton (1985), num sistema de controle de malha fechada há uma entrada de referência para o elemento de controle. Há uma malha de realimentação, a partir da saída para a entrada do elemento de controle. A diferença entre o sinal de controle e o sinal da malha de realimentação é chamada de sinal de erro, mostrado na Figura 13.

Figuras 12. (A) Sistema de controle de malha aberta, (B) Sistema de controle de malha fechada.

Figura 13. Sistema de controle de malha fechada realimentado.
Distefano et al (1978), define sistema de realimentação negativa e sistema de realimentação positiva.

Num sistema de realimentação negativa, o sinal de realimentação é substituído do sinal de referência conforme Equação 15.

\[E(t) = R(t) - H(t) \] \hspace{1cm} (15)

Num sistema de realimentação positiva, o sinal de realimentação é somado ao sinal de referência conforme Equação 16.

\[E(t) = R(t) + H(t) \] \hspace{1cm} (16)

De acordo com Bolton (1985), o objetivo de um sistema de controle é manter uma saída uniforme, constante para uma dada referência de entrada:

a) **Sistema de regulação ON-OFF** - A saída N(t) possui apenas dois estados: acionado ou não acionado.

b) **Sistema de regulação proporcional** - O sinal de saída é proporcional ao sinal de erro.

c) **Sistema de controle integral** - O sinal de saída comporta-se como uma integral do sinal de erro.

d) **Sistema de controle proporcional e integral** - O sinal de saída é um sinal proporcional e integral do erro isto é, sofre a ação proporcional e integral do sinal de erro.

e) **Sistema de controle proporcional-integral-derivativo(PID)** - É aquele em que a saída é proporcional à integral e à derivada do sinal de erro.
4 MATERIAL E MÉTODOS

Este experimento tem a finalidade de confrontar tecnicamente um sistemas de irrigação por aspersão nas condições de rotação constante com acionamento convencional e variável em função da aplicação de inversor de frequência, consumo de energia elétrica e o comportamento hidráulico do conjunto motobomba são basicamente os aspectos avaliados. A pressão de serviço nos aspersores é mantida praticamente constante em relação as variações de vazão, sendo esta o que viabiliza um potencial de economia de energia elétrica em relação ao sistema convencional, é fato que toda mudança envolve custo de implantação, para tanto foi avaliado a viabilidade econômica da instalação de inversores de frequência no acionamento de motores elétricos trifásicos nos sistemas de irrigação por aspersão.
4.1 Material

O experimento foi realizado na Fazenda Experimental Lageado pertencente à Faculdade de Ciências Agronômicas – FCA/UNESP, localizada no município de Botucatu - SP. A área em que foi conduzido o experimento está situada nas coordenadas de 48° 25’ 42” W e 22° 51’04” S, na altitude de 760 metros em relação ao nível do mar.

O sistema de irrigação foi instalado em uma área de 36 por 48 m, totalizando 1.728 m², dividida em quatro outras áreas menores, contendo em cada uma, linha principal e quatro linhas laterais de 2” com válvula solenóide de 1 ½” instalada no início da tubulação lateral, dois aspersores rotativos operando com pressão de serviço definida em 196,14 kPa para vazão de 1,33 m³/h, dados fornecidos pelo fabricante, o espaçamento entre linhas e aspersores é de 12 x 12 m, conforme apresentado pelo esquema elétrico e hidráulico da Figura 14, e visualizado na Figura 15.

Os dados técnicos e características estruturais de todos os equipamentos utilizados na montagem do experimento, tanto na condição do sistema convencional, como na condição de acionamento com inversor de frequência, estão descritos na Tabelas de 01 a 03. Na Tabela 04 estão relacionados os equipamentos utilizados nas medições dos parâmetros elétricos e hidráulicos.

Para verificar o desempenho do conjunto moto-bomba, foram utilizadas as curvas características da bomba centrífuga, mostrada pela Figura 16, e a do motor de indução trifásico, fornecida pelo fabricante, dada pela Figura 17.
Figura 14. Esquema elétrico e hidráulico do sistema de irrigação convencional e com a utilização de inversor de frequência.
Figura 15. Sistema de irrigação por aspersão, montado em campo.
Tabela 1. Relação dos componentes do sistema de irrigação convencional utilizado no experimento.

<table>
<thead>
<tr>
<th>ITEM</th>
<th>QUANT.</th>
<th>DESCRIÇÃO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8 pç</td>
<td>Aspersores de latão FABRIMAR, com vazão de 1,33 m³/h na pressão de 2,0 kgf/cm² ou 196,14 Kpa.</td>
</tr>
<tr>
<td>2</td>
<td>8 pç</td>
<td>Hastes para aspersor de 0,5 m de altura em PVC rígido de 1” de diâmetro.</td>
</tr>
<tr>
<td>3</td>
<td>132 m</td>
<td>Tubos de PVC rígido, pressão nominal de 80 mca ou 784,54 kPa, com diâmetro de 2” e engate rápido.</td>
</tr>
<tr>
<td>4</td>
<td>4 pç</td>
<td>Válvulas solenóides de controle remoto modelo 21000DW, diâmetro de 1 ½”, 24 VAC, 60 Hz, com pressão de trabalho de 0 até 10,3 bar ou 0 até 1010 kPa.</td>
</tr>
<tr>
<td>5</td>
<td>1 pç</td>
<td>Registro tipo gaveta de 2” na saída da bomba.</td>
</tr>
<tr>
<td>6</td>
<td>1 pç</td>
<td>1 Motor KOLBACH, modelo KT112M, trifásico, potência de 5 cv, 2 pólos, 3510 rpm, corrente nominal de 13,2A, tensão nominal 220V, fator de serviço 1,15, classe de isolação B, grau de proteção IP –50, regime de serviço S1, categoria N.</td>
</tr>
<tr>
<td>7</td>
<td>1 pç</td>
<td>Controlador de irrigação, projetado e montado, pelo Laboratório de Energização Rural da F C A - Unesp. Tensão 220 volts, sendo acoplado 4 chaves para a referida seleção de linhas de irrigação.</td>
</tr>
<tr>
<td>8</td>
<td>1 pç</td>
<td>Bomba marca Wortington, tamanho 1 ½” x 1”x 6”, diâmetro do rotor 6” Vazão máxima 14m³/h, pressão máxima de 60 mca ou 588,40 kPa, 3530 RPM</td>
</tr>
<tr>
<td>9</td>
<td>1 pç</td>
<td>Chave de partida Y/Δ para 5 cv com relé térmico</td>
</tr>
<tr>
<td>10</td>
<td>1 pç</td>
<td>Sistema de aterramento, com barras tipo cooperweld.</td>
</tr>
</tbody>
</table>
Tabela 2. Relação dos componentes do sistema de irrigação automatizado com inversor de frequência, utilizado no experimento.

<table>
<thead>
<tr>
<th>ITEM</th>
<th>QUANT.</th>
<th>DESCRIÇÃO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8 pç</td>
<td>Aspersores de latão FABRIMAR, com vazão de 1,33 m³/h na pressão de 2,0 kgf/cm²</td>
</tr>
<tr>
<td>2</td>
<td>8 pç</td>
<td>Hastes para aspersor de 0,5 m de altura em PVC rígido de 1” de diâmetro.</td>
</tr>
<tr>
<td>3</td>
<td>132m</td>
<td>Tubos de PVC rígido, pressão nominal de 80 mca, com diâmetro de 2”.</td>
</tr>
<tr>
<td>4</td>
<td>4 pç</td>
<td>Válvulas solenóides de controle remoto modelo 21000DW, diâmetro de 1 ½”, 24 VAC, 60 hz, com pressão de trabalho de 0 até 10,3 bar.</td>
</tr>
<tr>
<td>5</td>
<td>1 pç</td>
<td>Registro tipo gaveta de 2” na saída da bomba.</td>
</tr>
<tr>
<td>6</td>
<td>1 pç</td>
<td>1 Motor KOLBACH, modelo KT112M, trifásico, potência de 5 cv, 2 pólos, 3510 rpm, corrente nominal de 13,2A, tensão nominal 220V, fator de serviço 1.15, classe de isolação B, grau de proteção IP –50, regime de serviço S1, categoria N.</td>
</tr>
<tr>
<td>7</td>
<td>1 pç</td>
<td>Controlador de irrigação, projetado e montado, pelo departamento de Energização Rural da F C A - Unesp, campus do lageado. Característica do equipamento , tensão de Trabalho 220 volts, sendo acoplado 4 chaves para a referida seleção de linhas de irrigação.</td>
</tr>
<tr>
<td>8</td>
<td>1 pç</td>
<td>Bomba marca Wortington, tamanho 1 ½” x 1”x 6”, diâmetro do rotor 6” Vazão máxima 14m³/ h , pressão máxima de 60 mca ou 588,40 kPa, 3530 RPM</td>
</tr>
<tr>
<td>9</td>
<td>1 pç</td>
<td>Inversor de frequência YASKAWA, modelo vs-606 v7, trifásico, tensão de 220 volts.</td>
</tr>
<tr>
<td>10</td>
<td>1 pç</td>
<td>Transdutor de pressão ZURICH, modelo psi-420, característica de trabalho; Tipo de sensor : piezorresistivo Sinal de Saída: 4-20 mA Precisão do sinal: < 0,1% Alimentação: 10 à 36 Vcc. Pressão de Trabalho : 0 a 5 bar ou 490,34 kPa. Chave de partida direta com contator 5 cv, trifásico e relê térmico</td>
</tr>
<tr>
<td>11</td>
<td>1 pç</td>
<td>Sistema de aterramento , com barras tipo cooperweld.</td>
</tr>
</tbody>
</table>
Tabela 3. Especificação técnica do Aspersor, marca FABRIMAR.

<table>
<thead>
<tr>
<th>Espaçamento</th>
<th>Bocal</th>
<th>Pressão</th>
<th>Precipitação</th>
<th>Vazão</th>
<th>Diâmetro Irrigado</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m)</td>
<td>(mm)</td>
<td>(mca)</td>
<td>(kPa)</td>
<td>(mm h⁻¹)</td>
<td>(m³ h⁻¹)</td>
</tr>
<tr>
<td>12 x 12</td>
<td>4,4 x 2,4</td>
<td>20</td>
<td>196.13</td>
<td>9,24</td>
<td>1,33</td>
</tr>
<tr>
<td>12 x 12</td>
<td>4,4 x 2,4</td>
<td>25</td>
<td>245.16</td>
<td>10,34</td>
<td>1,49</td>
</tr>
<tr>
<td>12 x 12</td>
<td>4,4 x 2,4</td>
<td>30</td>
<td>294.19</td>
<td>11,45</td>
<td>1,69</td>
</tr>
</tbody>
</table>

Tabela 4. Relação dos equipamentos de medição utilizados para medir e registrar os parâmetros elétricos e hidráulicos.

<table>
<thead>
<tr>
<th>ITEM</th>
<th>QUANT.</th>
<th>DESCRIÇÃO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 pç</td>
<td>Hidrômetro HIDROMETER Modelo 900-D, PN-10, BSP com fundo de escala de 10 litros.</td>
</tr>
<tr>
<td>2</td>
<td>5 pç</td>
<td>Manômetros analógicos da marca RECORD com escala de 0,2 kgf/cm² a 10 kgf/cm².</td>
</tr>
<tr>
<td>3</td>
<td>1 pç</td>
<td>Analisador e Registrador de Grandezas Elétricas da marca ESB, modelo SAGA 4000. Programa de Leitura do SAGA 4000.</td>
</tr>
<tr>
<td>4</td>
<td>1 pç</td>
<td>Inversor de frequência YASKAWA, modelo vs-606 v7, trifásico, tensão de 220 volts.</td>
</tr>
<tr>
<td>5</td>
<td>1 pç</td>
<td>Tacômetro digital, com escala de 0 a 4000 rpm, marca Euro-Control, modelo Tm –500.</td>
</tr>
</tbody>
</table>
Figura 17: Curvas características do motor trifásico de indução de 5 cv. (KOHLBACH, 2003).
4.2 Métodos

A metodologia utilizada para verificar o desempenho elétrico e hidráulico de um sistema de irrigação por aspersão considerou duas situações de operação do sistema, sendo a primeira com acionamento convencional do conjunto moto-bomba e numa segunda condição automatizada com a instalação do inversor de frequência.

4.2.1 Sistema de Irrigação por Aspersão com Acionamento Convencional

O projeto de irrigação convencional obedeceu a formulação proposta por Hazen & Williams e apresentada por Bernado (1995), utilizando dados de vazão de 11 m³/h, e altura manométrica de 55 mca, obtendo uma potência de 5 cv para o conjunto moto-bomba.

Para obtenção de dados do consumo de energia elétrica em condição de acionamento do conjunto moto-bomba com rotação constante, inicialmente regulou-se nas válvulas solenóides, a pressão de serviço no início das linhas laterais em torno de 196,14 kPa, pressão esta especificada pelo fabricante dos aspersores, após a regulagem, instalou-se o analisador de redes SAGA 4000 na rede trifásica de alimentação do motor, conforme diagrama elétrico da Figura 18, a tomada de dados foi possível através da programação do analisador de redes, no qual se registrou automaticamente 3 repetições de 30 minutos cada uma com intervalos de 5 em 5 minutos os dados elétricos para cada situação de irrigação, os parâmetros elétricos registrados pelo analisador Saga foram: Corrente de linha (Iₐ), em Ampere; Tensão de linha (Vₐ), em Volt, Potência ativa (P), em
kW; Potência Reativa (Q), em kVA_R, Potência aparente (S), em kVA e Fator de potência (FP).

Simultaneamente a estas leituras, após a estabilização do sistema hidráulico, realizou-se manualmente a coleta de dados, registrado em planilhas as demais variáveis, tais como: Vazão total (Q) em m³/h; Pressão de saída da bomba em kPa; Pressão no final das linhas laterais em kPa e Rotação do motor (N) em rpm.

A seleção das linhas abertas ou fechadas na irrigação foram controladas através de um painel com chaves liga/desliga, montado no laboratório de energização rural, com o qual foi possível equacionar as aberturas e fechamentos das válvulas solenóides instaladas no início de cada linha lateral conforme programação mostrada na Tabela 5.

<table>
<thead>
<tr>
<th>Seqüência de funcionamento</th>
<th>Situação</th>
<th>Linhas Abertas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1º</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2º</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>3º</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>4º</td>
<td>4</td>
</tr>
<tr>
<td>01 Linha aberta</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1º</td>
<td>2 - 4</td>
</tr>
<tr>
<td></td>
<td>2º</td>
<td>3 - 1</td>
</tr>
<tr>
<td></td>
<td>3º</td>
<td>2 - 3</td>
</tr>
<tr>
<td></td>
<td>4º</td>
<td>2 - 1</td>
</tr>
<tr>
<td></td>
<td>5º</td>
<td>3 - 4</td>
</tr>
<tr>
<td></td>
<td>6º</td>
<td>4 - 1</td>
</tr>
<tr>
<td>02 Linhas abertas</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1º</td>
<td>2 – 3 - 4</td>
</tr>
<tr>
<td></td>
<td>2º</td>
<td>1 – 3 - 4</td>
</tr>
<tr>
<td></td>
<td>3º</td>
<td>1 – 2 - 4</td>
</tr>
<tr>
<td></td>
<td>4º</td>
<td>1 – 2 - 3</td>
</tr>
<tr>
<td>03 Linhas Abertas</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1º</td>
<td>1 – 2 – 3 - 4</td>
</tr>
<tr>
<td>04 Linhas Abertas</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabela 5. Situações de operação do sistema de irrigação em função das aberturas das linhas de irrigação.
4.2.2 Sistema de Irrigação por Aspersão com Utilização de Inversor de Freqüência.

No sistema com rotação constante, operando sem Inversor de freqüência, quando há alteração da vazão através do fechamento ou abertura de linhas laterais, acionadas pelas válvulas solenóides, há também alteração de pressão na tubulação de recalque da bomba, induzindo o sistema a operar com pressões diferentes das especificadas para funcionamento dos aspersores, as quais alteram o funcionamento dos
aspersores, aumentando o consumo de energia elétrica. Portanto, para a avaliação de consumo em relação ao sistema convencional com rotação constante, instalou-se no sistema convencional um transdutor de pressão na saída da bomba e um inversor de frequência, o qual atua diretamente no conjunto moto-bomba. Estes equipamentos são necessários para variação de rotação em função da pressão constante.

Para a realização do experimento, parametrizou o inversor de frequência em relação aos tempos de respostas do controle integral derivativo (PID), o qual opera em sistema de malha fechada, corrigindo instantaneamente a pressão em relação a vazão pré-estabelecida na saída da bomba centrifuga.

Numa primeira etapa de medição, a pressão na saída da bomba foi fixada em 235,35 kPa e numa segunda etapa esta pressão passou para 215,74 kPa, valores esses, calculados acima da pressão de serviço dos aspersores, objetivando compensa as perdas de carga ao longo da tubulação, conforme pode ser vista na Tabela 3, fornecida pelo fabricante.

O experimento foi conduzido com a mesma programação das medições dos parâmetros elétricos e hidráulicos realizadas no sistema de acionamento convencional, porém, com a instalação do inversor de frequência e do transdutor de pressão conforme o esquema elétrico da Figura 19.

Simultaneamente às medidas dos parâmetros elétricos realizadas na entrada do inversor, também foram realizadas leituras no visor do inversor, como a da corrente elétrica, a tensão e a frequência de saída para alimentação do motor. Estes dados foram coletados para as pressões de 215,74 kPa e 235,35 kPa na tubulação de saída da bomba, estas condições obedecerão a mesma programação de abertura e fechamento das linhas de irrigação como programadas para o sistema convencional, mostradas na Tabela 5.
Nas Figuras de 20 e 23 estão representadas as fotos dos equipamentos instalados em campo.

Figura 19. Esquema elétrico das instalações dos equipamentos para medições dos parâmetros elétricos, com a utilização do inversor de frequência.
Figura 20. Analisador de redes, marca ESB, modelo SAGA 4000.

Figura 21. Inversor de frequência e tacômetro, montado em painel.
Figura 22. Sistema moto-bomba e acessórios utilizados no experimento.

Figura 23. Tabela geral com acessórios, montado para controlar o experimento.
4.2.3 Análise de Investimento para Utilização de Inversor de Freqüência em Sistema de Irrigação por Aspersão.

A análise de investimento para utilização de Inversor de Freqüência em um sistema de irrigação por aspersão, foi realizada segundo a metodologia de anualização, proposta por Hanson et al. (1996) e Dorfman (1988). Para este cálculo, além da análise de utilização de inversor para motores elétricos de 5 cv, foram também considerados os custos de implantação de outras potências de motores, com base nos valores relativos de redução de energia determinados para o motor em estudo.

A avaliação baseou-se no prazo de 10 anos para pagamento do total do equipamento instalado, corrigidos em 9% a.a de juros.

O retorno de capital foi calculado com base na redução do consumo de energia obtido com a variação de rotação em função da pressão pré - estabelecida em 215,74 kPa e 235,35 kPa.

Inicialmente, calculou-se o fator de recuperação de capital (FRC) pela Equação 17, e posteriormente calculou-se o custo anualizado da implantação do sistema (CA), dado pela Equação 18.

A economia de energia elétrica (EE) no sistema foi calculado da seguinte maneira a potência economizada entre o sistema sem inversor e com inversor de freqüência, multiplicada pelo custo de energia em relação ao numero de horas anual de funcionamento do sistema, menos o custo anualizado resultando em um lucro real anual dado pelas Equações 19 e 20.

Para conclusão da análise financeira, realizada neste experimento, calculou-se finalmente o ponto de nivelamento (Pn) para verificar em quantas horas anuais o investimento é pago, funcionando durante um período de 10 anos, dado pela Equação 21.
\[FCR = \frac{(1+i)^n \times i}{(1+i)^n - 1} \tag{17} \]

\[CA = FRC \times CE \tag{18} \]

onde:

CA = custo anualizado, em R$/ano;

FRC = fator de recuperação do capital (decimal);

CE = custo do equipamento, em R$;

i = taxa de juros;

n = período de retorno do capital investido, em anos.

\[EE = PE \times T \times CE \tag{19} \]

onde:

EE = Economia de Energia, em R$/ano;

PE = Potência Economizada, em KW;

T = número de horas de funcionamento, em horas/ano;

CE = Custo de Energia, em R$/kWh.

\[RA = EE - CA \tag{20} \]

onde:

RA = retorno em reais, proporcionado pelo inversor de frequência, em R$/ano;

Para esta análise financeira, foi considerado o preço da energia elétrica de R$ 0,1630 KWh, dados fornecido pela Companhia Paulista de Força e Luz (CPFL). Neste valor foi desconsiderado o ICMS, e eventuais aumento do preço da energia elétrica ao longo dos dez anos de análise.
onde:

\[P_n = \frac{CA}{RPA \times PE} \] (21)

onde:

\[P_n \] = ponto de nivelamento em horas para pagamento total do equipamento.

4.2.3.1 Considerações para Análise de Investimento

Para cálculo do custo do investimento, foram considerados os custos dos equipamentos de comando e proteção, mais os custos do transdutor de pressão e do inversor de freqüência, em relação às potências dos motores elétricos escolhidos para a análise de simulação, mostrados na Tabela 6.

<table>
<thead>
<tr>
<th>Potência (cv)</th>
<th>Custo (R$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5,0</td>
<td>2.400,00</td>
</tr>
<tr>
<td>12,5</td>
<td>3.400,00</td>
</tr>
<tr>
<td>15,0</td>
<td>5.780,00</td>
</tr>
<tr>
<td>20,0</td>
<td>6.418,00</td>
</tr>
<tr>
<td>25,0</td>
<td>8.333,00</td>
</tr>
<tr>
<td>30,0</td>
<td>9.397,00</td>
</tr>
</tbody>
</table>

O número de horas anuais de funcionamento do sistema de irrigação com inversor de freqüência, para verificação de sua viabilidade econômica, foram adotados os seguintes valores: (730 - 1460 - 2190 - 2920 - 3650 - 4380 – 5110) horas anuais.
5 RESULTADOS E DISCUSSÃO

5.1 Comportamento dos Parâmetros Elétricos e Hidráulicos do Sistema de Irrigação

Os valores médios de consumo de energia elétrica e os demais dados referentes ao comportamento elétrico e hidráulico do conjunto moto-bomba de um sistema de irrigação por aspersão em condições de rotação constante, e com rotação variável em função da aplicação de inversor de frequência, com pressão imposta na saída da bomba de 235,35 kPa e 215,74 kPa, são apresentadas nas Tabelas 7 a 9.

Na Tabela 10 e na Figura 24 estão representado o comportamento hidráulico da bomba com resumo do consumo de energia elétrica no sistema operando nas condições sem inversor com rotação constante e com inversor com rotação variada, para as pressões mencionadas acima.

Os gráficos apresentados neste capítulo estão confrontando as curvas referentes ao número de linhas abertas e seus respectivos valores correspondentes aos dados de parâmetros elétricos e hidráulicos, fazendo as devidas comparações em relação ao sistema convencional e com a utilização de inversor.
Tabela 7. Valores médios dos parâmetros elétricos e hidráulicos medidos na condição do sistema operando com acionamento convencional.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3569</td>
<td>529,56</td>
<td>2,77</td>
<td>3,00</td>
<td>2,34</td>
<td>3,80</td>
<td>0,79</td>
<td>9,87</td>
<td>59,48</td>
</tr>
<tr>
<td>2</td>
<td>3562</td>
<td>500,14</td>
<td>5,60</td>
<td>3,35</td>
<td>2,39</td>
<td>4,12</td>
<td>0,81</td>
<td>10,82</td>
<td>59,38</td>
</tr>
<tr>
<td>3</td>
<td>3558</td>
<td>333,43</td>
<td>8,41</td>
<td>3,55</td>
<td>2,44</td>
<td>4,31</td>
<td>0,82</td>
<td>11,16</td>
<td>59,32</td>
</tr>
<tr>
<td>4</td>
<td>3557</td>
<td>215,75</td>
<td>10,32</td>
<td>3,56</td>
<td>2,39</td>
<td>4,29</td>
<td>0,83</td>
<td>11,18</td>
<td>59,29</td>
</tr>
<tr>
<td>Média</td>
<td>3562</td>
<td>394,72</td>
<td>6,77</td>
<td>3,37</td>
<td>2,39</td>
<td>4,13</td>
<td>0,81</td>
<td>10,72</td>
<td>59,37</td>
</tr>
</tbody>
</table>

Leitura de Instrumentos | Leituras do SAGA 4000
Tabela 8. Valores médios dos parâmetros elétricos e hidráulicos medidos na condição de acionamento do sistema de irrigação com a utilização do inversor, na pressão de 235,35 kPa, medidos diretamente na saída da bomba centrifuga.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2501</td>
<td>235,35</td>
<td>2,98</td>
<td>1,28</td>
<td>1,17</td>
<td>1,73</td>
<td>0,74</td>
<td>5,82</td>
<td>42,80</td>
<td>7,00</td>
<td>164,00</td>
<td>1,99</td>
<td>33,97</td>
</tr>
<tr>
<td>2</td>
<td>2675</td>
<td>235,35</td>
<td>5,81</td>
<td>1,64</td>
<td>1,46</td>
<td>2,20</td>
<td>0,75</td>
<td>7,20</td>
<td>43,70</td>
<td>7,80</td>
<td>170,00</td>
<td>2,29</td>
<td>43,19</td>
</tr>
<tr>
<td>3</td>
<td>2958</td>
<td>235,35</td>
<td>8,49</td>
<td>2,40</td>
<td>2,13</td>
<td>3,21</td>
<td>0,75</td>
<td>10,13</td>
<td>48,90</td>
<td>8,90</td>
<td>193,00</td>
<td>2,97</td>
<td>63,50</td>
</tr>
<tr>
<td>4</td>
<td>3723</td>
<td>235,35</td>
<td>11,24</td>
<td>4,03</td>
<td>3,12</td>
<td>5,10</td>
<td>0,79</td>
<td>15,99</td>
<td>62,20</td>
<td>11,30</td>
<td>238,00</td>
<td>4,66</td>
<td>100,13</td>
</tr>
<tr>
<td>Média</td>
<td>2964</td>
<td>235,35</td>
<td>7,13</td>
<td>2,34</td>
<td>1,97</td>
<td>3,06</td>
<td>0,76</td>
<td>9,79</td>
<td>49,40</td>
<td>8,75</td>
<td>191,25</td>
<td>2,98</td>
<td>60,08</td>
</tr>
</tbody>
</table>
Tabela 9. Valores médios dos parâmetros elétricos e hidráulicos medidos na condição de acionamento do sistema de irrigação com a utilização do inversor, na pressão de 215,74, medidos diretamente na saída da bomba centrífuga.

<table>
<thead>
<tr>
<th>Linhas Abertas</th>
<th>Rotação [rpm]</th>
<th>HM [kPa]</th>
<th>Vazão [m³/h]</th>
<th>Leituras do SAGA 4000</th>
<th>Leituras do Inversor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2400</td>
<td>215,74</td>
<td>2,86</td>
<td>1,17</td>
<td>1,29</td>
</tr>
<tr>
<td>2</td>
<td>2485</td>
<td>215,74</td>
<td>5,40</td>
<td>1,41</td>
<td>1,09</td>
</tr>
<tr>
<td>3</td>
<td>2670</td>
<td>215,74</td>
<td>7,67</td>
<td>1,86</td>
<td>1,77</td>
</tr>
<tr>
<td>4</td>
<td>3460</td>
<td>215,74</td>
<td>10,44</td>
<td>3,45</td>
<td>3,21</td>
</tr>
<tr>
<td>Média</td>
<td>2754</td>
<td>215,74</td>
<td>6,59</td>
<td>1,97</td>
<td>1,84</td>
</tr>
<tr>
<td>Condição</td>
<td>Pressão kPa</td>
<td>1 linha aberta</td>
<td>2 linhas abertas</td>
<td>3 linhas abertas</td>
<td>4 Linhas abertas</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------</td>
<td>----------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Potência kW</td>
<td>Potência kW</td>
<td>Potência kW</td>
<td>Potência kW</td>
</tr>
<tr>
<td>Sem Inversor</td>
<td></td>
<td>3,00</td>
<td>3,35</td>
<td>3,55</td>
<td>3,56</td>
</tr>
<tr>
<td></td>
<td>Sem controle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(variada)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Com Inversor</td>
<td>215,74</td>
<td>1,17</td>
<td>1,41</td>
<td>1,86</td>
<td>3,45</td>
</tr>
<tr>
<td>Com Inversor</td>
<td>235,35</td>
<td>1,28</td>
<td>1,64</td>
<td>2,40</td>
<td>4,03</td>
</tr>
</tbody>
</table>

Figura 24. Curva de operação original da bomba, com inversor de frequência e sem inversor.
Figura 25. Consumo de Energia e corrente elétrica medidos na rede trifásica de alimentação do conjunto moto-bomba, sem o inversor de freqüência para as 4 combinações de linhas de irrigação abertas com pressões variáveis.

Figura 26. Consumo de Energia e Corrente Elétrica medidos na rede trifásica de alimentação do inversor de freqüência para as 4 combinações de linhas de irrigação abertas com pressão constante de 235,35 kPa.
5.1.1 Comportamento dos Parâmetros Elétricos

A Figura 25, representa as curvas do consumo de energia e da corrente elétrica, medidos na rede trifásica de 220 V – 60 Hz, de alimentação do conjunto moto-bomba, sem o inversor de frequência para as 4 combinações de linhas de irrigação abertas, denominada de Situação 01 (S-01).

Observa-se nesta situação que há um comportamento normal de funcionamento do motor de indução trifásico, onde o aumento de carga, aqui representado pelo número de linhas abertas ligadas em um conjunto moto-bomba de 5 cv, acionando um sistema de irrigação por aspersão, ocorre nesta situação um aumento no escorregamento do motor e com conseqüência aumento da corrente elétrica e do consumo de energia elétrica.

Para justificar tal fato tem-se na Figura 27, a curva de torque por escorregamento do motor para as condições descritas neste trabalho, onde se verifica para cada ponto (condição de carga) o respectivo escorregamento no motor, dado pela Equação 22.

\[
S = \left(\frac{N_S - N_R}{N_R} \right), \text{ em } \% \tag{22}
\]

onde:

\(N_S \) — velocidade de sincronismo, 3600 rpm para 2 polos;

\(N_R \) — velocidade de rotação medida no motor, [rpm];

\(S_1 = 0,86 \% \); para \(N_1 = 3569 \text{ rpm} \); \(S_2 = 1,05 \% \); para \(N_2 = 3562 \text{ rpm} \);

\(S_3 = 1,16 \% \); para \(N_3 = 3558 \text{ rpm} \); \(S_4 = 1,19 \% \); para \(N_4 = 3557 \text{ rpm} \).
O resultado comprova o aumento do escorregamento em função do aumento de carga, e consequentemente, aumento de corrente e da potência consumida, conforme pode ser comprovado pela Equação 23.

\[P \ [W] = T \ [Kgf.m] \cdot N \ [rpm] \]
(23)

onde:

- \(P \) - Potência ativa, em \([W]\);
- \(T \) – Torque, em \([Kgf.m]\);
- \(N \) – Rotação \([rpm]\).
Na Figura 26, tem-se as condições de consumo de energia e corrente elétrica do motor na situação 2 (S-02), onde o motor é acionado através de um inversor de freqüência com controle de rotação feito por um sistema de malha fechada, usando a entrada analógica (4 – 20 mA), configurado com algoritmo PID, baseado em um transdutor de pressão, ligado na saída da tubulação do conjunto moto-bomba com a pressão ajustada em 235,35 kPa, valor esse necessário para o correto funcionamento dos aspersores.

Observou-se que após a seleção do número de linhas a serem abertas e alimentadas, o sistema transdutor-inversor, ajusta a rotação do motor em função da pressão pré-estabelecida, impondo uma vazão específica para cada situação (número de linhas abertas).

No gráfico da Figura 27, nota-se que para cada ponto de carga há uma corrente e um consumo que se alteram à medida que se impõe mais carga ao motor. Isso se explica pelo fato de que a potência elétrica consumida, dada pela Equação 23, aumenta proporcionalmente a rotação do motor.

Portanto, o menor consumo de energia é verificado na condição S-2 com até 3 linhas abertas, percebe-se também o maior consumo na condição de 4 linhas abertas, onde a rotação assumiu valor superior à nominal, ultrapassando o consumo na situação S-1, como pode ser verificado na Figura 28, pois situação semelhante ocorre para corrente elétrica, observado na Figura 29.

Para se ter uma melhor condição de funcionamento do motor ajustou-se a rotação para a condição de 4 linhas abertas na rotação nominal, resultando com isso uma pressão de 215,74 KPa, menor que a anterior de 235,35 kPa, como conseqüência obteve-se um menor consumo de energia e também uma menor corrente elétrica, como pode-se notar nas Figura 28 e 29.
Figura 28. Consumo de energia medido na rede trifásica de alimentação do conjunto motobomba, com e sem o inversor de frequência para as 4 combinações de linhas de irrigação abertas, para pressão de 235,35 kPa.

Figura 29. Consumo de energia no sistema com inversor nas pressões de 235,35 kPa e 215,74 kPa – medição com analisador de rede marca SAGA antes do inversor.
Figura 30. Corrente medida com analisador de rede marca SAGA no sistema com inversor nas pressões de 235,35 kPa e 215,74 kPa antes do inversor.

Figura 31. Corrente medida no inversor nas pressões de 235,35 kPa e 215,74 kPa para as 4 combinações de linhas de irrigação abertas.
Figura 32. Corrente elétrica medida na rede trifásica de alimentação do conjunto moto-bomba, com e sem o inversor de freqüência para as 4 combinações de linhas de irrigação abertas, para pressão de 235,35 kPa.

Figura 33. Rotação do motor e corrente elétrica medida na rede trifásica de alimentação do conjunto moto-bomba, sem o inversor de freqüência para as 4 combinações de linhas de irrigação abertas com pressões variáveis.
Figura 34. Rotação do motor e corrente elétrica medida na rede trifásica de alimentação do inversor de frequência para as 4 combinações de linhas de irrigação abertas com pressão constante de 235,35 kPa.

Figura 35. Vazão medida na tubulação de saída e corrente elétrica medida na rede trifásica de alimentação do conjunto moto-bomba, sem o inversor de frequência para as 4 combinações de linhas de irrigação abertas com pressões variáveis.
Figura 36 Vazão medida na tubulação de saída do conjunto moto-bomba e corrente elétrica medida na rede trifásica de alimentação do inversor de frequência para as 4 combinações de linhas de irrigação abertas com pressão constante de 235,35 kPa.

Figura 37. Altura manométrica medida na tubulação de saída no conjunto moto-bomba e consumo de energia medida na rede trifásica de alimentação do inversor de frequência para as 4 combinações de linhas de irrigação abertas sem inversor com pressões variáveis.
Figura 38. Altura manométrica medida na tubulação de saída no conjunto moto-bomba e consumo de energia medida na rede trifásica de alimentação do inversor de frequência para as 4 combinações de linhas de irrigação abertas com inversor e pressão constante de 235,35 kPa.

Figura 39. Rotação do conjunto motobomba e consumo de energia medida na rede trifásica de alimentação do motor para as 4 combinações de linhas de irrigação abertas com pressões variáveis.
Figura 40. Rotação do conjunto moto-bomba e consumo de energia medida na rede trifásica de alimentação do inversor de frequência para as 4 combinações de linhas de irrigação abertas com pressão constante de 235,35 kPa.

Figura 41. Vazão medida na tubulação de saída no conjunto moto-bomba e consumo de energia medido na rede trifásica de alimentação do motor para as 4 combinações de linhas de irrigação abertas com pressões variáveis.
Figura 42. Vazão medida na tubulação de saída no conjunto moto-bomba e consumo de energia medido na rede trifásica de alimentação do inversor de frequência para as 4 combinações de linhas de irrigação abertas com pressão constante de 235,35 kPa.

Nas Figuras 33, 35, 37, 39, os gráficos das medidas de corrente elétrica e consumo de energia com o sistema moto-bomba funcionando sem o inversor, em relação a rotação, vazão e altura manométrica, têm um comportamento normal para um motor de indução trifásico, quando é analisado em função do aumento de carga imposto pela abertura de linhas de irrigação, pois observa-se uma diminuição da rotação e aumento da corrente elétrica e do consumo de energia, ocasionado pelo conseqüente aumento do escorregamento.

Nos gráficos Figuras 36, 38, 40, 42, que contêm os dados com a utilização do inversor de frequência, o qual tem a finalidade de manter o torque constante, observou um aumento de rotação dentro da faixa de frequência parametrizada, implicando que com o aumento de carga, abertura das linhas de irrigação, ocorreu um aumento da
corrente e da potência e consequentemente um aumento necessário de rotação para se manter a pressão constante.

Portanto, observou-se que o comportamento do inversor controlando o sistema moto-bomba, que o aumento da vazão, ocasionada pela abertura das linhas de irrigação, implica em um aumento da corrente consumida pelo motor elétrico, e isto se deve ao fato de que, com a faixa de parametrização do inversor, o torque (T) imposto ao motor é praticamente constante, e como a potência (P) é proporcional à rotação do motor (N).

\[P = T \cdot N \]

(24)

Tais observações ser explicadas também pelo fato de que um aumento de vazão necessita de maior rotação, e para se obter maior rotação implica em aumento de potência (P), e um aumento de potência exige, por sua vez, uma maior corrente elétrica (I) e um correspondente valor de tensão (V) aplicada ao motor, Equação 25, a qual é fornecida pelo inversor para manter o torque constante em função da altura manométrica pré-estabelecida em 235,35 kPa.

\[S = V \cdot I \]

(25)
Figura 43. Fator de potência medido na rede trifásica de alimentação do conjunto moto-bomba, com e sem o inversor de frequência para as 4 combinações de linhas de irrigação abertas.

O sistema sem inversor de frequência analisado pelo gráfico da Figura 43, onde demonstra o fator de potência medido em um motor de indução trifásico o qual aumenta o valor em função do carregamento (apresenta melhora de fator de potência em função do carregamento do motor) até atingir a carga nominal e depois volta a cair, quando a carga nominal é ultrapassada, este fato também é mostrado pela curva característica do motor na Figura 17.

Isso acorreu porque no motor trabalhando em vazio ou em baixa carga, o consumo de potência reativa usado para magnetizar o motor é significativo quando comparado com o consumo de potência ativa usada para desenvolver o torque mecânico.

Com aumento da carga, há um aumento da potência ativa e consequentemente melhoria da no fator de potência para o sistema convencional, porém como o sistema acionado com inversor de frequência houve uma variação na frequência
aplicada ao motor de 40Hz a 62 Hz, essa variação explica a queda do fator, pois em baixa frequência as reatâncias, (que são valores proporcionais a frequência de alimentação), são pequenas, predominando as reatâncias do circuito.

Como as reatâncias consomem potências reativas e as resistências potências ativas, há um acréscimo no fator de potência do sistema, com pouca carga imposta ao motor, porém com o aumento da frequência, as indutâncias se sobrepõem sobre as resistências o que leva ao aumento de do consumo de energia reativa, diminuindo o fator de potência.

5.1.2 Comportamento dos Parâmetros Hidráulicos

Observa-se na Figura 44, que a altura manométrica no sistema com inversor de frequência não apresentou variação como o aumento da vazão, por meio da abertura de linhas laterais, sendo que a mesma manteve-se na faixa de 235,35 kPa durante o ciclo total (abertura de linhas laterais). No sistema sem inversor, ocorreram variações na altura manométrica com a abertura das linhas, variando de 529,55 kPa, até aproximadamente 205,93 kPa, quando as quatro linhas estavam abertas.

Na Figura 45, verificou-se que, no sistema com inversor, a rotação variou a medida que vazão variava com a abertura de linhas laterais. No sistema sem inversor as variações na rotação foram insignificantes e não apresentaram relação com a abertura de linhas.

Na Figura 46, observa-se pelo gráfico que a vazão não apresenta diferença entre os sistemas de bombeamento, até a terceira linha. A partir da terceira linha,
notas-se um acréscimo na vazão no sistema com inversor, a qual se explica pela queda de altura manométrica, em função do aumento de vazão do sistema operando sem inversor de frequência.

Figura 47, este gráfico apresenta o comportamento de vazão x altura manométrica, em sistema operando sem inversor de frequência, com rotação constante, onde pode-se observar que a altura manométrica inicia-se elevada, com uma vazão pequena no início do ciclo, passando a aumentar a vazão observa-se, que a altura manométrica decresce, fenômeno que ser facilmente entendido pelas leis da hidráulica.

A Figura 48 representa a curva do sistema operando com inversor de frequência e mostra que o comportamento é diferente do gráfico da Figura 46, onde observa-se que a vazão inicia-se baixa para uma altura manométrica também baixa em relação ao sistema sem inversor, permanecendo constante em função da abertura de linhas laterais a qual representa aumento de vazão.
Figura 44. Altura manométrica medida na tubulação de saída no conjunto moto-bomba, com e sem o inversor de frequência para as 4 combinações de linhas de irrigação abertas.

Figura 45. Rotação do conjunto moto-bomba, com e sem o inversor de frequência para as 4 combinações de linhas de irrigação abertas.
Figura 46. Vazão medida na tubulação de saída do conjunto moto-bomba, com e sem o inversor de frequência para as 4 combinações de linhas de irrigação abertas.

Figura 47. Altura manométrica e vazão medida na tubulação de saída do conjunto moto-bomba, sem inversor de frequência para as 4 combinações de linhas de irrigação abertas.
Figura 48. Altura manométrica e vazão medida na tubulação de saída do conjunto moto-bomba, com inversor de frequência para as 4 combinações de linhas de irrigação abertas.

Figura 49. Rotação do motor e altura manométrica na tubulação de saída do conjunto moto-bomba, sem inversor de frequência para as 4 combinações de linhas de irrigação abertas.
Figura 50. Rotação do motor e altura manométrica na tubulação de saída do conjunto moto-bomba, com inversor de frequência para as 4 combinações de linhas de irrigação abertas.

Figura 51. Rotação do motor e vazão medida na tubulação de saída do conjunto moto-bomba, sem inversor de frequência para as 4 combinações de linhas de irrigação abertas.
Figura 52. Rotação do motor e vazão medida na tubulação de saída do conjunto motor-bomba, com inversor de frequência para as 4 combinações de linhas de irrigação abertas.

Na Figura 49, observa-se que a rotação nominal neste sistema permaneceu constante, em função da abertura de linhas laterais, enquanto a altitude manométrica decresceu, pois neste gráfico o sistema operou sem inversor de frequência o que resulta em rotação constante de bombeamento.

Nota-se na Figura 50, que no sistema com inversor a rotação variou com a abertura de linhas e a altura manométrica manteve-se na faixa ajustada para o sistema.

Pela Figura 51, pode-se demonstrar que no sistema sem inversor a rotação permanece constante, enquanto que a vazão cresce em função da abertura de linhas laterais, portanto o sistema nesta condição operou sem controle de rotação.

Na Figura 52, nota-se que a vazão e rotação cresceram em função da abertura de linhas laterais, sendo que a vazão apresentou um comportamento linear.
5.2 Análise de Investimentos do Sistema Com Inversor

Nas Tabelas de 11 a 22 e nas Figuras de 53 a 64, apresentam-se os resultados das análises de investimento e de viabilidade econômica para o inversor de 5 cv utilizado no experimento e nos demais inversores que foram simulados as variáveis de investimento e de viabilidade econômicas.
Tabela 11. Análise de investimento do sistema com inversor de 5 cv na pressão de 235,35 kPa.

<table>
<thead>
<tr>
<th>I aa (%)</th>
<th>TR (anos)</th>
<th>RPA (kW)</th>
<th>t (h/ano)</th>
<th>PE (R$/kWh)</th>
<th>FRC ------</th>
<th>CA (R$/ano)</th>
<th>CE (R$)</th>
<th>EE (R$/ano)</th>
<th>RA (R$/ano)</th>
<th>LT (R$ em 10 anos)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>10</td>
<td>1,072</td>
<td>730</td>
<td>0,163</td>
<td>0,16</td>
<td>374</td>
<td>2400</td>
<td>127,58</td>
<td>(246,39)</td>
<td>(2463,86)</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>1,072</td>
<td>1460</td>
<td>0,163</td>
<td>0,16</td>
<td>374</td>
<td>2400</td>
<td>255,17</td>
<td>(118,80)</td>
<td>(1188,03)</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>1,072</td>
<td>2190</td>
<td>0,163</td>
<td>0,16</td>
<td>374</td>
<td>2400</td>
<td>382,75</td>
<td>8,78</td>
<td>87,80</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>1,072</td>
<td>2920</td>
<td>0,163</td>
<td>0,16</td>
<td>374</td>
<td>2400</td>
<td>510,33</td>
<td>136,36</td>
<td>1363,62</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>1,072</td>
<td>3650</td>
<td>0,163</td>
<td>0,16</td>
<td>374</td>
<td>2400</td>
<td>637,91</td>
<td>263,95</td>
<td>2639,45</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>1,072</td>
<td>4380</td>
<td>0,163</td>
<td>0,16</td>
<td>374</td>
<td>2400</td>
<td>765,50</td>
<td>391,53</td>
<td>3915,28</td>
</tr>
</tbody>
</table>

I aa - Taxa de juros anual em %; TR - Taxa de Retorno do investimento em anos; RPA - Redução de Potência Avaliada em kW; t - Tempo de funcionamento em horas/ano; PE - Preço da Energia em R$/kWh; FRC - Fator de Recuperação de Capital; CA - Custo Anualizado em R$/ano; EE - Economia de Energia em R$/ano; RA - Recuperação Anual em R$/ano; LT - Lucro Total em R$/10 anos.

Tabela 12. Análise de investimento do sistema com inversor de 5 cv na pressão de 215,74 kPa.

<table>
<thead>
<tr>
<th>I aa (%)</th>
<th>TR (anos)</th>
<th>RPA (kW)</th>
<th>t (h/ano)</th>
<th>PE (R$/kWh)</th>
<th>FRC ------</th>
<th>CA (R$/ano)</th>
<th>CE (R$)</th>
<th>EE (R$/ano)</th>
<th>RA (R$/ano)</th>
<th>LT (R$ em 10 anos)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>10</td>
<td>1,431</td>
<td>730</td>
<td>0,163</td>
<td>0,16</td>
<td>374</td>
<td>2400</td>
<td>170,31</td>
<td>(203,66)</td>
<td>(2036,58)</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>1,431</td>
<td>1460</td>
<td>0,163</td>
<td>0,16</td>
<td>374</td>
<td>2400</td>
<td>340,62</td>
<td>(33,35)</td>
<td>(333,47)</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>1,431</td>
<td>2190</td>
<td>0,163</td>
<td>0,16</td>
<td>374</td>
<td>2400</td>
<td>510,93</td>
<td>136,96</td>
<td>1369,63</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>1,431</td>
<td>2920</td>
<td>0,163</td>
<td>0,16</td>
<td>374</td>
<td>2400</td>
<td>681,24</td>
<td>307,27</td>
<td>3072,73</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>1,431</td>
<td>3650</td>
<td>0,163</td>
<td>0,16</td>
<td>374</td>
<td>2400</td>
<td>851,55</td>
<td>477,58</td>
<td>4775,84</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>1,431</td>
<td>4380</td>
<td>0,163</td>
<td>0,16</td>
<td>374</td>
<td>2400</td>
<td>1021,89</td>
<td>647,89</td>
<td>6478,94</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>1,431</td>
<td>5110</td>
<td>0,163</td>
<td>0,16</td>
<td>374</td>
<td>2400</td>
<td>1192,17</td>
<td>818,20</td>
<td>8182,05</td>
</tr>
</tbody>
</table>

I aa - Taxa de juros anual em %; TR - Taxa de Retorno do investimento em anos; RPA - Redução de Potência Avaliada em kW; t - Tempo de funcionamento em horas/ano; PE - Preço da Energia em R$/kWh; FRC - Fator de Recuperação de Capital; CA - Custo Anualizado em R$/ano; EE - Economia de Energia em R$/ano; RA - Recuperação Anual em R$/ano; LT - Lucro Total em R$/10 anos.
Tabela 13. Análise de investimento do sistema com inversor de 12,5 cv na pressão de 235,35 kPa.

<table>
<thead>
<tr>
<th>I aa (%)</th>
<th>TR (anos)</th>
<th>RPA (kW)</th>
<th>t (h/ano)</th>
<th>PE (R$/kWh)</th>
<th>FRC ------</th>
<th>CA (R$/ano)</th>
<th>CE (R$)</th>
<th>EE (R$/ano)</th>
<th>RA (R$/ano)</th>
<th>LT (R$ em 10 anos)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>10</td>
<td>2,931</td>
<td>730</td>
<td>0,163</td>
<td>0,16</td>
<td>530</td>
<td>3400,00</td>
<td>348,75</td>
<td>(181,04)</td>
<td>(1810,43)</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>2,931</td>
<td>1460</td>
<td>0,163</td>
<td>0,16</td>
<td>530</td>
<td>3400,00</td>
<td>697,49</td>
<td>167,70</td>
<td>1677,02</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>2,931</td>
<td>2190</td>
<td>0,163</td>
<td>0,16</td>
<td>530</td>
<td>3400,00</td>
<td>1046,24</td>
<td>516,45</td>
<td>5164,47</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>2,931</td>
<td>2920</td>
<td>0,163</td>
<td>0,16</td>
<td>530</td>
<td>3400,00</td>
<td>1394,98</td>
<td>865,19</td>
<td>8651,19</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>2,931</td>
<td>3650</td>
<td>0,163</td>
<td>0,16</td>
<td>530</td>
<td>3400,00</td>
<td>1743,73</td>
<td>1213,94</td>
<td>12139,37</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>2,931</td>
<td>4380</td>
<td>0,163</td>
<td>0,16</td>
<td>530</td>
<td>3400,00</td>
<td>2092,47</td>
<td>1562,68</td>
<td>15626,82</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>I aa (%)</th>
<th>TR (anos)</th>
<th>RPA (kW)</th>
<th>t (h/ano)</th>
<th>PE (R$/kWh)</th>
<th>FRC ------</th>
<th>CA (R$/ano)</th>
<th>CE (R$)</th>
<th>EE (R$/ano)</th>
<th>RA (R$/ano)</th>
<th>LT (R$ em 10 anos)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>10</td>
<td>3,912</td>
<td>730</td>
<td>0,163</td>
<td>0,16</td>
<td>530</td>
<td>3400,00</td>
<td>465,54</td>
<td>(64,25)</td>
<td>(642,48)</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>3,912</td>
<td>1460</td>
<td>0,163</td>
<td>0,16</td>
<td>530</td>
<td>3400,00</td>
<td>931,08</td>
<td>401,29</td>
<td>4012,93</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>3,912</td>
<td>2190</td>
<td>0,163</td>
<td>0,16</td>
<td>530</td>
<td>3400,00</td>
<td>1396,62</td>
<td>866,83</td>
<td>8668,34</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>3,912</td>
<td>2920</td>
<td>0,163</td>
<td>0,16</td>
<td>530</td>
<td>3400,00</td>
<td>1862,16</td>
<td>1332,37</td>
<td>13323,37</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>3,912</td>
<td>3650</td>
<td>0,163</td>
<td>0,16</td>
<td>530</td>
<td>3400,00</td>
<td>2327,70</td>
<td>1797,92</td>
<td>17979,16</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>3,912</td>
<td>4380</td>
<td>0,163</td>
<td>0,16</td>
<td>530</td>
<td>3400,00</td>
<td>2793,24</td>
<td>2263,46</td>
<td>22634,56</td>
</tr>
</tbody>
</table>

iaa - Taxa de juros anual em %; TR - Taxa de Retorno do investimento em anos; RPA - Redução de Potência Avaliada em kW; t - Tempo de funcionamento em horas/ano; PE - Preço da Energia em R$/kWh; FRC - Fator de Recuperação de Capital; CA - Custo Anualizado em R$/ano; EE - Economia de Energia em R$/ano; RA - Recuperação Anual em R$/ano; LT - Lucro Total em R$/10 anos.
Tabela 15. Análise de investimento do sistema com inversor de 15 cv na pressão de 235,35 kPa.

<table>
<thead>
<tr>
<th>I aa (%)</th>
<th>TR (anos)</th>
<th>RPA (kW)</th>
<th>t (h/ano)</th>
<th>PE (R$/kWh)</th>
<th>FRC ------</th>
<th>CA (R$/ano)</th>
<th>CE (R$)</th>
<th>EE (R$/ano)</th>
<th>RA (R$/ano)</th>
<th>LT (R$ em 10 anos)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>10</td>
<td>3,517</td>
<td>730</td>
<td>0,163</td>
<td>0,16</td>
<td>901</td>
<td>5780,00</td>
<td>418,49</td>
<td>901</td>
<td>5780,00</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>3,517</td>
<td>1460</td>
<td>0,163</td>
<td>0,16</td>
<td>901</td>
<td>5780,00</td>
<td>836,99</td>
<td>1451</td>
<td>145100</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>3,517</td>
<td>2190</td>
<td>0,163</td>
<td>0,16</td>
<td>901</td>
<td>5780,00</td>
<td>1255,48</td>
<td>354,84</td>
<td>3548,42</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>3,517</td>
<td>2920</td>
<td>0,163</td>
<td>0,16</td>
<td>901</td>
<td>5780,00</td>
<td>1673,98</td>
<td>773,34</td>
<td>7733,36</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>3,517</td>
<td>3650</td>
<td>0,163</td>
<td>0,16</td>
<td>901</td>
<td>5780,00</td>
<td>2092,47</td>
<td>1191,83</td>
<td>11918,31</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>3,517</td>
<td>4380</td>
<td>0,163</td>
<td>0,16</td>
<td>901</td>
<td>5780,00</td>
<td>2510,96</td>
<td>1610,32</td>
<td>16103,25</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>3,517</td>
<td>5110</td>
<td>0,163</td>
<td>0,16</td>
<td>901</td>
<td>5780,00</td>
<td>2929,46</td>
<td>2028,82</td>
<td>20288,19</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>I aa (%)</th>
<th>TR (anos)</th>
<th>RPA (kW)</th>
<th>t (h/ano)</th>
<th>PE (R$/kWh)</th>
<th>FRC ------</th>
<th>CA (R$/ano)</th>
<th>CE (R$)</th>
<th>EE (R$/ano)</th>
<th>RA (R$/ano)</th>
<th>LT (R$ em 10 anos)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>10</td>
<td>4,695</td>
<td>730</td>
<td>0,163</td>
<td>0,16</td>
<td>901</td>
<td>5780,00</td>
<td>558,65</td>
<td>901</td>
<td>5780,00</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>4,695</td>
<td>1460</td>
<td>0,163</td>
<td>0,16</td>
<td>901</td>
<td>5780,00</td>
<td>1117,30</td>
<td>1451</td>
<td>145100</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>4,695</td>
<td>2190</td>
<td>0,163</td>
<td>0,16</td>
<td>901</td>
<td>5780,00</td>
<td>1675,95</td>
<td>775,31</td>
<td>7753,07</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>4,695</td>
<td>2920</td>
<td>0,163</td>
<td>0,16</td>
<td>901</td>
<td>5780,00</td>
<td>2234,60</td>
<td>1333,96</td>
<td>13339,56</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>4,695</td>
<td>3650</td>
<td>0,163</td>
<td>0,16</td>
<td>901</td>
<td>5780,00</td>
<td>2793,24</td>
<td>1892,60</td>
<td>18926,05</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>4,695</td>
<td>4380</td>
<td>0,163</td>
<td>0,16</td>
<td>901</td>
<td>5780,00</td>
<td>3351,89</td>
<td>2451,25</td>
<td>24512,53</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>4,695</td>
<td>5110</td>
<td>0,163</td>
<td>0,16</td>
<td>901</td>
<td>5780,00</td>
<td>3910,54</td>
<td>3009,92</td>
<td>30099,02</td>
</tr>
</tbody>
</table>

iaa - Taxa de juros anual em %; TR - Taxa de Retorno do investimento em anos; RPA - Redução de Potência Avaliada em kW; t - Tempo de funcionamento em horas/ano; PE - Preço da Energia em R$/kWh; FRC - Fator de Recuperação de Capital; CA - Custo Anualizado em R$/ano; EE - Economia de Energia em R$/ano; RA - Recuperação Anual em R$/ano; LT - Lucro Total em R$/10 anos.
Tabela 17. Análise de investimento do sistema com inversor de 20 cv na pressão de 235,35 kPa.

<table>
<thead>
<tr>
<th>I aa (%)</th>
<th>TR (anos)</th>
<th>RPA (KW)</th>
<th>t (h/ano)</th>
<th>PE (R$/kWh)</th>
<th>FRC</th>
<th>CA (R$/ano)</th>
<th>CE (R$)</th>
<th>EE (R$/ano)</th>
<th>RA (R$/ano)</th>
<th>LT (R$ em 10 anos)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>10</td>
<td>4,689</td>
<td>730</td>
<td>0,163</td>
<td>0,16</td>
<td>1000</td>
<td>6418,00</td>
<td>557,99</td>
<td>(442,06)</td>
<td>(4420,61)</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>4,689</td>
<td>1460</td>
<td>0,163</td>
<td>0,16</td>
<td>1000</td>
<td>6418,00</td>
<td>1115,98</td>
<td>115,93</td>
<td>1159,31</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>4,689</td>
<td>2190</td>
<td>0,163</td>
<td>0,16</td>
<td>1000</td>
<td>6418,00</td>
<td>1673,98</td>
<td>673,92</td>
<td>6739,23</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>4,689</td>
<td>2920</td>
<td>0,163</td>
<td>0,16</td>
<td>1000</td>
<td>6418,00</td>
<td>2231,97</td>
<td>1231,92</td>
<td>12319,15</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>4,689</td>
<td>3650</td>
<td>0,163</td>
<td>0,16</td>
<td>1000</td>
<td>6418,00</td>
<td>2789,96</td>
<td>1789,91</td>
<td>17899,08</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>4,689</td>
<td>4380</td>
<td>0,163</td>
<td>0,16</td>
<td>1000</td>
<td>6418,00</td>
<td>3347,95</td>
<td>2347,90</td>
<td>23479,00</td>
</tr>
</tbody>
</table>

Tabela 18. Análise de investimento do sistema com inversor de 20 cv na pressão de 215,74 kPa.

<table>
<thead>
<tr>
<th>I aa (%)</th>
<th>TR (anos)</th>
<th>RPA (KW)</th>
<th>t (h/ano)</th>
<th>PE (R$/kWh)</th>
<th>FRC</th>
<th>CA (R$/ano)</th>
<th>CE (R$)</th>
<th>EE (R$/ano)</th>
<th>RA (R$/ano)</th>
<th>LT (R$ em 10 anos)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>10</td>
<td>6,260</td>
<td>730</td>
<td>0,163</td>
<td>0,16</td>
<td>1000</td>
<td>6418,00</td>
<td>744,87</td>
<td>(255,19)</td>
<td>(2551,88)</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>6,260</td>
<td>1460</td>
<td>0,163</td>
<td>0,16</td>
<td>1000</td>
<td>6418,00</td>
<td>1489,73</td>
<td>489,68</td>
<td>4896,77</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>6,260</td>
<td>2190</td>
<td>0,163</td>
<td>0,16</td>
<td>1000</td>
<td>6418,00</td>
<td>2234,60</td>
<td>1234,54</td>
<td>12345,42</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>6,260</td>
<td>2920</td>
<td>0,163</td>
<td>0,16</td>
<td>1000</td>
<td>6418,00</td>
<td>2979,46</td>
<td>1979,41</td>
<td>19794,08</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>6,260</td>
<td>3650</td>
<td>0,163</td>
<td>0,16</td>
<td>1000</td>
<td>6418,00</td>
<td>3724,33</td>
<td>2724,27</td>
<td>27242,73</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>6,260</td>
<td>4380</td>
<td>0,163</td>
<td>0,16</td>
<td>1000</td>
<td>6418,00</td>
<td>4469,19</td>
<td>3469,14</td>
<td>34691,38</td>
</tr>
</tbody>
</table>

iaa - Taxa de juros anual em %; TR - Taxa de Retorno do investimento em anos; RPA - Redução de Potência Avaliada em kW; t - Tempo de funcionamento em horas/ano; PE - Preço da Energia em R$/kWh; FRC - Fator de Recuperação de Capital; CA - Custo Anualizado em R$/ano; EE - Economia de Energia em R$/ano; RA - Recuperação Anual em R$/ano; LT - Lucro Total em R$/10 anos.

<table>
<thead>
<tr>
<th>Ia (%)</th>
<th>TR (anos)</th>
<th>RPA (kW)</th>
<th>t (h/ano)</th>
<th>PE (R$/kWh)</th>
<th>FRC</th>
<th>CA (R$/ano)</th>
<th>CE (R$)</th>
<th>EE (R$/ano)</th>
<th>RA (R$/ano)</th>
<th>LT (R$ em 10 anos)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>10</td>
<td>5.862</td>
<td>730</td>
<td>0.163</td>
<td>1</td>
<td>1298</td>
<td>8333,00</td>
<td>697,49</td>
<td>(600,96)</td>
<td>(6009,59)</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>5.862</td>
<td>1460</td>
<td>0.163</td>
<td>1</td>
<td>1298</td>
<td>8333,00</td>
<td>2092,47</td>
<td>794,02</td>
<td>7940,22</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>5.862</td>
<td>2190</td>
<td>0.163</td>
<td>1</td>
<td>1298</td>
<td>8333,00</td>
<td>2789,96</td>
<td>1491,51</td>
<td>14915,12</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>5.862</td>
<td>2920</td>
<td>0.163</td>
<td>1</td>
<td>1298</td>
<td>8333,00</td>
<td>3487,45</td>
<td>2189,00</td>
<td>21890,02</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>5.862</td>
<td>3650</td>
<td>0.163</td>
<td>1</td>
<td>1298</td>
<td>8333,00</td>
<td>4184,94</td>
<td>2886,49</td>
<td>28864,93</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>5.862</td>
<td>4380</td>
<td>0.163</td>
<td>1</td>
<td>1298</td>
<td>8333,00</td>
<td>4882,43</td>
<td>3583,98</td>
<td>35839,83</td>
</tr>
</tbody>
</table>

Ia - Taxa de juros anual em %; TR - Taxa de Retorno do investimento em anos; RPA - Redução de Potência Avaliada em kW; t - Tempo de funcionamento em horas/ano; PE - Preço da Energia em R$/kWh; FRC - Fator de Recuperação de Capital; CA - Custo Anualizado em R$/ano; EE - Economia de Energia em R$/ano; RA - Recuperação Anual em R$/ano; LT - Lucro Total em R$/10 anos.

<table>
<thead>
<tr>
<th>Ia (%)</th>
<th>TR (anos)</th>
<th>RPA (kW)</th>
<th>t (h/ano)</th>
<th>PE (R$/kWh)</th>
<th>FRC</th>
<th>CA (R$/ano)</th>
<th>CE (R$)</th>
<th>EE (R$/ano)</th>
<th>RA (R$/ano)</th>
<th>LT (R$ em 10 anos)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>10</td>
<td>7.825</td>
<td>730</td>
<td>0.163</td>
<td>1</td>
<td>1298</td>
<td>8333,00</td>
<td>931,08</td>
<td>(367,37)</td>
<td>(3673,67)</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>7.825</td>
<td>1460</td>
<td>0.163</td>
<td>1</td>
<td>1298</td>
<td>8333,00</td>
<td>1862,16</td>
<td>563,71</td>
<td>5637,14</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>7.825</td>
<td>2190</td>
<td>0.163</td>
<td>1</td>
<td>1298</td>
<td>8333,00</td>
<td>2793,24</td>
<td>1494,80</td>
<td>14947,96</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>7.825</td>
<td>2920</td>
<td>0.163</td>
<td>1</td>
<td>1298</td>
<td>8333,00</td>
<td>3724,33</td>
<td>2425,88</td>
<td>24258,77</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>7.825</td>
<td>3650</td>
<td>0.163</td>
<td>1</td>
<td>1298</td>
<td>8333,00</td>
<td>4655,41</td>
<td>3356,96</td>
<td>33569,59</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>7.825</td>
<td>4380</td>
<td>0.163</td>
<td>1</td>
<td>1298</td>
<td>8333,00</td>
<td>5586,49</td>
<td>4288,04</td>
<td>42880,41</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>7.825</td>
<td>5110</td>
<td>0.163</td>
<td>1</td>
<td>1298</td>
<td>8333,00</td>
<td>6517,57</td>
<td>5219,12</td>
<td>52191,22</td>
</tr>
</tbody>
</table>

Ia - Taxa de juros anual em %; TR - Taxa de Retorno do investimento em anos; RPA - Redução de Potência Avaliada em kW; t - Tempo de funcionamento em horas/ano; PE - Preço da Energia em R$/kWh; FRC - Fator de Recuperação de Capital; CA - Custo Anualizado em R$/ano; EE - Economia de Energia em R$/ano; RA - Recuperação Anual em R$/ano; LT - Lucro Total em R$/10 anos.

<table>
<thead>
<tr>
<th>I aa (%</th>
<th>TR (anos)</th>
<th>RPA (KW)</th>
<th>t (h/ano)</th>
<th>PE (R$/kWh)</th>
<th>FRC ------</th>
<th>CA (R$/ano)</th>
<th>CE (R$)</th>
<th>EE (R$/ano)</th>
<th>RA (R$/ano)</th>
<th>LT (R$ em 10 anos)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>10</td>
<td>7,034</td>
<td>730</td>
<td>0,163</td>
<td>0,16</td>
<td>1464</td>
<td>9397,00</td>
<td>836,99</td>
<td>1464</td>
<td>9397,00</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>7,034</td>
<td>1460</td>
<td>0,163</td>
<td>0,16</td>
<td>1464</td>
<td>9397,00</td>
<td>2510,96</td>
<td>1464</td>
<td>9397,00</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>7,034</td>
<td>2190</td>
<td>0,163</td>
<td>0,16</td>
<td>1464</td>
<td>9397,00</td>
<td>3347,95</td>
<td>1464</td>
<td>9397,00</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>7,034</td>
<td>2920</td>
<td>0,163</td>
<td>0,16</td>
<td>1464</td>
<td>9397,00</td>
<td>4184,94</td>
<td>1464</td>
<td>9397,00</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>7,034</td>
<td>3650</td>
<td>0,163</td>
<td>0,16</td>
<td>1464</td>
<td>9397,00</td>
<td>5021,93</td>
<td>1464</td>
<td>9397,00</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>7,034</td>
<td>4380</td>
<td>0,163</td>
<td>0,16</td>
<td>1464</td>
<td>9397,00</td>
<td>5858,92</td>
<td>1464</td>
<td>9397,00</td>
</tr>
</tbody>
</table>

iaa - Taxa de juros anual em %; TR - Taxa de Retorno do Investimento em anos; RPA - Redução de Potência Avaliada em kW; t - Tempo de funcionamento em horas/ano; PE - Preço da Energia em R$/kWh; FRC - Fator de Recuperação de Capital; CA - Custo Anualizado em R$/ano; EE - Economia de Energia em R$/ano; RA - Recuperação Anual em R$/ano; LT - Lucro Total em R$/10 anos.

Tabela 22. Análise de investimento do sistema com inversor de 30 cv na pressão de 215,74 kPa.

<table>
<thead>
<tr>
<th>I aa (%</th>
<th>TR (anos)</th>
<th>RPA (KW)</th>
<th>t (h/ano)</th>
<th>PE (R$/kWh)</th>
<th>FRC ------</th>
<th>CA (R$/ano)</th>
<th>CE (R$)</th>
<th>EE (R$/ano)</th>
<th>RA (R$/ano)</th>
<th>LT (R$ em 10 anos)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>10</td>
<td>9,390</td>
<td>730</td>
<td>0,163</td>
<td>0,16</td>
<td>1464</td>
<td>9397,00</td>
<td>1117,30</td>
<td>1464</td>
<td>9397,00</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>9,390</td>
<td>1460</td>
<td>0,163</td>
<td>0,16</td>
<td>1464</td>
<td>9397,00</td>
<td>2234,60</td>
<td>1464</td>
<td>9397,00</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>9,390</td>
<td>2190</td>
<td>0,163</td>
<td>0,16</td>
<td>1464</td>
<td>9397,00</td>
<td>3351,89</td>
<td>1464</td>
<td>9397,00</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>9,390</td>
<td>2920</td>
<td>0,163</td>
<td>0,16</td>
<td>1464</td>
<td>9397,00</td>
<td>4469,19</td>
<td>1464</td>
<td>9397,00</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>9,390</td>
<td>3650</td>
<td>0,163</td>
<td>0,16</td>
<td>1464</td>
<td>9397,00</td>
<td>5586,49</td>
<td>1464</td>
<td>9397,00</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>9,390</td>
<td>4380</td>
<td>0,163</td>
<td>0,16</td>
<td>1464</td>
<td>9397,00</td>
<td>6703,79</td>
<td>1464</td>
<td>9397,00</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>9,390</td>
<td>5110</td>
<td>0,163</td>
<td>0,16</td>
<td>1464</td>
<td>9397,00</td>
<td>7821,09</td>
<td>1464</td>
<td>9397,00</td>
</tr>
</tbody>
</table>

iaa - Taxa de juros anual em %; TR - Taxa de Retorno do Investimento em anos; RPA - Redução de Potência Avaliada em kW; t - Tempo de funcionamento em horas/ano; PE - Preço da Energia em R$/kWh; FRC - Fator de Recuperação de Capital; CA - Custo Anualizado em R$/ano; EE - Economia de Energia em R$/ano; RA - Recuperação Anual em R$/ano; LT - Lucro Total em R$/10 anos.
Figura 53. Análise de investimento do sistema de irrigação por aspersão com inversor de frequência de 5 cv na pressão de 235,35 kPa na tubulação de saída da bomba.

Figura 54. Análise de investimento do sistema de irrigação por aspersão com inversor de frequência de 5 cv na pressão de 215,74 kPa na tubulação de saída da bomba.
Figura 55. Análise de investimento do sistema de irrigação por aspersão com inversor de frequência de 12,5 cv na pressão de 235,35 kPa na tubulação de saída da bomba.

Figura 56. Análise de investimento do sistema de irrigação por aspersão com inversor de frequência de 12,5 cv na pressão de 215,74 kPa na tubulação de saída da bomba.
Figura 57. Análise de investimento do sistema de irrigação por aspersão com inversor de frequência de 15 cv na pressão de 235,35 kPa na tubulação de saída da bomba.

Figura 58. Análise de investimento do sistema de irrigação por aspersão com inversor de frequência de 15 cv na pressão de 215,74 kPa na tubulação de saída da bomba.
Figura 59. Análise de investimento do sistema de irrigação por aspersão com inversor de frequência de 20 cv na pressão de 235,35 kPa na tubulação de saída da bomba.

Figura 60. Análise de investimento do sistema de irrigação por aspersão com inversor de frequência de 20 cv na pressão de 215,74 kPa na tubulação de saída da bomba.
Figura 61. Análise de investimento do sistema de irrigação por aspersão com inversor de freqüência de 25 cv na pressão de 235,35 kPa na tubulação de saída da bomba.

Figura 62. Análise de investimento do sistema de irrigação por aspersão com inversor de freqüência de 25 cv na pressão de 215,74 kPa na tubulação de saída da bomba.
Figura 63. Análise de investimento do sistema de irrigação por aspersão com inversor de frequência de 30 cv na pressão de 253,35 kPa na tubulação de saída da bomba.

Figura 64. Análise de investimento do sistema de irrigação por aspersão com inversor de frequência de 30 cv na pressão de 215,74 kPa na tubulação de saída da bomba.
Analisando-se as Figuras de 53 a 64 construídas a partir dos Tabelas 11 a 22 de análise de investimentos, observa-se que a viabilidade econômica da implantação do inversor de freqüência para o sistema de irrigação em estudo depende diretamente do número de horas irrigadas por ano.

Os resultados obtidos na análise de investimento do sistema com inversor de freqüência nas diferentes potências, podem ser vistos nas Tabelas 23 e 24.

Tabela 23. Ponto de nivelamento em horas de funcionamento para amortização total dos custos de implantação do sistema com inversor de freqüência, operando com pressão de 215,74 kPa na saída da bomba.

<table>
<thead>
<tr>
<th>Potência (cv)</th>
<th>Pressão Saída da Bomba (kPa)</th>
<th>Ponto de Nivelamento (h) ano</th>
</tr>
</thead>
<tbody>
<tr>
<td>5,0</td>
<td>215,74</td>
<td>1603</td>
</tr>
<tr>
<td>12,5</td>
<td>215,74</td>
<td>831</td>
</tr>
<tr>
<td>15,0</td>
<td>215,74</td>
<td>1177</td>
</tr>
<tr>
<td>20,0</td>
<td>215,74</td>
<td>980</td>
</tr>
<tr>
<td>25,0</td>
<td>215,74</td>
<td>1017</td>
</tr>
<tr>
<td>30,0</td>
<td>215,74</td>
<td>956</td>
</tr>
</tbody>
</table>

Tabela 24. Ponto de nivelamento em horas de funcionamento para amortização total dos custos de implantação do sistema com inversor de freqüência, operando com pressão de 235,35 kPa na saída da bomba.

<table>
<thead>
<tr>
<th>Potência (cv)</th>
<th>Pressão Saída da Bomba (kPa)</th>
<th>Ponto de Nivelamento (h) ano</th>
</tr>
</thead>
<tbody>
<tr>
<td>5,0</td>
<td>235,35</td>
<td>2140</td>
</tr>
<tr>
<td>12,5</td>
<td>235,35</td>
<td>1109</td>
</tr>
<tr>
<td>15,0</td>
<td>235,35</td>
<td>1571</td>
</tr>
<tr>
<td>20,0</td>
<td>235,35</td>
<td>1308</td>
</tr>
<tr>
<td>25,0</td>
<td>235,35</td>
<td>1358</td>
</tr>
<tr>
<td>30,0</td>
<td>235,35</td>
<td>1276</td>
</tr>
</tbody>
</table>
6. CONCLUSÕES

A aplicação de inversores de frequência no acionamento de sistemas de bombeamento para irrigação por aspersão pode ser viável, desde que, as características de funcionamento do sistema apresentem condições de operação que tenham variações de vazão e pressão nas tubulações.

Obteve-se uma redução de aproximadamente 30% do consumo de energia elétrica no sistema com aplicação do inversor de frequência, para as condições definidas neste experimento, considerando que tanto o motor elétrico como a bomba operaram dentro de suas características eletro-mecânicas.

Quanto ao consumo de água nas operações realizadas em campo com as aberturas de linhas laterais de irrigação, verifica-se que os dois sistemas analisados não apresentaram diferenças significativas, apesar dos diferentes valores das alturas manométricas exigidas pelos sistemas, porém com a utilização do inversor nota-se uma melhor adequação do conjunto moto-bomba e do sistema hidráulico. Com isso pode-se prever uma maior vida útil do motor.
Com a utilização do inversor de frequência e do transdutor de pressão operando em conjunto, proporcionam às tubulações de recalque uma pressão praticamente constante, fazendo com que os aspersores operem dentro de suas faixas de serviço.

Com a finalidade de conservação e racionalização do uso de energia elétrica no acionamento de sistemas de irrigação, a utilização de inversores de frequência trazem ainda outras vantagens, destacando-se:

- eliminação de alta corrente e adequação do torque na partida;
- manutenção do rendimento do acionamento em faixa de velocidade variável;
- diminuição do impacto provocado pelo fenômeno destrutivo do golpe de aríete, devido ao desligamento suave através da desaceleração do conjunto moto-bomba;
- possibilidade de interligação do sistema com outros equipamento de automação, tais como CLP (controladores lógicos programáveis), computadores, tensiometros, controle através de monitoramento de radio frequência.

Analizando economicamente a utilização de inversores de frequência em sistemas de irrigação, que apesar de todas as vantagens observadas, tanto para o sistema elétrico como para o sistema hidráulico, sua implantação é viável a partir de um certo número de horas de funcionamento por ano, porém para implantação em outras condições de uso, deve-se realizado uma análise econômica específica para tal fim.

A proposta deste trabalho contribui de maneira significativa na racionalização do uso de energia nos sistemas de irrigação por aspersão, beneficiando diretamente o pequeno e o médio produtor rural, e levando tecnologia de ponta para acionamento de motores elétricos nas atividades agropecuárias.
7 REFERÊNCIA BIBLIOGRÁFICAS

