UNIVERSIDADE ESTADUAL PAULISTA

INSTITUTO DE BIOCIÊNCIAS CURSO DE PÓS-GRADUAÇÃO EM CIÊNCIAS BIOLÓGICAS ÁREA DE CONSENTRAÇÃO: GENÉTICA

FÁBIO FERNANDES ROXO

Estudos macroevolutivos e de Biogeografia Histórica de membros das subfamílias Hypoptopomatinae, Neoplecostominae e Otothyrinae (Siluriformes: Loricariidae) e descrição de novas espécies dos gêneros Hisonotus e Pareiorhina

BOTUCATU

UNIVERSIDADE ESTADUAL PAULISTA INSTITUTO DE BIOCIÊNCIAS CURSO DE PÓS-GRADUAÇÃO EM CIÊNCIAS BIOLÓGICAS ÁREA DE CONSENTRAÇÃO GENÉTICA

Estudos macroevolutivos e de Biogeografia Histórica de membros das subfamílias Hypoptopomatinae, Neoplecostominae e Otothyrinae (Siluriformes: Loricariidae) e descrição de novas espécies dos gêneros Hisonotus e Pareiorhina

ORIENTADO: FÁBIO FERNANDES ROXO ORIENTADOR: DR. CLAUDIO OLIVEIRA

Tese apresentada para obtenção do título de doutor ao Programa de Pós-Graduação em Ciências Biológicas: Genética.

BOTUCATU

FICHA CATALOGRÁFICA ELABORADA PELA SEÇÃO TÉC. AQUIS. TRATAMENTO DA INFORM. DIVISÃO DE BIBLIOTECA E DOCUMENTAÇÃO - CAMPUS DE BOTUCATU - UNESP BIBLIOTECÁRIA RESPONSÁVEL: ROSEMEIRE APARECIDA VICENTE - CRB 8/5651
Roxo, Fábio Fernandes.
Estudos macroevolutivos e de biogeografia histórica de membros das subfamílias Hypoptopomatinae, Neoplecostominae e Otothyrinae (Siluriformes: Loricariidae) e descrição de novas espécies dos gêneros Hisonotus e Pareiorhina / Fábio Fernandes Roxo. - Botucatu, 2014

Tese (doutorado) - Universidade Estadual Paulista, Instituto de Biociências de Botucatu

Orientador: Claudio de Oliveira
Capes: 20204000

1. Biogeografia. 2. Peixe - Pesquisa. 3. Cascudo (Peixe). 4. Água doce. 5. Teoria bayesiana de decisão estatistica. 6. Filogenia.

Palavras-chave: Agua doce; Biogografia paramétrica; Capturas de rios;
Neotropicos; Sistemática molecular.

Dedico essa tese à minha mãe Cleisa, ao meu pai Luiz e minha irmã Daniela, por serem minhas maiores fontes de inspiração.

Amo vocês!

Agradecimentos

Agradeço,
Primeiramente a Deus por me guiar sempre na direção certa pelos caminhos da vida. A minha família, minha mãe Cleisa, meu pai Luiz por me educarem e sempre me apoiar nas minhas decisões. A minha irmã Daniela por sempre estar ao meu lado. A meus amigos de laboratório pelas risadas, e por me aguentarem todos esses anos. Ao meu amigo Guilherme José da Costa Silva pela grande ajuda e as ideias no desenvolvimento da dissertação. Ao meu orientador, de longa data, Professor Claudio de Oliveira pela orientação e por fazer parte de minha formação acadêmica desde os primeiros anos de faculdade. Ao Professor Claudio Henrique Zawadzki (Cabelo) pela ajuda, pela atenção, pela paciência, por sempre estar pronto a me receber em sua casa, e pelas risadas. Ao técnico do Laboratório de Biologia e Genética de Peixes, Renato Devidé, pela ajuda nas coletas.

Summary

Introduction 1.
South America rivers diversity 1.
Molecular techniques 5.
Rivers captures 5.
Climate Oscillations 7.
History of Loricariidae with emphases in the HNO-clade 8.
Objective 16.
References 16
Chapter I - Description of two new species of Hisonotus (Ostariophysi: Loricariidae)

\qquad 27.
Chapter II - Time-calibrated phylogeny and historical biogeography of the Neotropical catfish subfamilies Hypoptopomatinae, Neoplecostominae and Otothyrinae (Siluriformes: Loricariidae) 56.
Chapter III - Diversity and Evolution of body size in armoured catfishes (Siluriformes: Loricariidae)

\qquad
120.

Appendix 1 - Description of a new species of Pareiorhina (Siluriformes: Neoplecostominae) from Rio São Francisco basin. Published Paper \qquad 169.

Appendix 2 - Hisonotus bocaiuva, a new species from the rio São Francisco basin, Brazil (Teleostei: Loricariidae). Published Paper \qquad 180.

Appendix 3 - Pareiorhina hyptiorhachis, a new catfish species from Rio Paraíba do Sul basin, southeastern Brazil (Siluriformes, Loricariidae). Published Paper 193.

Introduction

The rivers of the Neotropical region are hugely diverse, with more than 7000 estimated fish species extending from south of Mexico to south of Argentina, making it by far the most species-rich vertebrate fauna on earth (Lundberg et al. 2000; Berra 2001; Reis et al. 2003a; Lévêque et al. 2005; Lévêque et al. 2008; Petry 2008). Curiously, the evolutionary diversification of this amazing fish fauna occurred over a short time, a periods of tens of millions of years, and over a continental arena (Weitzman \& Weitzman 1982; Vari 1988; Lundberg 1998; Roxo et al. 2012a).

The understanding of the historical origins of this singular fauna has been a challenge for generations of evolutionary biologists. However, the discovery of new fossils and new geological data bearing on paleoclimates and paleoenvironments has extended our knowledge of the temporal context and opened new perspectives on the conditions under for Neotropical fish diversification occurred (Lundberg \& Chernoff 1992; Hoorn 1994; Hoorn et al. 1995; Räsänen et al. 1995; Casciotta \& Arratia 1993; Gayet 2001; Gayet et al. 2002; Gayet \& Meunier 2003; Lundberg \& Aguilera 2003; Lundberg 2005; Hoorn 2006; Kaandorp et al. 2006; Sanchez-Villagra \& Aguilera 2006; Wesselingh \& Salo 2006; Hovikoski et al. 2007; Malabarba \& Lundberg 2007; SabajPerez et al. 2007; Malabarba \& Malabarba 2008, 2010).

The fishes from Neotropical region belong to relatively few clades, and these clades are conspicuously absent from adjacent regions (Albert et al. 2011b). According to Reis et al. (2003) the Neotropical ichthyofauna includes 43 endemic families or subfamilies and almost all of which are present in Amazonia. This is a huge number compared to the 13 endemic families or subfamilies in North America (Albert et al. 2011a). As in most of the world's freshwater ecosystems, the Neotropical ichthyofauna is dominated by Ostariophysi fishes (i.e. Characiformes, Siluriformes, and Gymnotiformes), which constitute about 77\% of the species (Albert et al. 2011a). Among these ostariophysan the most diverse is Characoidea (1,750 species), and the Loricarioidea (1,490 species) (Albert et al. 2011b).

South America rivers diversity

The huge diverse major aquatic habitat types recognized in Neotropical freshwaters in South America encompasses variations in stream gradient, altitude, soil type, rainfall level, temperature and vegetation cover (Olson et al. 1998). This region includes the greatest and most species-richness hydrographic systems in the world, being part of this the Amazon, Orinoco, La Plata, São Francisco basins, the Southeastern and Northeastern drainages into Atlantic and coastal drainages of the west Andes (Fig. 1).

The Amazonas River is the largest river in the world in length and volume of water, which has an year discharges of 16-20 \% of the world's flowing freshwater into the sea, and which has a total river flow greater than the next eight world largest rivers combined (Richey et al. 1989ab; Goulding et al. 2003). The Orinoco river (also known as Orenoco) is one of the principal rivers of South America and is the third largest considering all continent with $880.000 \mathrm{~km}^{2}$. The lowlands of the Amazon and Orinoco basins (5.3 million km^{2}) are the center of diversity for most groups of Neotropical fishes (Albert et al. 2011b; Albert \& Carvalho 2011), with about 2,200 fish species in Amazon and 1,000 species in the Orinoco basins (Lasso et al. 2004; Lasso et al. 2004).

The Guiana Shield (name derived from Amerindian word meaning "water" or "many waters"; Hammond 2005) is the smaller and more northern subunit of the Amazon Platform, elongated nearly east to west and roughly oval in shape. From its eastern margin along the Atlantic coast, it stretches across Brazil, French Guiana, Suriname, Guyana, and Venezuela, to southeastern Colombia in the west. Bounded by the Amazon basin to its south and the Orinoco river to its north and west, the Guiana Shield occupies some $2,288,000 \mathrm{~km}^{2}$ and discharge approximately a quarter of South America's total volume of freshwater exported to the oceans (Hammond 2005). As a general pattern the ichthyologic fauna of Guyana rivers are poorly sampled and the better-sampled areas are the lowlands of Amazonas, Venezuela, the lower and upper Caroni of Venezuela, the Cuyuni of Venezuela, the Rupununi and Takutu of Guyana, and much of French Guiana. The most poorly sampled areas of Guyana are known to be the western high-lands, the Mazaruni, the Corantijne, and most rivers of the southern edge of the Guiana Shield (Lujan \& Armbruster 2011).

The La Plata Basin is the fifth largest hydrographic systems in the world, and second in South America (Cox 1989; Potter 1997; Ribeiro 2006), encompassing more than 3 million km^{2} in total area. The principal tributaries of this basin are the Paraná,

Paraguay, and Uruguay rivers. The streams of La Plata Basin (or Paraná-Paraguay system) originate from remote areas, including mountain and deserts in Argentina and Bolivia, the Pantanal wetlands of Paraguay, savannas and rainforests of central and southern Brazil, and the pampas of northern Uruguay (Brea \& Zucol 2011). One of the main points of the fish fauna of this region is the fact that the Paraguayan freshwater fish fauna did not evolve in isolation from that of adjacent regions, mainly with tributaries headwaters of the Amazon basin (Pearson 1937). Carvalho \& Albert (2011) bring an extensive list of fishes shared among Paraguay and Amazon basin and concluded that these basins shares 111 species, distributed in 31 families.

Another important hydrographic system of South America is the São Francisco basin, the fourth longest river in South America (after the Amazon, the Paraná and the Madeira) and overall in Brazil with 2,914 km. Menezes (1972) calculated a Simpson index of 39.3 for the species similarity between the La Plata and the São Francisco basins, a value higher than that calculated for the species similarity between the São Francisco and the coastal drainages (13.1). Menezes (1972) attributed the high number of species shared between the São Francisco and La Plata basins to dispersal across high-altitude swamps along the limits between the headwaters of the rio Paraná and the western tributaries of the São Francisco. Considering the extensive area of the La Plata basin only upper Paraná Basin shares a watershed divide with the São Francisco Basin. The upper Paraná is usually defined as including the Paraná watershed upstream from the now-flooded Sete Quedas waterfalls. The faunal similarity between the upper Paraná and the São Francisco is even greater if we consider only the Grande River drainage (81% of species from both basins occur in the Grande River drainages), which drains the southern slope of the São Francisco watershed divide and forms the Paraná River at the confluence with the Paranaíba drainage.

The drainages of southeast Brazil, comprising the Upper Rio Paraná Basin and coastal rivers (Paraiba do Sul and Ribeira de Iguape rivers), are among the most species-rich regions with regard to freshwater fish (Abell et al. 2008) are of great biogeographical significance, because of their highly endemic fish faunas (Ribeiro 2006). The basins constitute one of the main hydrographic basins of South America continent with a distinct fauna responsible to origin of important clades of Neotropical fishes (e.g. catfishes of subfamilies Neoplecostominae, Otothyrinae and Delturinae, in Chiachio et al. 2008 and Roxo et al. 2012a). Ribeiro (2006) proposed some interesting
biogeographic patterns exhibited by the freshwater ichthyofauna on the Brazilian crystalline shield and the Atlantic coastal drainages. The first pattern was defined by sister-group relationships between the endemic ichthyofauna of the Brazilian coastal drainages and adjacent shield that includes intermediate degree of inclusive and both sister-clades underwent some radiation. Ribeiro (2006) postulated that the members of genera Lignobrycon, Rhinelepis, Spintherobolus, and Triportheus, the tribes Aspidoradini and Glandulocaudini, and the subfamilies Cheirodontinae and Sarcoglanidinae are examples of this pattern.

Figure 1. Map showing the main hydrographic basins of South America.

Another important river system of South America is the West Andean rivers system. They ichthyofaunas exhibit a highly distinct taxonomic composition, especially the high-altitude lakes and streams of the Andean plateaus above 4,000 m (e.g. catfishes of families Trichomycteridae and Astroblepidae; Orestias of family Cyprinodontidae). The rivers of Andes have several specialized forms as the Chaetostoma (Salcedo 2007) and Creagrutus (Vari \& Harold 2001) from mountain rivers of the Andean piedmont and Archolaemus and Sternarchorhynchus (Albert 2001) and Teleocichla (Kullander 1988) from the rapids of the shield escarpments.

Molecular techniques

A central aim of research in modern historical biogeography is to understand the distributions of species and ecosystems in light of Earth history processes that shape landscape evolution (Cox \& Moore 2005; Lomolino et al. 2006). The advent of gene sequencing techniques starting in the 1970s (Maxan \& Gilbert 1977; Sanger et al. 1977; Gilbert 1981), and the development of molecular phylogenic statistical methodologies starting in the 1980s with the works of Joseph Felsenstein (Felsenstein 1981; Felsenstein 1985a,b; Felsenstein 1988) has led to a rapid proliferation of phylogenetic studies over the past decade (Nei \& Kumar 2000). Part of the motivation for this large research efforts has been the desire to understand geographical circumstances that promote lineage diversification and the formation of species-rich clades and ecosystems (Brown \& Lomolino 2000; Wiens \& Donoghue 2004; Albert et al. 2011). Further, this revolution in phylogenetic methods has been accompanied by growing knowledge of the geological history of the Earth, and of techniques to date the divergences times of evolutionary lineages (Riddle et al. 2008).

Rivers captures

The distinguished taxonomic composition of the Neotropical ichthyofauna reflects its lengthy history linked with geological development, since freshwater fish evolution has been shaped by changes in the earth's surface involving changes in the courses of rivers and fluctuations in sea level, resulting in biota isolations. Indeed, by the standards of biogeography in a global context, the margins of the Neotropical
ichthyofauna region are remarkably sharp (Myers 1966; Miller 1966; Lomolino et al. 2006).

According to Ribeiro (2006), many cladogenetic events associated with tectonics and erosive processes (which are still active today across eastern South America) may be influencing ichthyofauna distribution and speciation. Among obligate freshwater organisms, lineage diversification is strongly affected by patterns of connectivity among portions of adjacent river basins (Smith 1981; Hocutt \& Wiley 1986; Mayden 1988; Lundberg et al. 1998). River capture (also called stream capture or stream piracy) is a geomorphological process by which the flow of part of a stream or river drainage basin is diverted into that of a neighbouring basin. River capture is therefore an important process in landscape evolution that allows aquatic species to move, or disperse, between adjacent drainage basins. River capture may arise from the influence of several geomorphological processes, including tectonic uplift or tilting, damming by the actions of glaciers or landslides, denudation of watershed margins by erosion, or avulsion of watershed margins by sediment accumulation in fans and estuaries (Almeida \& Carneiro 1998; Bishop 1995; Wilkinson et al. 2006) (Fig. 2).

Figure 2. River capture in Roxo et al. (2012a) (a) Scheme activation of ancient faults and the erosive process in Serra do Mar formation (arrow indicate the direction of the flow); (b) Scheme of the headwater captures resulted of the activation ancient faults and erosive process. Modified from Almeida and Carneiro (1998) and Albert and Reis (2011).

Climate Oscillations

One of the prominent features of South America platform is how low it is compared with lands of other continents. About 50% of the total area of South America is below 250 m elevation (see fig. 1.4 in Albert \& Reis 2011). As a comparative example the Africa has 15% of it lands below 250 m .

Periods of alternating marine transgressions and regressions can also exert strong influences on the distributions of lowland freshwater fish taxa in South America platform (Lovejoy et al. 2006; Albert \& Reis 2011; Bloom \& Lovejoy 2011). Marine transgressions caused by global climate oscillations or regional tectonic subsidence may cause sea levels flood low lying areas of the continental platforms, and the movement of shorelines converting lowland and coastal plains from freshwater to shallow marine ecosystems. Several authors (Lundberg et al. 1998, Albert et al. 2004, Albert \& Crampton 2005, Albert et al. 2006, Ribeiro 2006; Sabaj-Perez et al. 2007) have hypothesized that marine transgressions could isolate and fragment populations promoting speciation in lowland South American fishes. By reducing the total amount of freshwater habitat, marine incursions may also be expected to result in extinction (Albert \& Reis 2011). Marine incursions can also introduce marine fish taxa deep into the continental interiors and thus help some taxa transcend the ecophysiological osmotic barrier (Lovejoy et al. 2006, 2010; Bloom et al. 2011). Marine regression, in which sea levels fall relative to the land, expands lowland and coastal freshwater habitat, and can be expected to promote speciation and net diversification in Neotropical freshwater fishes (Lopez-Fernandes \& Albert 2011; Lopez-Fernandes et al. 2013).

Vonhof et al. (2003), Brea and Zucol (2011), and Bloom and Lovejoy (2011) suggested that extinctions of aquatic taxa in the Orinoco and La Plata basins were certainly exacerbated by several protracted marine incursions during the Neogene that dramatically reduced the amount of freshwater habitat in these regions. A more recent marine incursion, approximately 6-5 Ma, was hypothesized by Hubert and Renno (2006) to have affected the distribution and diversity of characiform fishes in northeastern South America by isolating a series of upland freshwater refuges in respective eastern and western portions of the eastern Guiana Shield highlands. Further support for vicariance resulting from such an incursion is provided by Noonan and Gaucher $(2005,2006)$, who recovered a temporally and spatially congruent vicariance pattern in their molecular phylogenetic studies of Dendrobates and Atelopus frogs.

Roxo et al. (2012a) also raised the marine incursions and regressions hypothesis to help explain the great diversity of species distributed throughout the coastal drainages of Southeastern of Brazil and specifically the dispersal of Neoplecostominae genera through unconnected adjacent coastal drainages (Weitzman et al. 1998; Ribeiro 2006).

History of Loricariidae with emphases in the HNO-clade

Among Neotropical freshwater fish lineages, the Loricariidae represent the largest family with 869 valid species names (Eschmeyer \& Fong 2013). Within Loricariidae the subfamilies Hypoptopomatinae, Neoplecostominae and Otothyrinae have a long and complex history of taxonomy and systematics, with morphological and molecular studies focusing on evolution of the subfamilies (Eigenmann \& Eigenmann 1890; Regan 1904; Gosline 1947; Isbrücker 1980; Howes 1983; Schaefer 1987; Montoya-Burgos et al. 1998; Armbruster 2004; Pereira 2005; Reis et al. 2006; Chiachio et al. 2008; Cramer et al. 2008, 2011; Roxo et al. 2012a,b). However, the historical evolutionary relationships among endemic species from the southeast of Brazil and the mechanisms by which they diversified in space and time remain poorly understood mainly at subfamily level (Howes 1983; Schaefer 1987; Armbruster 2004).

After Eigenmann and Eigenmann (1890), Regan (1904) divided Loricariidae in five subfamilies: Argiinae, Hypoptopomatinae, Loricariinae, Neoplecostominae and Plecostominae. The subfamily Neoplecostominae was created to include the species Neoplecostomus granosus since the author considered the species of this genus close related to Astroblepus. Gosline (1945) presented the greatest revision until that moment recognizing 400 species in Loricariidae, a large increase in the family species number, and divided the family in four subfamilies: Plecostominae, Hypoptopomatinae, Loricariinae and Neoplecostominae. However, Gosline (1947) performed a new division considering six subfamilies: Plecostominae, Hypoptopomatinae, Loricariinae, Neoplecostominae, Astroblepinae (Arginae) and Lithogeninae.

Isbrücker (1980) in a revisionary study of the family Loricariidae contributed to the resolution of the taxonomy of the group and allowed subsequent description of a lot of new species. This author considered 600 species distributed for six subfamilies: Loricariinae, Hypoptopomatinae, Neoplecostominae, Hypostominae, Ancistrinae and Lithogeninae. Howes (1983) was the first author to perform a cladistics analysis in study of osteological and myological data of the Loricariidae and found that the family
had six monophyletic groups: Loricariinae, Hypoptopomatinae, Hypostominae, Neoplecostominae, Lithogeninae, and Chaetostominae. In this work Hemipsilichthys is included in the subfamily Chaetostominae (for Gosline, 1947 this genus was member of Neoplecostominae) and the condition of Hypostominae and Ancistrinae being monophyletic groups. Schaefer (1987), after a cladistic analysis, keep the same classification of Isbrücker (1980): Lithogeneinae, Neoplecostominae, Hypoptopomatinae, Loricariinae, Ancistrinae, and Hypostominae. The results of Schaefer (1987) suggested that Neoplecostominae should be sister group of all other remaining Loricariids, except Lithogeninae. Ancistrinae, Hypostominae and Loricariinae were recognized as monophyletic groups.

Montoya-Burgos et al. (1998) were the first to use molecular data in a phylogenetic study of the family Loricariidae (Fig. 3). This study was based in partial sequences of 12 S and 16 S rRNA genes obtained of 58 species representing twelve genera and five of the six subfamilies recognized previously by Isbrücker (1980) and Schaefer (1987), since Lithogeninae was not included in the analysis. The results suggested a division of species of Loricariidae into two groups, the higher and the lower. Additionally, they recognized a monophyletic Loricariidae, however no support to monophyly of the subfamilies investigated. They also support the enlarged concept of the Neoplecostominae proposed by Gosline (1947), except for the position of Hemipsilichthys gobio and Pseudorinelepis agassizi. The species Hemipsilichthys splendens (actually Pareiorhaphis splendens), Hemipsilichthys sp., Isbrueckerichthys duseni, Kronichthys sp., Pareiorhina sp. and Hypostominae unidentified were close related with Hypoptopomatinae species and Neoplecostomus sp. Hemipsilichthys gobio appeared as sister group of all other member of Loricariidae. Species of Hypoptopoma appeared close related with species of Neoplecostominae (i.e. sister of Hypoptopomatinae sp., Pareiorhina sp. Pseudotocinclus tietensis).

Based on morphological characters, Schaefer (1991, 1998) presented a phylogenetic analysis of the genera in the subfamily Hypoptopomatinae (recognized here sensu Chiachio et al. 2008, the new Hypoptopomatinae plus the new Otothyrinae), assigned new genera to the tribes Hypoptopomatini and Otothyrini, and provided phylogenetic diagnoses for the included genera plus an undescribed genus from Venezuela, subsequently described as Niobichthys (Schaefer \& Provenzano 1998). The study of Schaefer (1991) was based in 55 osteological and myological features used to
construct a phylogenetic analysis of Loricariidae subfamily Hypoptopomatinae (genera Acestridium, Hypoptopoma, Microlepidogaster, Otocinclus, Otothyris, Oxyropsis, Parotocinclus, Pseudotocinclus, Pseudotothyris, Schizolecis and a new genus from

Figure 3. Phylogeny of Montoya-Burgos et al. (1998: modified from Fig. 3) based on Maximum Likelihood method using two mitochondrial genes (12S and 16S).

Venezuela). This work found the genus Otocinclus paraphyletic since the type species Otocinclus vestitus are more closely related to others Hypoptopomatinae than to other Otocinclus species. Additionally, Schaefer (1991) created the tribe Otothyrini to include the genera Otothyris, Pseudotothyris, Parotocinclus, Schizolecis and Pseudotocinclus. Schaefer (1998) (Fig. 4) prompted a re-evaluation of the phylogeny and classification of Schaefer (1991) with the inclusion of six new genera. The phylogeny is based in 46 morphological characters and species representing 17 genera of Hypoptopomatinae. The classifications remain the same of Schaefer (1991), except for the inclusion of Microlepidogaster in the Otothyrini. Nannoptopoma is the sister group of Hypoptopoma, and Niobichthys is the sister-group of all other Hypoptopomatini except

Otocinclus. Within Otothyrini the New taxon 3 from Tocantins and Xingu basin are sister-group of all others members of the tribe. Microlepidogaster was sister group of the clade composed of the genera Schizolecis, Pseudotothyris and Otothyris, and Eurycheilichthys was sister group of New taxon 2 from Coastal rivers of Sergipe State.

Figure 4. Phylogenetic interrelationships of the Hypoptopomatinae and Otothyrinae of Schaefer (1998) based on morphological characters.

Armbruster (2004) (Fig. 5) in a study of loricariids, included a great number of genera of Loricariidae, and found that Hemipsilichthys gobio (identified as Upsilodus victori) and Delturus anguilicauda were the sister group to all remaining loricariids, except Lithogenes villosus. A more basal position of Hemipsilichthys gobio within Loricariidae was previously recognized by Montoya-Burgos et al. (1998) based in molecular characters. Posteriorly, Reis et al. (2006) published a revision of Delturus and Hemipsilichthys (considering three valid species H. gobio, H. papillatus, and H. nimius)
and included them in the new subfamily Delturinae. The remained species of Hemipsilichthys were included in the resurrected genus Pareiorhaphis by Pereira (2005) and as a member of Neoplecostominae. Armbruster (2004) also found that the subfamily Hypostominae is only monophyletic including Ancistrinae (recognized as tribe Ancistrini) and was divided in five tribes: Corymbophanini, Rhinelepini, Pterygoplichthini, Hypostomini and Ancistrini. Armbruster (2004) also maintained the genera Hemipsilichthys (Pareiorhaphis), Isbrueckerichthys, Kronichthys, Neoplecostomus and Pareiorhina in the subfamily Neoplecostominae, despite this subfamily did not appear monophyletic. In his analysis the relationship of Hypoptopomatinae members, and of its members with Neoplecostominae, remained uncertainly. Kronichthys was more related with species of Hypoptopomatinae and Otothyrinae than with species of Neoplecostominae and Pareiorhaphis was the sister group of all other members of Neoplecostominae, Hypoptopomatinae and Otothyrinae.

Figure 5. Phylogenetic interrelationships of the Loricariidae based on Parsimony method of morphological data, modified from Armbruster (2004).

Chiachio et al. (2008) (Fig. 6), in a molecular study of Hypoptopomatinae (using partial sequences of the nuclear gene F-reticulon 4), found that the Hypoptopomatinae (sensu Schaefer et al. 1998) was not monophyletic and proposed the recognition of three monophyletic lineages named Hypoptopomatinae (former tribe Hypoptopomatini), Otothyrinae (former tribe Otothyrini) and Neoplecostominae, including the genus Pseudotocinclus. The close relationship between Pseudotocinclus and Pareiorhina was previously recognized by Montoya-Burgos (1998) and posterior works of Cramer et al. (2008, 2011) and Roxo et al. (2012a,b). In the results of Chiachio et al. (2008) the new subfamily Otothyrinae forms is sister group with Neoplecostominae and both subfamilies sister group of Hypoptopomatinae. Otothyrinae is composed for the genera Hisonotus, Corumbataia, Schizolecis, Pseudotothyris, Microlepidogaster, Otothyropsis, Otothyris, Parotocinclus, Eurycheilichthys and Epactionotus, and Hypoptopomatinae for the Otocinclus, Lampiella, Macrotocinclus, Hypoptopoma, Nannoptopoma, Oxyropsis and Acestridium. Within Otothyrinae the genus Hisonotus was not found as monophyletic, since there was species related with Corumbataia, others with Epactionotus and others with Eurycheilichthys.

Figure 6. Phylogenetic interrelationships of the Loricariidae from Chiachio et al. (2008) based on partial sequence of F-Reticulon 4 nuclear gene.

Cramer et al. (2011) (Fig. 7) performed a phylogenetic analysis of Hypoptopomatinae, Neoplecostominae and Otothyrinae using one mitochondrial gene (COI) and three nuclear genes (RAG1, RAG2 and F-Reticulon 4) using a multiple approach of maximum parsimony, maximum likelihood and Bayesian methods. As a result the three subfamilies were not monophyletic, as well as several genera (Hypoptopoma, Microlepidogaster, Hisonotus, Parotocinclus, Otothyris, Pareiorhaphis, Pareiorhina, Neoplecostomus and Isbrueckerichthys). The close relationship between Pseudotocinclus and Pareiorhina previously recognized by Montoya-Burgos (1998) was corroborated by Cramer et al. (2011), and the clade composed of these two species formed sister group with all others species of Neoplecostominae, except some species of Pareiorhaphis that forms sister group of Schizolecis plus Otothyris. Within Otothyrinae the species Gymnotocinclus anosteos forms the sister group of Corumbataia.

Figure 7. Phylogenetic interrelationships of the Loricariidae from Cramer et al. (2011) based on partial sequence of one mitochondrial (COI) and three nuclear (RAG1, RAG2 and (F-Reticulon 4) genes.

Roxo et al (2012a,b) (Fig. 8) performed a molecular phylogeny of the subfamily Neoplecostominae using a multiple approach a maximum parsimony, maximum likelihood and a bayesian methods with partial sequences of COI, CytB, 16 S rRNA, 12 S rRNA mitochondrial genes and F-reticulon 4 nuclear gene. Their results showed that the subfamily Neoplecostominae is monophyletic including Pseudotocinclus, and three clades were recognized. The first one is composed of Pareiorhina rudolphi the type species of the genus, P. cf. rudolphi and Pseudotocinclus. The second is composed of Isbrueckerichthys, Pareiorhaphis, Kronichthys and Neoplecostomus ribeirensis.

Figure 8. Phylogenetic interrelationships of Neoplecostominae from Roxo et al. (2012a,b), based on partial sequence of 4 mitochondrial (16S, 12S, COI, CytB) and one nuclear gene (F-Reticulon 4).

The third is composed of the remaining species of the genera Neoplecostomus, except N. ribeirensis, Pareiorhina carrancas, P. cf. carrancas, Pareiorhina sp. 1 (possible new
species) and an undescribed taxon referred as New genus and species 2. Considering the results of these works, the two species identified as Pareiorhina carrancas, P. cf. carrancas and Pareiorhina sp. 1, should belong to a new genus (part of our clade C). Bockmann and Ribeiro (2003) in the description of the species suggested that its generic position could change after a better phylogenetic analysis of the Neoplecostominae. Also forming the sister group to Isbrueckerichthys, we found Neoplecostomus ribeirensis, resulting in a paraphyletic genus Neoplecostomus.

Objectives

The main objective of the present study was construct a species-dense molecular phylogeny of the loricariid catfish subfamilies Hypoptopomatinae, Neoplecostominae and Otothyrinae, using three mitochondrial and one nuclear gene markers and perform a combination of biogeographic and macroevolutionary analysis. Considering the specific points we will: (1) Test the hypotheses of occurrence of several historical river-capture events in Southeastern Brazil using parametric biogeographic methods and estimate ancestral geographic ranges; (2) Highlight the special role of river capture in the formation of the modern species richness and geographic distributions of the Hypoptopomatinae, Neoplecostominae and Otothyrinae; (3) Describe the major patterns of size evolution in Hypoptopomatinae, Neoplecostominae and Otothyrinae; (4) Evaluate different methods of ancestral reconstruction of continuous characters to tracking size evolution and used a maximum likelihood approach to estimate ancestral sizes; (5) Measures the rates of evolution in darwins (d) (Haldane 1949; Albert \& Johnson 2011), in a phylogenetic context, to evaluate if lineages tend to increase in body size over evolutionary time (e.g. Cope's rule); and (6) described new species of the genera Hisonotus and Pareiorhina, as a resulted of collecting expeditions in different South America rivers.

References

Abell R, Thieme ML, Revenga C, Bryer M, Kottelat M, Bogutskaya N, Coad B et al. (2008) Freshwater ecoregions of the world: A new map of biogeographic units for freshwater biodiversity conservation. Bioscience 58: 403-414.

Albert JS (2001) Species diversity and phylogenetic systematics of American knifefishes (Gymnotiformes, Teleostei). Miscellaneous Publications Museum Zoology University Michigan 190: 1-129.
Albert JS, Petry P, Reis RE (2011a) Major biogeographic and phylogenetic patterns. In: Albert JS, Reis RE (Eds.), Historical biogeography of Neotropical freshwater fishes. University of California Press, Berkeley, Los Angeles, pp. 21-57.
Albert JS, Bart jr HL, Reis RE (2011b) Species Richness and Cladal Diversity. In: Albert JS, Reis RE (Eds.), Historical biogeography of Neotropical freshwater fishes. University of California Press, Berkeley, Los Angeles, pp. 89-104.

Albert JS, Carvalho TP (2011) Neogene Assembly of Modern Faunas. In: Albert JS, Reis RE (Eds.), Historical biogeography of Neotropical freshwater fishes. University of California Press, Berkeley, Los Angeles, pp. 119-136.

Albert JS, Crampton WGR, Ituarte C, Lovejoy NR, Noreña C, Ortega H, Pereira G, Reis RE, Shain D, Volkmer-Ribeiro C (2005) Aquatic macrofauna of the Pacaya-Samiria National Reserve, Loreto, Peru, with annotated list of 322 species in six phyla including 31 species new to science (44 pp .). Washington, DC: National Science Foundation.

Albert JS, Crampton WGR, Thorsen DH, Lovejoy NR (2004) Phylogenetic systematics and historical biogeography of the Neotropical electric fish Gymnotus (Teleostei: Gymnotidae). Systematics and Biodiversity 2: 375-417.

Albert JS, Johnson DM (2011) Diversity and evolution of body size in fishes. Evolutionary Biology 39: 324-340.

Albert JS, Lovejoy NR, Crampton WGR (2006) Miocene tectonism and the separation of cis- and trans-Andean river drainages: Evidence from Neotropical fishes. Journal of South American Earth Sciences 21: 5-13.

Albert JS, Reis RE (2011) Historical Biogeography of Neotropical Freshwater Fishes. University of California Press, Berkeley, Los Angeles, pp. 389.

Almeida FFM, Carneiro CDR (1998) Origem e evolução da Serra do Mar. Revista Brasileira de Geociências 28: 135-150.

Armbruster JW (2004) Phylogenetic relationships of the sucker-mouth armored catfishes (Loricariidae) with particular emphasis on the Hypostominae and the Ancistrinae. Zoological Journal of Linnean Society 141: 1-80.
Berra TM (2001) Freshwater Fish Distribution. San Diego: Academic Press.

Bishop P (1995) Drainage rearrangement by river capture, beheading and diversion. Progress in Physical Geography 19: 449-473.

Bloom DD, Lovejoy NR (2011) The biogeography of marine incursions in South America. In: Albert JS, Reis RE (Eds.), Historical biogeography of Neotropical freshwater fishes. University of California Press, Berkeley, Los Angeles, pp. 137-144.
Brea M, Zucol AF (2011) The Paraná-Paraguay Basin: Geology and Paleoenvironments. In: Albert JS, Reis RE (Eds.), Historical biogeography of Neotropical freshwater fishes. University of California Press, Berkeley, Los Angeles, pp. 69-88.
Brown JH, Lomolino MV (2000) Concluding remarks: historical perspective and the future of island biogeography theory. Global Ecology and Biogeography 9: 8792.

Casciotta JR, Arratia G (1993) Tertiary cichlid fishes from Argentina and reassessment of the phylogeny of New World cichlids (Perciformes: Labroidei). Kaupia 2: 195-240.

Chiachio MC, Oliveira C, Montoya-Burgos JI (2008) Molecular systematic and historical biogeography of the armored Neotropical catfishes Hypoptopomatinae and Neoplecostominae (Siluriformes: Loricariidae). Molecular Phylogenetic and Evolution 49: 606-617.
Cox KG (1989) The role of mantle plumes in the development of continental drainage patterns. Nature 342: 873-876.

Cox CB, Moore PD (2005) Biogeography: an ecological and evolutionary approach, 7th edn. Blackwell, Oxford, UK.
Cramer CA, Bonatto SL, Reis R (2011) Molecular Phylogeny of the Neoplecostominae and Hypoptopomatinae (Siluriformes: Loricariidae) using Multiple Genes. Molecular Phylogenetic and Evolution 59: 43-52.

Cramer CA, Liedke AMR, Bonatto LS, Reis RE (2008) The phylogenetic relationship of the Hypoptopomatinae and Neoplecostominae (Siluriformes: Loricariidae) as inferred from mitochondrial cytochrome c oxidase I sequences. Bulletin of Fish Biology 9: 51-59.
Eigenmann CH, Eigenmann RS (1890) South America Nematognathi. Ph.D. thesis, California Academy of Science, San Francisco, CA.

Eschmeyer WN, Fong JD (2013) Species by Family/Subfamily. <http://research.calacademy.org/research/ichthyology/catalog/SpeciesByFamily. asp/> (06.02.13).
Felsenstein J (1981) Evolutionary trees from DNA sequences: A maximum likelihood approach. Journal of Molecular Evolution 17: 368-376.
Felsenstein J (1985a) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-791.

Felsenstein J (1985b) Phylogenies and the comparative method. The American Naturalist 125: 1-15.

Felsenstein J (1988) Phylogenies from molecular sequences: Inference and reliability. Annual Review of Genetics 22: 521-565.

Gayet M (2001) A review of some problems associated with the occurrences of fossil vertebrates in South America. Journal of South American Earth Sciences 14: 131-145.

Gayet M, Meunier FJ, Werner C (2002) Diversification in Polypteriformes and special comparison with the Lepisosteiformes. Palaeontology 45: 361-376.

Gayet M, Meunier FJ (2003) Palaeontology and palaeobiogeography of catfishes. In: Arratia G, Kapoor BG, Chardon M, Diogo R (Eds.), Catfishes. Enfield, NH: Science Publishers, pp. 491-522.
Gilbert W (1981) DNA sequencing and gene structure. Nobel lecture, 8 December 1980. Biosciences Reports 1: 353-375.

Gosline WA (1945) Catálogo dos Nematognatos de Água Doce da América do Sul e Central. Bolletin Museu Nacional Zoologia 33: 1-138.

Gosline WA (1947) Contributions to the classification of the loricariid catfishes. Arquivos do Museu Nacional 41: 79-134.

Goulding M, Barthem R, Ferreira EJG (2003) The Smithsonian Atlas of the Amazon. Washington, DC: Smithsonian Books.

Haldane JBS (1949) Suggestions as to quantitative measurement of rates of evolution. Evolution 3(1): 51-56.

Hammond DS (2005) Biophysical features of the Guiana Shield. In: Hammond DS (Eds.), Tropical Forests of the Guiana Shield. Cambridge, MA: CABI, pp. 15194.

Hocutt CH, Wiley EO (1986) Zoogeography of the Freshwater Fishes of North America. New York: John Wiley and Sons.
Hoorn C (1994) Fluvial paleoenvironments in the intracratonic Amazonas basin (Early Miocene-Early Middle Miocene, Colombia). Palaeogeography, Palaeoclimatology, and Palaeoecology 109: 1-54.
Hoorn C, Guerrero J, Sarmiento GA, Lorente MA (1995) Andean tectonics as a cause for changing drainage patterns in Miocene northern South America. Geology 23: 237-240.

Hoorn C (2006) Mangrove forests and marine incursions in Neogene Amazonia (Lower Apaporis River, Colombia). Palaios 21: 197-209.
Howes GJ (1983) The cranial muscles of loricarioid catfishes, their homologies and value as taxonomic characters (Teleostei: Siluroidei). Bulletin of the Britsh Museum Natural History Zoology Series, 45: 309-345.
Hovikoski J, Räsänen M, Gingras M, Lopez S, Romero L, Ranzi A, Melo J (2007) Palaeogeographical implications of the Miocene Quendeque Formation (Bolivia) and tidally-influenced strata in southwestern Amazonia. Palaeogeography, Palaeoclimatology, and Palaeoecology 243: 23-41.
Hubert N, Renno JF (2006) Historical biogeography of South American freshwater fishes. Journal of Biogeography 33: 1414-1436.
Isbrücker IJH (1980) Classification and catalogue of the mailed Loricariidae (Pisces, Siluriformes). Verslagen en Technische Gegevens. Instituut voor Taxonomische Zoölogie (Zoölogisch Museum) Universiteit van Amsterdam 22: 1-181.
Kaandorp RJG, Wesselingh FP, Vonhof HB (2006) Ecological implications from geochemical records of Miocene Western Amazonian bivalves. Journal of South American Earth Sciences 21: 54-74.

Kullander SO (1988) Teleocichla, a new genus of South American reophilic cichlid fishes with six new species (Teleostei: Cichlidae). Copeia 1988: 196-230.

Lasso CA, Lew D, Taphorn DC, Do Nascimiento C, Lasso-Alcalá O, Provenzano F, Machado-Allison A (2004) Biodiversidad ictiológica continental de Venezuela. Parte I: Lista de especies y distribución por cuencas. Memoria de la Fundación La Salle de Ciencias Naturales 159-160: 5-95.

Lasso CA, Mojica JI, Usma JS, Maldonado-Ocampo JA, Do Nascimiento C, Taphorn DC, Provenzano F, Lasso-Alcalá OM, Galvis G, Vásquez L, Lugo M, Machado-

Allison A, Royero R, Suárez C, Ortega-Lara A (2004) Peces de la cuenca del río Orinoco. Parte I: Lista de especies y distribución por subcuencas. Biota Colombiana 5: 95-158.
Lévêque C, Balian EV, Martens K (2005) An assessment of animal species diversity in continental waters. Hydrobiologia 542: 39-67.
Lévêque C, Oberdorff T, Paugy D, Stiassny MLJ, Tedesco PA (2008) Global diversity of fish (Pisces) in freshwater. Hydrobiologia 595: 545-567.

Lomolino MV, Riddle BR, Brown JH (2006) Biogeography, 3rd edn. Sinauer Associates, Sunderland, Massachusetts.
López-Fernández H, Albert JS (2011) Paleogene Radiations. In: Albert JS, Reis RE (Eds.), Historical biogeography of Neotropical freshwater fishes. University of California Press, Berkeley, Los Angeles, pp. 105-118.
López-Fernández H, Arbour JH, Winemiller KO, Honeycutt RL (2013) Testing for ancient adaptive radiations in Neotropical cichlid fishes. Evolution, 67: 13211337.

Lovejoy NR, Albert JS, Crampton WGR (2006) Miocene marine incursions and marine/freshwater transitions: evidence from Neotropical fishes. Journal of South American Earth Sciences 21: 5-13.
Lovejoy NR, Willis SC, Albert JS (2010) Molecular signatures of Neogene biogeographic events in the Amazon fish fauna. In: Hoorn CM, Wesselingh FP (Eds.), Amazonia, Landscape and Species Evolution. Oxford, UK: Blackwell Publishing, pp. 405-417.
Lujan NK, Armbruster JW (2011) The Guiana Shield. In: Albert JS, Reis RE (Eds.), Historical biogeography of Neotropical freshwater fishes. University of California Press, Berkeley, Los Angeles, pp. 211-224.
Lundberg JG (1998) The temporal context for diversification of Neo-tropical fishes. In: Malabarba LR, Reis RE, Vari RP, Lucena CAS, Lucena ZMS (Eds.) Phylogeny and Classification of Neotropical Fishes. Porto Alegre: Edipucrs, pp. 67-91.
Lundberg JG (2005) Brachyplatystoma promagdalena, new species, a fossil goliath catfish (Siluriformes: Pimelodidae) from the Miocene of Colombia, South America. Neotropical Ichthyology 3: 597-605.

Lundberg JG, Aguilera O (2003) The late Miocene Phractocephalus catfish (Siluriformes: Pimelodidae) from Urumaco, Venezuela: Additional specimens and reinterpretation as a distinct species. Neotropical Ichthyology 1: 97-109.

Lundberg JG, Chernoff B (1992) A Miocene fossil of the Amazonian fish Arapaima (Teleostei, Arapaimidae) from the Magdalena river region of ColombiaBiogeographic and evolutionary implications. Biotropica 24: 2-14.

Lundberg JG, Kottelat M, Smith GR, Stiassny MLJ, Gill AC (2000) So many fishes, so little time: An overview of recent ichthyological discovery in continental waters. Annals of the Missouri Botanical Garden 87: 26-62.

Lundberg JG, Marshall LG, Guerrero J, Horton B, Malabarba MCSL, Wesselingh F (1998) The stage for Neotropical fish diversification: A history of tropical South American rivers. In: Malabarba LR, Reis RE, Vari RP, Lucena ZMS, Lucena CAS (Eds.), Phylogeny and Classification of Neotropical Fishes. Porto Alegre, Edipucrs, pp. 13-48.

Malabarba MCSL, Lundberg JG (2007) A fossil loricariid catfish (Siluriformes: Loricarioidea) from the Taubaté Basin, eastern Brazil. Neotropical Ichthyology 5: 263-270.

Malabarba MCSL, Malabarba LR (2008) A new cichlid Tremembichthys garciae (Actinopterygii, Perciformes) from the Eocene-Oligocene of Eastern Brazil. Revista Brasileira de Paleontologia 11: 59-68.

Malabarba MCSL, Malabarba LR, Papa C (2010) Gymnogeophagus eocenicus n. sp. (Perciformes: Cichlidae), an Eocene cichlid from the Lumbrera Formation in Argentina. Journal of Vertebrate Paleontology 30: 341-350.
Maxam AM, Gilbert W (1977) A new method for sequencing DNA. PNAS 74: 560564.

Mayden RL (1988) Vicariance biogeography, parsimony, and evolution in North American freshwater Fishes. Systematic Zoology 37: 329-355.

Menezes NA (1972) Distribuição e origem da fauna de peixes de água doce das grandes bacias fluviais do Brasil. In Poluição e Piscicultura Notas sobre Poluição, Ictiologia e Piscicultura. São Paulo: Faculdade de Saúde Pública da USP, Secretaria da Agricultura, Instituto de Pesca.

Miller RR (1966) Geographical distribution of Central American fresh-water fishes. Copeia 1966: 773-802.

Montoya-Burgos JI, Muller S, Weber C, Pawlowski J (1998) Phylogenetic relationships of the Loricariidae (Siluriformes) based on mitochondrial rRNA gene sequences. In: Malabarba LR, Reis RE, Vari RP, Lucena ZM, Lucena CAS (Eds.), Phylogeny and Classification of Neotropical Fishes, Edipucrs, Porto Alegre, pp. 363-375.

Myers GS (1966) Derivation of the freshwater fish fauna of Central America. Copeia 1966: 766-773.

Nei M, Kumar S (2000) Molecular Evolution and Phylogenetics. Oxford University Press, New York, New York.

Noonan BP, Gaucher P (2005) Phylogeography and demography of Guianan harlequin toads (Atelopus): diversification within a refuge. Molecular Ecology 14: 30173031.

Noonan BP, Gaucher P (2006) Refugial isolation and secondary contact in the dyeing poison frog Dendrobates tinctorius. Molecular Ecology 15: 4425-4435.

Olson D, Dinerstein E, Canevari P, Davidson I, Castro G, Morriset V, Abell R, Toledo E (1998) Freshwater Biodiversity of Latin America and the Caribbean: A Conservation Assessment. Washington. DC: Biodiversity Support Program.

Pearson NE (1937) The fishes of the Beni-Mamoré and Paraguay basin, and a discussion of the origin of the Paraguayan fauna. Proceedings of the California Academy of Sciences 23: 99-114.

Pereira EHL (2005) Resurrection of Pareiorhaphis Miranda Ribeiro, 1918 (Teleostei: Siluriformes: Loricariidae), and description of a new species from the Rio Iguaçu Basin, Brazil. Neotropical Ichthyology 3: 271-276.

Petry P (2008) Freshwater fish species richness. http://www. feow.org/ biodiversitymaps. The Nature Conservancy.

Potter PE (1997) The Mesozoic and Cenozoic paleodrainage of South America: A natural history. Journal of South American Earth Sciences 10: 331-344.

Räsänen ME, Linna AM, Santos JCR, Negri FR (1995) Late Miocene tidal deposits in the Amazonian foreland basin. Science 269: 386-390.

Regan CT (1904) A monograph of the fishes of the family Loricariidae. Transactions of the Zoological Society of London 17: 191-350.

Reis RE, Pereira EHL, Armbruster JW (2006) Delturinae, a new loricariid catfish subfamily (Teleostei, Siluriformes), with revisions of Delturus and Hemipsilichthys. Zoological Journal of Linnean Society, 147: 277-299.

Reis RE (2003) Subfamily Tetragonopterinae (Characins, Tetras). In: Reis RE, Kullander SO, Ferraris Jr CJ (Eds.), Check List of the Freshwater fishes of South and Central America, Porto Alegre: Edipucrs, p. 212.

Reis RE, Kullander SO, Ferraris Jr CJ (2003) Check list of the freshwater fishes of South and Central America. Edipucrs Press, Porto Alegre, Brazil.
Ribeiro AC (2006) Tectonic history and the biogeography of the fresh-water fishes from the coastal drainages of eastern Brazil: An example of faunal evolution associated with a divergent continental margin. Neotropical Ichthyology 4: 225246.

Richey JE, Mertes LAK, Dunne T, Victoria R, Forsberg BR, Tancredi CNS, Oliveira E (1989a) Sources and routing of the Amazon river flood wave. Global Biogeochemical Cycles 3: 191-204.

Richey JE, Nobre C, Deser C (1989b) Amazon River discharge and climate variability, 1903 to 1985. Science 246: 101-103.

Roxo FF, Zawadzki CH, Alexandrou MA, Costa Silva GJ, Chiachio MC, Foresti F, Oliveira C (2012a) Evolutionary and biogeographic history of the subfamily Neoplecostominae (Siluriformes: Loricariidae). Ecology and Evolution 2(10): 2438-2449.

Roxo FF, Zawadzki CH, Costa Silva GJ, Chiachio MC, Foresti F, Oliveira C (2012b) Molecular systematics of the armored neotropical catfish subfamily Neoplecostominae (Siluriformes, Loricariidae). Zootaxa 3390: 33-42.

Sabaj-Pérez MH, Orangel AS, Lundberg JG (2007) Fossil catfishes of the families Doradidae and Pimelodidae (Teleostei: Siluriformes) from the Miocene Urumaco Formation of Venezuela. Proceedings of the Academy of Natural Sciences of Philadelphia 156: 157-194.

Salcedo NJ (2007) Speciation in Andean rivers: Morphological and genetic divergence in the catfish genus Chaetostoma. Unpublished Ph.D. dissertation, Texas Tech University, Lubbock.

Sanchez-Villagra MR, Aguilera OA (2006) Neogene vertebrates from Urumaco, Falcon State, Venezuela: Diversity and significance. Journal of Systematic Palaeontology 4: 213-220.
Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. PNAS 74: 5463-5467.
Schaefer SA (1987) Osteology of Hypostomus plecostomus (Linnaeus) with a phylogenetic analysis of the loricariids subfamilies (Pisces: Siluroidei). National History Museum of Los Angeles County 394: 1-31.
Schaefer S (1997) The Neotropical cascudinhos: systematics and biogeography of the Otocinclus catfishes (Siluriformes: Loricariidae). Proceeding of the Academy of Natural Sciences of Philadelphia 148: 1-120.

Schaefer SA (1998) Conflict and resolution: Impact of new taxa on phylogenetic studies of the neotropical cascudinhos (Siluroidei: Loricariidae). In: Malabarba LR, Reis RE, Vari RP, Lucena ZMS, Lucena CAS (Eds.). Phylogeny and Classification of Neotropical fishes. Porto Alegre: Edipucrs, pp. 375-400.

Schaefer SA, Provenzano FR (1998) Niobichthys ferrarisi, a new genus and species of armored catfish from southern Venezuela (Siluriformes: Loricariidae). Ichthyological Exploration of Freshwaters 8: 221-230.
Smith GR (1981) Late Cenozoic freshwater fishes of North America. Annual Review of Ecology and Systematics 12: 163-193.

Vari RP (1988) The Curimatidae, a lowland Neotropical fish family (Pisces: Characiformes): Distribution, endemism, and phylogenetic biogeography. In: Vanzolini PE, Heyer WR (Eds.), Proceedings of a Workshop on Neotropical Distribution Patterns. Rio de Janeiro, Academia Brasiliera de Ciências, pp. 313348.

Vonhof HB, Wesselingh FP, Kaandorp RJG, Davies GR, van Hinte JE, Guerrero J, Rasanen M, Romero-Pittman L, Ranzi A (2003) Paleogeography of Miocene Western Amazonia: Isotopic composition of molluscan shells constrains the influence of marine incursions. Geological Society of America Bulletin 115: 983-993.

Weitzman SH, Weitzman MJ (1982) Biogeography and evolutionary diversification in Neotropical freshwater fishes, with comments on the Refugia theory. In: Prance

GT (Eds.), Biological Diversification in the Tropics. New York, Columbia University Press, pp. 403-422.

Weitzman SH, Menezes NA, Weitzman MJ (1988) Phylogenetic biogeography of the glandulocaudini (Teleostei: Characiformes, Characidae) with comments on the distribution of other freshwater fishes in eastern and southeastern Brazil. In: Vanzolini PE, Heyer WR (Eds.), Proceedings of a workshop on Neotropical distribution patterns. Academia Brasileira de Ciências, Rio de Janeiro, Brazil, pp. 488.

Wesselingh FP, Kaandorp RJG, Vonhof HB, Räsänen ME, Renema W (2006) The nature of aquatic landscapes in the Miocene of western Amazonia: An integrated palaeontological and geochemical approach. Scripta Geologica 133: 363-393.

Wiens JJ, Donoghue MJ (2004) Historical biogeography, ecology and species richness. Trends in Ecology and Evolution 19: 639-644.

Wilkinson MJ, Marshall LG, Lundberg JG (2006) River behavior on megafans and potential influences on diversification and distribution of aquatic organisms. Journal of South American Earth Sciences 21: 151-172.

Chapter 1

[Manuscript submitted in Zookeys]

Description of two new species of Hisonotus (Ostariophysi:
 Loricariidae) from rio Paraná-Paraguay basin, in Brazil

Running title: Two new species of Hisonotus

Abstract

Two new species of Hisonotus from the rio Paraná and rio Paraguay basin from Brazil are described. The most remarkable features of the new species are the odontodes forming longitudinal aligned rows on head and trunk, a pair of rostral plates at the tip of the snout, the v-shaped spinelet and the coloration of body. These features suggest a close phylogenetic relationship with H. bockmanni, H. insperatus, H. luteofrenatus and H. piracanjuba. Additionally, the two new species are distinguished from their congeners by some characters related to head length and depth, orbital diameter, suborbital depth, caudal peduncle depth, pectoral-fin spine length, snout length and counts of teeth. The variation in number and shape of rostral plate, posterior rostrum plates, infraorbitals and preopercle in the new species and in Hisonotus insperatus are discussed.

\section*{Key words}

Cascudinhos; Freshwater; Hypoptopomatinae; Neotropical fishes; head plates

Introduction

Hypoptopomatinae is composed of 19 genera and about 135 valid species (Eschmeyer and Fong 2013). This group includes Hisonotus, whose the type-species is H. notatus which was described by Eigenmann and Eigenmann (1889). These authors proposed the belly with large plates, eyes superior and humeral plate imperforate as diagnostic characters to the genus. After that, Regan (1904) studied the osteology of some members of Loricariidae and considered Hisonotus as a synonym of Otocinclus, until its resurrection by Schaefer (1998a) with the following combination of characters: reduced or absent snout plates anterior to the nostril, rostrum with enlarged odontodes, and thickened plates forming the lateral rostral margin. Some of the characters used to distinguish Hisonotus from the other Hypoptopomatinae genera, as rostrum with enlarged odontodes and thickened plates forming the lateral rostral margins are also present in some other species of Hypoptopomatinae, especially in species of Microlepidogaster (Britski and Garavello 2007).

The genus Hisonotus has 31 valid species (Eschmeyer 2013) and several have been discovered in the last years. Britski and Garavello (2007) described two species from the upper rio Tapajós, H. chromodontus and H. luteofrenatus. Carvalho and Reis (2009) performed the revision of Hisonotus from the upper rio Uruguay and described four new species. Carvalho et al. (2008) and Carvalho and Reis (2011) worked on the Hisonotus from the Laguna dos Patos system and described more seven new species showing the unexpected high species richness for the taxon. Subsequently Carvalho and Datovo (2012), Martins and Langeani (2012), and Roxo et al. (2013) described Hisonotus piracanjuba, H. bockmanni and H. bocaiuva, respectively. Herein, based on the recent collection efforts we present two new species of Hisonotus, one from the upper rio Paraná basin and the other as the first species of Hisonotus from rio Paraguay basin.

Material and methods

All measurements were taken from point to point to the nearest 0.1 mm with digital calipers from the left side of the fish. Body plate and osteology nomenclature follows Schaefer (1997) and measurements follow Carvalho and Reis (2009) as shown in Table I. Abbreviations used in the text followed Carvalho and Reis (2009) and were expressed as percent of standard length (SL), except for subunits of the head region that are expressed as percents of head length (HL). Specimens were cleared and double stained

67 (c\&s) according to the method of Taylor and Van Dyke (1985). Vertebrae counts included the five ones from the Weberian Apparatus. Given the lack of significant differences between right and left side counts, only the left side series of plate and teeth van Amsterdam, Amsterdam. Zoological nomenclature follows the International Commission on Zoological Nomenclature (ICZN).

Hisonotus sp. 1

Figure 1; Table I

Hisonotus sp. 4" - Chapter 2, Figure 3 [phylogenetic relationships].

Results

$$
\text { mooriotus sp. } 4 \text { - Chapter 2, Figure } 3 \text { [phylogenetic relationships]. }
$$

Holotype. MZUSP xx, 26.4 mm SL, female, Brazil, Paraná State, boundary between municipalities of Cambira and Apucarana, ribeirão Cambira, affluent rio Ivaí, upper rio Paraná basin, $23^{\circ} 38^{\prime} 54^{\prime \prime}$ S $51^{\circ} 29^{\prime} 58^{\prime \prime}$ W, coll. Zawadzki CH, de Paiva S, 29 October 2007.

Paratypes. All from Brazil, Paraná State. DZSJRP 18244, 3 males, 26.3-26.8 mm SL, ribeirão Salto Grande, rio Ivaí basin, municipality of Maria Helena, $23^{\circ} 37^{\prime} 08^{\prime \prime} \mathrm{S}$ $53^{\circ} 12^{\prime} 18^{\prime \prime}$ W, coll. Graça WJ, 30 December 2004. LBP 1325, 1 male, 23.4 mm SL, 6 females, $17.8-23.4 \mathrm{~mm}$ SL, ribeirão Keller, rio Ivaí basin, boundary between municipalities of Marialva and Bom Sucesso, $23^{\circ} 38^{\prime} 30^{\prime \prime}$ S $51^{\circ} 51^{\prime} 32^{\prime \prime}$ W, coll. Oliveira C, 15 October 2002. LBP 7358, 1 female, 28.4 mm SL, 1 unsexed, 12.4 mm SL,
ribeirão Keller, rio Ivaí basin, boundary between municipalities of Marialva and Bom Sucesso, $23^{\circ} 38^{\prime} 30^{\prime \prime}$ S 5151'33" W, coll. Devidé R, 15 October, 2002. LBP 13332, 1 male, 23.2 mm SL, 1 unsexed c\&s, 23.7 mm SL, rio Mourão, rio Ivaí basin, municipality of Campo Mourão, $24^{\circ} 02^{\prime} 23^{\prime \prime} \mathrm{S} 52^{\circ} 16^{\prime} 22^{\prime \prime}$ W, coll. Zawadzki CH, November 2010. LBP 13333, 1 male, 23.6 mm SL, 1 female, 25.4 mm SL, rio Mourão, rio Ivaí basin, municipality of Campo Mourão, $24^{\circ} 02^{\prime} 23^{\prime \prime}$ S $52^{\circ} 16^{\prime} 22^{\prime \prime}$ W, coll. Pavanelli CS, 4 December 2006. LBP 13334, 1 male, 24.9 mm SL, ribeirão Keller, rio Ivaí basin, boundary between municipalities of Marialva and Bom Sucesso, $23^{\circ} 38^{\prime} 30^{\prime \prime} \mathrm{S} 51^{\circ} 51^{\prime} 32^{\prime \prime}$ W, coll. Zawadzki CH, November 2010. LBP 13335, 1 male, 26.0 mm SL, ribeirão Salto Grande, rio Ivaí basin, municipality of Maria Helena, $23^{\circ} 37^{\prime} 08^{\prime \prime}$ S $53^{\circ} 12^{\prime} 18^{\prime \prime}$ W, coll. Graça WJ, 30 December 2004. LBP 14917, 4 females, 28.8-29.6 mm SL, 2 males, 26.6-27.4 mm SL, ribeirão Cambira, rio Ivaí basin, boundary between municipalities of Cambira and Apucarana, $23^{\circ} 58^{\prime} 54^{\prime \prime}$ S $51^{\circ} 29^{\prime} 58^{\prime \prime}$ W, coll. Zawadzki CH, de Paiva S, 29 November 2007. LBP 17578, 6 females, 27.7-30.4 mm SL, 4 males, 25.4-26.1 mm SL, rio Mourão, rio Ivaí basin, boundary between municipalities of Engenheiro Beltrão and Quintal do Sol, $23^{\circ} 49^{\prime} 41^{\prime \prime}$ S $52^{\circ} 11^{\prime} 43 "$ W, coll. Zawadzki CH, Ruiz HB, Vieira RS, 01 April 2013. MCP 47860, 1 male, $25.6 \mathrm{~mm} \mathrm{SL}, 1$ female, 25.9 mm SL , ribeirão Salto Grande, rio Ivaí basin, municipality of Maria Helena, $23^{\circ} 37^{\prime} 08^{\prime \prime}$ S $53^{\circ} 12^{\prime} 18^{\prime \prime}$ W, coll. Graça WJ, 30 December 2004. NUP 3578, 7 females, 27.8-28.1 mm SL, 8 males, 24.7$26.8 \mathrm{~mm} \mathrm{SL}, 1$ female c\&s, $27.6 \mathrm{~mm} \mathrm{SL}, 1$ male c\&s, 25.5 mm SL , ribeirão Salto Grande, rio Ivaí basin, municipality of Maria Helena, $23^{\circ} 37^{\prime} 08^{\prime \prime}$ S $53^{\circ} 12^{\prime} 18^{\prime \prime}$ W, coll. Graça WJ, 30 December 2004. NUP 7065, 1 male, 23.3 mm SL, 1 female, 25.4 mm SL, $1 \mathrm{c} \& s$ unsexed, 24.5 mm SL, rio Mourão, rio Ivaí basin, municipality of Campo Mourão, $24^{\circ} 02^{\prime} 23^{\prime \prime}$ S $52^{\circ} 16^{\prime} 22^{\prime \prime}$ W, coll. Zawadzki CH, 7 April 2009. NUP 9839, 1 male, 25.3 mm SL, 1 female, 25.8 mm SL, 1 female c\&s, 25.0 mm SL, collected with holotype. ZMA 250.056 , 2, 1 male, 26.1 mm SL, 1 female, 25.6 mm SL, rio Mourão, rio Ivaí basin, municipality of Engenheiro Beltrão, $23^{\circ} 37^{\prime} 40.8^{\prime \prime} \mathrm{S} 52^{\circ} 03^{\prime} 37.8^{\prime \prime} \mathrm{W}$, coll. Zawadzki CH, Ruiz HB, Silva HP, 22 October 2012.

Diagnosis. Hisonotus sp. 1 can be distinguished from all congeners, except Hisonotus insperatus, H. luteofrenatus and Hisonotus sp. 2 by having odontodes forming longitudinal aligned rows on head and trunk, Fig. 2(A), (B) (vs. odontodes not forming longitudinal aligned rows). Additionally, the new species can be distinguished from all congeners, except H. insperatus, H. luteofrenatus, Hisonotus sp. 2, H. piracanjuba) by
having a pair of rostral plates at the tip of the snout (vs. a single rostral plate). Also Hisonotus sp. 1 can be distinguished from congeners, except H. bockmanni, H. chromodontus, H. insperatus, H. luteofrenatus, and Hisonotus sp. 2 by having a functional v-shaped spinelet (vs. non-functional spinelet, square-shaped or absent spinelet). The new species can be distinguished from H. bockmanni and Hisonotus sp. 2 by lacking an unusual contrasting dark geometric spots on anterodorsal region of body (vs. presence of an unusual contrasting dark geometric spots on anterodorsal region of body); from H. insperatus by having small odontodes forming rows on head and trunk, Fig. 2(A), (B) (vs. large and conspicuous odontodes forming rows on head and trunk, Fig. 2 (E), (F)), higher head depth 51.6-59.2\% HL (vs. 44.3-48.7\% HL) and higher suborbital depth 20.9-25.5\% HL (vs. 16.6-20.1\% HL); from H. luteofrenatus by having higher caudal peduncle depth $10.8-12.5 \%$ SL (vs. 8.9-10.2\% SL) and lower snout length 46 9-52 2\% HL (vs. 67.0-75.3\% HL); from Hisonotus sp. 2 by having higher head depth 51.6-59.2\% HL (vs. 42.4-47.7\% HL), higher counts of premaxillary teeth 11-18 (vs. 610), and higher counts of dentary teeth 11-15 (vs. 4-7); from H. piracanjuba by higher caudal peduncle depth 10.8-12.5\% SL (vs. 8.3-9.5\% SL), and lower snout length 46.952.2\% HL (vs. 67.7-72.7\% HL).

Description. Morphometric data presented in Table I. Maximum body length 28.4 mm SL. Dorsal profile of head slightly convex to straight from upper part of rostrum to posterior margin of nares, convex from eyes to posterior margin of parieto supraoccipital, and straight to dorsal-fin origin. Dorsal profile of trunk slightly concave and descending from dorsal-fin origin to end of dorsal-fin base, straight to caudal peduncle. Ventral profile strongly concave from snout tip to opercular region; convex from opercular region to anal-fin origin; concave to caudal peduncle end. Greatest body depth at dorsal-fin origin $(18.6-23.9 \% \mathrm{SL})$. Greatest body width at opercular region, gradually decreasing towards snout and caudal fin. Cross-section of caudal peduncle almost ellipsoid; rounded laterally and almost flat dorsally and ventrally.

Head rounded in dorsal view, snout round to slightly pointed. Dorsal and ventral series of odontodes along anterior margin of snout completely covering its tip; odontodes larger than remaining on head. Odontodes on head and trunk well defined and arranged into longitudinal rows (character more prominent in head). Eyes moderately small (13.9-17.6\% HL), dorsolaterally positioned. Lips roundish and with papillae uniformly distributed on base of dentary and premaxillary and slightly
decreasing distally. Lower lip larger than upper lip; its border fringed. Maxillary barbel present; joined to lower lip by membrane to its half length. Teeth slender and bicuspid; mesial cusp larger than lateral. Premaxillary teeth 11-18. Dentary teeth 11-15.

Dorsal-fin I,7; its origin slightly posterior to pelvic-fin origin. Tip of adpressed dorsal fin almost reaching end of anal-fin base. Dorsal, pectoral and pelvic fins without locking mechanism. Pectoral fin I,6; its tip almost reaching middle of pelvic-fin unbranched ray length, when depressed. Pectoral axillary slit present between pectoralfin insertion and lateral process of cleithrum. Pectoral spine supporting odontodes on ventral, anterior and dorsal surface. Pelvic fin i,5; its tip almost reaching anal-fin origin when depressed in females and reaching anal-fin origin in males. Pelvic-fin unbranched ray with dermal flap along its dorsal surface in males. Anal fin i,5; its tip reaching seventieth to eightieth plate from its origin. Caudal fin i,14,i; forked shaped. Adipose fin absent. Total vertebrae 27.

Body covered with bony plates except above lower lip, around pectoral and pelvic-fin origins and on dorsal-fin base. Cleithrum and coracoid totally exposed. Arrector fossae partially to completely enclosed by ventral lamina of coracoids. Abdomen entirely covered by plates (Fig. 3A); abdomen covered by lateral plate series with large elongate plates, formed by two lateral rows, approximately of same size; median plates formed by two patterns of plate distributions; first, median plate series not reaching anal shield plates and both lateral plate series reaching themselves at middle of abdomen; second, median plate series reaching anal shield and both lateral plate series not reaching themselves at middle of abdomen; anal plates series covered by large plates squared and triangular shaped. Lateral of body entirely covered by plates (Fig. 3B); mid-dorsal plates poorly developed and reaching middle of dorsal-fin base; median plates not interrupted in median portion of body; mid-ventral plates reaching end of dorsal-fin base.

Parts of dorsal head bone plates presented in Fig. 3(C). Snout tip formed by pair of rostral square-shaped plates (r). Nasal (n) rectangular, forming anterior medial nostril margin contacting posteriorly with frontals (f) and anteriorly and laterally with prenasals (pn). Pre-nasals (pn) positioned posteriorly to rostral plates (r); formed by two large square-shaped plates, one small and triangular and one elongated and rectangular between nares. Top of head composed by compound pterotic (cpt), parieto supraoccipital (soc) and frontal (f), largest bones of head, and prefrontal (pf) and sphenotic (sp). Compound pterotic (cpt) covered with few and small fenestra randomly
distributed. Lateral surface of head presented in Fig. 3(D). Posterior rostrum plates pr1pr2 smallest, and rectangular shaped; pr4-pr3 largest, first rectangular and second squared-shaped. Complete infraorbital plate series (io1-io5), present just above posterior rostrum series, all covered by latero-sensory canal system; io2 largest and io5 smallest; io3, io4 and io5 forming inferior orbital margin of eyes. Preopercle (pop) elongated and rectangular shaped, covered by latero-sensory canal; Preopercle present under pr4, io4 and io5, and upper cp1, cp2 and op. Subocular cheek plates (cp1-cp2) and opercle (op) form posterior lateral margin of head.

Coloration in alcohol. Pale yellowish ground color. Dorsal surface of head dark brown, except for pale yellowish areas on snout tip, lateral margin of head and tip of parieto supraoccipital. Three dark brownish saddles crossing dorsum, reaching longitudinal dark stripe on side of trunk: first below dorsal-fin origin, second at typical adipose-fin region, and third at end of caudal peduncle. Ventral region of anal-fin origin with small spots with chromatophores. Caudal fin hyaline with two black bars; first on caudal-fin origin, second on middle of caudal fin (Fig. 1).

Sexual dimorphism. Adult males are distinguished from females by bearing a papilla in urogenital opening ($v s$. absent in females); by longer pelvic fin that extends beyond anal-fin origin ($v s$. pelvic fin not reaching anal-fin origin in females); and by pectoral and pelvic-fin unbranched ray supporting dermal flap on their proximal dorsal surface in males. Both sex present membrane in anal opening; however this membrane is more developed in females (Fig. 4A) than in males (Fig. 4D).

Distribution. The species is known from four small to medium streams, the ribeirão Salto Grande, ribeirão Keller, rio Mourão, and the ribeirão Cambira, all tributaries from the rio Ivaí in the upper rio Paraná basin (Fig. 5A).

Hisonotus sp. 2, sp. n.

Figure 6; Table I

Hisonotus sp. 6" - Chapter 2, Figure 3 [phylogenetic relationships].

Holotype. MZUSP xx, 26.2 mm SL, female, Brazil, Mato Grosso State, municipality of Santo Afonso, riacho Águas Claras, affluent rio Sepotuba, rio Paraguay basin, $14^{\circ} 21^{\prime} 03^{\prime \prime}$ S 57º33'07" W, coll. Troy WP, 14 September 2010.

Paratypes. All from Brazil, Mato Grosso State, rio Sepotuba basin. DZSJRP 18245, 2 females, 19.9-24.3 mm SL, collected with holotype. LBP 13347, 2 females, 18.9-19.6 mm SL, collected with holotype. LBP 13351, 9, 14.7-24.3 mm SL, riacho Águas Claras, Santo Afonso, $14^{\circ} 21^{\prime} 033^{\prime \prime}$ S 57³3'07" W, coll. Troy WP, April 2012. LBP 13352, 1, 23.7 mm SL, riacho Águas Claras, Santo Afonso, $14^{\circ} 21^{\prime} 03^{\prime \prime}$ S $57^{\circ} 33^{\prime} 07^{\prime \prime} \mathrm{W}$, coll. Troy WP, April 2012. LBP 17532, 1 male $22.6 \mathrm{~mm} \mathrm{SL}, 4$ female 19.5-23.8 mm SL, 1 unsexed not measured, riacho Maracanã, boundary between municipalities of Santo Afonso and Nova Marilândia, $14^{\circ} 22^{\prime} 40^{\prime \prime}$ S $57^{\circ} 35^{\prime} 11^{\prime \prime}$ W, coll. Troy WP, Paliga T, Silva VM, 03 April 2010. NUP 10928, 2 males, 23.2-24.2 mm SL, 2 c\&s, 23.6-24.2 mm SL, 1 unsexed not measured, collected with holotype. NUP 10976, 3 unsexed, 16.7-20.5 mm SL, riacho São Jorge, municipality of Santo Afonso, $14^{\circ} 27^{\prime} 26^{\prime \prime}$ S $57^{\circ} 34^{\prime} 34^{\prime \prime}$ W, coll. Zawadzki CH, Troy WP, 19 August 2010.

Diagnosis. Hisonotus sp. 2 can be distinguished from all congeners, except H. bockmanni, by its unusual contrasting dark geometric spots on anterodorsal region of body (see coloration section) (vs . absence of geometric spots). Additionally, the new species can be distinguished from all congeners, except H. insperatus, H. luteofrenatus, Hisonotus sp. 1., H. piracanjuba) by having a pair of rostral plates at the tip of the snout (vs. a single rostral plate). Also Hisonotus sp. 2 can be distinguished from all congeners, except Hisonotus insperatus, H. luteofrenatus and Hisonotus sp. 1 by having odontodes forming longitudinal aligned rows on head and trunk, Fig. 2(A), (B) (vs. odontodes not forming longitudinal aligned rows). The new species can be distinguished from H. bockmanni by having continuous perforated median plate series (vs. median plate series of perforated plates discontinuous, that is, with a gap of unperforated plates), by lacking unpaired plates between contra-lateral dorsal series (vs. having two tiny unpaired plates between contra-lateral dorsal series, placed eight plates posterior to dorsal fin Carvalho and Datovo 2012; Fig. 4), and by having caudal fin with anterior half dark pigmented medially (vs. caudal fin with anterior half hyaline); from H. insperatus by a great pectoral-fin spine length, 27.0-30.1\% in SL (vs. 20.6-25.9\%); from H. luteofrenatus by a greater head length 36.1-41.7\% SL (vs. 28.8-33.3\%), lower orbital
diameter 11.0-14.1\% HL (vs. 15.0-18.1\%) and lower snout length 50.7-57.1\% HL (vs. 67.0-75.3\%); from Hisonotus sp. 1 by lower head depth 42.4-47.7\% HL (vs. 51.6$59.2 \%$), lower counts of premaxillary teeth 6-10 (vs. 11-18) and lower counts of dentary teeth 4-7 (vs. 11-15); from H. piracanjuba by higher head length 36.1-41.7\% SL (vs. 27.9-32.2), higher caudal peduncle depth 10.2-11.3\% SL (vs. 8.3-9.5\%), lower counts of premaxillary teeth 6-10 (vs. 14-22) and by lower counts of dentary teeth 4-7 (vs. 12-19).

Description. Morphometric data presented in Table I. Maximum body length 26.2 mm SL. Lateral profile of head convex; straight from upper part of rostrum to posterior margin of nares, slightly curved from eyes to posterior margin of parieto supraoccipital, almost straight to dorsal-fin origin. Dorsal profile of trunk slightly concave, descending from base of dorsal-fin origin to end of dorsal-fin base, straight to caudal peduncle.
Ventral profile slightly concave from snout tip to pectoral-fin origin, convex to anal-fin origin, slightly concave to caudal peduncle. Greatest body depth at dorsal-fin origin (16.9-20.7\% SL). Greatest body width at opercular region, gradually decreasing towards snout and caudal fin. Cross-section of caudal peduncle almost ellipsoid; rounded laterally and almost flat dorsally and ventrally.

Head rounded in dorsal view. Snout slightly pointed, its tip rounded, elongated (51.5-57.1\% HL) and depressed in front of each nostril in dorsal surface. Dorsal and ventral series of odontodes completely covering anterior margin of snout; odontodes of snout, similar in size to remaining ones found on head. Snout tip lacking free-band. Odontodes on head and trunk well defined and arranged into longitudinal rows (character more prominent in head). Eyes small (11.0-14.1\% HL), dorsolaterally positioned. Lips roundish and papillose; uniformly distributed on base of dentary and premaxillary and slightly decreasing distally. Lower lip larger than upper lip; its border strongly fringed. Maxillary barbel present. Teeth slender and bicupid; mesial cusp larger than lateral. Premaxillary teeth 6-10. Dentary teeth 5-6.

Dorsal fin I,7; its origin slightly anterior to pelvic-fin origin. Tip of adpressed dorsal-fin rays surpassing end of anal-fin base. Dorsal, pectoral and pelvic fins without locking mechanism. Pectoral fin I,6; its tip reaching half of pelvic-fin length, when depressed. Pectoral axillary slit present between pectoral-fin insertion and lateral process of cleithrum. Pectoral spine supporting odontodes anteroventrally. Pelvic fin i,5; its tip almost reaching anal-fin origin when depressed in females and reaching anal-fin origin in males. Pelvic-fin unbranched ray with dermal flap along its dorsal surface in
males. Anal fin i,5; its tip reaching eightieth to ninetieth plate from its origin. Caudal fin i,14,i; emarginated shaped. Adipose fin absent. Total vertebrae 27.

Body covered with bony plates except on ventral part of head, around pectoral and pelvic-fin origin and on dorsal-fin base. Cleithrum and coracoid totally exposed. Arrector fossae partially enclosed by ventral lamina of coracoids. Abdomen entirely covered by plates (Fig. 7A), abdomen formed by lateral plate series with elongate and large plates, formed by two lateral plates series, similar in size; median plates formed by one to three plates series reaching anal shield. Lateral of body entirely covered by plates (Fig. 7B); mid-dorsal plates poor developed, reaching middle of dorsal-fin base; median plates not interrupted in median portion of body; mid-ventral plates reaching end of dorsal-fin base.

Parts of dorsal head bone plates presented in Fig. 7(C). Snout tip formed by pair of rostral square-shaped plates (r). Nasal (n) almost rectangular forming anterior medial nostril margin in contact posteriorly with frontals (f) and anteriorly and laterally with pre-nasals (pn). Pre-nasals (pn) positioned posteriorly of rostral plates (r), formed by two large and one small square-shaped plates, and one elongate rectangular shaped between nares. Top of head composed by compound pterotic (cpt), parieto supraoccipital (soc) and frontal (f), largest bones of head, and prefrontal (pf) and sphenotic (sp). Compound pterotic (cpt) fenestrated randomly distributed. Lateral surface of head presented in Fig. 3(D). Posterior rostrum plates pr1-pr2 small, and rectangular shaped; pr4-pr3 largest, first rectangular and second square-shaped. Infraorbital plate series complete (io1-io5), present just above posterior rostrum series, all covered by latero-sensory canal system; io2 largest and io5 smallest; io3, io4 and io5 forming inferior orbital margin of eyes; one little plate in left side of head present between io1 and io2 (Fig. 7D, red arrow); which is absent in right side. Preopercle (pop) elongated and rectangular shaped, covered by latero-sensory canal; Preopercle present under io4 and io5, and upper cp1, cp2 and op. Subocular cheek plates (cp1-cp2) and opercle (op) form posterior lateral margin of head.

Coloration in alcohol. Ground color of dorsal and ventral region of head and trunk pale yellowish. Conspicuous longitudinal dark stripe enlarging from rostral plates to anterior corner of eyes, straightening and bordering to inferior corner of eyes, enlarging again through compound pterotic and lateral series of plates to caudal-fin. Another conspicuous longitudinal dark stripes medially starting at pre-nasal plate region
enlarging to supraoccipital region. This pattern form hyaline v -shaped mark from rostral plate passing through nares to orbital margins. Longitudinal dark stripe from superior portion of sphenotic through mid-dorsal plates to posterior margin of dorsal-fin base. Dark blotch on compound pterotic overlap this mid-dorsal longitudinal dark stripe. Dark saddle on middle portion of predorsal region reaching mid-dorsal longitudinal dark stripe. This unusual combination of color characteristics forms geometric spots on anterodorsal region of body. Three dark saddles crossing posterodorsal region of body, reaching longitudinal stripe on laterals of trunk: first at middle of dorsal fin, second at typical adipose-fin region, and third at end of caudal peduncle. Saddles inconspicuous in some specimens. Ventral region of body almost complete pale yellowish, except few dark spots on caudal peduncle and dark ring at anal-fin origin. Dorsal, pectoral, and pelvic fins with dark chromatophores forming irregular sets of bands: three on dorsal and pectoral fin, and one on pelvic fin. Anal fin with few and sparse chromatophores, sometimes forming bands. Caudal fin hyaline, except for dark spot on origin of rays, and dark band on middle of rays (Fig. 6).

Sexual dimorphism. Adults males are distinguished from females by bearing papilla in urogenital opening (vs. absent in females); by longer pelvic fin that extends beyond anal-fin origin (vs. pelvic fin not reaching anal-fin origin in females); and by pelvic-fin unbranched ray supporting dermal flap along its dorsal surface in males. Both sex present membrane in anal opening; however, this membrane is more developed in females (Fig. 4B) than in males (Fig. 4E).

Distribution. The species is known from three small tributaries the riacho Águas Claras, riacho Maracaña and riacho São Jorge, both draining to the rio Sepotuba, in the upper rio Paraguay basin (Fig. 5B).

Discussion

Hisonotus sp. 1 is a similar species to H. insperatus and H. piracanjuba both species from upper stretches of the rio upper rio Paraná basin, while Hisonotus sp. 2 is more similar to H. bockmanni from the rio Tapajós basin. Hisonotus insperatus, H. chromodontus, H. luteofrenatus, and Hisonotus sp. 1 have conspicuous odontodes forming well defined and widely spaced rows of odontodes on head and trunk, the main character used to distinguish theses species, while Hisonotus sp. 2 have smaller
odontodes, not conspicuous and forming closely spaced rows (Fig. 2). Additionally, Hisonotus insperatus, Hisonotus sp. 1 and H. piracanjuba have a deep head with snout tip raising abruptly to interorbital region in lateral view, resulting in fishes with a shortsnouted profile. In H. bockmanni, H. chromodontus, H. luteofrenatus and Hisonotus sp. 2, the snout tip raise slowly to interorbital region in lateral view, resulting fishes with a long-snouted profiles. The two snout patterns fit to geographic patterns since H. insperatus, Hisonotus sp. 1 and H. piracanjuba inhabit the upper rio Paraná while Hisonotus sp. 2 is from the upper rio Paraguay and H. bockmanni, H. chromodontus and Hisonotus sp. 2 are from the upper rio Tapajós. Such patterns could probably reflect an ancient exclusive ancestral to the three latter in the region. Moenkhausia cosmops Lima, Britski and Machado 2007, Leporinus octomaculatus Britski and Garavello, 1993, Moenkhausia phaeonota Fink, 1979, Hyphessobrycon vilmae Géry, 1966, and Aequidens rondoni Miranda-Ribeiro, 1918, Parodon nasus Kner, 1859, Hemiodus semitaeniatus Kner, 1858, are examples of fish occurring in the upper rio Paraguay basin, as well as in the upper rio Tapajós basin. There is also Batrochoglanis melanurus Shibatta and Pavanelli 2005, which occurs at the upper rio Paraguay and appears to posses its sister-taxa at the rio Tapajós basin. According to Hubert and Renno (2006) and Lima et al. (2007) these examples can infer that a dispersion route has taken place between the upper rio Tapajós and the upper rio Paraguay basins. Yet, both snout profile patterns are quite different from all the remaining Hisonotus species.

Carvalho and Datovo (2012) in description of H bockmanni recognized a functional V-shaped spinelet as a character shared among H. bockmanni, H. chromodontus, H. insperatus and H. luteofrenatus, a character that is also present in the two new species Hisonotus sp. 1 and Hisonotus sp. 2. Carvalho and Datovo (2012) in personal communication with Roberto E. Reis suggested that this is apparently a unique condition within Hisonotus, and previously recognized that these species could compose a new monophyletic genus within the Hypoptopomatinae.

Hisonotus sp. 2 have an unusual coloration pattern with contrasting dark stripes and bands converging to form geometric spots on anterodorsal region of body which is even more similar in coloration to species of Otocinclus than to Hisonotus. However, Hisonotus sp. 2 is morphologically similar to nominal species already assigned to Hisonotus, rather than to any other Hypoptopomatinae species. Additionally, Hisonotus sp. 2 and Hisonotus sp. 1 present one of the diagnostic character used to define Hisonotus in its resurrection by Schaefer (1998a), the enlarged odontodes on rostrum.

Thus, concerning the shared aforementioned characters cited above with H. bockmanni, Hisonotus insperatus, H. luteofrenatus, Hisonotus sp. 1, Hisonotus sp. 2 and H. piracanjuba they may suggest a close phylogenetic relationship among these species. Considering several studies on loricariid bones, osteological characters are known to be conservative within Hypoptopomatinae species compared to external anatomy (Schaefer 1987, 1997, 1998b; Garavello 1977; Mo 1991; de Pinna 1998; Diogo et al. 2001; Ribeiro et al. 2005). Britski and Garavello (2003) used the presence of a pair of rostral plates in snout tip as a diagnostic character to distinguish Hisonotus insperatus from its congeners and Martins and Langeani (2012) to distinguished H. piracanjuba. This character is presented in both Hisonotus sp. 1 and Hisonotus sp. 2. However, our results showed that the number and shape of head plates can be considerably variable among specimens of a given species. We analyzed 18 stained and cleared specimens of Hisonotus insperatus from rio Capivara and rio Araquá from Botucatu, São Paulo State (Table II). Three individuals of H. insperatus presented a single rostral plate, instead of a pair of rostral plates (Table II), however, all specimens of Hisonotus sp. 1 and Hisonotus sp. 2 presented a pair of rostral plate. Variation in shape and number was further found in other head plates as the posterior rostrum plates, infraorbitals and preopercle plate (red arrows in Fig. 8). The fourth infraorbital in the right side is split in specimen of Fig. 8(C), what does not happen in the left side of the same specimen. This variation was also found in one paratype of Hisonotus sp. 1 (NUP 9839, 237 mm SL) in both sides of the specimen. Also, the first infraorbital of both sides in the specimen of Fig. 8(A), (B) reach the ventral margin of the rostrum, among the second and third posterior rostrum plates, what does not happen in specimen of Fig. 8(C), (D). Additionally, the size of the first infraorbital is variable among the specimens of Hisonotus insperatus and Hisonotus sp. 1. A similar pattern of variation was observed on posterior rostrum plates. In first and second posterior rostrum plates on the left side of the specimen of Fig. 8(C), (D), it appear to be split, what does not happen in the right side. Thus, the left side present six posterior rostrum plates series and the right side present just four plates. Finally, an extra plate is found among preopercle and compound pterotic perforated to infraorbital canal of the specimen of Fig. 8(C), (D).

Comparative material

All from Brazil, except when noticed: Hisonotus aky: MHNG 2643.039, 2, 33.1-34.2 mm SL, paratypes, arroio Fortaleza, Argentina; Hisonotus bocaiuva: MZUSP 112204,
male, 24.2 mm SL, holotype, córrego Cachoeira, Bocaiúva, Minas Gerais; LBP 9817, 9, $3 \mathrm{c} \& s, 18.3-23.2 \mathrm{~mm}$ SL, paratypes, córrego Cachoeira, Bocaiúva, Minas Gerais; Hisonotus carreiro: MCP 40943, 3, 33.6-35.8 mm SL, arroio Guabiju, Guabiju, Rio Grande do Sul; Hisonotus charrua: LBP 4861, 1, 35.9 mm SL, arroio Guaviyú, Artigas, Uruguai; MHNG 2650.051, 1, 34.2 mm SL, paratype, arroio Aspinillar, Uruguay; Hisonotus chromodontus: LBP 7964, 25, 24.0-28.3 mm SL, 3 females c\&s, 26.5-28.9 mm SL, 1 male c\&s 24.9 mm SL, rio dos Patos, Nova Mutum, Mato Grosso; LBP 12278, 2, 26.7-28.7 mm SL, 1 unsexed c\&s, 26.7 mm SL, rio Sumidouro, Tangará da Serra, Mato Grosso; MZUSP 45355, holotype, 25.9 mm SL, affluent rio Preto, Diamantino, Mato Grosso; Hisonotus depressicauda: MZUSP 5383, 24.4 mm SL, paralectotype (designated by Britski, 1969), Sorocaba; Hisonotus francirochai: LBP 13923, 22, 25.7-35.7 SL, córrego sem nome, Capitinga, Minas Gerais; MZUSP 3258, 29.4 mm SL, lectotype (designated by Britski 1969), rio Grande, São Paulo; Hisonotus heterogaster: LBP 3335, 39, 20.8-30.1 mm SL, arroio sem nome, rio Grande, Rio Grande do Sul; Hisonotus insperatus: LBP 1299, 3, 23.5-29.6 mm SL, 1 female c\&s, 24.8 mm SL, rio Araquá, Botucatu, São Paulo; LBP 1316, 2, 24.1-27.4 mm SL, 1 female c\&s, 24.7 mm SL, 1 male c\&s, 23.9 mm SL, rio Araquá, Botucatu, São Paulo; LBP 1344, 2, 22.9-24.9 mm SL, rio Araquá, Botucatu, São Paulo; LBP 1373, 1, 25.8 mm SL , rio Araquá, Botucatu, São Paulo; LBP 1405, 2, 22.2-27.3 mm SL, rio Araquá, Botucatu, São Paulo; LBP 4699, 17, 19.6-26.9 mm SL, 4 females c\&s, 20.3-26.8 mm SL, 3 males c\&s, 24.3-26.1 mm SL, ribeirão Cubatão, Marapoama, São Paulo; LBP 4945, 5, 27.3-28.5 mm SL, 2 females c\&s, 28.2-29.9 mm SL, Botucatu, São Paulo; LBP 6770, 5, 25.1-28.2 mm SL, 3 females c\&s, 20.0-27.0 mm SL, ribeirão Cubatão, Marapoama, São Paulo; LBP 13336, 1 female c\&s, 26.0 mm SL, rio Capivara, Botucatu, São Paulo; LBP 13337, 2 females c\&s, 27.4-28.6 mm SL, rio Araquá, Botucatu, São Paulo; MZUSP 22826, paratype, 1, 25.4 mm SL, córrego Água Tirada, Três Lagoas, Mato Grosso; MZUSP 24832, paratype, 1, 23.8 mm SL, rio Corumbataí, Corumbataí, São Paulo; MZUSP 78957, holotype, 29.6 mm SL, rio Capivara, Botucatu, São Paulo; MZUSP 78960, paratypes, 31, 12.6-26.0 mm SL, 5 c\&s, 22.7-24.7 mm SL, rio Pardo, Botucatu, São Paulo; MZUSP 78965, paratypes, 10, 15.6-28.6 mm SL, 3 c\&s, not measured, rio Araquá, Botucatu, São Paulo; MZUSP 78968, paratypes, 5, 24.1-27.3 mm SL, córrego da Figueira, Lins, São Paulo; Hisonotus iota: LBP 13072, 5, 32.3-33.0 mm SL, rio Chapecó, Coronel Freitas, Santa Catarina; Hisonotus laevior: LBP 3377, 1, 25.2 mm SL, arroio dos Corrientes, Pelotas, Rio Grande do Sul; LBP

6037, 8, 33.4-47.0 mm SL, rio Maquiné, Osório, Rio Grande do Sul; LBP 13187, 7, 19.4-45.8 mm SL, Córrego sem nome, Camaquá, Rio Grande do Sul; Hisonotus leucofrenatus: LBP 2085, 7, 38.3-50.6 mm SL, rio Sagrado, Morretes, Paraná; LBP 6837, 36, 35.1-43.5 mm SL, rio Fau, Miracatu, São Paulo; Hisonotus leucophrys: LBP 13065, 6, 17.2-33.6 mm SL, rio Ariranhas, Xavantina, Santa Catarina; LBP 13073, 1, 36.8 mm SL, rio Guarita, Palmitinho, Rio Grande do Sul; Hisonotus luteofrenatus: MZUSP 62593, holotype, 28.6 mm SL, córrego Loanda, Cláudia, Mato Grosso; MZUSP 62594, paratype, 8, 22.4-30.5 mm SL, riacho Selma, Sinop, Mato Grosso; MZUSP 95940, 3, 26.1-28.5 mm SL, affluent rio Teles Pires, Itaúba, Mato Grosso; Hisonotus maculipinnis: BMNH 1909.4.2.19-22, 1, 27.0 mm SL, syntype, rio de La Plata, Argentina; Hisonotus megaloplax: LBP 13108, 6, 36.4-37.8 mm SL, Córrego sem nome, Saldanha Marinho, Rio Gande do Sul; Hisonotus montanus: LBP 13051, 3, 26.427.2 mm SL, rio Goiabeiras, Vargem, Santa Catarina; LBP 13055, 5, 24.8-31.9 mm SL, rio Canoas, Vargem, Santa Catarina; Hisonotus nigricauda: BMNH 1891.3.16.53-62, 1, 32.0 mm SL, syntype, Rio Grande do Sul; LBP579, 16, 34.1-40.1 mm SL, rio Guaíba, Eldorado do Sul, Rio Grande do Sul; Hisonotus notatus: LBP 3472, 20, 21.0-34.3 mm SL, rio Aduelas, Macaé, Rio de Janeiro; LBP 10742, 25, 24.4-43.3 mm SL, rio Macabu, Conceição de Macabu, Rio de Janeiro; Hisonotus paulinus: BMNH 1907.7.6.9, 28.4 mm SL, holotype, rio Piracicaba, São Paulo; Hisonotus piracanjuba: NUP 5059, 1, 24.7 mm SL, córrego Posse, Anápolis, Goiás; NUP 10979, 3, 21.4-21.8 mm SL, ribeirão Bocaina, Piracanjuba, Goiás; Hisonotus prata: MCP 40492, 18, 19.5-33.2 mm SL, rio da Prata, Nova Prata, Rio Grande do Sul; LBP 9918, 14, 21.7-32.6 mm SL, Laguna dos Patos system, Nova Prata, Rio Grande do Sul; Hisonotus ringueleti: FMNH 108806, 2, 25.7-32.2 mm SL, rio Quaraí basin, Uruguay; LBP 13148, 1, 24.5 mm SL, arroio Putiá, Uruguaiana, Rio Grande do Sul. Microlepidogaster arachas: LBP 10882, 3, 22.8-35.3 mm SL, rio Paraná basin, Araxás, Minas Gerais; Microlepidogaster dimorpha: LBP 10683, 2, 28.8-35.6 mm SL; rio Paraná basin, Uberaba, Minas Gerais; Otothyris travassosi: LBP 1971, 13, 14.0-27.2 mm SL; coastal drainage, Canavieiras, Bahia; Otothyropsis marapoama: LBP 4698, 6, 23.9-36.3 mm SL; rio Tietê basin, Marapoama, São Paulo. Parotocinclus cf. bahiensis: LBP 7182, 3, 27.9-35.6 mm SL; rio Paraguaçu basin, Lençois, Bahia. Parotocinclus maculicauda: LBP 2869, 15, 20.2-44.7 mm SL, rio Ribeira do Iguape basin, Miracatu, São Paulo; Parotocinclus polyocrhus: LBP 12272, 2, 21.2-22.6 mm SL, ribeirão Ínsula, Barra do Garça, Mato Grosso; Parotocinclus prata:

LIRP 1136, 38, 19.8-41.9 mm SL; rio São Francisco basin, Presidente Oligário, Minas Gerais.

Acknowledgements

We gratefully to Guilherme S. Costa e Silva and Fernanda O. Martins for helping with the osteology analysis and with the measurements; Ricardo C. Benine for providing laboratorial support; Renato Devidé, Weferson da Graça, Claudio Oliveira and Carla S. Pavanelli for helping in field works; Mahmoud Mehanna for cleared and double stained specimens; Ricardo C. Benine, Bruno F. Melo, Fernanda O. Martins and Danilo Pinhal to read the manuscript and give valuable suggestions. Nupélia to provided logistic support. This research was supported by the Brazilian agencies FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo, proc. 2010/01610-9 to FFR), MCT/CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) (Edital Universal, proc. N. 484716-2006-9 and grants to CHZ - proc. N. 306066/2009-2) and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior).

References

Britski HA (1969) Lista dos tipos de peixes das coleções do Departamento de Zoologia da Secretaria da Agricultura de São Paulo. Papéis dos Arquivos Avulsos do Departamento de Zoologia 22: 197-215.
Britski HA, Garavello JC (2003) Hisonotus insperatus: New Species, from the upper rio Paraná basin (Pisces: Ostariophysi: Loricariidae). Copeia 3: 588-593.
Britski HA, Garavello JC (2007) Description of two new sympatric species of the genus Hisonotus Eigenmann and Eigenmann, 1889, from upper rio Tapajós, Mato Grosso state, Brazil (Pisces: Ostariophysi: Loricariidae). Brazilian Journal of Biology 67: 413-420.
Carvalho M, Datovo A (2012) A New Species of Cascudinho of the Genus Hisonotus (Siluriformes: Loricariidae: Hypoptopomatinae) from the upper rio Tapajós basin, Brazil. Copeia 2: 266-275.
Carvalho TP, Lehmann PA, Pereira EHL, Reis RE (2008) A New Species of Hisonotus (Siluriformes: Loricariidae: Hypoptopomatinae) from the Laguna dos Patos basin, Southern Brazil. Copeia 3: 510-516.

Carvalho TP, Reis RE (2009) Four new species of Hisonotus (Siluriformes:
Loricariidae) from the upper rio Uruguay, southeastern South America, with a review of the genus in the rio Uruguay basin. Zootaxa 2113: 1-40.
Carvalho TP, Reis RE (2011). Taxonomic review of Hisonotus Eigenmann and Eigenmann (Siluriformes: Loricariidae: Hypoptopomatinae) from the laguna dos Patos system, southern Brazil. Neotropical Ichthyology 9: 1-48.
Diogo R, Oliveira C, Chardon M (2001). On the homologies of the skeletal components ofcatfish (Teleostei: Siluriformes) suspensorium. Belgian Journal of Zoology 131: 155-171.

Eigenmann CH, Eigenmann RS (1889) Preliminary notes on South American Nematognathi. Proceedings of the California Academy of Sciences 1: 119-172.
Garavello JC (1977) Systematics and geographical distribution of the genus Parotocinclus Eigenmann and Eigenmann, 1889 (Ostariophysi, Loricariidae). Arquivos de Zoologia 28: 1-37.

Hubert N, Renno JF (2006) Historical biogeography of South American freshwater fishes. Journal of Biogeography 33: 1414-1436.
Lima FCT, Britski HA, Machado FA (2007) A new Moenkhausia (Characiformes: Characidae) from central Brazil, with comments on the area relationship between the upper rio Tapajós and upper rio Paraguai systems. International Journal of Ichthyology 13: 2-8.

Martins FO, Langeani F (2012). Hisonotus piracanjuba, a new species of Hypoptopomatinae (Siluriformes: Loricariidae) from the rio Paranaíba, upper rio Paraná system, central Brazil. Ichthyological Exploration of Freshwaters 23: 29-36.
Mo T (1991) Anatomy, relationships and systematics of the Bagridae (Teleostei: Siluroidei) with a hypothesis of siluroid phylogeny. Theses Zoologicae 17. Koeltz Scientific Books, Königstein.
de Pinna MCC (1998) Phylogenetic relationships of Neotropical Siluriformes: Historical overview and synthesis of hyphotesis. In: Malabarba LR (Ed) Phylogeny and Classification of Neotropical fishes. Porto Alegre, RS, Edipucrs, 279-330.
Regan CT (1904) A monograph of the fishes of the family Loricariidae. Transactions of the Zoological Society of London 17: 191-350.

Ribeiro AC, Carvalho M, Melo ALA (2005) Description and relationships of Otothyropsis marapoama, a new genus and species of Hypoptopomatinae catfish (Siluriformes: Loricariidae) from rio Tietê basin, southeastern Brazil. Neotropical Ichthyology 3: 489-498.
Roxo FF, Silva GSC, Oliveira C, Zawadzki CH (2013) Hisonotus bocaiuva, a new species from the rio São Francisco basin, Brazil (Teleostei: Loricariidae). Ichthyologycal Exploration of Freshwaters 23: 319-326.

Schaefer SA (1987) Osteology of Hypostomus plecostomus (Linnaeus), with a phylogenetic analysis of the loricariid subfamilies (Pisces: Siluroidei). Contributions in Science 394: 1-31.
Schaefer SA (1997) The Neotropical cascudinhos: Systematics and biogeography of the Otocinclus catfishes (Siluriformes: Loricariidae). Proceedings of the Academy of Natural Sciences of Philadelphia 148: 1-120.
Schaefer SA (1998a) Conflict and resolution: impact of new taxa on phylogenetic studies of the Neotropical cascudinhos (Siluroidei: Loricariidae). In: Malabarba LR, Reis RE, Vari RP, Lucena ZMS, Lucena CAS (Eds) Phylogeny and classification of neotropical fishes. Porto Alegre, RS, Edipucrs, 375-400.

Schaefer SA (1998b) The Neotropical cascudinhos: Systematic and biogeography of the Otocinclus catfishes (Siluriformes: Loricariidae). Proceedings of the academy of Natural Sciences of Philadelphia 148: 1-120.

Taylor WR, Van Dyke GC (1985) Revised procedures for staining and clearing small fishes and other vertebrates for bone and cartilage study. Cybium 9: 107-109.

Electronic References

Eschmeyer W (2013) Catalog of Fishes. California Academy of Sciences. Available from: http://research.calacademy.org/research/ichthyology/catalog/fishcatmain.asp (July, 2013).

Eschmeyer WN, Fong JD (2013) Species by Family/Subfamily. Available from: http://research.calacademy.org/research/ichthyology/catalog/SpeciesByFamily. asp/ (July, 2013).

Table I. Morphometrics and meristics of Hisonotus sp. 1 and Hisonotus sp. 2. SD = Standard deviation.

	Hisonotus sp. 1 n = 27				Hisonotus sp. $2=15$			
	Holotype	Low-High	Mean	SD	Holotype	Low-High	Mean	SD
Standard length (LS)	26.4	22.8-28.4	24.4	1.43	26.2	18.0-26.2	22.7	2.99
Percents of Standard length (LS)								
Head length	36.5	35.6-41.1	37.7	1.41	39.2	36.1-41.7	39.4	1.44
Predorsal length	46.8	45.3-52.1	48.3	1.51	47.9	46.9-51.8	49.0	1.54
Dorsal-fin spine length	22.4	22.4-28.3	24.5	1.62	25.4	25.2-27.0	26.2	0.50
Anal-fin unbranched ray length	18.7	16.3-21.3	19.2	1.34	18.2	17.4-21.4	19.8	0.87
Pectoral-fin spine length	23.6	21.6-27.6	24.7	1.57	27.5	27.0-30.1	28.2	0.53
Pelvic-fin unbranched ray length	18.4	16.8-23.2	20.6	1.45	18.7	18.0-21.1	19.7	0.98
Cleithral width	24.6	23.8-26.8	25.3	0.89	23.5	22.2-24.3	23.3	0.49
Thoracic length	18.4	17.6-21.6	19.0	0.80	18.8	16.1-19.8	17.8	1.12
Abdominal length	21.9	17.9-22.3	20.5	1.24	21.5	16.2-21.6	19.0	1.82
Body depth at dorsal-fin origin	21.1	18.6-23.9	21.6	1.25	18.8	16.9-20.7	18.1	1.30
Caudal-peduncle length	28.3	26.3-31.5	29.3	1.18	27.5	25.3-29.8	27.7	1.61
Caudal-peduncle depth	10.5	10.8-12.5	11.4	0.64	10.6	10.2-11.3	10.7	0.27
Percents of Head Length (LH)								
Snout Length	50.7	46.9-52.2	49.6	1.49	51.5	50.7-57.1	53.7	1.50
Orbital diameter	15.9	13.9-17.6	15.6	0.93	12.8	11.0-14.1	12.5	0.88
Interorbital width	35.2	32.1-37.1	34.9	1.52	32.8	32.4-36.0	34.2	1.21
Head depth	54.7	51.6-59.2	55.4	2.17	45.3	42.4-47.7	44.8	1.99
Suborbital depth	24.7	20.9-25.5	24.1	1.26	20.8	17.4-22.0	20.0	0.85
Mandibular ramus	11.2	6.8-12.9	10.7	1.12	6.0	6.0-8.0	6.8	0.57
Meristics	Holotype	Low-High	Mode	SD	Holotype	Low-High	Mode	SD
Left premaxillary teeth	13	11-18	14	2.0	10	6-10	8	1.37
Left dentary teeth	14	11-15	13	1.22	6	4-7	6	0.42
Left lateral scutes	24	24-25	24	0.64	24	24-25	24	0.48

610 Table II. Table showing the rostral plates variation found in species of Hisonotus
611 insperatus.

	Voulcher No.	Species	Sex	Standard length (SL)	Rostral plates No.
$\mathbf{1}$	LBP 1299	Hisonotus insperatus	female	24.8 mm SL	1
$\mathbf{2}$	LBP 1316	Hisonotus insperatus	female	24.7 mm SL	2
$\mathbf{3}$	LBP 1316	Hisonotus insperatus	male	23.9 mm SL	2
$\mathbf{4}$	LBP 4699	Hisonotus insperatus	female	20.3 mm SL	2
$\mathbf{5}$	LBP 4699	Hisonotus insperatus	female	22.0 mm SL	2
$\mathbf{6}$	LBP 4699	Hisonotus insperatus	female	25.3 mm SL	2
$\mathbf{7}$	LBP 4699	Hisonotus insperatus	female	26.8 mm SL	2
$\mathbf{8}$	LBP 4699	Hisonotus insperatus	male	24.3 mm SL	2
$\mathbf{9}$	LBP 4699	Hisonotus insperatus	male	25.0 mm SL	2

$\mathbf{1 0}$	LBP 4699	Hisonotus insperatus	male	26.1 mm SL	2
$\mathbf{1 1}$	LBP 4945	Hisonotus insperatus	female	28.2 mm SL	2
$\mathbf{1 2}$	LBP 4945	Hisonotus insperatus	female	29.9 mm SL	2
$\mathbf{1 3}$	LBP 6770	Hisonotus insperatus	female	20.3 mm SL	2
$\mathbf{1 4}$	LBP 6770	Hisonotus insperatus	female	20.0 mm SL	2
$\mathbf{1 5}$	LBP 6770	Hisonotus insperatus	female	27.0 mm SL	1
$\mathbf{1 6}$	LBP 13336	Hisonotus insperatus	female	26.0 mm SL	1
$\mathbf{1 7}$	LBP 13337	Hisonotus insperatus	female	27.4 mm SL	2
$\mathbf{1 8}$	LBP 13337	Hisonotus insperatus	female	28.6 mm SL	2

Figure 1. Hisonotus sp. 1, holotype, MZUSP xx, female, 26.4 mm SL, from ribeirão Cambira, affluent rio Ivaí, upper rio Paraná basin, boundary between municipalities of Cambira and Apucarana, Paraná State, Brazil.

Figure 3. Hisonotus sp. 1, paratype, NUP 7065, unsexed, 24.5 mm SL ; (A) Ventral view of abdominal region showing the two pattern of
abdominal plates; (B) Trunk lateral dermal plate pattern; (C) Dorsal view of the head showing bone edges; (D) Lateral view of left side of head showing bone edges. Scale bars $=1 \mathrm{~mm}$.

웅궁 웅 웅

Figure 4．Ventral view of abdominal region，arrows indicate anus membrane．（A）Hisonotus sp．1，MZUSP xx，holotype，female， 26.4 mm SL；（B） Hisonotus sp．2，MZUSP xx，holotype，female， 26.2 mm SL ；（C）H．chromodontus，LBP 7964，female， 28.1 mm SL ；（D）Hisonotus sp．1，NUP 3578，male， 27.1 mm SL；（E）Hisonotus sp．2，NUP 10928，male， 24.2 mm SL；（F）H．chromodontus，LBP 12278，male， 26.7 mm SL．
势笑等笑

Figure 5. (a) Map of the distribution of (a) Hisonotus sp. 1. Star = holotype locality, ribeirão Cambira. Diamonds = paratype localities; (b) Hisonotus sp. 2. Star = holotype locality, riacho Águas Claras. Diamond = paratypes locality.

Figure 6. Hisonotus sp. 2, holotype, MZUSP xx, female, 26.2 mm SL, riacho Águas Claras, affluent rio Sepotuba, rio Paraguay basin, municipality of Santo Afonso, Mato Grosso.

Figure 7. Hisonotus sp. 2, paratype, NUP 10928, male, 24.2 mm SL ; (A) Ventral view of abdominal region showing the abdominal plates; (B) Trunk lateral dermal plate pattern; (C) Dorsal view of the head showing bone edges; (D) Lateral view of left side of head showing bone edges. Black arrows (D) indicate an extra plate absent in the right side of this same specimen. Scale bars $=1 \mathrm{~mm}$.
Botucatu, São Paulo State; (B) Lateral view of left side of head showing bone edges of H. insperatus, LBP 13336, female, 26.0 mm SL, from rio Capivara, Botucatu, São Paulo State; (C) Dorsal view of the head showing bone edges of H. insperatus, LBP 13337, female, 28.6 mm SL, from rio Araquá, Botucatu, São Paulo State; (D) Lateral view of left side of head showing bone edges of H. insperatus, LBP 13337, female, 28.6 mm SL, from rio Araquá, Botucatu, São Paulo State. Red arrows indicate the differences found in osteology between samples. Scale bars = 1 mm .

Figure 8. (A) Dorsal view of the head showing bone edges of Hisonotus insperatus, LBP 13336, female, 26.0 mm SL, from rio Capivara,

すơ

Chapter 2

[Manuscript submitted in Molecular Ecology]

River capture promotes diversification in the Neotropical cascudinhos Hypoptopomatinae, Neoplecostominae and Otothyrinae (Siluriformes: Loricariidae)

Abstract

The main objective of this study is estimate a species-dense, time-calibrated molecular phylogeny of Hypoptopomatinae, Neoplecostominae and Otothyrinae, which together comprise a armoured catfishes group widely distributed across the South American, to place the origin of major clades, and to demonstrate the role of river capture on patterns of diversification in these taxa. We used a maximum likelihood and Bayesian methods to estimate a time-calibrated phylogeny of 114 loricariid species, using three mitochondrial and one nuclear gene to generate a matrix of 4,500 base pairs, and parametric biogeographic to estimate ancestral geographic ranges and to infer the effects of river capture events on the geographic distributions of these taxa. Our analysis revealed that Hypoptopomatinae, Neoplecostominae and Otothyrinae are recovered as monophyletic with strong statistical support, and Neoplecostominae is found to be more closely related to Otothyrinae than to Hypoptopomatinae. Our time-calibrated phylogeny and ancestral area reconstructions indicate an origin of Hypoptopomatinae, Neoplecostominae and Otothyrinae during the Lower Eocene in the Atlantic Coastal Drainages, from which it is possible to infer several dispersal events to adjacent river basins during the Neogene. As conclusion we infer a strong influence of river capture in: (1) the accumulation of modern clade species-richness values; (2) the formation of the modern basin-wide species assemblages, and; (3) the presence of many lowdiversity, early-branching lineages restricted to the Atlantic Coastal Drainages. We further infer the importance of headwater stream capture and marine transgressions in shaping patterns in the distributions of Hypoptopomatinae, Neoplecostominae and Otothyrinae throughout South America.

Keywords: freshwater, Neotropics, molecular systematics, parametric biogeography, river capture, relaxed clock, geodispersal

Introduction

A central aim of research in modern historical biogeography is to understand the distributions of species and ecosystems in light of Earth history processes that shape landscape evolution (Cox \& Moore 2005; Lomolino et al. 2010). The effort to understand biotic diversification in light of Earth history processes has made rapid progress over the past decade in the study of Neotropical freshwater fishes. The continental fishes of tropical South America represent about one in five of all the world's fish species, or 10\% of all vertebrate species (Vari \& Malabarba 1998; Albert et al. 2011). The evolutionary and ecological reasons for the origins and maintenance of this high diversity remains incompletely understood. However the role of watersheds boundaries as dispersal filters is increasingly being recognized as an important landscape feature of river drainage networks, that serves to isolate lineages and promote diversification (Waters et al. 2006; Winemiller et al. 2008; Albert \& Crampton 2010).

From a macroevolutionary perspective, the total number of species lineages that inhabit a biogeographic region is the accumulated result of speciation and dispersal events, which in combination act to increase the total species count, and extinction events, which act to reduce the species count (Stanley 1998; Jablonski et al. 2006). In this literature care has been taken to distinguish the terms 'dispersal' and 'dispersion', as two closely related but distinct phenomena (Platnick 1976; Armstrong 1977;
Lomolino et al. 2010). 'Dispersal' refers to the colonization of new areas outside an established species range (i.e. species range expansion), whereas 'dispersion' refers to movements of individual organisms within an established species range. This distinction is important because 'dispersal', but not 'dispersion', is the macroevolutionary process that affects patterns at and above the species level. This distinction also specifies the biological meaning of the parameter called 'dispersal' in the Dispersal-ExtinctionCladogenesis (DEC) model of geographic range evolution (Ree et al. 2005; Ree \& Smith 2008). Under this definition, dispersal can arise from either 'biotic dispersal', meaning the movement of organisms to new geographic areas outside the species' ancestral range, or from 'geodispersal', meaning the erosion of barrier(s) (i.e. merging) of adjacent geographic areas (Lieberman \& Eldredge 1996; Lieberman 2008). In other words, a geodispersal event can connect formerly separated areas and affect geographic ranges without necessarily involving biotic dispersal.

Among obligate freshwater organisms, lineage diversification is strongly affected by patterns of connectivity among portions of adjacent river basins (Smith 1981; Hocutt \& Wiley 1986; Mayden 1988; Lundberg et al. 1998). River capture (also
called stream capture or stream piracy) is a geomorphological process by which the flow of part of a stream or river drainage basin is diverted into that of a neighbouring basin. River capture is an important process in landscape evolution that allows aquatic species to move, or disperse, between adjacent drainage basins. River capture may arise from the influence of several geomorphological processes, including tectonic uplift or tilting, damming by the actions of glaciers or landslides, denudation of watershed margins by erosion, or avulsion of watershed margins by sediment accumulation in fans and estuaries (Almeida \& Carneiro 1998; Bishop 1995; Wilkinson et al. 2006, 2010). In reviewing the geological history of eastern South America, Ribeiro (2006) concluded that river capture affected the distributional ranges of many fish taxa on the Brazilian shield.

The biogeographic consequences of river capture for an in situ aquatic biota are unique. River capture simultaneously separates portions of river basins that were formerly connected (i.e., vicariance) and connects portions of river basins that were formerly isolated (i.e., geodispersal). In effect, river capture acts to move the physical location of watershed barriers (Albert \& Crampton 2010). The consequences of river capture can be profound for species such as obligate freshwater fishes and amphibians that are restricted to river basins, and for which watershed boundaries strongly limit dispersal (Grant et al. 2007; Muneepeerakul et al. 2008; Bertuzzo et al. 2009). As in all vicariance events, the separation of formerly adjacent river basin segments promotes allopatric divergence and speciation. However, in addition, and unlike many vicarianceonly events, river capture always results in both the separation and the merging of adjacent river basin segments (Albert et al. 2011; Carvalho \& Albert 2011). In other words, in the special case of river capture, vicariance and geodispersal are near simultaneous and complementary biogeographic processes. Further, both vicariance and geodispersal may result in concordant biogeographic patterns among many lineages that constitute a regional biota, (see fig. 10 in Lieberman 2008; Albert \& Carvalho 2011). Importantly, in the case of river capture, and under the widely-used convention that geographic range is defined in terms of the river basin(s) a species occupies (e.g. Reis et al. 2003; Abell et al. 2008), geodispersal can result in geographic range expansion without necessarily involving biotic dispersal (Ribeiro et al. 2013).

Among Neotropical freshwater fishes, members of the family Loricariidae, armoured catfishes, represent an excellent model to study the effects of landscape evolution on lineage diversification. Loricariids inhabit most aquatic habitats and
geographic regions of tropical South and Central America. About 869 loricariid species are currently recognized as valid (Eschmeyer \& Fong 2013), which makes this taxon the second-most species-rich family of Neotropical freshwater fishes (after Characidae). Loricariids also exhibit a broad range of ecological tolerances and geographic distributions. Many species are extreme habitat or trophic specialists (Langeani 1990; Armbruster 1998; Covain \& Fish-Miller 2007; Nelson et al. 1999; Sabaj 1999; Armbruster 2004), and many species are highly endemic, with small geographic ranges (Bizerril 1994; Ribeiro 2006; Albert \& Carvalho 2011).

Within the Loricariidae the three subfamilies, Hypoptopomatinae, Neoplecostominae and Otothyrinae, have long been recognized together as natural group using morphological and molecular data (Schaefer 1991, 1998; Armbruster 2004; Chiachio et al. 2008; Cramer et al. 2008, 2011). Separated these three subfamilies were hypothesized to form monophyletic groups Chiachio et al. (2008) using molecular data. No formal infrafamily name has yet been applied to this clade, which we will refer to here as the HNO-clade. Each of these three subfamily-level clades is also species-rich, and the HNO-clade as a whole has 182 nominal species currently recognized (Eschmeyer \& Fong 2013). Each of these subfamilies exhibits a wide geographic distribution throughout tropical cis-Andean South America, and has a lengthy and complex taxonomic histories, including studies using both morphological and molecular datasets (Eigenmann \& Eigenmann 1890; Regan 1904; Gosline 1947; Isbrücker 1980; Howes 1983; Schaefer 1987; Montoya-Burgos et al. 1998; Armbruster 2004; Reis et al. 2006; Chiachio et al. 2008; Cramer et al. 2008, 2011; Roxo et al. 2012a,b).

Here we present a time-calibrated phylogenetic analysis of the loricariid catfish subfamilies Hypoptopomatinae, Neoplecostominae and Otothyrinae, using a combination of three mitochondrial and one nuclear gene markers, and the most species-dense taxon sampling of these groups to date. We then use parametric biogeographic methods to estimate ancestral geographic ranges, and to document several historical river-capture events in the region of Southeastern Brazil. Our results highlight the special role of river capture in the formation of the modern species richness and geographic distributions of the Hypoptopomatinae, Neoplecostominae and Otothyrinae.

Material and Methods

Taxon Sampling

Diplomystes mesembrinus (Diplomystidae) was used as a distant outgroups to root all phylogenies. Diplomystidae has been alternatively been reported as the sister group to all other catfishes, or as the sister group to Siluroidea, a clade of catfishes that excludes Loricarioidea (Arratia 1987; de Pinna 1993, 1998; Grande 1987; Grande \& de Pinna 1998; Mo 1991; Sullivan et al. 2006). Additionally, samples of Corydoras imitator, Corydoras oiapoquensis, Hoplosternum littorale, Callichthys callichthys (Callichthyidae), Astroblepus sp. 1 and Astroblepus sp. 2 (Astroblepidae), Hemipsilichthys gobio, H. papillatus, Delturus parahybae (Loricariidae, subfamily Delturinae), Rineloricaria lanceolata, Spatuloricaria sp. 1 (Loricariidae, subfamily Loricariinae), Hypostomus ancistroides, H. nigromaculatus and H. microstomus (Loricariidae, subfamily Hypostominae) were included in the analysis as additional outgroups (see table S1 to all species names and localities and table S 2 to taxonomic summary of ingroup species).

All fishes examined were collected in accordance with Brazilian laws, under a permanent scientific collection license in the name of Dr. Claudio Oliveira. After collection, animals were anesthetized with benzocaine, and a piece of muscle tissue was extracted from the right side of the body and preserved in 95% ethanol. Voucher specimens were fixed in 10% formalin for two weeks, and then transferred to 70% ethanol for permanent storage.

Vouchers of all samples were deposited in the collection of the Laboratório de Biologia e Genética de Peixes (LBP), Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil, Museu de Ciências e Tecnologia, Pontifícia Universidade Católica do Rio Grande do Sul (MCP), Porto Alegre, Rio Grande do Sul, Brazil; Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura (NUP), Universidade Estadual de Maringá, Paraná, Brazil, or the Museum of Natural History of the City of Geneva (MHNG), Geneva, Switzerland.

DNA Extraction and Sequencing

Total DNA was extracted from ethanol preserved muscle samples with the DNeasy Tissue Kit (Qiagen), following manufacturer's instructions. Partial sequences of the genes 16 S rRNA, cytochrome b (Cytb), cytochrome c oxidase subunit I (COI) and F-reticulon 4 were amplified using polymerase chain reaction (PCR) with the primers described in Table S3. Amplifications were performed in a total volume of 12.5
$\mu \mathrm{l}$ with $1.25 \mu \mathrm{l}$ of 10 X buffer (10 mM Tris- $\mathrm{HCl}+15 \mathrm{mM}$ MgCl2), $0.5 \mu \mathrm{l}$ dNTPs (200 nM of each), $0.5 \mu \mathrm{l}$ each 5 mM primer, $0.05 \mu \mathrm{l}$ Platinum® Taq Polymerase (Invitrogen), $1 \mu \mathrm{l}$ template DNA (12 ng), and $8.7 \mu \mathrm{ldH} 2 \mathrm{O}$. The PCR reactions consisted of 30-40 cycles, 30 s at $95^{\circ} \mathrm{C}, 15-30 \mathrm{~s}$ at $48-58^{\circ} \mathrm{C}$ (according to primer and species), and $45-90 \mathrm{~s}$ at $72^{\circ} \mathrm{C}$ (according to gene primers). Nested-PCRs were used to amplify the nuclear markers; the first amplification was performed using the primers Freticul4-D and Freticul4-R with a total volume of $12.5 \mu 1$ for $30-40$ cycles (30 s at $95^{\circ} \mathrm{C}, 30 \mathrm{~s}$ at $48^{\circ} \mathrm{C}$, and 135 s at $72^{\circ} \mathrm{C}$); the second amplification was performed using the primers Freticul4 D2 and Freticul4 R2 with a total volume of $12.5 \mu \mathrm{l}$ for $30-40$ cycles (30 s at $95^{\circ} \mathrm{C}, 30 \mathrm{~s}$ at $53-54^{\circ} \mathrm{C}$, and 135 s at $72^{\circ} \mathrm{C}$). All PCR products were first visually identified on a 1% agarose gel and then purified using ExoSap-IT® (USB Corporation) following instructions of the manufacturer. The purified PCR products were sequenced using the "Big DyeTM Terminator v 3.1 Cycle Sequencing Ready Reaction Kit" (Applied Biosystems), purified again by ethanol precipitation and loaded on an automatic sequencer 3130-Genetic Analyzer (Applied Biosystems) in the Instituto de Biociências, Universidade Estadual Paulista, Botucatu, São Paulo.

Sequence and Phylogenetic Analysis

All individual sequences for each species were initially analysed using the software program BioEdit 5.0.9 (Hall 1999) and consensus sequences were obtained. All sequences for each gene were independently aligned using MUSCLE (Edgar 2004) under default parameters and the alignments inspected by eye for any obvious misalignments. Only alignment errors were corrected, where indels of 1 bp were added to introns of the reticulon gene. A quality control step was included in our workflow to detect potential cases of sequencing errors due to contamination or paralogy.
Alignments for each gene were initially analysed by Maximum Likelihood (ML) (Stamatakis et al. 2008) using the web servers RAxML BlackBox (Stamatakis 2006) for a previous phylogenetic analysis, and controlling potential sequencing errors involving pseudogenes, paralogous copies or even laboratory cross-contamination or mistakes during the sequencing process.

Sequences that were found misplaced in the resulting gene tree (as, for example, species of one subfamily grouped with species of an obviously non-related subfamily) were re-sequenced. Nucleotide variation, substitution patterns, and genetic distances were examined using MEGA 5.0 (Tamura et al. 2007). To evaluate the occurrence of
substitution saturation for each gene separately, we estimated the index of substitution saturation (Iss) in DAMBE 5.2.31 (Xia \& Xie 2001), as described by Xia et al. (2003) and Xia and Lemey (2009) and the rate of transitions/transversions evaluated in the software DAMBE 5.2.31 (Xia \& Xie 2001). The Iss estimation was performed without taking into account gaps because unresolved sites reduce the ability of the method to test for phylogenetic signal. The best-fit partitioning schemes and the best nucleotide evolution model for each partition were evaluated in the software Partition Finder (Lanfear et al. 2012) under the information-theoretic measure of Akaike Information Criterion (AICc).

Maximum Likelihood analyses were performed using RAxML Web-Servers (Stamatakis et al. 2008). RAxML implements a faster algorithm of heuristic searches with bootstrap pseudoreplicates (RBS). Bootstrap (BS) resampling (Felsenstein 1985) was applied to assess support for individual nodes using 1,000 replicates. Random starting trees were used for each independent ML tree search and all other parameters were set on default values. The ML analyses were conducted under different models for each partition of the matrix as evaluated for the software PartitionFinder (Lanfear et al. 2012) (Table S4). Bayesian Inference (BI) (Huelsenbeck \& Ronquist 2001) was performed evaluating alternative tree topologies through the estimation of posterior probabilities (P) using MrBayes v.3.0 (Ronquist \& Huelsenbeck 2003). The Bayesian Inference was conducted under different models for each partition of the matrix as evaluated for the software PartitionFinder (Lanfear et al. 2012) (Table S4). The ML tree obtained from ML analysis was used as a starting three for the Marko searches. Eight chains were run simultaneously for $100,000,000$ generations and every 1000th generation, a tree was sampled. The above analysis was performed twice. The distribution of log-likelihood scores was examined to determine stationary phase for each search and to decide if extra runs were required to achieve convergence, using the program Tracer 1.5 (Rambaut \& Drummond 2007a). All sampled topologies beneath the asymptote ($25,000,000$ generations) were discarded as part of a burn-in procedure, and the remaining trees were used to construct a 50% majority-rule consensus tree in Paup* (Swofford 2003).

Alternative tree topologies were evaluated in the program Treefinder (Jobb et al. 2004) using the Shimodaira and Hasegawa (SH) test (Shimodaira \& Hasegawa 1999), the Approximately Unbiased (AU) test (Shimodaira, 2002), and the Expected Likelihood Weights (ELW) method (Strimmer \& Rambaut 2002). All tests were
conducted under ML with a 14 partition scheme and with the same model implemented in RAxML analysis (Table S4).

Time Calibration and Ancestral Area Reconstruction

Estimates of branch lengths and ancestral biogeographic ranges were conducted in parallel using BEAST v.1.7.5. All clade-age estimates are presented as the mean and 95% highest posterior density (HPD) values, which are the upper and lower bounds of the HPD interval. The HPD is a credible set that contains 95% of the sampled values. We included two calibration points to constrain divergence dates for the 154 clades identified in our phylogenetic tree. The first calibration point was implemented as a normally-distributed prior, with an offset of 125 million years ago (Ma), and a standard deviation of 15 million years. These date-estimate parameters were selected to match current knowledge of the timing of siluriform origins. Information from the stratigraphic record and geographic distributions of living taxa indicate an origin for Siluriformes as a whole during the Lower Cretaceous (145-100 Ma; Lundberg 1993; Sullivan et al. 2006; Lundberg et al. 2007).

The second calibration point was implemented using a log-normal prior offset to 55 Ma with a mean and standard deviation of 1 for the origin of the family
Callichthyidae. The oldest known callichthyid fossil, Corydoras revelatus Cockerell (1925) was dated by Marshall et al. (1997) as Paleocene. This prior assumed 55 Ma as a minimum age. We used a macroevolutionary Birth-Death model for the diversification likelihood values and a starting tree obtained from the RAxML analysis. The analyses were conducted under different models of molecular evolution for each partition of the data matrix as evaluated by the software PartitionFinder (Lanfear et al. 2012) (Table S4). The ML tree obtained was used as a starting three for the MCMC searches. The analysis was run for 50 million generations and sampled every 1000th generation. Stationarity and sufficient mixing of parameters (ESS >200) was checked using Tracer v1.5 (Rambaut \& Drummond 2007a). A consensus tree was built using TreeAnnotator v1.7.5 (Rambaut \& Drummond 2007b).

Data on the geographic distributions of species in each of the three subfamilies analysed here (Hypoptopomatinae, Neoplecostominae and Otothyrinae) were taken from the original descriptions and Eschmeyer (2013). Species distribution ranges were located within the following five biogeographic regions: A, Coastal Drainages of Southeastern Brazil; B, Upper Paraná Basin; C, Paraguay, Lower Paraná and Uruguay
basins; D, Amazon and Orinoco basins; E, São Francisco basin and Coastal Drainages of Northeastern of Brazil.

A maximum-likelihood analysis of biogeographic history was also performed in Lagrange v2.0 (Ree et al. 2005; Ree \& Smith 2008) using a DEC model of geographic range evolution. The DEC model specifies instantaneous transition rates between discrete distribution areas along the branches of a phylogenetic tree, and uses these rates to assess the likelihoods of ancestral distributions at cladogenetic events (Ree et al. 2005; Ree \& Smith 2008). Four DEC models were tested to estimate distribution ranges inherited by the descending lineages at each node of the tree (see Table S5 for the likelihood values of each model). The model that obtained the highest ML values (M3) constrained dispersal rates between areas separated by one intercalated area at 0.5 the likelihood of dispersal between adjacent areas, and areas separated by two intercalated areas at 0.0001 the likelihood of models between adjacent areas.

Results

Phylogenetic Analysis

Partial sequences of three mitochondrial genes (16S rRNA, COI, Cytb) and one nuclear gene (F-reticulon 4) were obtained from 155 specimens representing 114 loricariid species (Table S1). The combined sequence data resulted in a matrix of exactly 4,500 base pairs (bp), of which $1,482 \mathrm{bp}$ (33\%) were non-variable (conserved), $2,677 \mathrm{bp}(59 \%)$ were variable and included in the analysis, and 341 bp (8%) were variable indels excluded from the analysis. This matrix was used to perform all phylogenetic and biogeographic analyses and was partitioned by gene and coding positions into 14 sections (Table S4). These data were not saturated considering that the Iss.c value is greater than the Iss, and the $\mathrm{R}^{\mathbf{2}}$ value is greater than 0.70 for transitions and transversions for all the genes (Table S6).

Bayesian and ML phylogenetic analyses resulted in very similar topologies (Figs. 1-4). Our results illustrate that the clades Hypoptopomatinae, Neoplecostominae and Otothyrinae are monophyletic with strong statistical support ($\mathrm{BS}=96, \mathrm{P}=0.99$ for Hypoptopomatinae; $\mathrm{BS}=99, \mathrm{P}=1.00$ for Neoplecostominae; $\mathrm{BS}=96, \mathrm{P}=0.99$ with BI for Otothyrinae). Additionally, our results suggest that Neoplecostominae is more closely related to Otothyrinae than to Hypoptopomatinae ($\mathrm{BS}=98, \mathrm{P}=0.99$), and that these two clades together form the sister group to Hypoptopomatinae to the exclusion of other Loricariidae ($\mathrm{BS}=97, \mathrm{P}=1.00$). Tree topology tests rejected the hypothesis that

Otothyrinae and Hypoptopomatinae are sister groups (as proposed by Schaefer 1991 and 1998) in two (ELW and AU) of the three tests performed (Table S7). The hypothesis that Otothyrinae and Hypoptopomatinae are sister taxa was not supported by the SH test, but this test is considered less reliable than the AU test for the same datasets (Shimodaira 2002).

Within Hypoptopomatinae all examined genera were recovered as monophyletic with strong statistical support values ($\mathrm{BS}=69, \mathrm{P}=1.0$ for Otocinclus; $\mathrm{BS}=97, \mathrm{P}=1.0$ for Oxyropsis; BS=100, $\mathrm{P}=1$ for Acestridium; $\mathrm{BS}=100, \mathrm{P}=1$ for Hypoptopoma). Otocinclus was recovered as the sister group of Lampiella gibbosa, and these taxa together formed the sister group to a clade consisting of Oxyropsis, Acestridium and Hypoptopoma. Acestridium and Hypoptopoma group together as the sister group to Oxyropsis.

Within Neoplecostominae Kronichthys and Isbrueckerichthys were recovered as monophyletic with high statistical support ($\mathrm{BS}=100, \mathrm{P}=1.0$ for Kronichthys; $\mathrm{BS}=69$, $\mathrm{P}=0.99$ for Isbrueckerichthys), however Pareiorhaphis, Pareiorhina and Neoplecostomus were not recovered as monophyletic. The topology tests rejected the hypothesis of a monophyletic Neoplecostomus and Pareiorhina (Table S7).
Pareiorhaphis splendens formed the sister group to species of Kronichthys, and this group formed the sister taxon to other species of Pareiorhaphis.

Within Otothyrinae Corumbataia, Schizolecis, Rhinolekos and Epactionotus were monophyletic with high statistical support ($\mathrm{BS}=100, \mathrm{P}=1.0$ for Corumbataia; BS $=100, \mathrm{P}=1.0$ for Schizolecis; BS=100, $\mathrm{P}=1.0$ with BI for Rhinolekos; BS=92, P=1.0 for Epactionotus). The genera Hisonotus, Parotocinclus and Pseudotothyris were not monophyletic. There are four lineages within the subfamily Otothyrinae that include species currently assigned to Hisonotus. The first lineage includes the species Hisonotus insperatus, H. piracanjuba, Hisonotus sp. 4, Hisonotus sp. 5, Hisonotus sp. 6, and Hisonotus sp. 7 and is supported by high statistical support values ($\mathrm{BS}=100$ with ML and $\mathrm{P}=1$). The second lineage is composed of the species Hisonotus chromodontus, Hisonotus sp. 1, Hisonotus sp. 2, Hisonotus sp. 3, Parotocinclus aripuanensis, Parotocinclus aff. spilurus, and Parotocinclus sp. 3. The third lineage is composed of Hisonotus depressicauda, H. francirochai and H. paulinus, and is supported by high statistical support values ($\mathrm{BS}=99, \mathrm{P}=1.0$). The fourth lineage is composed of the most number of Hisonotus species in this analysis, including Hisonotus aky, H. iota, H. montanus, H. megaloplax, H. prata, H. carreiro, H. ringueleti, H. nigricauda, H. heterogaster, H. notopagos, H. cf. charrua, H. laevior, H. charrua, H. leucophrys, H.
leucofrenatus, H. taimensis, H. notatus and H. armatus, and for species Otothyropsis marapoama, Eurycheilichthys sp. 1, Epactionotus bilineatus, E. itaimbezinho and E. gracilis, and is supported by high statistical support values ($\mathrm{BS}=72, \mathrm{P}=0.99$).

Relaxed Clocks and Historical Biogeography

Our time tree (Figs. 5-7) is the most comprehensive study of its kind to date including 114 loricariid species in the subfamilies Hypoptopomatinae, Neoplecostominae and Otothyrinae. The mean substitution rate for the dataset estimated using BEAST is 0.272% per MY. The Hypoptopomatinae is estimated by BEAST to have originated during the Lower Eocene about 33.6-67.4 Ma 95\% HPD (mean 49.9 Ma), and is inferred by Lagrange to have originated in the Coastal Drainages region (Fig. 5, Region A). The clade composed of Neoplecostominae + Otothyrinae is estimated by BEAST to also have originated during the Lower Eocene about 31.0-62.2 Ma 95\% HPD (mean 45.9 Ma), and is also inferred by Lagrange to have originated in the Coastal Drainages region (Fig. 5, Region A).

Hypoptopomatinae is distributed across three of the geographic regions in Fig. 5: Atlantic Coastal Drainages (Region A), Paraguay, Lower Paraná and Uruguay Basins (Region C), and Amazon and Orinoco Basins (Region D). The ancestral area reconstructions suggests that the Hypoptopomatinae moved from Coastal Drainages (Region A) to the Amazon and Orinoco Basins (Region D) between 26.7-58.6 Ma 95\% HPD (mean 42.5 Ma). The relationships among hypoptopomatine taxa in the Amazon and Paraguay basins also suggest that these two regions were either connected or exchanged headwaters at about 15 Ma (Fig. 6).

Neoplecostominae is also distributed across three of the regions in Fig. 5: Coastal Drainages (Region A), Upper Paraná Basin (Region B) and São Francisco Basin and Northeastern Drainages (Region E). The ancestral lineage of Neoplecostomus (except N. ribeirensis), Pareiorhina carrancas is inferred to have reached the Upper Paraná Basin from the Coastal Drainages at c. 14.2-33.4 Ma 95\% HPD (mean 22.9 Ma). The ancestor of Pareiorhina carrancas reached the Upper Paraná Basin from the Coastal Drainages at c. 1.7-8.7 Ma 95\% HPD (mean 4.6 Ma). The ancestor of Neoplecostomus franciscoensis reached the São Francisco basin from Coastal Drainages at c. 3.9-13.1 Ma 95\% HPD (mean 7.5 Ma). The ancestor of Pseudotocinclus tietensis reached the Upper Paraná Basin (B) from the Coastal Drainages region (A) about $0.4-$ 5.5 Ma 95\% HPD (mean 2.3 Ma). The ancestral lineage of Pareiorhaphis eurycephalus,
P. hystrix, P. parmula and P. vestigipinnis reached the Uruguay Basins about 2.0-7.5 Ma 95\% HPD (mean 4.3 Ma) (Fig. 6).

The ancestral area reconstructions (Fig. 7) suggest that Otothyrinae originated in the Coastal Drainages (Region A) and then subsequently expanded its range into the other regions by means of biotic dispersal, geodispersal (river capture), or both. The first group to diverge within Otothyrinae is composed for species of the genus Corumbataia and six species of the genus Hisonotus (H. insperatus, Hisonotus sp. 4, Hisonotus sp. 5, Hisonotus sp. 6, Hisonotus sp., 7 and Hisonotus sp. 8). The ancestral lineage of this group originated in Coastal Drainages region (A) at 29.0-57.1 Ma 95\% HPD (mean 42.5 Ma). The second group to diverge is composed of Schizolecis guntheri, the only known species of Schizolecis. Our results suggest that the ancestor of this species originated in the Coastal Drainages region (A) about 28.7-55.8 Ma 95\% HPD (mean 41.0 Ma). The third group to diverge within Otothyrinae is composed four species of Hisonotus (Hisonotus sp. 1, Hisonotus sp. 2, Hisonotus sp. 3 and Hisonotus chromodontus) and three species of Parotocinclus (Parotocinclus sp. 3, P. aripuanensis and P. aff. spilurus). The ancestor of this group dispersed from the Coastal Drainages region (A) to the Amazon and Orinoco Basins (D) about 25.6-51.0 Ma 95\% HPD (mean 37.5 Ma). Subsequently, the ancestor of the clade composed of Hisonotus sp. 1, Hisonotus sp. 2 and Parotocinclus aff. spilurus reached the São Francisco Basin and Northeastern Basins (E) about 19.3-43.2 Ma 95\% HPD (mean 30.7 Ma).

The fourth group to diverge within Otothyrinae is composed of species of the genus Pseudotothyris, Otothyris and the species Parotocinclus sp. 2, P. britiskii and P. eppleyi. The ancestor of this group originated in the Coastal Drainages region (A) about 23.3-46.1 Ma 95\% HPD (mean 33.7 Ma). Subsequently, the ancestor of Parotocinclus sp. 2, P. britiskii and P. eppleyi dispersed from to the Amazon and Orinoco Basins (D) about 19.8-42.6 Ma 95\% HPD (mean 31.2 Ma). The ancestor of the group composed of the species Microlepidogaster dimorpha, Rhinolekos sp. 1, R. britskii and R. garavelloi dispersed from the Coastal Drainages region (A) to the Upper Paraná Basin (B) about 18.3-37.3 Ma 95\% HPD (mean 27.3 Ma). The ancestor of the clade composed of Hisonotus depressicauda, H. francirochai and H. paulinus originated in Upper Paraná Basin (B) about 15.7-33.2 95\% HPD (mean 23.7 Ma). The ancestor of the clade composed of Parotocinclus sp. 1, Parotocinclus cf. bahiensis, P. robustus and P. prata, New taxon sp. 1, New taxon sp. 2 and Hisonotus bocaiuva, originated in the Coastal Drainages region (A) about 15.7-33.2 Ma 95\% HPD (mean 23.7 Ma). The ancestral of
the clade composed of the true Hisonotus and its closest relatives (Hisonotus aky, H. iota, H. montanus, H. megaloplax, H. prata, H. carreiro, H. ringueleti, H. nigricauda, H. heterogaster, H. notopagos, H. cf. charrua, H. laevior, H. charrua, H. leucophrys, H. leucofrenatus, H. taimensis, H. notatus and H. armatus), and the species Otothyropsis marapoama, Eurycheilichthys sp. 1, Epactionotus bilineatus, E. itaimbezinho and E. gracilis originated in the Coastal Drainage region about 17.0-35.0 Ma 95\% HPD (mean 25.6 Ma).

Additionally, two dispersal events can be inferred from this area to the Paraguay, Lower Paraná and Uruguay Basins (C). The first is the ancestor of Hisonotus iota, H. aky, H. montanus, H. megaloplax, H. prata, H. carreiro and H. ringueleti about 10.726.3 Ma 95\% HPD (mean 17.8 Ma). The second is the ancestor of Hisonotus cf. charrua, H. leucophrys, H. charrua, H. laevior, H. taimensis, H. leucofrenatus, H. notatus and H. armatus about 11.4-24.8 95\% HPD (mean 17.5 Ma).

Discussion

River capture as a biogeographic process

The time-calibrated molecular phylogeny and ancestral area reconstructions of this study (Figs. 5-7) suggest that river capture has been an important process affecting diversification of taxa in the HNO-clade. These results are largely consistent with those of previous studies of loricariids from Southern and Southeastern Brazil (Reis \& Schaefer 1998; Chiachio et al. 2008; Roxo et al. 2012a). For example, Chiachio et al. (2008) recovered a similar division of the HNO-clade into two monophyletic groups, the Hypoptopomatinae and Neoplecostominae + Otothyrinae, inferred the ancestor of Hypoptopomatinae to have inhabited the Amazon basin, and inferred the ancestor of Neoplecostominae + Otothyrinae to have inhabited an area now drained by the Upper Parana and part of the Atlantic coastal drainages.

The Atlantic coastal region has a complex and ancient geological history that traces to the final separation of Africa and South America about 100 million years ago (Pitman et al. 1993; Cesero \& Ponte 1997; Scotese 2004; Blakey 2006; Ribeiro 2006). Roxo et al. (2012a) identified the Coastal Drainages of Southeastern Brazil as an important area where many lineages of Loricariidae originated, including the ancestors of Neoplecostominae. Ribeiro (2006) described a series of phylogenetic patterns (termed A, B and C) in which sister group relationships are found between lineages inhabiting the Atlantic coastal drainages and inland drainages such as Amazon and

Paraná Basins. Our results suggest a fit to pattern B in Neoplecostominae and Otothyrinae, with sister-group relationships between species endemic to the Brazilian coastal drainages and adjacent portions of the Brazilian shield. Ribeiro (2006) listed Lignobrycon, Rhinelepis, Spintherobolus, and Triportheus, the tribes Aspidoradini and Glandulocaudini, and the subfamilies Cheirodontinae and Sarcoglanidinae as examples of pattern B.

According to the Lagrange ancestral area reconstructions, the area of the modern Atlantic Coastal Drainages (Region A) is optimized as the ancestral area for three of the deepest nodes of the HNO phylogeny. These nodes include the HNO-clade as a whole (40.8-79.7 Ma 95\% HPD, mean 58.4 Ma, Fig. 5), the Hypoptopomatinae (33.6-67.4 Ma 95\% HPD, mean 49.9 Ma, Fig. 6), and the Neoplecostominae and Otothyrinae (31.0-62.2 Ma 95\% HPD, mean 45.9 Ma , Fig. 6-7). The results of the Lagrange analysis are consistent with a river capture event at about 26.7-58.6 Ma 95\% HPD (mean 42.5 Ma), allowing range expansion(s) from the Atlantic Coastal Drainages (Region A) to a region comprised of the modern Paraguay/Lower Paraná/Uruguay (Region C) and Amazon/Orinoco Basins (Region D). An important river capture event at this approximate time and place is also consistent with the topology of a General Area Cladogram of fish taxa from tropical South America, as inferred form a Brooks Parsimony (meta)Analysis of all 32 published phylogenies of species-rich fish clades available at that time (fig. 7.1 at Albert \& Carvalho 2011).

Chiachio et al. (2008) explained the division of Hypoptopomatinae, between lineages in the Amazon Basin (Region D) and the Brazilian East Coastal (Region A) and the Upper Paraná (Region B), as the result of limited dispersal of fishes to less favourable areas of the continental margin. Although species of Hypoptopomatinae do inhabit lowland rivers in the Amazon, Orinoco and Guianas regions, most species of Neoplecostominae plus Otothyrinae inhabit rivers and streams in the mountainous Brazilian Shield, where they are adapted to colder and more highly oxygenated waters (Langeani 1990). Additionally, historical paleogeographic connections among the Orinoco, Amazon, and Paraguay basins are hypothesized to have enabled the colonization of Hypoptopomatinae species through these basins (Albert et al. 2011).

Within Neoplecostominae our time-calibrated phylogeny and Lagrange biogeographic analysis suggest a (geo)dispersal event in the ancestral species of the clade composed of Neoplecostomus (except N. ribeirensis) and Pareiorhina carrancas to move from the Coastal Drainages (Region A) to the Upper Paraná Basin (Region B)
at about 14.2-33.4 Ma 95\% HPD (mean 22.9 Ma). Roxo et al. (2012a) reported an event with a similar date in the range $15.4-38.1 \mathrm{Ma} 95 \%$ HPD (mean 26.7 Ma), and suggested that this (geo)dispersal event could be a result of a headwater capture. During this time period several headwater capture events have been proposed between the Rio Tietê, Rio Paraíba do Sul, Rio São Francisco, and Rio Ribeira de Iguape basins (Ab'Sáber 1957, 1998; Ribeiro 2006). Headwater capture is likely to have influenced ancestral fish distributions throughout adjacent drainages, allowing the ancestors of this group to reach the Upper Paraná basin.

The subfamily Otothyrinae also has a complex biogeographic history among South American basins (Fig. 7). The ancestral area reconstruction with highest ML scores gives us the origin in the Coastal Drainages (Region A). Within one of the two clades of Otothyrinae to diverge (i.e. species of Corumbataia and six species of Hisonotus, H. insperatus, H. piracanjuba, Hisonotus sp. 4, Hisonotus sp. 5, Hisonotus sp. 6 and Hisonotus sp. 7), (geo)dispersal from Coastal Drainage (Region A) to Upper Paraná basin (Region B) is estimated in the time frame 20.7-47.4 Ma 95\% HPD (mean 33.29 Ma).

The results of our Lagrange analysis suggest the influence of river capture in the movement of Otothyrinae from Atlantic Coastal Drainages (Region A) to the Amazon and Orinoco Basins (Region D). Our preferred model (M3) of geographic dispersal among areas posits a connection between regions C (Paraguay, Lower Paraná and Uruguay Basins) and D (Amazon and Orinoco Basins) before 15 Ma . For more than a century authors have suggested historical dispersal routs of fishes between Paraguay and Amazon basins (Eigenmann \& Eigenmann 1891; Jordan 1896; Eigenmann 1906; Pearson 1937; Carvalho \& Albert 2011; Ribeiro et al. 2013). These authors suggested that most of the fish lineages represented in the Paraguay Basin can be explained by dispersal, presumably by means of headwater capture (geodispersal) of Amazon tributaries (Madeira, Tocantins, Xingu) on the Brazilian Shield. However, geodispersal events in the reverse direction, from south to north, must also be considered for taxa with origins in the La Plata and Atlantic coastal drainages, and with derived lineages in the Amazon and Orinoco basins.

The Lagrange analysis also infers a river capture event affecting the ancestor of the clade including New taxon sp. 1, New taxon sp. 2, Hisonotus bocaiuva, Parotocinclus cf. bahiensis, P. robustus and P. prata from the Atlantic Coastal Drainages (Region A) to the São Francisco Basin and Northeastern Drainages (Region
E) in the time frame 11.3-26.1 Ma 95\% HPD (mean 18.2 Ma). These two regions also share extensive watershed divides with the many separate Atlantic coastal drainages of the eastern margin of the Brazilian Shield. Ribeiro (2006) suggested that the origin of the Taubaté Graben probably resulted in the capture of several other adjacent rivers, such as headwaters of the Tietê, Grande, São Francisco and Doce rivers. A river capture event at this approximate time and place is also consistent with the General Area Cladogram of fish taxa from tropical South America (Albert \& Carvalho, 2011; fig. 7.1).

The results of our Lagrange analysis point to the influence of several river capture events permitting movements of Otothyrinae lineages from the Atlantic Coastal Drainages (Region A) to the Paraguay, Lower Paraná and Uruguay Basins (Region C) (Fig. 7). These events occurred within the group of the true Hisonotus species (including the type species Hisonotus notatus), and the species of the genera Eurycheilichthys and Epactionotus. While most of the early-branching clades in this group inhabit the eastern margin of the Brazilian Shield, a few early-branching lineages occur in the Uruguay Basin (Region C). Ribeiro (2006) reported that several species are shared between the isolated coastal drainages and the adjacent upland as: Cnesterodon decemmaculatus and Cnesterodon brevirostratus (Lucinda, 2005), Bryconamericus patriciae (Silva 2004), Hypostomus commersoni and H. aspilogaster (Reis et al. 1990).

The results of our Lagrange analysis also indicate a geodispersal event from the Amazon and Orinoco basins (Region D) to the São Francisco Basin and Northeastern Drainages (Region E) in the ancestor of Hisonotus sp. 1, Hisonotus sp. 2 and Parotocinclus aff. spilurus at about 19.3-43.2 Ma 95\% HPD (mean 30.7 Ma). Rosa et al. (2004) previously suggested that some fish species in Northeastern Brazil are widespread in two or more basins, encompassing the São Francisco, Parnaíba and several adjacent coastal rivers basins. This is the case, for example, in Triportheus signatus, Prochilodus brevis, Cichlasoma orientale and Parauchenipterus galeatus.

Sea-level changes as a biogeographic process

Periods of alternating sea-level stands can also influence the distributions of lowland freshwater taxa (Lovejoy et al. 2006; Albert \& Reis 2011; Bloom \& Lovejoy 2011). Eustatic sea-level changes under global climate controls, and regional subsidence or uplift under tectonic controls, have resulted in multiple marine transgressions and regressions over the course of the Cenozoic, alternately flooding and exposing low lying
areas of the continental platforms, and converting lowland and coastal plains from freshwater to shallow marine ecosystems. López-Fernandez \& Albert (2011) identify six marine transgressions during the Eocene, one in the Eocene and Oligocene, three in Oligocene and one in the Miocene, the time interval during which most lineages of Hypoptopomatinae diversified (Fig. 6). Ancestral lineages of Hypoptopomatinae were present in the lowland portions of the Amazon and Orinoco basins (Region D) from about 26.7-58.6 Ma 95\% HPD (mean 42.5 Ma) to the present, and our results suggests three events of (geo)dispersal to the lowland portions of the La Plata basin from about 12.6-33.1 Ma 95\% HPD (mean 21.7 Ma), 9.9-26.4 Ma 95\% HPD (mean 17.0 Ma) and $0.0-10.6 \mathrm{Ma} 95 \% \mathrm{HPD}($ mean 5.3 Ma) to the present. These populations were therefore presumably influenced by numerous regional marine transgressions and regressions.

Marine transgressions can isolate and fragment lowland fish populations, promoting both speciation and extinction by reducing the total amount and connectivity of freshwater habitat patches (Lundberg et al. 1998; Lovejoy et al. 2006; Ribeiro 2006; Sabaj-Perez et al. 2007; López -Fernandes \& Albert 2011). Marine transgressions can also result in local population extirpations and/or allopatric speciation in upland refugia (e.g. Albert et al. 2006). Marine regressions can expand lowland and coastal freshwater habitats, thereby promoting dispersal and reducing extinction (López-Fernández \& Albert 2011; López-Fernández et al. 2013).

The relatively small areal extent of river basins in the Atlantic coastal drainages, combined with areal expansions and contractions due to Pleistocene shoreline fluctuations, may have acted in concert to elevate speciation and extinction rates in this region (e.g., Beheregaray et al. 2002; do Amaral 2012). Indeed many extant fish species in the Atlantic coastal drainages are of high conservation concern (Reis 2013). However, the effect of Pleistocene shoreline fluctuations on fish diversity was presumably restricted to the coastal plain (areas below 100 m elevation), whereas most of the fish species of the Atlantic coastal drainages inhabit canyons in the piedmont, especially larger rivers such as the Rio Doce, Ribeiro de Iguape and Rio Maquine (e.g. Malabarba et al. 2013).

Peripheral location of low-diversity, early-branching lineages

The ancestral-area reconstructions generated by Lagrange (Fig. 5) permit one to infer the geographic origin of the HNO-clade, and of all three HNO subfamilies, in the Atlantic Coastal Drainages (Region A), a relatively narrow strip of rivers basins that
extends along the eastern continental margin. This is a reasonable interpretation given the disproportionately high number of low-diversity, early-branching clades in all three subfamilies restricted to Region A. This interpretation also conforms to widespread expectations about the relative rates of macroevolutionary parameters that affect net rates of diversification (Bloom 2013; Pyron \& Burbrink 2013; Rabosky 2013). The Lagrange DEC model of species range evolution assumes a model of biogeographic history dominated by vicariance, in which dispersal and extinction are treated as relatively rare events (Ree \& Smith 2008; Ronquist \& Sanmartín 2011). The Lagrange model is also entirely neutral (sensu Hubbell 2001) with respect to DEC parameter values among clades and regions.

An alternative interpretation of HNO biogeographic history may also be considered, in which the ancestral species range was distributed over a wide portion of southern South America in the early Cenozoic, including much of the modern Atlantic Coastal (Region A), Upper Parana (Region B), and Paraguay/Lower Parana/Uruguay (Region C) areas. Under this alternative interpretation, the accumulation of many lowdiversity, early-branching clades in the Atlantic coastal drainages are expected from patterns of diversification on landscapes with low rates of river capture.

In places like the eastern margin of South America, where geographic range evolution is thought to have been dominated by river capture (Ribeiro 2006; Buckup 2011; Lima \& Ribeiro 2011; Pereira et al. 2012), vicariance and geodispersal events are expected to be coupled (see the Introduction; see also Albert \& Campton 2010). Under these conditions, rates of speciation and dispersal should be approximately matched as sources for the introduction of new species (sensu Vellend 2010). Further, because dispersal expands species ranges, it tends to reduce extinction rates, and freshwater fish species with larger ranges generally have lower extinction risk (Fagan 2002; O'Grady et al. 2004). Therefore, the combination of low speciation and extinction rates in the Atlantic coastal drainages may have contributed to an accumulation of low-diversity clades. By contrast, the relatively higher rates of speciation and extinction in the La Plata basin is predicted to have resulted in a phylogeny with few or no low-diversity early-branching clades (see e.g. Albert et al. 2011 fig. 2.15). In other words, regions with high species turnover are less likely to retain low-diversity early-branching clades (i.e. the Effect Hypothesis of Vrba 1984).

This alternative interpretation predicts the presence of many low-diversity, early-branching fish lineages on landscapes with low rates of river capture. This
alternative interpretation differs from the Lagrange-generated ancestral-area reconstructions by positing different rates of speciation and extinction in clades inhabiting the Atlantic coastal drainages and La Plata basin. In other words, this alternative interpretation it not neutral with respect to DEC parameter values among regions, positing instead that rates of speciation and extinction are correlated with rates of river capture.

Museums and cradles

In evaluating distributional patterns of Neotropical fish distributions in southeastern Brazil, Ribeiro (2006) concluded that the Atlantic coastal drainages (Region A of the present study) served as both a cradle and a museum of diversity for different fish groups. The terms "evolutionary cradle" and "evolutionary museum" are alternative hypotheses for the occurrence of areas with high species richness (Stebbins 1974). An "evolutionary cradle" is an area with high rates of speciation, where environmental conditions promote speciation. By contrast, an "evolutionary museum" is an area with low rates of extinction, where low rates of environmental disturbance act to preserve early-branching taxa, and where species richness accumulates through long periods of geological time.

Results of this study on the Hypoptopomatinae, Neoplecostominae and Otothyrinae broadly concur with these conclusions of Ribeiro (2006) (Figs. 8-9). All three HNO subfamilies are inferred by Lagrange ancestral-area reconstructions to have originated in the Atlantic coastal drainages, suggesting that this region served as the cradle for early diversification in these clades. In addition, several lineages of Neoplecostominae remain confined to the region of the Atlantic coastal drainages, which therefore also appears to serve as a museum for these clades. These major patterns of diversification in Neoplecostominae in the Atlantic coastal drainages and Brazilian Shield were previously recognized by Roxo et al. (2012a). For Hypoptopomatinae, most of the diversification occurred in lowlands of the Amazon, Orinoco and Paraguay basins, and the species Lampiella gibbosa appears to be a relictual lineage confined to the Atlantic coastal drainages. Diversification within Otothyrinae exhibits a pattern with monophyletic lineages in each of the several regions and basins of the South American platform (Fig. 9).

Acknowledgments

We thank Guilherme J. Costa Silva, Jefferson M. Henriques, Alex T. Ferreira, Mahmoud Mehanna and Renato Devidé for their help during the collection expeditions; Victor A. Tagliacollo for help with the data analysis; Juan I. Montoya-Burgos and Roberto E. Reis for providing tissue samples; Bruno F. Melo, Danilo Pinhal, Ricardo C. Benine, Roberto E. Reis and Tiago P. Carvalho for fruitful discussions; Fernanda O. Martins for helps with the taxonomic identification. This research was supported by the Brazilian agency FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo, proc. 2010/01610-9 to FFR and proc. 2012/01622-2 to GSCS).

References

Abell R, Thieme ML, Revenga C, Bryer M, Kottelat M, Bogutskaya N, Coad B, Mandrak N, Balderas SC, Bussing W, Stiassny MLJ, Skelton P, Allen GR, Unmack P, Naseka A, Ng R, Sindorf N, Robertson J, Armijo E, Higgins JV, Heibel TJ, Wikramanayake E, Olson D, Lopez HL, Reis RE, Lundberg JG, Perez MHS, Petry P (2008). Freshwater ecoregions of the world: A new map of biogeographic units for freshwater biodiversity conservation. Bioscience, 58, 403414.

Ab'Saber AN (1957) O problema das conexões antigas e da separação da drenagem do Paraíba e Tietê. Boletim Paulista Geografia, 26, 38-49.
Ab’Saber AN (1998) Megageomorfologia do Território Brasileiro. In: Geomorfologia do Brasil (eds Cunha SB, Guerra AJT), pp. 71-106. Bertrand, Rio de Janeiro.

Albert JS, Carvalho TP (2011) Neogene assembly of modern faunas. In: Historical biogeography of Neotropical freshwater fishes (eds Albert JS, Reis RE), pp. 119136. University of California Press, Berkeley, Los Angeles.

Albert JS, Crampton WGR (2010) The geography and ecology of diversification in Neotropical freshwaters. Nature Education Knowledge, 1, 13-19.
Albert JS, Lovejoy NR, Crampton WGR (2006) Miocene tectonism and the separation of cis-and trans-Andean river basins: Evidence from Neotropical fishes. Journal of South American Earth Sciences, 21, 14-27.
Albert JS, Petry P, Reis RE (2011) Major biogeographic and phylogenetic patterns. In: Historical Biogeography of Neotropical Freshwater Fishes (eds Albert JS, Reis RE), pp. 21-57. University of California Press, Berkeley, Los Angeles.
Albert JS, Reis RE (2011) Historical biogeography of Neotropical freshwater fishes, 1st edn. University of California Press, Berkeley, Los Angeles.

Almeida FFM, Carneiro CDR (1998) Origem e evolução da Serra do Mar. Revista Brasileira de Geociências, 28, 135-150.
do Amaral PG (2012) Paleoenvironmental reconstruction of a Late Quaternary lagoon system in southern Brazil (Jagurana region, Santa Catarina state) based on multiproxy analysis. Quaternary International, 279, 120.
Armbruster JW (1998) Modifications of the Digestive Tract for Holding Air in Loricariid and Scoloplacid Catfishes. Copeia, 3, 663-675.

Armbruster JW (2004) Phylogenetic relationships of the sucker-mouth armored catfishes (Loricariidae) with particular emphasis on the Hypostominae and the Ancistrinae. Zoological Journal of the Linnean Society, 141, 1-80.
Armstrong DM (1977) Dispersal vs. dispersion: Process vs. pattern. Systematic Zoology, 26, 210-211.
Arratia G (1987) Description of the primitive family Diplomystidae (Siluriformes, Teleostei, Pisces): morphology, taxonomy and phylogenetic implications. Bonner Zoologische Monographies, 24, 1-120.
Beheregaray LB, Sunnucks P, Briscoe DA (2002) A rapid fish radiation associated with the last sea-level changes in southern Brazil: the silverside Odontesthes perugiae complex. Proceedings of the Royal Society of London. Series B: Biological Sciences, 269, 65-73.
Bertuzzo E, Muneepeerakul R, Lynch HJ, Fagan WF, Rodriguez-Iturbe I, Rinaldo A (2009) On the geographic range of freshwater fish in river basins. Water Resources Research, 45(11).

Bishop P (1995) Drainage rearrangement by river capture, beheading and diversion. Progress in Physical Geography, 19, 449-473.
Bizerril CRSF (1994) Análise taxonômica e biogeográfica da ictiofauna de água doce do leste brasileiro. Acta Biologica Leopoldensia, 16, 51-80.
Blakey R (2006) Plate tectonics and continental drift: Regional paleogeographic views of earth history. Available at: http://jan.ucc.nau.edu/~rcb7/globaltext.html (accessed 14 August 2013).
Bloom DD, Lovejoy NR (2011) The biogeography of marine incursions in South America. In: Historical biogeography of Neotropical freshwater fishes (eds Albert JS, Reis RE), pp. 137-144. University of California Press, Berkeley, Los Angeles.
Bloom DD, Weir JT, Piller KR, Lovejoy NR (2013) Do freshwater fishes diversify faster than marine fishes? A test using state-dependent diversification analyses
and molecular phylogenetics of new world silversides (Atherinopsidae). Evolution, 67, 2040-2057.

Buckup PA (2011) The Eastern Brazilian Shield. In: Historical Biogeography of Neotropical Freshwater Fishes (eds Albert JS, Reis RE), pp. 203-210. University of California Press, Berkeley, California.
Carvalho TP, Albert JS (2011) The Amazon-Paraguay divide. In: Historical Biogeography of Neotropical Freshwater Fishes (eds Albert JS, Reis RE), pp. 193-202. University of California Press, Berkeley, California.

Cesero P, Ponte FC (1997) Análise comparativa da paleogeologia dos litorais atlânticos brasileiro e africano. Boletim de Geociências, PETROBRAS, 11, 1-18.
Chiachio MC, Oliveira C, Montoya-Burgos JI (2008) Molecular systematic and historical biogeography of the armored Neotropical catfishes Hypoptopomatinae and Neoplecostominae (Siluriformes: Loricariidae). Molecular Phylogenetics and Evolution, 49, 606-617.

Cockerell TDA (1925) A fossil fish of the family Callichthyidae. Science, 62, 397-398.
Covain R, Fisch-Muller S (2007) The genera of the Neotropical armored catfish subfamily Loricariinae (Siluriformes: Loricariidae): a practical key and synopsis. Zootaxa, 1462, 1-40.
Cox CB, Moore PD (2005) Biogeography: an ecological and evolutionary approach, 7th edn. Blackwell, Oxford, United Kingdom.

Cramer CA, Bonatto SL, Reis RE (2011) Molecular phylogeny of the Neoplecostominae and Hypoptopomatinae (Siluriformes: Loricariidae) using multiple genes. Molecular Phylogenetics and Evolution, 59, 43-52.

Cramer CA, Liedke AMR, Bonatto LS, Reis RE (2008) The phylogenetic relationship of the Hypoptopomatinae and Neoplecostominae (Siluriformes: Loricariidae) as inferred from mitochondrial cytochrome c oxidase I sequences. Bulletin of Fish Biology, 9, 51-59.
Edgar RC (2004) Muscle: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics, 5, 1-19.
Eigenmann CH (1906) The freshwater fishes of the South and Middle America. Popular Science Monthly, LXVIII, 515-530.
Eigenmann CH, Eigenmann RS (1890) South America Nematognathi. PhD Thesis, California Academy of Science, San Francisco.

Eigenmann CH, Eigenmann RS (1891) A catalogue of the freshwater fishes of South America. Proceedings of the United States National Museum, XIV, 1-81.
Eschmeyer W (2013) Catalog of fishes. Electronic publication in "World Wide Web". Available at: http://www.calacademy.org/research/ichthyology/catalog (accessed 20 February 2013).

Eschmeyer WN, Fong JD (2013) Species by Family/Subfamily. Available at: http://research.calacademy.org/research/ichthyology/catalog/SpeciesByFamily.asp (accessed 18 November 2013).

Fagan WF (2002) Connectivity, fragmentation, and extinction risk in dendritic metapopulations. Ecology, 83, 3243-3249.

Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39, 783-791.

Gosline WA (1947) Contributions to the classification of the loricariid catfishes. Arquivos do Museu Nacional do Rio de Janeiro, 41, 79-134.

Grande L (1987) Redescription of Hypsidoris farsonensis (Teleostei: Siluriformes), with a reassessment of its phylogenetic relationships. Journal of Vertebrate Paleontology, 7, 24-54.

Grande L, de Pinna MCC (1998) Description of a second species of Hypsidoris and a reevaluation of the genus and family Hypsidoridae. Journal of Vertebrate Paleontology, 18, 451-474.

Grant CEH, Lowe WH, Fagan WF (2007) Living in the branches: population dynamics and ecological processes in dendritic networks. Ecology Letters, 10, 165-175.

Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95-98.

Hocutt CH, Wiley EO (1986) Zoogeography of the Freshwater Fishes of North America. John Wiley and Sons, New York.

Howes GJ (1983) The cranial muscles of loricarioid catfishes, their homologies and value as taxonomic characters (Teleostei: Siluroidei). Bulletin of the British Museum (Natural History) Zoology Series, 45, 309-345.

Hubbell SP (2001) The Unified Neutral Theory of Biodiversity and Biogeography Monographs in Population Biology v32. Princeton University Press, New Jersey. Huelsenbeck JP, Ronquist F (2001) MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics, 17, 754-755.

Isbrücker IJH (1980) Classification and catalogue of the mailed Loricariidae (Pisces, Siluriformes). Instituut voor Taxonomische Zoölogie (Zoölogisch Museum) Universiteit van Amsterdam, 22, 1-181.

Jablonski D, Roy K, ValentineJW (2006) Out of the tropics: evolutionary dynamics of the latitudinal diversity gradient. Science, 314, 102-106.
Jordan DS (1896) Science sketches. A.C. McClurg and Company, Chicago.
Jobb G, von Haeseler A, Strimmer K (2004) TREEFINDER: a powerful graphical analysis environment for molecular phylogenetics. BMC Evolutionary Biology, 4, 4-18.

Lanfear R, Calcott B, Ho SYW, Guindon S (2012) PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution, 29, 1695-1701.

Langeani F (1990) Revisão do gênero Neoplecostomus, com a descrição de quatro espécies novas do sudeste brasileiro (Ostariophysi, Siluriformes, Loricariidae). Comunicações do Museu de Ciencias e Tecnologia da PUCRS, Série Zoologia, 3, 3-31.

Lieberman BS (2008) Emerging syntheses between palaeobiogeography and macroevolutionary theory. Proceedings of the Royal Society of Victoria, 120, 5157.

Lieberman BS, Eldredge N (1996) Trilobite biogeography in the Middle Devonian: Geological processes and analytical methods. Paleobiology, 22, 66-79.

Lima FC, Ribeiro AC (2011) Continental-scale tectonic controls of biogeography and ecology. In: Historical biogeography of Neotropical freshwater fishes (eds Albert JS, Reis RE), pp. 145-164. University of California Press, Berkeley, Los Angeles. Lomolino MV, Riddle BR, Whittaker RJ, Brown JH (2010) Biogeography, 4th edn. Sinauer Associates, Sunderland, Massachusetts.

López-Fernández H, Albert JS (2011) Paleogene Radiations. In: Historical biogeography of Neotropical freshwater fishes (eds Albert JS, Reis RE), pp. 105118. University of California Press, Berkeley, Los Angeles.

López-Fernández H, Arbour JH, Winemiller KO, Honeycutt RL (2013) Testing for ancient adaptive radiations in Neotropical cichlid fishes. Evolution, 67, 13211337.

Lovejoy NR, Albert JS, Crampton WGR (2006) Miocene marine incursions and marine/freshwater transitions: Evidence from Neotropical fishes. Journal of South America Earth Sciences, 21, 5-13.

Lucinda PHF (2005) Systematics of the genus Cnesterodon Garman, 1895 (Cyprinodontiformes: Poeciliidae: Poecilinae). Neotropical Ichthyology, 3, 259270.

Lundberg JG (1993) African South America freshwater fish clade and continental drift: problems with a paradigm. In: The Biotic Relationship between Africa and South America. (eds Goldblatt P), pp. 156-199. Yale University Press.
Lundberg JG, Marshall LG, Guerrero J, Horton B, Malabarba MCSL, Wesselingh F (1998) The stage for Neotropical fish diversification: A history of tropical South American rivers. In: Phylogeny and Classification of Neotropical Fishes. (eds Malabarba LR, Reis RE, Vari RP, Lucena ZMS, Lucena CAS), pp. 13-48. Edipucrs, Porto Alegre.

Lundberg JG, Sullivan JP, Rodiles-Hernandez R, Hendrickson DA (2007) Discovery of African roots for the Mesoamerican Chiapas catfish, Lacantunia enigmatica, requires an ancient intercontinental passage. Proceedings of the Academy of Natural Sciences of Philadelphia, 156, 39-53.
Malabarba LR, Neto PC, Bertaco VA, Carvalho TP, dos Santos JF, Artioli LGS (2013) Guia de identificação dos peixes da bacia do rio Tramandaí. Porto Alegre, Via Sapiens.

Marshall LG, Sempere T, Butler RF (1997) Chronostratigraphy of the mammal-bearing Paleocene of South America. Journal of South American Earth Sciences, 10, 4970.

Mayden RL (1988) Vicariance biogeography, parsimony, and evolution in North American freshwater Fishes. Systematic Zoology, 37, 329-355.
Miller KG, Kominz CAS, Browning JV et al. (2005) The Phanerozoic record of global sea-level change. Science, 310, 1293-1298.

Mo T (1991) Anatomy, relationships and systematics of the Bagridae (Teleostei, Siluroidei) with a hypothesis of siluroid phylogeny. Theses Zoologicae 17, Koeltz Scientific Books, Koenigstein.

Montoya-Burgos JI, Muller S, Weber C, Pawlowski J (1998) Phylogenetic relationships of the Loricariidae (Siluriformes) based on mitochondrial rRNA gene sequences.

In: Phylogeny and classification of Neotropical fishes. (eds Malabarba LR, Reis RE, Vari RP, Lucena ZM, Lucena CAS), pp. 363-375. Edipucrs, Porto Alegre.
Muneepeerakul R, Bertuzzo E, Lynch HJ, Fagan WF, Rinaldo A, Rodriguez-Iturbe I (2008) Neutral metacommunity models predict fish diversity patterns in Mississippi-Missouri basin. Nature, 453, 220-222.
Nelson JA, Wubah DA, Whitmer ME, Johnson EA, Stewart DJ (1999) Wood-eating catfishes of the genus Panaque: gut microflora and cellulolytic enzyme activities. Journal of Fish Biology, 54, 1069-1082.

O'Grady JJ, Reed DH, Brook BW, Frankham R (2004) What are the best correlates of predicted extinction risk? Biological Conservation, 118, 513-520.
Pearson NE (1937) The fishes of the Beni-Mamoré and Paraguay basin, and a discussion of the origin of the Paraguayan fauna. Proceedings of the California Academy of Sciences, 23, 99-114.
Pereira TL, Santos U, Schaefer CE, Souza GO, Paiva SR, Malabarba LR, Schmidt EE, Dergam JA (2012) Dispersal and vicariance of Hoplias malabaricus (Bloch, 1794) (Teleostei, Erythrinidae) populations of the Brazilian continental margin. Journal of Biogeography, 40, 905-914.
de Pinna MCC (1993) Higher-level phylogeny of Siluriformes (Teleostei, Ostariophysi), with a new classification of the order. PhD Thesis, City University of New York, New York.
de Pinna MCC (1998) Phylogenetic relationships of Neotropical Siluriformes (Teleostei: Ostariophysi): historical overview and synthesis of hypotheses. In: Phylogeny and Classification of Neotropical Fishes. (eds Malabarba LR, Reis RE, Vari RP, Lucena CAS, Lucena ZMS), pp. 279-330. Museu de Ciência e Tecnologia PUCRS, Porto Alegre.
Pitman WC III, Cande SC, LaBrecque J, Pindell J (1993) Fragmentation of Gondwana: The separation of Africa from South America. In: Biological Relationships between Africa and South America. (eds Goldblatt P), pp. 15-34. Yale University Press, New Haven, Connecticut.
Platnick NI (1976) Concepts of dispersal in Historical Biogeography. Systematic Zoology, 25, 294-295.
Pyron RA, Burbrink FT (2013) Phylogenetic estimates of speciation and extinction rates for testing ecological and evolutionary hypotheses. Trends in Ecology and Evolution, 28, 729-736.

Rabosky DL (2013) Diversity Dependence, Ecological Speciation, and the Role of Competition in Macroevolution. Annual Review of Ecology, Evolution, and Systematics, 44(1).
Rambaut A, Drummond AJ (2007a) Tracerv1.5. Available at: http://beast.bio.ed.ac.uk/Tracer (accessed 04 November 2013).
Rambaut A, Drummond AJ (2007b) TreeAnnotator v1.7.5. Available at: http://beast.bio.ed.ac.uk/TreeAnnotator (accessed 09 November 2013).

Ree RH, Moore BR, Webb CO, Donoghue MJ (2005) A likelihood framework for inferring the evolution of geographic range on phylogenetic trees. Evolution, 59, 2299-2311.

Ree RH, Smith SA (2008) Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Systematic Biology, 57, 4-14.

Regan CT (1904) A monograph of the fishes of the family Loricariidae. Transactions of the Zoological Society of London, 17, 191-350.

Reis RE (2013) Conserving the freshwater fishes of South America. International Zoo Yearbook, 47, 65-70.

Reis RE, Kullander SO, Ferraris CJ (2003). CLOFFSCA-Check list of the freshwater fishes of South and Central America. Edipucrs.
Reis RE, Pereira EHL, Armbruster JW (2006) Delturinae, a new loricariid catfish subfamily (Teleostei, Siluriformes), with revisions of Delturus and Hemipsilichthys. Zoological Journal of the Linnean Society, 147, 277-299.

Reis RE, Schaefer SA (1998) New cascudinhos from southern Brazil: systematics, endemism, and relationships (Siluriformes, Loricariidae, Hypoptopomatinae). American Museum Novitates, 3254, 1-25.

Reis RE, Weber C, Malabarba LR (1990) Review of the genus Hypostomus Lacépède, 1803 from southern Brazil, with descriptions of three new species (Pisces, Siluriformes, Loricariidae). Revue Suisse de Zoologie, 97, 729-766.

Ribeiro AC (2006) Tectonic history and the biogeography of the freshwater fishes from the coastal drainages of eastern Brazil: an example of faunal evolution associated with a divergent continental margin. Neotropical Ichthyology, 4, 225-246.

Ribeiro AC, Jacob RM, Silva RRSR, Lima FCT, Ferreira DC, Ferreira KM, Mariguela TC, Pereira LHG, Oliveira C (2013) Distributions and phylogeographic data of rheophilic freshwater fishes provide evidences on the geographic extension of a
central-Brazilian Amazonian palaeoplateau in the area of the present day Pantanal Wetland. Neotropical Ichthyology, 11, 319-326.
Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572-1574.
Ronquist F, Sanmartín I (2011) Phylogenetic methods in biogeography. Annual Review of Ecology, Evolution and Systematics, 42, 441-464.
Rosa RS, Menezes NA, Britski HA, Costa WJEM, Groth F (2004) Diversidade, padrões de distribuição e conservação dos peixes da Caatinga. In: Ecologia e conservação da Caatinga (eds Leal IR, Tabarelli M, Silva JMC). pp. 135-180. Edufpe, Recife.

Roxo FF, Zawadzki CH, Alexandrou MA, Costa Silva GJ, Chiachio MC, Foresti F, Oliveira C (2012a) Evolutionary and biogeographic history of the subfamily Neoplecostominae (Siluriformes: Loricariidae). Ecology and Evolution, 2, 24382449.

Roxo FF, Zawadzki CH, Costa Silva GJ, Chiachio MC, Foresti F, Oliveira C (2012b) Molecular systematics of the armored neotropical catfish subfamily Neoplecostominae (Siluriformes, Loricariidae). Zootaxa, 3390, 33-42.
Sabaj MH, Armbruster JW, Page LM (1999) Spawning in Ancistrus (Siluriformes: Loricariidae) with comments on the evolution of snout tentacles as a novel reproductive strategy: larval mimicry. Ichthyological Exploration of Freshwaters, 10, 217-229.
Sabaj-Pérez MH, Orangel AS, Lundberg JG (2007) Fossil catfishes of the families Doradidae and Pimelodidae (Teleostei: Siluriformes) from the Miocene Urumaco Formation of Venezuela. Proceedings of the Academy of Natural Sciences of Philadelphia, 156, 157-194.
Schaefer SA (1987) Osteology of Hypostomus plecostomus (Linnaeus) with a phylogenetic analysis of the loricariids subfamilies (Pisces: Siluroidei). Natural History Museum of Los Angeles County, 394, 1-31.
Schaefer SA (1991) Phylogenetic Analysis of the Loricariid Subfamily Hypoptopomatinae (Pisces, Siluroidei, Loricariidae), with Comments on Generic Diagnoses and Geographic-Distribution. Zoological Journal of the Linnean Society of London, 102, 1-41.
Schaefer SA (1998) Conflict and resolution: impact of new taxa on phylogenetic studies of the Neotropical cascudinhos (Siluroidei: Loricariidae). In: Phylogeny and
classification of neotropical fishes (eds Malabarba LR, Reis RE, Vari RP, Lucena ZMS, Lucena CAS), pp. 375-400. Edipucrs, Porto Alegre.

Scotese CR (2004) Cenozoic and Mesozoic paleogeography: Changing terrestrial pathways. In: Frontiers of Biogeography (eds Lomolino MV, Heaney LR), pp. 926. Sinauer Associates, Sunderland, Massachusetts.

Shimodaira H (2002) An approximately unbiased test of phylogenetic tree selection. Systematic Biology, 51, 492-508.

Shimodaira H, Hasegawa M (1999) Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Molecular Biology and Evolution, 16, 1114-1116.

Silva JFP (2004) Two new species of Bryconamericus Eigenmann (Characiformes: Characidae) from southern Brazil. Neotropical Ichthyology, 2, 55-60.
Smith GR (1981) Late Cenozoic freshwater fishes of North America. Annual Review of Ecology and Systematics, 12, 163-193.

Sullivan JP, Lundberg JG, Hardman M (2006) A phylogenetic analysis of the major groups of catfishes (Teleostei: Siluriformes) using rag1 and rag2 nuclear gene sequences. Molecular Phylogenetics and Evolution, 41, 636-662.

Stamatakis A (2006) RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22, 26882690.

Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web servers. Systematic Biology, 57, 758-771.
Stanley SM (1998) Macroevolution: Pattern and Process. Johns Hopkins University Press, Baltimore.

Stebbins GL (1974) Flowering Plants: Evolution above the Species Level. Belknap Press of Harvard University Press, Cambridge, Massachusetts.
Strimmer K, Rambaut A (2002) Inferring confidence sets of possibly misspecified gene trees. Proceedings of the Royal Society B, 269, 137-142.

Swofford DL (2003) PAUP*: phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland, Massachusetts.
Tamura K, Dudley J, Nei M, Kumar S (2007) Mega 4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24, 1596-1599.

Vari RP, Malabarba LR (1998) Neotropical ichthyology: An overview. In: Phylogeny and Classification of Neotropical Fishes (eds Malabarba LR, Reis RE, Vari R, Lucena ZMS, Lucena CAS), pp. 1-11. Edipucrs, Porto Alegre.
Vellend M (2010) Conceptual synthesis in community ecology. The Quarterly Review of Biology, 85, 183-206.
Vrba ES (1984) What is species selection?. Systematic Zoology, 33, 318-328.
Waters JM, Allibone RM, Wallis GP (2006) Geological subsidence, river capture, and cladogenesis of galaxiid fish lineages in central New Zealand. Biological Journal of the Linnean Society, 88, 367-376.
Wilkinson MJ, Marshall LG, Lundberg JG (2006) River behavior on megafans and potential influences on diversification and distribution of aquatic organisms. Journal South American Earth Sciences, 21, 151-172.
Wilkinson MJ, Marshall LG, Lundberg JG, Kreslavsky MH (2010) Megafan environments in northern South America and their impact on Amazon Neogene aquatic ecosystems. In: Amazonia, Landscape and Species Evolution: A Look into the Past. (eds Horn C, Wesselingh EP), pp. 165-185. Blackwell Publishing.

Winemiller KO, López-Fernández H, Taphorn DC, Nico LG, Duque AB (2008) Fish assemblages of the Casiquiare River, a corridor and zoogeographical filter for dispersal between the Orinoco and Amazon basins. Journal of Biogeography, 35, 1551-1563.

Xia X, Xie Z (2001) DAMBE: Data analysis in molecular biology and evolution. Journal of Heredity, 92, 371-373.
Xia X, Xie Z, Salemi M, Chen L, Wang Y (2003) An index of substitution saturation and its application. Molecular Phylogenetics and Evolution, 26, 1-7.
Xia X, Lemey P (2009) Assessing substitution saturation with DAMBE. In: The Phylogenetic Handbook: A Practical Approach to DNA and Protein Phylogeny (eds Lemey P, Salemi M, Vandamme AM), pp. 615-630. Cambridge University Press.
Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292, 686-693.
Supplementary Table 1. Species included in the present study. ANSP = Academy of Natural Sciences of Drexel University, Philadelphia; AUM = Auburn University Natural History Museum; LBP = Laboratório de Biologia e Genética de Peixes, Universidade Estadual Paulista; MCP = Museu de Ciências e Tecnologia, Pontifícia Universidade Católica do Rio Grande do Sul; MNRJ = Museu Nacional da Universidade Federal do Rio de Janeiro; NUP = Núcleo de Pesquisas em Limnologia, Ictiologia e Aqüicultura, Universidade Estadual de Maringá; MHNG = Museum of Natural History of the City of Geneva.

Number	Collection No	Fish No	GenBank (Reticulon/16S/COI/CytB)	Species	Location (river, city, state, country)
1	LBP 6037	29054	Not submitted	Hisonotus armatus	Rio Maquiné/Osório/RS/Brazil
2	MCP 21375		-/-/EU371011/-	Hisonotus armatus	Lagoa dos Patos/São José do Norte/RS/Brazil
3	MCP 37682		Not submitted	Hisonotus armatus	Arroio Arambare/Pedro Osório/RS/Brazil
4	LBP 3472	20258	Not submitted	Hisonotus notatus	Afluente Rio Aduelas/Macaé/RJ/Brazil
5	MNRJ 37474		Not submitted	Hisonotus notatus	-/Casimiro de Abreu/RJ/Brazil
6	LBP 4765	25554	Not submitted	Hisonotus taimensis	Rio Guaíba/Barra do Ribeiro/RS/Brazil
7	LBP 13147	51066	Not submitted	Hisonotus taimensis	Riacho sem nome/Agudo/RS/Brazil
8	LBP 7407	35655	Not submitted	Hisonotus leucofrenatus	Rio Batatau/Itapeúna/SP/Brazil
9	MCP 31819		Not submitted	Hisonotus leucofrenatus	Afluente Rio Nhundiaquara/Morretes/PR/Brazil
10	MCP 41351		Not submitted	Hisonotus leucophrys	Rio Ariranhas/Xavantina/SC/Brazil
11	MCP 21644		Not submitted	Hisonotus charrua	Rio Quaraí Mirim/Quaraí/RS/Brazil
12	MCP 37684		Not submitted	Hisonotus laevior	Arroio Arambare/Pedro Osório/ RS/Brazil

13	LBP 13187	51070	Not submitted	Hisonotus laevior	Riacho sem nome/Camaquá/RS/Brazil
14	LBP 3376	21246	Not submitted	Hisonotus laevior	Arroio dos Corrientes/Pelotas/RS/Brazil
15	LBP 3376	21248	Not submitted	Hisonotus laevior	Arroio dos Corrientes/Pelotas/RS/Brazil
16	LBP 4720	24941	Not submitted	Hisonotus cf. charrua	Arroio Cuaró Grande/Artigas/Uruguay
17	MCP 40762		Not submitted	Hisonotus notopagos	Arroio Mantiqueira/Lavras do Sul/RS/Brazil
18	LBP 4723	24951	Not submitted	Eurycheilichthys sp. 1	Arroio Jaboticaba/Veranópolis/RS/Brazil
19	LBP 4871	24919	Not submitted	Epactionotus bilineatus	Rio Carvalho/São Francisco de Paula/RS/Brazil
20	MCP 23683		-/-/EU371004/-	Epactionotus itaimbezinho	Rio Mangue/Morrinho do Sul/RS/Brazil
21	MCP 23606		-/-/EU371005/-	Epactionotus gracilis	Rio Morto/Meleiro/SC/Brazil
22	LBP 3335	20465	Not submitted	Hisonotus heterogaster	Arroio sem nome/Rio Grande/RS/Brazil
23	LBP 579	8565	Not submitted	Hisonotus heterogaster	Afluente Rio Guaíba/Eldorado do Sul/RS/Brazil
24	LBP 4719	25636	Not submitted	Hisonotus nigricauda	Arroio do Nariz/Rosário do Sul/RS/Brazil
25	LBP 5528	25343	Not submitted	Otothyropsis marapoama	Ribeirão Cubatão/Marapoama/SP/Brazil
26	LBP 4863	24930	Not submitted	Hisonotus ringueleti	Arroio Cuaró Grande/Artigas/Uruguay
27	MCP 40943		Not submitted	Hisonotus carreiro	Arroio Guabiju/Guabiju/RS/Brazil
28	MCP 40492		Not submitted	Hisonotus prata	Rio da Prata/Nova Prata/RS/Brazil

29	MCP 41352		Not submitted	Hisonotus megaloplax	Arroio Cragoata/Passo Fundo/RS/Brazil
30	LBP 13055	51035	Not submitted	Hisonotus montanus	Rio Canoas/Vargem/SC/Uruguay
31	MCP 41474		Not submitted	Hisonotus aky	Rio Forquilha/Paim Filho/RS/Brazil
32	LBP 13072	51046	Not submitted	Hisonotus iota	Rio Chapecó/Coronel Freitas/SC/Brazil
33	MCP 40029		Not submitted	Hisonotus iota	Rio Chapeco/Coronel Freitas/SC/Brazil
34	LBP 8249	38464	Not submitted	Parotocinclus prata	Rio Santo Antônio/Luizlândia/MG/Brazil
35	LBP 7472	32387	Not submitted	Parotocinclus prata	Córrego Guarda-Mor/Guarda-Mor/MG/Brazil
36	LBP 8258	38298	Not submitted	Parotocinclus robustus	Córrego Cachoeira/Bocaiúva/MG/Brazil
37	LBP 7182	34694	Not submitted	Parotocinclus cf. bahiensis	Rio Coité/Lençóis/BA/Brazil
38	LBP 5867	28345	Not submitted	New taxon 1	Rio Curral das Éguas/Três Marias/MG/Brazil
39	LBP 17402	67143	Not submitted	Hisonotus bocaiuva	Córrego Cachoeira/Bocaiuva/MG/Brazil
40	LBP 7244	33302	Not submitted	New taxon 2	Afluente Rio Araguari/Perdizes/MG/Brazil
41	LBP 3457	20293	Not submitted	Parotocinclus sp. 1	Rio da Conceição/Guarapari/ES/Brazil
42	LBP 13923	58218	Not submitted	Hisonotus francirochai	Córrego sem nome/Capitinga/MG/Brazil
43	LBP 871	8801	Not submitted	Hisonotus paulinus	Afluente do rio Grande/Paranapiacaba, SP/Brazil
44	LBP 3932	22661	Not submitted	Hisonotus paulinus	Rio Paraitinguinha/Salesópolis/SP/Brazil

45	LBP 17583	69477	Not submitted	Hisonotus depressicauda	Riacho sem nome/Sapucaí Mirim/MG/Brazil
46	LBP 17583	69479	Not submitted	Hisonotus depressicauda	Riacho sem nome/Sapucaí Mirim/MG/Brazil
47	LBP 8051	37802	Not submitted	Hisonotus depressicauda	Ribeirão do Salto/Delfim Moreira/MG/Brazil
48	MCP 22602		Not submitted	Hisonotus depressicauda	Arroio Barra Grande/Paulo Frontin/PR/Brazil
49	LBP 2910	18756	Not submitted	Hisonotus depressicauda	Ribeirão da Quinta/Botucatu/SP/Brazil
50	LBP 4854	25626	Not submitted	Microlepidogaster dimorpha	Riacho Grotão/Araxá/MG/Brazil
51	LBP 7253	33309	Not submitted	Rhinolekos britskii	Córrego sem nome/Pires do Rio/GO/Brazil
52	LBP 7245	34405	Not submitted	Rhinolekos britskii	Afluente Rio Arapuca/Bela Vista de Goias/GO/Brazil
53	LBP 5848	28365	Not submitted	Rhinolekos sp. 1	Riacho sem nome/Águas Fria de Goiás/GO/Brazil
54	LBP 7246	34410	Not submitted	Rhinolekos garavelloi	Córrego Fazenda Lageado/Caldas Novas/GO/Brazil
55	LBP 7246	33305	Not submitted	Rhinolekos garavelloi	Córrego Fazenda Lageado/Caldas Novas/GO/Brazil
56	LBP 2869	18571	EU817527/-/--	Parotocinclus maculicauda	Rio Fau/Miracatu/SP/Brazil
57	LBP 4722	24946	EU817525/-/-/-	Pseudotothyris sp. 1	Lago Acaraí/São Francisco do Sul/SC/Brazil
58	LBP 2094	13851	Not submitted	Pseudotothyris obtusa	Riacho Descoberto/Guaratuba/PR/Brazil
59	LBP 1971	13685	EU817526/-/-/-	Otothyris travassosi	Riacho Rosário/Canavieiras/BA/Brazil
60	MHNG 2586.95	BR1200	EU817552/-/-/-	Pseudotothyris janeirensis	Rio Taiaçupeba/-/SP/Brazil

61	LBP 6950	35328	Not submitted	Parotocinclus sp. 2	Igarapé Nouba Uba/São Gabriel da Cachoeira/AM/Brazil	
62	ANSP 179131		-/-/GQ225426/-	Parotocinclus britskii	-\|---	
63	LBP 4787	25579	Not submitted	Parotocinclus eppleyi	Caño Tama Tama/-/-/Venezuela	
64	AUM 43947		--/-EU359455/-	Parotocinclus eppleyi	------/	
65	LBP 5624	35327	Not submitted	Parotocinclus aff. spilurus	Rio Maravilha/Balsas/MA/Brazil	
66	LBP 5624	35326	Not submitted	Parotocinclus aff. spilurus	Rio Maravilha/Balsas/MA/Brazil	
67	LBP 334	4276	Not submitted	Hisonotus sp. 1	Ribeirão Santo Inácio/Moema/MG/Brazil	
68	LBP 8276	38487	Not submitted	Hisonotus sp. 2	Rio Verde Grande/Jaíba/MG/Brazil	
69	LBP 16277	61771	Not submitted	Hisonotus sp. 3	Rio Feio/Querência/MT/Brazil	
70	LBP 7948	35750	Not submitted	Hisonotus chromodontus	Rio dos Patos/Nova Mutum/MT/Brazil	
71	LBP 7948	35749	Not submitted	Hisonotus chromodontus	Rio dos Patos/Nova Mutum/MT/Brazil	
72	LBP 10981	50459	Not submitted	Parotocinclus aripuanensis	Rio Lajeado/Guajará Mirim/RO/Brazil	
73	LBP 1572	11537	Not submitted	Parotocinclus sp. 3	Ribeirão Ínsula/Barra do Garça/MT/Brazil	
74	LBP 2414	16276	Not submitted	Parotocinclus sp. 3	Córrego Fundo/Barra do Garça/MT/Brazil	
75	LBP 2514	13846	EU817539/--/-	Schizolecis guntheri	Rio Sagrado/Morretes/PR/Brazil	
76	LBP 3238	19471	EU817536/--/-	Schizolecis guntheri	Rio Garuva/Garuva/SC/Brazil	

77	LBP 2513	15240	EU817535/--/-	Schizolecis guntheri	Rio Macacu/Itaboraí/RJ/Brazil
78	LBP 2401	15272	EU817538/--/-	Schizolecis guntheri	Rio São Pedro/-/RJ/Brazil
79	LBP 2988	19646	EU817537/-/-/-	Schizolecis guntheri	Rio Indaiá/Ubatuba/SP/Brazil
80	LBP 1653	11477	EU817520/-/--	Corumbataia tocantinensis	Rio Vermelho/Goias/GO/Brazil
81	LBP 2001	12191	EU817521/-/-/-	Corumbataia cuestae	Rio Alambari/Botucatu/SP/Brazil
82	LBP 5529	25381	Not submitted	Hisonotus insperatus	Ribeirão Cubatão/ Marapoama/SP/Brazil
83	LBP 1325	11238	Not submitted	Hisonotus sp. 4	Ribeirão Keller/Marialva/PR/Brazil
84	LBP 17256	66651	Not submitted	Hisonotus piracanjuba	Córrego sem nome/Morrinhos/GO/Brazil
85	LBP 17256	66655	Not submitted	Hisonotus piracanjuba	Córrego sem nome/Morrinhos/GO/Brazil
86	MNRJ 29502	490	Not submitted	Hisonotus sp. 5	-/Cotriguaçu/MT/Brazil
87	LBP 17532	68706	Not submitted	Hisonotus sp. 6	Rio Maracanã/Tangará da Serra/MT/Brazil
88	LBP 5062	26057	Not submitted	Hisonotus sp. 7	Afluente Rio Aricá Mirim/Chapada dos Guimarães/MT/Brazil
89	LBP 5062	26056	Not submitted	Hisonotus sp. 7	Afluente Rio Aricá Mirim/Chapada dos Guimarães/MT/Brazil
90	LBP 2931	18994	JN689285/JN089823/JN089799/JN089774	Pseudotocinclus tietensis	Rio Paraitinga/Salesópolis/SP/Rio Tietê Basin
91	LBP 616	7564	JN689286/FJ625810/FJ625819/FJ965511	Pseudotocinclus juquiae	Rio Juquiá/Juquitiba/SP/Rio Ribeira do Iguape Basin
92	LBP 4391	24189	JN689280/ FJ434517/FJ434540/FJ965510	Pareiorhina rudolphi	Ribeirão Guaxinduva/Jundiaí/SP/Rio Tietê Basin

93	LBP 7383	34843	JN689310/ FJ965496/FJ965507/FJ965517	Neoplecostomus selenae	Ribeirão das Batéias/Riacho Grande/SP/Rio Paranapanema Basin
94	LBP 7525	34832	-/JN089843/JN089818/JN089794	Neoplecostomus botucatu	Cachoeira Véu da Noiva/Botucatu/SP/Rio Paranapanema Basin
95	NUP 3560	9701	JN689293/ FJ434506/FJ434529/FJ965516	Neoplecostomus yapo	Rio Tibagi/Fortaleza/PR/Rio Paranapanema Basin
96	LBP 2732	17444	JN689303/FJ965495/FJ965505/FJ965515	Neoplecostomus paranensis	Córrego Mocoquinha/Cajuru/SP/Rio Grande Basin
97	LBP 5901	27990	JN689304/JN089837/JN089812/JN089788	Neoplecostomus langeanii	Córrego São Domingos/Muzambinho/MG/Rio Grande Basin
98	LBP 2861	18616	JN689298/JN089833/JN089808/JN089784	Neoplecostomus bandeirante	Rio Paraitinga/Salesópolis/SP/Rio Tietê Basin
99	NUP 2528	9423	JN689295/FJ434520/FJ434543/FJ965513	Neoplecostomus corumba	Rio Corumbá/GO/Rio Paranaíba Basin/Upper Rio Paraná Basin
100	LBP 645	7593	JN689311/FJ434508/FJ434531/FJ965518	Neoplecostomus microps	Ribeirão Cajarana/Pindamonhangaba/SP/Rio Paraíba do Sul Basin
101	LBP 6537	31681	JN689313/FJ965494/FJ965504/FJ965519	Neoplecostomus franciscoensis	Rio das Velhas/Brumadinho/MG/Rio São Francisco Basin
102	LBP 2551	15243	JN689312/FJ434507/FJ434530/ FJ965512	Neoplecostomus espiritosantensis	Rio Jucu/Domingos Martins/ES/Oriental Coastal Basin
103	LBP 8380	37559	JN689288/JN089826/JN689277/JN089777	Pareiorhina hyptiorhachis	Rio Pomba/Santa Barbara do Tugúrio/MG/Rio Paraíba do Sul Basin
104	LBP 1087	10256	JN689290/JN089828/JN089803/JN089779	Pareiorhina carrancas	Córrego do Sapateiro/Barbacena/MG/Rio Grande Basin
105	LBP 8368	37559	JN689291/JN089829/JN089804/JN089780	Pareiorhina carrancas	Córrego Beijinho/Carrancas/MG/Rio Grande Basin
106	LBP7385	34852	JN689324/FJ965491/FJ965502/FJ965526	Isbrueckerichthys epakmos	Rio Água Doce/Tapirai/SP/Rio Ribeira do Iguape Basin
107	LBP 6389	29765	JN689326/FJ965489/FJ965503/FJ965529	Isbrueckerichthys cf. calvus	Rio Taquará/California/PR/Rio Paranapanema Basin

108	LBP 7373	34853	JN689297/FJ965490/FJ965506/FJ965525	Isbrueckerichthys alipionis	Rio Betari/Iporanga/SP/Rio Ribeira do Iguape Basin
109	LBP 2650	17402	JN689325/FJ625812/FJ625821/FJ965528	Isbrueckerichthys duseni	Rio Pulador/Campinhos/PR/Rio Ribeira de Iguape Basin
110	LBP 7384	34837	JN689323/JN089845/JN089820/JN089796	Neoplecostomus ribeirensis	Rio Água Doce/Tapiraí/SP/Rio Ribeira do Iguape Basin
111	LBP 515	6334	JN689316/FJ965492/FJ965500/FJ965523	Kronichthys subteres	Rio Betari/Iporanga/SP/Rio Ribeira do Iguape Basin
112	LBP 795	8304	JN689315/FJ434503/FJ434526/FJ965522	Kronichthys lacerta	Rio Marumbi/Morretes/PR/Oriental Coastal Basin
113	LBP 2122	15096	JN689314/FJ434502/FJ434525/FJ965520	Kronichthys heylandi	Rio Parati-Mirim/Parati/RJ/Oriental Coastal Basin
114	LBP 1766	12886	JN689317/FJ965493/FJ965501/FJ965521	Kronichthys sp. 1	Rio Sítio do Meio/Mongaguá/SP/Oriental Coastal Basin
115	LBP 748	8257	JN689318/FJ625811/FJ625820/FJ965524	Pareiorhaphis splendens	Rio São João/Guaruva/PR/Oriental Coastal Basin
116	MCP 41275		-/-/EU359438/-	Pareiorhaphis cameroni	Rio Cubatão/Águas Mornas/SC/Brazil
117	LBP 902	7989	JN689319/FJ434514/FJ434537/FJ965532	Pareiorhaphis steindachneri	Rio Itapucu/Jaraguá do Sul/SC/Oriental Coastal Basin
118	MCP 41909		-/-/EU359437/-	Pareiorhaphis azygolechis	Rio Araraquara/Guaratuba/PR/Brazil
119	LBP 1161	8935	JN689320/FJ434512/FJ434535/FJ965530	Pareiorhaphis vestigipinnis	Rio Caveiras/Painel/SC/Rio Uruguai Basin
120	LBP 701	7363	JN689321/FJ434513/FJ434536/FJ965531	Pareiorhaphis hystrix	Rio Tainhas/Tainhas/RS/Oriental Coastal Basin
121	MCP 41747		EU359443/--/-	Pareiorhaphis parmula	Rio dos Patos/Lapa/PR/Brazil
122	MCP 41458		EU359439/--/-	Pareiorhaphis eurycephalus	Rio Rufino/Rio Rufino/SC/Brazil
123	LBP 4042	22905	Not submitted	Hypoptopoma inexspectatum	Rio Moa/Cruzeiro do Sul/AC/Brazil

124	LBP 693	7084	Not submitted	Hypoptopoma inexspectatum	Afluente rio Pirai/ Poconé/MT/Brazil
125	MHNG	PR 12	JN689282/FJ965486/FJ965498/FJ965508	Hypoptopoma inexspectatum	Rio Paraná/Santa Fé/Argentina
	2678.015				
126	LBP 3081	19713	EU817541/-/-/-	Hypoptopoma gulare	Rio Orinoco/Caicara del Orinoco/Bolivar/Venezuela
127	MHNG	MUS 388	EU817554/--/-	Hypoptopoma sp. 1	Export Iquitos, Upper Amazon basin, Peru
	2709.024				
128	LBP 3165	19315	EU817543/-/-/-	Acestridium discus	Rio Preto da Eva/Rio Preto da Eva/AM/Brazil
129	LBP 7204	35332	Not submitted	Acestridium sp. 1	Igarapé Ya-Mirim/São Gabriel da Cachoeira/AM/Brazil
130	LBP 6973	35324	Not submitted	Oxyropsis sp. 1	Igarapé Demuriari/São Gabriel da Cachoeira/AM/Brazil
131	LBP 4300	23945	Not submitted	Oxyropsis acutirostra	Igarapé Zamula/Barcelos/AM/Brazil
132	LBP 2652	17407	Not submitted	Lampiella gibbosa	Rio Carombé/Campinhos/PR/Brazil
133	LBP 877	8564	EU817546/--/-	Otocinclus flexilis	-/Santo Antônio da Patrulha/RS/Brazil
134	MCP 25234		-/-/EU370983/-	Otocinclus arnoldi	Rio Inhacunda/São Francisco de Assis/RS/Brazil
135	LBP 5310	26831	Not submitted	Otocinclus hoppei	Igarapé Uiratapuru/Laranjal do Jari/AP/Brazil
136	MHNG	CA25	EU817556/-/-/-	Otocinclus hoppei	Arroio Huangana, Alto Pisqui/Loreto/Ucay/Peru
	2613.057				
137	LBP 5132	26233	EU817544/-/-/-	Otocinclus vittatus	Lagoa Bairro Caiçara/Cáceres/MT/Brazil

$\left.\begin{array}{llllll}\hline \mathbf{1 3 8} & \text { MCP 34842 } & & \text {-/-/EU359432/- } & \text { Otocinclus cocama } & \text { Afluente do Cano da Concha Supay/Jenaro Herrera/Loreto/Peru } \\ \mathbf{1 3 9} & \text { MHNG no } & \text { SU07- } & \text { EU817558/-/-/- } & & \text { Otocinclus mariae }\end{array}\right]$ Witoto Ecu creek/Sipaliwini/Suriname

$\mathbf{1 5 2}$	LBP 210	4134	$-/$ GU210868/-/-	Hoplosternum littorale	Igarapé São Francisco/Rio Branco/AC/Brazil
$\mathbf{1 5 3}$	LBP 2809		GU210997/-/-/-	Corydoras oiapoquensis	Guyana coastal rivers/-/-/Guyana
$\mathbf{1 5 4}$	LBP 6862	32502	$-/$ GU210613/-/-	Corydoras imitator	Igarapé Puranga/São Gabriel da Cachoeira/AM/Brazil
$\mathbf{1 5 5}$	LBP 449	5815	Not submitted	Diplomystes mesembrinus	Rio Chubut/Los Altares/Chubut/Argentina

```
1017
1028
```

1029 Table 2. Summary of taxonomic information for species of Hypoptopomatinae, Neoplecostominae and Otothyrinae included in the analysis. Total number of valid names from Eschmeyer \& Fong (2013).

Subfamily	Genus	Species	Ecoregions
Otothyrinae	Corumbataia	cuestae	B
Otothyrinae	Corumbataia	tocantinensis	D
Otothyrinae	Eurycheilichthys	sp. 1	A
Otothyrinae	Epactionotus	bilineatus	A
Otothyrinae	Epactionotus	gracilis	A
Otothyrinae	Epactionotus	itaimbezinho	A
Otothyrinae	Hisonotus	aky	C
Otothyrinae	Hisonotus	armatus	A / C
Otothyrinae	Hisonotus	armatus	A / C
Otothyrinae	Hisonotus	armatus	A / C
Otothyrinae	Hisonotus	bocaiuva	E
Otothyrinae	Hisonotus	carreiro	A
Otothyrinae	Hisonotus	charrua	A / C
Otothyrinae	Hisonotus	cf. charrua	A / C
Otothyrinae	Hisonotus	chromodontus	D
Otothyrinae	Hisonotus	chromodontus	D
Otothyrinae	Hisonotus	depressicauda	B
Otothyrinae	Hisonotus	depressicauda	B
Otothyrinae	Hisonotus	depressicauda	B

Otothyrinae	Hisonotus	depressicauda	B
Otothyrinae	Hisonotus	depressicauda	B
Otothyrinae	Hisonotus	francirochai	B
Otothyrinae	Hisonotus	heterogaster	A
Otothyrinae	Hisonotus	heterogaster	A
Otothyrinae	Hisonotus	insperatus	B
Otothyrinae	Hisonotus	iota	C
Otothyrinae	Hisonotus	iota	C
Otothyrinae	Hisonotus	laevior	A / C
Otothyrinae	Hisonotus	laevior	A / C
Otothyrinae	Hisonotus	laevior	A / C
Otothyrinae	Hisonotus	leucofrenatus	A
Otothyrinae	Hisonotus	leucofrenatus	A
Otothyrinae	Hisonotus	leucophrys	C
Otothyrinae	Hisonotus	megaloplax	C
Otothyrinae	Hisonotus	montanus	C
Otothyrinae	Hisonotus	nigricauda	A / C
Otothyrinae	Hisonotus	notatus	A
Otothyrinae	Hisonotus	notatus	A
Otothyrinae	Hisonotus	notopagos	A
Otothyrinae	Hisonotus	paulinus	B
Otothyrinae	Hisonotus	paulinus	B

Otothyrinae	Hisonotus	piracanjua	в
Otothyrinae	Hisonotus	piracanjua	в
Otothyrinae	Hisonotus	prata	A
Otothyrinae	Hisonotus	ringueleti	c
Otothyrinae	Hisonotus	taimensis	A
Otothyrinae	Hisonotus	taimensis	A
Otothyrinae	Hisonotus	sp. 1	E
Otothyrinae	Hisonotus	sp. 2	E
Otothyrinae	Hisonotus	sp. 3	D
Otothyrinae	Hisonotus	sp. 4	c
Otothyrinae	Hisonotus	sp. 5	A
Otothyrinae	Hisonotus	sp. 6	c
Otothyrinae	Hisonotus	sp. 7	c
Otothyrinae	Hisonotus	sp. 7	c
Otothyrinae	Microlepidogaster	dimorpha	${ }^{\text {B }}$
Otothyrinae	New taxon	sp. 1	E
Otothyrinae	Newtaxon	sp. 2	B
Otothyrinae	Otothyris	travassosi	A
Otothyrinae	Otothyropsis	marapoama	B
Otothyrinae	Parotocinclus	aripuanensis	D
Otothyrinae	Parotocinclus	cf. bahiensis	A
Otothyrinae	Parotocinclus	briskii	D

Otothyrinae	Parotocinclus	eppleyi	D
Otothyrinae	Parotocinclus	eppleyi	D
Otothyrinae	Parotocinclus	maculicauda	A
Otothyrinae	Parotocinclus	prata	E
Otothyrinae	Parotocinclus	prata	E
Otothyrinae	Parotocinclus	robustus	E
Otothyrinae	Parotocinclus	aff. spilurus	E
Otothyrinae	Parotocinclus	aff. spilurus	E
Otothyrinae	Parotocinclus	sp. 1	D
Otothyrinae	Parotocinclus	sp. 2	D
Otothyrinae	Parotocinclus	sp. 3	D
Otothyrinae	Parotocinclus	sp. 3	D
Otothyrinae	Pseudotothyris	obtusa	A
Otothyrinae	Pseudotothyris	janeirensis	A
Otothyrinae	Pseudotothyris	sp. 1	A
Otothyrinae	Rhinolekos	britskii	B
Otothyrinae	Rhinolekos	britskii	B
Otothyrinae	Rhinolekos	garavelloi	B
Otothyrinae	Rhinolekos	garavelloi	B
Otothyrinae	Rhinolekos	sp. 1	B
Otothyrinae	Schizolecis	guntheri	A
Otothyrinae	Schizolecis	guntheri	A

Otothyrinae	Schizolecis	guntheri	A
Otothyrinae	Schizolecis	guntheri	A
Otothyrinae	Schizolecis	guntheri	A
Neoplecostominae	Isbrueckerichthys	alipionis	A
Neoplecostominae	Isbrueckerichthys	cf. calvus	A
Neoplecostominae	Isbrueckerichthys	epakmos	A
Neoplecostominae	Isbrueckerichthys	duseni	A
Neoplecostominae	Kronichthys	heylandi	A
Neoplecostominae	Kronichthys	lacerta	A
Neoplecostominae	Kronichthys	subteres	A
Neoplecostominae	Kronichthys	sp. 1	A
Neoplecostominae	Neoplecostomus	bandeirante	в
Neoplecostominae	Neoplecostomus	botucatu	в
Neoplecostominae	Neoplecostomus	corumba	в
Neoplecostominae	Neoplecostomus	espiritosantensis	A
Neoplecostominae	Neoplecostomus	franciscoensis	E
Neoplecostominae	Neoplecostomus	langeanii	в
Neoplecostominae	Neoplecostomus	microps	A
Neoplecostominae	Neoplecostomus	paranensis	в
Neoplecostominae	Neoplecostomus	ribeirensis	A
Neoplecostominae	Neoplecostomus	selenae	в
Neoplecostominae	Neoplecostomus	yapo	в

Neoplecostominae	Pareiorhaphis	azyolechis	A
Neoplecostominae	Pareiorhaphis	cameroni	A
Neoplecostominae	Pareiorhaphis	eurycephalus	c
Neoplecostominae	Pareiorhaphis	hystrix	A
Neoplecostominae	Pareiorhaphis	parmula	c
Neoplecostominae	Pareiorhaphis	steindacheri	A
Neoplecostominae	Pareiorhaphis	vestigipinnis	c
Neoplecostominae	Pareiorhina	carrancas	в
Neoplecostominae	Pareiorhina	carrancas	в
Neoplecostominae	Pareiorhina	hyptiorhachis	A
Neoplecostominae	Pareiorhina	rudolphi	A
Neoplecostominae	Pseudotocinclus	juquiae	A
Neoplecostominae	Pseudotocinclus	tietensis	в
Hypoptopomatinae	Acestridium	discus	D
Hypoptopomatinae	Acestridium	sp. 1	D
Hypoptopomatinae	Hypoptopoma	gulare	D
Hypoptopomatinae	Hypoptopoma	inexspectatum	CID
Hypoptopomatinae	Hypoptopoma	inexspectatum	CID
Hypoptopomatinae	Hypoptopoma	inexspectatum	CID
Hypoptopomatinae	Hypoptopoma	sp. 1	D
Hypoptopomatinae	Lampiella	gibosa	,
Hypoptopomatinae	Otocinclus	arnoldi	c

Hypoptopomatinae	Otocinclus	cocama	D
Hypoptopomatinae	Otocinclus	flexilis	A/C
Hypoptopomatinae	Otocinclus	hoppei	D
Hypoptopomatinae	Otocinclus	hoppei	D
Hypoptopomatinae	Otocinclus	mariae	D
Hypoptopomatinae	Otocinclus	mariae	D
Hypoptopomatinae	Otocinclus	vittatus	C/D
Hypoptopomatinae	Oxyropsis	acutirostra	D
Hypoptopomatinae	Oxyropsis	sp. 1	D
Total valid names for Hypoptopomatinae, Neoplecostominae and Otothyrinae			182
Total number of ingroup valid names			86
Total number of possible new species in the present work			19
Percent of valid species names included in the present work			48%

Region and Fragment Length	Name	References	Primer Sequence
F-reticulon 4	Freticul4-D		5'-AGG CTA ACT CGC TYT SGG CTT TG-3'
	Freticul4-R		5'-GGC AVA GRG CRA ART CCA TCT C-3'
	Freticul4 D2	Chiachio et al. (2008)	5'-CTT TGG TTC GGA ATG GAA AC-3'
	Freticul4 R2		5'-AAR TCC ATC TCA CGC AGG A-3'
	Freticul4 iR		5'-AGG CTC TGC AGT TTC TCT AG-3'
16 S rRNA	16 Sar	Kocher et al. (1989)	5'-ACG CCT GTt tat Cai ana Cat-3'
	16Sbr		5'-CCG GTC TGA ACT CAG ATC ACG T-3'
COI	FishF1	Ward et al. (2005)	5^{\prime}-TCA ACC AAC CAC AAA GAC ATt GGC AC-3'
	FishR1		5'-TAG ACT TCT GGG TGG CCA AAG AAT CA- ${ }^{\prime}$
CytB	L14841	Oliveira et al. (2011)	50-CCA TCC AAC ATC TCA GCA TGA TGA AA 3°
	H15915b		5°-AAC CTC CGA TCT TCG GAT TAC AAG AC $3 \bigcirc$

登
1040
1041
1042
1043

Extra References Table

Kocher, T.D., Thomas, W.K., Meyer, A., Edwards, S.V., Päbo, S., Villablanca, F.X. \& Wilson, A. (1989) Dynamics of mito-chondrial DNA
evolution in animals: Amplification and sequencing with conserved primers. Proceedings of the National Academy of Sciences, 86, 6196-6200.
Oliveira, C., Avelino, G.S., Abe, K.T., Mariguela, T.C., Benine, R.C., Ort, G., Vari, R.P. \& Castro, R.M.C. (2011) Phylogenet ic relationships within the speciose family Characidae (Teleostei: Ostariophysi: Characiformes) based on multilocus analysis and extensive ingroup sampling. BMC Evolutionay Biology, 11, 275.
Ward, R.D., Zemlak, T.S., Innes, B.H., Last, P.R. \& Hebert, P.D.N. (2005) DNA barcoding Australia's fish species. Philosoph-ical Transactions of the Royal Society B, 360, 1847-1857.

$\stackrel{+}{\square}$

1047

1048

1049
응
资
N
$\underset{\sim}{n}$
秒
1055
1056
1057
1058
1059
1060
1061 Supplementary Table 4. Nucleotide substitution models for each partition evaluated in the software PartitionFinder (Lanfear et al., 2012) and
used in the phylogenetic analyses. *These partitions were analyzed in one partition.

Gene	Maximum Likelihood RAxML Analysis	Bayesian Inference with Mrbayes v.3.0	Molecular Clock Analysis with Beast v.1.6.2	Bases
COI first base of codon	GTR+I+G	GTR+I+G	GTR+I+G	$1-534 \backslash 3$
COI second base of codon	GTR $+\mathrm{I}+\mathrm{G}$	SYM + I+G	TrNef+I+G	$2-534 \backslash 3$
COI third base of codon	GTR+I	GTR+I	GTR+I	$3-534 \backslash 3$
CytB first base of codon	GTR $+\mathrm{I}+\mathrm{G}$	SYM + + + G	SYM + + + G	535-1325 \3
CytB second base of codon	GTR+I+G	GTR+I+G	GTR+I+G	536-1325 \3
CytB third base of codon	GTR+G	GTR+G	GTR+G	$537-1325 \backslash 3$
16S	GTR $+\mathrm{I}+\mathrm{G}$	GTR+I+G	GTR+I+G	1326-1849
F-reticulon intron 1	GTR+G	GTR+G	GTR+G	1850-3274
F-retex2 first base of codon	GTR+G	SYM+G	SYM+G	3275-3536 \3
*F-retex2 second base of codon	GTR+G	SYM+G	SYM+G	$3276-3536 \backslash 3$
*F-retex2 third base of codon	GTR+G	GTR+G	GTR+G	$3277-3536 \backslash 3$
F-reticulon intron 2	GTR+G	GTR+G	GTR+G	3538-3881
F-retex3 first base of codon	GTR+I+G	SYM+I+G	SYM+I+G	$3882-4500 \backslash 3$
F-retex3 second base of codon	GTR+I+G	GTR+I+G	GTR+I+G	3883-4500 \}
F-retex3 third base of codon	GTR+I+G	GTR+I+G	GTR+I+G	3884-4500 \}

O
1064 Supplementary Table 5. DEC models tested to estimate distribution ranges inherited by the descending lineages at each node of the tree. *
Represent the model used in the analysis.

	Prediction	Dispersal rates between adjacent areas	Dispersal rates between no adjacent areas	Likelihood
M1	Dispersal between no adjacent areas not permitted	1.0	-	$\operatorname{lnL}=-255.9$
M2	Dispersal between no adjacent areas permitted	1.0	1.0	$\operatorname{lnL}=-254.8$
*M3	Dispersal between no adjacent areas permitted	0.5	0.0001	$\operatorname{lnL}=-252.5$
M4	Dispersal between no adjacent areas permitted	0.1	0.001	$\operatorname{lnL}=-263.0$

晏营

1073 Supplementary Table 6. Substitution Saturation estimated for each gene using the index of substitution saturation (Iss) (Xia et al., 2003 and Xia
1074 and Lemey 2009) and the rate of transitions/transversions evaluated in software DAMBE 5.2.31 (Xia and Xie, 2001).

	Model	Transition	Transversion	Index of Substitution Saturation (Iss)
COI	TN93	0.769	0.754	Iss<\|ss.C
CytB	GTR	0.783	0.850	Iss<lss.C
16S	GTR	0.914	0.844	Iss<lss.C
Reticulon	GTR	0.937	0.950	Iss<lss.C

1075
1076
1077
1078
1079
1080
1081
1082

${ }^{\text {a }}$ The alternative topology was defined as the ML tree forcing the desired relationship.
$\stackrel{\circ}{\circ}$

Fig. 1 - Partial ML tree showing outgroups and interrelationship among species of the subfamily Hypoptopomatinae. Numbers above branches are bootstrap values from 1000 bootstrap pseudoreplicates obtained from ML analysis. Bootstrap values below 50% (-) are not shown. Numbers below branches are posterior probabilities obtained in the BI analysis. Posterior probabilities values below $0.95(-)$ or when the nodes were not obtained by B analyses are not shown.

Fig. 2 - Partial ML tree showing interrelationship among species of the subfamily Neoplecostominae. Numbers above branches are bootstrap values from 1000 bootstrap pseudoreplicates obtained from ML analysis. Bootstrap values below 50\% (-) are not shown. Numbers below branches are posterior probabilities obtained in the BI analysis. Posterior probabilities values below $0.95(-)$ or when the nodes were not obtained by B analyses are not shown.

Fig. 3 - Partial ML tree showing interrelationship among species of the subfamily Otothyrinae. Numbers above branches are bootstrap values from 1000 bootstrap pseudoreplicates obtained from ML analysis. Bootstrap values below 50\% (-) are not shown. Numbers below branches are posterior probabilities obtained in the BI analysis. Posterior probabilities values below $0.95(-)$ or when the nodes were not obtained by B analyses are not shown.

Fig. 4 - Partial ML tree showing the interrelationship among species of the subfamily Otothyrinae. Numbers above branches are bootstrap values from 1000 bootstrap pseudoreplicates obtained from ML analysis. Bootstrap values below 50\% (-) are not shown. Numbers below branches are posterior probabilities obtained in the BI analysis. Posterior probabilities values below $0.95(-)$ or when the nodes were not obtained by B analyses are not shown.

Fig. 5 - Time-calibrated phylogeny for Hypoptopomatinae, Neoplecostominae and Otothyrinae. Tree topology from BEAST analysis of 155 specimens representing 114 loricariid species. Divergence ages calibrated by origins of Siluriformes (120 Ma) and Callichthyidae (55 Ma). Regions: A, Atlantic Coastal Drainages (Green); B, Upper Paraná Basin (Red); C, Paraguay, Lower Paraná and Uruguay Basins (Purple); D, Amazon and Orinoco Basins (Blue); E, São Francisco Basin and Northeastern Drainages (Yellow).

curve below the phylogeny represented sea levels with the marine transgressions (MT), modified from Zachos et al. (2001) and Miller et al. (2005).

Fig. 8. Geographic distribution and phylogeny of major clades of Hypoptopomatinae and Neoplecostominae in tropical South America. Terminal taxa may represent species or monophyletic higher taxa (see figs. 1-2 for all taxa). Numbers in parentheses after each taxon name are number of taxa sampled for each lineage. Regions: A, Coastal Drainages (Green); B, Upper Paraná Basin (Red); C, Paraguay, Lower Paraná and Uruguay Basins (Purple); D, Amazon and Orinoco Basins (Blue); E, São Francisco Basin and Northeastern Drainages (Yellow).
Otothyrinae (Fig. 3)

Fig. 9. Geographic distribution and phylogeny of major clades of Otothyrinae in tropical South America. Terminal taxa may represent species or monophyletic higher taxa (see figs. 1-2 for all taxa). Numbers in parentheses after each taxon name are number of taxa sampled for each lineage. Regions: A, Coastal Drainages (Green); B, Upper Paraná Basin (Red); C, Paraguay, Lower Paraná and Uruguay Basins (Purple); D, Amazon and Orinoco Basins (Blue); E, São Francisco Basin and Northeastern Drainages (Yellow).

Chapter 3

[Manuscript formatted to Evolution]

Diversity and evolution of body size in armoured catfishes (Siluriformes: Loricariidae)

Abstract

Considering that size is one of the more important quantitative traits on which evolution acts, the objective of the present paper is investigate and describe the major patterns of size evolution in three Neotropical fish subfamilies Hypoptopomatinae, Neoplecostominae and Otothyrinae. First we evaluate different methods of ancestral reconstruction to continuous characters to tracking size evolution and used a maximum likelihood approach to estimate ancestral sizes. Second considering that the size distribution patterns within fish lineages at low taxonomic levels as subfamilies remains understudied we used a measuring of rates of evolution in darwins (d) in a phylogenetic context, to evaluate if lineages tend to increase in BS over evolutionary time (e.g. Cope's rule). Our results suggested that the most similar models in the distribution of darwins (d) are PIC vs. GLS, seeing that, the distributions of d values fits more a line compared with the other models and the most different models are ML vs. PIC, seeing that, dots are more widespread through the graphic. Additionally, our results suggested that the range of size-change values (d) along branches phylogeny increased rapidly during the Later Miocene. The distribution of size-changes (d) is slightly right-skewed (consistent with Cope` rule) considering all together subfamilies, is slight leftskewed (reverse of Cope`s Rule) within Hypoptopomatinae, is slight right-skewed within Neoplecostominae, however, if we exclude the three lower (d) values the distribution stays quite right-skewed (consistent with Cope` rule), and is quite left-skewed within Otothyrinae (reverse of Cope`s rule). These results document the ways in which macroevolutionary processes may produce the size diversity within armoured "cascudinhos".

Introduction

Size is one of the more important aspects of an animal functional design and one of the principal quantitative traits on which evolution acts (Schmidt-Nielsen 1984, 1997;

Blanckenhorn 2000). The evolution of body size (BS) has attracted particular attention, because it is related to many physiological, ecological and biogeographic variables (Peters 1983; Calder 1984; Reiss 1989; Roff 1992; Stearns 1992), and has profound consequences for structure, function, and survival (Schmidt-Nielsen 1984, 1997). Therefore, disparity in BS among organisms raises several important questions: What are the biological consequences of changes in BS? What are the main genetic, ecological and physiological processes responsible for these changes? How do differences in size affect net rates of diversification among different lineages? (Schmidt-Nielsen 1984; Blanckenhorn 2000).

Disparity in BS has been the focus of a significant amount of research, much of it relying on a comparative macroevolutionary framework (Van Valen 1974; Stanley 1979; Schmidt-Nielsen 1984; Stanley 1998; Blanckenhorn 2000; Jablonski 2007, 2008, Albert and Johnson 2011). Many of these studies ultimately aim to shed light on the diversification of phylogenetic lineages as a function of change in organismal traits, often using BS as a proxy for physiological and ecological attributes (Newell 1949; Stanley 1973; Kochmer and Wagner 1988; Maurer et al. 1992; Brown et al. 1993; Fenchel 1993; Gaston and Blackburn 1995; Poulin and Morand 1997; Munday and Jones 1998; Kingsolver and Pfennig 2004; Webster et al. 2004; Brown and Sibly 2006; Clauset and Erwin 2008; Purvis et al. 2003; Albert and Johnson 2011). A widely cited trend in the literature known as Cope's rule (also known as the Cope-Depéret rule, Depéret 1907), predicts a tendency for BS to increase within lineages over time (Cope 1877, 1887, 1896; Newell 1949; Stanley 1973). The most extensive macroecological analyses of size-frequency distributions have focused on extant mammals and extant birds (Clauset and Erwin 2008; Clauset et al. 2009; Monroe and Bokma 2009; Olson et al. 2009; Capellini et al. 2010) and in fishes as a whole (Albert and Johnson 2011), however, BS evolution in other animal groups remains unclear. Explanations for this trend include the ability of individuals to tolerate short-term variation in the physical environment, their capacity to extract energy and nutrients from a wider variety of poorer-quality food, and their ability to avoid predators (Stanley 1973; Brown and Maurer 1986, 1987). Furthermore, studies of natural and artificial selection have shown that microevolutionary processes operating through the differential survival and reproduction of individual organisms can indeed cause substantial directional evolution in BS (Wolda 1963; Bantock and Bayley 1973; Knights 1979; Boag and Grant 1981; Price

1984; Price and Grant 1984; Price et al. 1984). However, Gould (1988) questioned this microevolutionary interpretation, suggesting that macroevolutionary processes (speciation and extinction) are more important drivers of size differences among lineages.

Early research supported the hypothesis of right-skewed distributions of BSs among species, with a tendency to be higher right-skewed in high taxonomic levels as classes and diverse skewed at lower taxonomic levels as order and families (Kozlowski and Gawelczyk 2002; Stanley 1973). More recent work have being supported the pattern of right-skewed distribution among species, even when log transformed (Brown and Maurer 1986; Gaston and Blackburn 2000; Maurer et al. 2004; Albert and Johnson 2011). Different patterns of size distribution among clades could be explained as a result of different evolutionary pressures and histories acting at different scales and rates. Within large-scale taxonomic pattern Newell (1949) and Kingsolver and Pfennig (2004) predicted models of size evolution resulting in larger sizes within lineages, otherwise Brown and Sibly (2006) predicted models of size evolution resulting in smaller sizes within lineages. Some studies interpreted the right-skewed size distributions as evidence for the selective advantage of small size (Damuth 1993; Blanckenhorn 2000; Maurer et al. 2004). Additionally, rightskewed size distributions could be interpreted as an increase rate of diversification (Jablonski 1997; Maurer 1998; Gardezi and da Silva 1999; Knouft and Page 2003), or extinction risks that threaten large bodied species (Maurer et al. 1992; Purvis et al. 2003; Clauset and Erwin 2008; Clauset et al. 2009). Despite the plethora of hypotheses, size distribution patterns within fish lineages as a whole, mainly at low taxonomic levels as family and subfamilies, remains understudied (Albert \& Johnson 2011).

The advent of gene sequencing techniques starting in the 1970s (Maxan and Gilbert 1977; Sanger et al. 1977; Gilbert 1981), and the development of molecular phylogenic statistical methodologies starting in the 1980s with the works of Joseph Felsenstein (Felsenstein 1981; Felsenstein 1985a, b; Felsenstein 1988) has led to a rapid proliferation of phylogenetic studies over the past decade (Nei and Kumar 2000). This field of molecular phylogenetics has revolutionized our ability to pose hypothesis within a comparative evolutionary framework (Donoghue \& Smith 2003; Benton \& Emerson 2007; Wiley and Lieberman 2011). This methodology afforded us to reconstruct the evolutionary relationships of specific lineages, and allowing us to measure the rates of change in key
traits (Paradis 2012; Harmon et al. 2008). At past decades a series of papers has appeared regarding the measurement of the long-term rates of morphological evolution (Haldane 1949; Lerman 1965; Cherry et al. 1978, 1982; Atchley 1980; Kunkel et al. 1980; Gingerich 1983, 1984a, b; Wyles et al. 1983; Charlesworth 1984; Gould 1984; Lomolino 1985; Lynch 1990; Jablonski 1997; Alroy 1998; Boback 2003; Boback and Guyer 2003; Campbell and Echternacht 2003; Clauset and Erwin 2008; Clauset et al. 2009; Monroe and Bokma 2009; Olson et al. 2009; Capellini et al. 2010; Albert and Johnson 2011). In terms of BS evolution, Haldane (1949) proposed a method for measuring the rate of BS evolution expressed in darwin (d) unit defined to be the change of a morphological trait over one million years. Albert and Johnson (2011) introduce a new use of a method for measuring rates of evolution in darwins (Haldane 1949) of continuous traits in an explicitly phylogenetic context to evaluate how a non-directional model of trait evolution can produce skewed size-frequency distributions and trends in BS evolution in agreement with Cope's prediction.

Chiachio et al. (2008) hypothesized that small BS may explain the limited dispersal abilities observed within certain armoured catfish subfamilies Hypoptopomatinae, Neoplecostominae and Otothyrinae (HNO-clade) throughout Brazilian hydrographic basins. These three monophyletic subfamilies are part of the family Loricariidae, the most diverse and widespread members of the Neotropical freshwater fish fauna (Reis et al. 2003). It has been shown that dispersal distance increases with BS due to a smaller energetic migratory cost per unit distance in large fishes (Bernatchez and Dodson 1987). Chiachio et al. (2008) explored a hypothesis where the comparatively small BS of the most recent common ancestor of the HNO-clade limited the dispersal across the Northern and Southern River Systems of Brazil. However, their work did not evaluate the pattern of size distribution and rate of BS evolution in a specific biological context or rule (i.e. Cope's rule).

Here we investigate and describe the major patterns of size evolution in three Neotropical fish subfamilies Hypoptopomatinae, Neoplecostominae and Otothyrinae. First we evaluate different methods of ancestral reconstruction to continuous characters to tracking size evolution and used a maximum likelihood approach to estimate ancestral sizes. Second considering that the size distribution patterns within fish lineages at low taxonomic levels as subfamilies remains understudied we used a measuring of rates of
evolution in darwins (d) (Haldane 1949; Albert and Johnson 2011), in a phylogenetic context, to evaluate if lineages tend to increase in BS over evolutionary time (e.g. Cope's rule).

Material and Methods

Time calibrated tree and ancestral characters estimation

Size data are available for includes 114 loricariid (86 described and 19 undescribed species) from the HNO-clade, including 8 outgroup species (unpublished paper). The taxonomic summary, the GenBank accessing number and the species BS for this study is provided in Supplementary Table 1. Size was assessed as maximum recorded standard length (SL) in cm as measured from the tip of the snout to the posterior end of the last vertebra or to the posterior end of the midlateral portion of the hypural plate, excluding the length of the caudal fin. Standard length was measured directly from specimens deposited at biological collection of LBP (Laboratório de Biologia e Genética de Peixes, Universidade Estadual Paulista Júlio de Mesquita Filho, Botucatu, São Paulo), specimens in original species description papers, or published lengths in Reis et al. (2003). All measurements were taken point to point to the nearest 0.1 mm with digital calipers.

The uncorrelated relaxed molecular clock (lognormal) was calibrated using BEAST (Bayesian evolutionary analysis sampling trees) v1.6.2, (Drummond and Rambaut 2007). The models utilized for each partition are shown in Table S3. We included two calibration points to constrain divergence dates for the 154 clades identified in our phylogenetic tree. The first calibration point was implemented as a normally-distributed prior, with an offset of 125 million years ago (Ma), and a standard deviation of 15 million years. These dateestimate parameters were selected to match current knowledge of the timing of siluriform origins. Information from the stratigraphic record and geographic distributions of living taxa indicate an origin for Siluriformes as a whole during the Lower Cretaceous (145-100 Ma; Lundberg 1993; Sullivan et al. 2006; Lundberg et al. 2007). The second calibration point was implemented using a log-normal prior offset to 55 Ma with a mean and standard deviation of 1 for the origin of the family Callichthyidae. The oldest known callichthyid fossil, Corydoras revelatus Cockerell (1925) was dated by Marshall et al. (1997) as

Paleocene. This prior assumed 55 Ma as a minimum age. We used a Birth-Death model for speciation likelihood and a starting tree obtained from ML analysis. The analysis was run for 100 million generations and sampled every 1000th generation. Stationarity and sufficient mixing of parameters (ESS>200) was checked using Tracer v1.5 (Rambaut and Drummond 2007a). A consensus tree was built using TreeAnnotator v1.6.2 (Rambaut and Drummond 2007b).

Different methods for ancestral state reconstruction (ASR) of continuous characters could result in different estimates of ancestral species size thereby having a differential effect on resulting darwins (d) values (Haldane 1949). In order to avoid such discrepancies, we employed three different ASR strategies using continuous variables to see how and if d values ware affected. The methods used were: Maximum Likelihood (ML), Phylogenetic Independent Contrasts (PIC) and Generalized Least Squares (GLS). These were employed using package "ape" (Paradis 2012) in program R version 3.0.0 (R Core Team 2013). For the analysis of ancestral species size we used a Maximum Likelihood (ML) method (Schluter et al. 1997), since this model can reconstruct the ancestral character history with significant accuracy (Schluter et al. 1997). The water river volume and water river velocity was treated as continuous characters, and with altitude the ancestral estimations were employed using package "ape" under a Maximum Likelihood (ML) method and Brownian motion model.

During model selection it is necessary to determine whether a stable model of continuous character evolution fits the data better than a Brownian motion model. Schluter et al. (1997) predicted that the accuracy of the estimation of ancestral character reconstruction under likelihood methods depends on how a model of character evolution fits a specific dataset. We evaluated macroevolutionary models using the function fit.continuous of package "geiger" (Harmon et al. 2008) in the program R version 3.0.0 (R Core Team 2013) for ancestral estimation of BS. The best fitting model was determined using the Akaike's Information Criterion (AICc) (Sugihara 1978). The models tested are: Brownian Motion (BM) (Maddison 1991) that predicts a random walk with a central tendency proportional to the parameter alpha; Ornstein-Uhlenbeck (OU) (Hansen 1997; Butler and King 2004) that can be seen as a generalization of the Brownian motion process and also can fit a random walk model with a central tendency proportional to the parameter
alpha; and Early Burst model (EB) (Blomberg et al. 2003) where the rate of evolution can increases or decrease through time.

The phylogenetic correlation among of the log transformed maximum BS with water river volume, water river velocity and altitude were performed in program $R(R$ Core Team 2013), as well as the "abline", "confidence" and "prediction" bands.

Rate of Body Size Evolution

We examined rates of evolutionary change of log transformed BS expressed in darwins (d) (Haldane 1949) for a test for Cope's rule. This unit represents the difference in size per unit time along internal branches of a phylogenetic tree. A right skewed size distribution of darwins (d) was interpreted as concordant with Cope's rule (evolution toward large size); a left skewed size distribution was interpreted as reverse Cope's rule (evolution toward small size); and a symmetric size distribution was interpreted as no change of size from ancestors to extant species.
$d=\ln S_{2}-\ln S_{1} / t_{2}-t_{t}$
where S_{n} is the difference in size between nodes (n), and t_{n} is the difference in geological age between nodes (n) expressed in Ma.

Therefore, a darwin (d) is a standardized change in the value of a trait per million years (Albert and Johnson 2011).

Normality Test and Diversification Analysis

We used Kuiper's test to evaluate if the log sample sizes and the distribution of darwins (d) follow a normal distribution. This test compares a null distribution with the empirical distribution of the observed data (Kuiper 1960) and is similar to the KolmogorovSmirnov test. This was implemented in package "truncgof" in R version 3.0.0 (R Core Team 2013) according to the tabulation given in Stephens (1970) and under a parameter of mean $=1, \mathrm{sd}=1$ and $\mathrm{H}=-1$ (see Table S 1 to R commands). We also performed a QQ-Plot (Quantile-Quantile Plots) for Hypoptopomatinae, Neoplecostominae, Otothyrinae
subfamilies separated and the three subfamilies together referred here as HNO-clade to evaluate the distribution of the log sizes and darwins (d) compared to a normal distribution. This analysis was performed in the package 'stats' in R (R Core Team 2013).

The lineages-through-time plots the number of lineages, on a logarithmic scale, observed on a tree with respect to time. If diversification has been constant through time, and the numbers of lineages then a straight line is expected. If diversification rates decreased through time, then the observed plot is expected to lay above the straight line, whereas the opposite result is expected if diversification rates increase through time. This analysis was performed according to ideas of Nee et al. (1992) and Harvey et al. (1994) and was implemented using the package "ape" in program R version 3.0.0 (R Core Team 2013).

Results

Time Calibrated Tree and Ancestral Characters Estimation

The size of specimens used for our analysis, including 114 loricariid (86 valid species and 19 undescribed species of the HNO-Clade), ranged from 2.1 cm (Parotocinclus sp. 3 and P. aripuanensis) to 17 cm (Pareiorhaphis cameroni). Species of Neoplecostominae reach the greatest mean size (mean of 9.0 cm), species of Otothyrinae the lowest mean size (mean 4.0 cm) and species of Hypoptopomatinae a intermediated size pattern (mean of 6.1 cm).

The results of BEAST (Figs. 1-2) showed that the mean substitution rate for the dataset was 0.272% per MY. The Hypoptopomatinae is estimated to have originated during the Lower Eocene about 33.6-67.4 Ma 95\% HPD (mean 49.9 Ma) and the clade composed of Neoplecostominae + Otothyrinae is estimated to have originated during the Lower Eocene about 31.0-62.2 Ma 95\% HPD (mean 45.9 Ma).

In Neoplecostominae the species sizes were increasing from the ancestral to the present and most of the modifications occurred in the Miocene (Fig. 1), achieving approximately the modern dimensions. Within Hypoptopomatinae we can observe an increase of ancestral sizes in the lineage of Hypoptopoma and a decreasing ancestral size of Otocinclus lineages occurring in Miocene (Fig. 1). Within Otothyrinae the changes of the species size was most constant during the times evolution of Otothyrinae lineages.

However, changes to a small sizes can be observed in our results and these changes apparently occurred in a more recent time in the end of Miocene to Pleistocene (Fig. 2). Furthermore, the genus Hisonotus has the largest (Hisonotus taimensis 6.6 cm and H. leucofrenatus 6.0 cm) and the smallest species (Hisonotus bocaiuva and H. piracanjuba 2.5 cm) of Otothyrinae, and these results can be explained be the polyphyletic aspect of this genus.

Considering that different methods of ancestral character reconstruction can result in different BS estimations and consequently in different pattern of distribution of darwins (d), we compared three models for estimation of ancestral states of continuous variables under a Brownian motion using Maximum Likelihood (ML), Phylogenetic Independent Contrasts (PIC) and Generalized Least Squares (GLS). We found that the most similar models in the distribution of darwins (d) are PIC vs. GLS, seeing that, the distributions of d values fits more a line compared with the other models $\left(\mathrm{R}^{2}=0.66\right)$ and the most different models are ML vs. PIC, seeing that, dots are more widespread through the graphic $\left(\mathrm{R}^{2}=\right.$ 0.36) (see models comparison in Fig. 3).

We observe positive correlation of BS with water river volume (p -value <0.001) and water river velocity (p -value <0.001), however, no correlation of BS with altitude (p value $=0.75$) was observed (Fig. 4).

Rate of body size evolution

The pattern of extant size distribution in a macroecological perspective exhibits a broad range of skewness values among Hypoptopomatinae ($\mathrm{n}=18$; skewness $=0.55 ; \mathrm{P}<$ 0.01, Kuiper test), Neoplecostominae ($\mathrm{n}=33$; skewness $=-0.71 ; \mathrm{P}<0.01$, Kuiper test), Otothyrinae $(\mathrm{n}=89$; skewness $=-0.34 ; \mathrm{P}<0.01$, Kuiper test) and HNO-clade $(\mathrm{n}=140$; skewness $=0.80 ; \mathrm{P}<0.01$, Kuiper test) (Fig. 5). Within Neoplecostominae we can observe a left skewed size distribution of extant species suggesting a predominant large size species. Our ancestral character reconstruction plotted in a time calibrated tree (Fig. 1) suggested that evolution to a large size within lineages of Neoplecostominae occurred in Miocene.

Patterns of size evolution (as measured in darwins, d) in a macroevolutionary perspective (i.e. Cope's rule) within HNO-clade fishes through Paleogene to present are similar to those of absolute size itself. The range of size-change values (d) along branches
phylogeny increased rapidly during the Later Miocene (10 Ma to the present). Additionally, our results suggested that the distribution of size-changes (d) is slightly right-skewed considering all together subfamilies (HNO-Clade; Fig. 6a; skewness $=0.40, \mathrm{P}<0.01$, Kuiper test; d ranging -0.14-0.20). Within Hypoptopomatinae our results suggested that the distribution of size-changes (d) is slight left-skewed (Fig. 6b; skewness $=-0.03, \mathrm{P}<$ 0.01 , Kuiper test; d ranging $-0.05-0.05$) and has an intermediate range compared with Neoplecostominae and Otothyrinae as showed our box plot graphic (Figs. 7; mean $=-$ 0.003).

Within Neoplecostominae we can observe that the pattern of distribution of sizechanges in darwins (d) is slight right-skewed (Fig. 6c; skewness $=0.01, \mathrm{P}<0.01$, Kuiper test; range $-0.14-0.20$). However, if we exclude the three lower (d) values the distribution stays quite right-skewed (excluding (d) values $-0.14,-0.13$ and -0.12 , skewness $=1.34, \mathrm{P}<$ 0.01 , Kuiper test). The boundary values of the distribution of size can great influence in the calculation of the skewness and low values in left boundaries of Neoplecostominae tendency the results been symmetric. The range distribution of (d) is the greatest compared with the other subfamilies (Fig. 7, mean $=0.008$). Within Otothyrinae we can observe that the distribution of size-changes (d) is quite left-skewed (Fig. 6d; skewness $=-1.22$; range -$0.10-0.05 ; \mathrm{P}<0.01$, Kuiper test) and has the lowest range compared with the others subfamilies (Figs. 7, mean $=-0.006$). Although, the mean BSs of ancestral species of HNOClade do not change substantially from Paleogene to the present (Fig. 8).

Normality test and diversification analysis
The Kuiper's test suggested that the log sample sizes and the distribution of darwins (d) do not follow a normal distribution, since the p -value is always smaller than 0.01 for all normal distribution tests (Hypoptopomatinae, Neoplecostominae, Otothyrinae and the three clades together; see figs. 5 and 6 for all values). We also evaluated the log sample sizes and the distribution of darwins (d) using a graphical tool for assessing normality, a quantilequantile plot (QQ plot). The graphical analysis also implied that our data do not follow a normal distribution (Figs. S1 and S2).

The results of the lineages-through-time plots implies a curve following the straight line from 40 Ma to 10 Ma and slight above the straight line from the last 10 Ma , indicating an increase rate of diversification near the present within Neoplecostominae. Within Hypoptopomatinae the curve following the straight line indicating a constant rate of diversification and within Otothyrinae the LTT plot curve is above the straight line, strongly implying a rate of diversification increasing through time (more speciation and less extinction).

Discussion

Time calibrated tree and size-dispersal hypothesis

Our time calibrated tree and ancestral size estimation analysis suggested that no abrupt size changes were observed within Hypoptopomatinae ancestral to extant species (Fig. 1). However, species of the genus Hypoptopoma possess the larger maximum standard length (SL) across analyses species of Hypoptopomatinae (ranging from 6 to 10.5 cm) and Otocinclus the smallest (3.3 to 5.5 cm). Our results suggested that despite the origin of this genus is from Oligocene the evolution to a large size in Hypoptopoma occurred in Miocene, as well as the evolution to a small size in species of Otocinclus (Fig. 1). Chiachio et al. (2008) suggested that the differences in size should influenced dispersal of Hypoptopomatinae through Brazilian hydrographic basins. Fishes of large sizes tend to moves over great distances and has more ability to disperse compared with fishes of small sizes (Bernatchez and Dodson, 1987). Chiachio et al. (2008) predicted that H.
inexspectatum crossed the border of what they call Northern River Systems and Southern River Systems of Brazil. Our calibrated tree suggested that the ancestral of H. inexspectatum crosses this barrier from Northern River Systems to Southern River Systems in Miocene (unpublished paper) and the ancestral of H. inexspectatum had around 8.0 cm (Fig. 1). A size higher than the mean of size of the extant species of Hypoptopomatinae of 6.1 cm and a higher that the maximum size found for the species today of 7.1 cm , suggesting that size was not a factor that should impeded the dispersal of ancestral of H. inexspectatum or of other species of Hypoptopoma as a whole. Our results also suggested that the ancestral this genus had around 5.8 cm and that the size of this lineage was getting higher from Oligocene, until reaches 8.0 cm during the Miocene.

Chiachio et al. (2008) suggested that the ancestral lineages of Hypoptopomatinae have crossed the Northern River Systems and Southern River Systems several times in the evolution of the group what are corroborated by our results. Within the large Otocinclus lineage, the ancestral of Lampiella and Otocinclus have crossed this barrier at the early Miocene and the size of the ancestral of this group reached at 5.3 cm . Our results suggested that both genera display large maximum SL (ranging from 5 cm to Lampiella and 5.5 cm to Otocinclus). Our results of unpublished paper also suggested that most of the dispersal of Hypoptopomatinae among hydrographic basins occurred in a period of the middle Miocene or before in time and that our analysis suggested that species of the genus Otocinclus reaches small size from Later Miocene to the present, a period with few dispersal events within Hypoptopomatinae as shown in Chapter 1.

Within Neoplecostominae species reaches the greatest sizes compared with species of the other subfamilies (Hypoptopomatinae and Otothyrinae). Our results suggested that the size of the extant species evaluated from a small size to a large size occurred in the Miocene. This result suggested that this period of time was very important to changes in size among species of Hypoptopomatinae and Neoplecostominae. Miocene was period of great oscillation in the climate and a period where several marine transgression in South America low lands. The Miocene is characterized by a series of climatic events that affected the climate of the subsequent periods and the dawn of modern biota. After the Miocene Climatic Optimum (around 18 to 16 Ma) a wave of extinctions of terrestrial and aquatic life forms occurred (around 15 to 14 Ma) (Shackleton and Kennett 1975; Savin et
al. 1975; Miller et al. 1987; Hornibrook 1992). These climate oscillation associated with available ecological niches could be resulted in different pressures in different fishes lineages to reaches large or smaller sizes.

The Hisonotus group that includes the type species Hisonotus notatus and species of the Lagoa dos Patos and Uruguay basin (Fig. 2) represent the large species of this genus. Most of the species of this group lives in large rivers and is widespread through South and Southeaster of Brazil. Living in large river could be selective pressure to reach a large size and as we discussed previously, Chiachio et al. (2008) hypothesized that large species has more ability to dispersal through great distance compared with small species (Bernatchez and Dodson 1987).

Macroecological pattern

Despite of importance of study of size in a macroevolutionary perspective, several authors reinforced the aspect of in a macroecological perspective have recognized the role of environmental conditions and ecological processes in differential speciation and extinction rates (Stanley 1973, 1979, 1998; McKinney 1990). In this perspective the macroecological field has rapid advanced towards answering many of the questions that originally occupied macroecologists, such as variations in BS among species (Beck et al. 2012).

In our results the extant species distributions within subfamilies lineages exhibit a broad range of skewness values, even when log transformed: 0.55 for Hypoptopomatinae, 0.71 for Neoplecostominae and -0.34 for Otothyrinae (Fig. 5). The pattern of skewness of extant species can vary depending of the taxonomy order, and can be interpreted as, more frequent small bodied organisms or evolution toward large size when skewed to the right; and more frequent large organisms or evolution toward small sizes when skewed to the left (Kozlowski and Gawelczyk 2002; Albert and Johnson 2011). According to Kozlowski and Gawelczyk (2002) if we consider narrower systematic groups, orders instead of classes for example, the skewness becomes more variable. However, as a general pattern, the distribution of large groups as fishes the BS distribution is right skewed (Albert and Johnson 2011).

The symmetric, right-skewed or left-skewed species shape of BS distributions can be explained by different evolutionary process (Kozlowski and Gawelczyk 2002; Albert and Johnson 2011). The first well-documented feature is that most clades originate at small size (McKinney 1990); this is possible because a clade is most likely to originate after mass extinctions, and small animals are less prone to extinction during a catastrophe. After that, the clade diversification can go in both directions (toward smaller and larger size), considering that diversification is a relation among speciation and extinction.

In a macroecological pattern this study revealed that BS of species of HNO-clade were correlated with increase water river volume and velocity, however were not correlated with altitude were species lives. The studies of body fish sizes and the river size, as well as with water temperature are really scarce in Neotropical fishes (Rypel 2014). However, apparently it is logical to think that species of larger sizes lives in large rivers as we can observe in species of HNO-clade.

Macroevolution perspective

In macroevolutionary perspective BS diversity is strong related with phylogeny (Ramirez et al. 2008). For that we used the method of measuring rates of evolution in darwins (Haldane 1949; Albert and Johnson 2011) of continuous traits in an explicitly phylogenetic context. Therefore, our results suggested that the distribution of size-changes (d) is slightly right-skewed considering the HNO-Clade (Fig. 6a; skewness $=0.40, \mathrm{P}<$ 0.01, Kuiper test; d ranging $-0.14-0.20$) predicting a rate of evolution toward a large size consistent with Cope`s rule. However, considering each subfamily clade separated the darwins (d) distribution is slight left-skewed within Hypoptopomatinae reverse of Cope`s rule (Fig. 6b; skewness $=-0.03$, suggesting a rate of evolution near zero, but slight tending toward a small size); right-skewed within Neoplecostominae consistent with Cope`s rule (Fig. 6c; skewness \(=0.01\), rate of evolution near zero slighting tending toward a large size). However excluding the three lower (d) values \((-0.14,-0.13\) and -0.12\()\) the distribution stays quite right-skewed (skewness \(=1.34, \mathrm{P}<0.01\), Kuiper test); and quite left-skewed within Otothyrinae reverse of Cope`s rule (Fig. 6d; skewness $=-1.22$, rate of evolution tending toward a small size).

Albert and Johnson (2011) predicted that species richness and average BS do not predict skewness values in extant fish, and most species-rich families have skewness values near zero. However, right-skewed size frequency distributions have been interpreted as evidence for the selective advantage of small size (Damuth 1993; Blanckenhorn 2000; Maurer et al. 2004). Additionally, this distribution pattern has been interpreted as increase rate of diversification, more speciation and less extinction, at small size (Jablonski 1997; Maurer 1998; Gardezi and da Silva 1999; Knouft and Page 2003), or severe existential risks that threat large species sizes (Maurer et al. 1992; Purvis et al. 2003; Clauset and Erwin 2008; Clauset et al. 2009). Our results of LTT (Fig. 9) suggested a curve following the straight line at rate of constant evolution in Hypoptopomatinae, indicating a constant rate of diversification in evolution of this group. However, within Otothyrinae the LTT plot curve is above the straight line (Fig. 9), strongly implying a rate of diversification increasing through time (more speciation and less extinction) may suggesting a selective pressure to small size with in this group.

Morse et al. (1985) extend the idea of Hutchinson and MacArthur's (1959) that the world is vaster for small animal. The consequence of this idea is that because there is more usable space for small animals, small-bodied species should be over represented in nature. However, according to Kozlowski and Gawelezyk (2002) this hypothesis alone cannot explain the frequency size distributions among different animal groups.

Evolutionary Toward Small and Large Sizes

Our results within Hypoptopomatinae predicted a quite right-skewed size distribution of extant species (0.55 , Fig. 5), exhibit a large number of small BS, however value near zero for darwins (d) distribution (-0.03, Fig. 6b) suggests a symmetric rate of evolution within this lineage or balanced evolution among Hypoptopomatinae lineages. In Figure 1 we can observe that size evolution vary among Hypoptopomatinae genera. Species of Hypoptopoma are known to be the large species since species of Otocinclus the smallest, resulting in a symmetric skewness values for Hypoptopomatinae clade as a whole. For both genera the evolution to extant species occurred from Miocene and Pliocene for today from an intermediate size. However, the right-skewed distribution of extant species can be a result of more number of small species within Hypoptopomatinae.

Within Otothyrinae the distribution of size of extant species is left skewed (-0.34). This pattern can be interpreted as evolution to a large size in this group (Fig. 5). However, this pattern is not consistent with size distribution in fishes as a whole (Albert and Johnson 2011), or with mammals (Maurer et al. 1992; Gardezi and da Silva 1999), birds (Gaston and Blackburn 1995) and also with most terrestrial species (Hutchinson and MacArthur 1959; Bonner 1988; May 1988). Additionally, our results of darwins (d) analysis suggested a quite left skewed distribution of darwins ($d,-1.22$) with most frequency negative values, strongly suggesting a great rate of evolution toward a small sizes within lineages of Otothyrinae (Fig. 6d). We hypothesized that the discontinuity among extant species size distribution and evolution in darwins (d) occurred because two factors: first because the study of size distribution should be interpreted in a phylogenetic context (darwins, d); second the boundary values of the distribution of size can great influence in the calculation of the skewness and low values in left boundaries of Otothyrinae.

Evolutionary change is often thought of as gradual, the asymmetric distribution of size among internal phylogenetic lineages may result from a variety of real biological processes, including punctuated evolution (Pagel et al. 2006; Monroe and Bokma 2009) or extinction of taxa with intermediate trait values (Butler and Losos 1997). Olden et al. (2007) predicted that large BS is associated with elevated extinction risk in many living fish taxa. Additionally, demographic factors, as small effective population sizes and long generation times, can predict elevated extinction risk and consequently resulting in evolution to large size in different lineages (Knouft 2003; Knouft and Page 2003; Hardman and Hardman 2008). Although the relative roles of speciation, extinction and adaptive evolution have been parsed in an explicitly phylogenetic context in some fish taxa (Knouft 2003; Near et al. 2005; Hardman and Hardman 2008), the generality of these processes among fishes as a whole remain poorly understood (Smith 1981; Smith et al. 2010).

The LTT analysis of diversification within Neoplecostominae (Fig. 9), suggested a curve following the straight line from 40 Ma to 10 Ma and slight above the straight line from the last 10 Ma , indicating an increase rate of diversification near the present. Therefore, increase difference of speciation and extinction rate (possible a low rate of extinction) could result in an evolution to a large size within Neoplecostominae lineages in middle Miocene to the present, since most size change occurs in speciation events (Stanley

1973; McKinney 1990). Additionally, a higher rate of extinction within Neoplecostominae from 40 Ma to 10 Ma , as we can observe a low rate of diversification in this period of time associated with a friendly habitat of associated with rocks of bottom of streams, could result in evolution to large size species.

Several hypotheses were proposed to explain the asymmetric pattern leading to large sizes among animal lineages as: (1) biased rates of anagenesis to larger sizes (Cope's rule), (2) higher extinction risk at larger sizes, and (3) taxon-specific ecophysiological limits at lower sizes (Stanley 1973, 1998; Schmidt-Nielsen 1984; McShea 1994; Cope 1877; Newell 1949; Damuth 1993; Knouft 2003; Knouft and Page 2003; Hardman and Hardman 2008). However, studies analyzing the evolution toward small or large BS in specific groups remain scant (Blanckenhorn 2000; Albert and Johnson 2011). Additionally, Stanley (1973) related that an evolutionary expansion into an ecologically or physiologically limited size space from a small ancestral size could lead towards larger average size within lineages (McShea 1994).

The changes in size in Hypoptopomatinae, Neoplecostominae and Otothyrinae clades occurred in the Pliocene and Pleistocene a period know to have great earth climate oscillation (Suguio et al. 1985; Santos et al. 2008; Zachos et al. 2008; Albert and Reis 2011). Change in climate is known to be linked with lineages diversification (Kohn and Fremd 2008; Finarelli and Badgley 2010; Renema et al. 2008) and consequently more speciation and changes in size.

Sexual-dimorphism size hypothesis

Loricariidae species are known to have sexual dimorphisms and these characteristics may vary greatly among lineages. The selective processes producing sexual dimorphism result in dimorphism for overall BS (sexual size dimorphism). Across species within a lineage, size dimorphism will increase with increasing BS when the male is the larger sex, and decrease with increasing average BS when the female is the larger sex. This process is known as Rensch's rule (Rensch 1959; Fairbairn 1997).

Generally all males of the family Loricariidae bear a papilla in the urogenital opening. However, different Loricariidae groups have may have different sexual
dimorphism, and sometimes these differences can be variation in size among males and females. Species of Neoplecostomus is an example of males normally reaching a large size than females (Langeani 1990; Zawadzki et al. 2008; Roxo et al. 2012). However, within species of Otothyrinae we can observe the opposite with males normally reaching a small size than females. Martins and Langeani (2011) suggested that the small number of teeth in males of Microlepidogaster dimorpha could be associated with the fact that males of this species reach a small size than females. According, to Blanckenhorn (2000) the fecundity selection tends to select for increased BS in females, and sexual selection for increased BS in male and these two selective pressures plus the viability selection are responsible to particular species sex dimorphisms. Additionally, in Cope's rule (Bonner 1988; McLain 1993; Jablonski 1997) taxa are believed to evolve to larger BSs over evolutionary time, and sexual size dimorphism tend to increases when males are the larger sex. However, in Rensch's rule (Rensch 1959; Fairbairn 1997) sexual size dimorphism tends to decrease when females are the larger sex. Considering that both rules should be influenced the evolution of members of subfamilies Hypoptopomatinae, Neoplecostominae and Otothyrinae.

Acknowledgments

This research was supported by the Brazilian agencies FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) individual support to F. F. Roxo (Proc. 2010/01610-9), MCT/CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior).

References

Albert, J. S. and D. M. Johnson. 2011. Diversity and evolution of body size in fishes. Evol. Biol. 39:324-340.

Albert, J. S., and R. E. Reis. 2011. Historical biogeography of Neotropical freshwater fishes, 1st edn. University of California Press, Berkeley, Los Angeles.
Alroy, J. 1998. Cope's rule and the dynamics of body mass evolution in North American mammals. Science 280:731-734.

Atchley, W. R. 1980. M-statistics and morphometric divergence. Science (Washington, D.C.) 208: 1059-1060.

Bantock, C. R., and J. A. Bayley. 1973. Visual selection for shell size in Cepea (Held.). J. Anim. Ecol. 42:247-26 1.
Beck, J., L. Ballesteros-Mejia, C. M. Buchmann, J. Dengler, S. A. Fritz, B. Gruber, C. Hof, F. Jansen, S. Knapp, H. Kreft, A. K. Schneider, M. Winter, and C. F. Dormann. 2012. What's on the horizon for macroecology? Ecography 35: 673-683.
Benton, M. J., and B. C. Emerson. 2007. How did life become so diverse? The dynamics of diversification according to the fossil record and molecular phylogenetics. Palaeontology 50(1):23-40.
Bernatchez, L., and J. J. Dodson. 1987. Relationship between bioenergetics and behavior in Anadromous fish migrations. Can. J. Fish. Aquat. Sci. 44:399-407.

Blanckenhorn, W. U. 2000. The Evolution of Body Size: What Keeps Organisms Small? Quart. Rev. Biol. 75(4):385-407.

Blomberg, S. P., T. Garland, and A. R. Ives. 2003. Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution 57(4):717-745.

Boag, P. T., and P. R. Grant. 1981. Intense natural selection in a population of Darwin's finches (Geospizinae) in the Galapagos. Science 2 14:82-85.

Boback, S. M. 2003. Body size evolution in snakes: evidence from island populations. Copeia 2003:81-94.
Boback, S. M., and C. Guyer. 2003. Empirical evidence for an optimal body size in snakes. Evolution 57:345-351.

Bonner, J. T. (1988) The Evolution of Complexity. Princeton (NJ): Princeton University Press.

Brown, J. H., P. A. Marquet, and M. L. Taper. 1993. Evolution of body-size: Consequences of an energetic definition of fitness. Am. Nat. 142(4):573-584.
Brown, J. H., and B. A. Maurer. 1986. Body size, ecological dominance, and Cope's Rule. Nature 324: 248-250.

Brown, J. H., and B. A. Maurer. 1987. Evolution of species assemblages: Effects of energetic constraints and species dynamics on the diversification of the North American avifauna. Am. Nat. 130:1-17.

Brown, J. H., and Sibly, R. M. 2006. Metabolic rate constrains the scaling of production with body mass. PNAS 103(47):17595-17599.
Butler, M. A., and A. A. King. 2004. Phylogenetic comparative analysis: a modeling approach for adaptive evolution. Am. Nat. 164:683-695.

Butler, M. A., and J. B. Losos. 1997. Testing for unequal amounts of evolution in a continuous character on different branches of a phylogenetic tree using linear and squared-change parsimony: An example using lesser antillean Anolis lizards. Evolution 51(5):1623-1635.
Calder, W. A., III. 1984. Size, Function, and Life History. Harvard University Press, Cambridge, MA USA.
Campbell, T. S., and A. C. Echternacht. 2003. Introduced species as moving targets:
changes in body sizes of introduced lizards following experimental introductions and historical invasions. Biological Invasions 5:193-212.
Capellini, I., C. Venditti, and R. A. Barton. 2010. Phylogeny and metabolic scaling in mammals. Ecology 91(9):2783-2793.

Charlesworth, B. 1984. Some quantitative methods for studying evolutionary patterns in single characters. Paleobiology 10:308-318.

Cherry, L. M., S. M. Case, and A. C. Wilson. 1978. Frog perspective on the morphological difference between humans and chimpanzees. Science (Washington, D.C.) 200:209211.

Cherry, L. M., S. M. Case, J. G. Kunkel, J. S. Wyles, and A. C. Wilson. 1982. Body-shape metrics and organismal evolution. Evolution 36:914-933.
Chiachio, M. C., C. Oliveira, and J. I. Montoya-Burgos. 2008. Molecular systematic and historical biogeography of the armored Neotropical catfishes Hypoptopomatinae and Neoplecostominae (Siluriformes: Loricariidae). Mol. Phylogenet. Evol. 49:606-617.

Clauset, A., and D. H. Erwin. 2008. The evolution and distribution of species body size. Science 321(5887):399-401.

Clauset, A., D. J. Schwab, and S. Redner. 2009. How many species have mass M? Am. Nat. 173:256-263.

Cope, E. D. 1877. A contribution to the knowledge of the ichthyological fauna of the Green River shales. Bull. Unit. Stat. Geol. Geographical Survey 3(34):807-819.

Cope, E. D. 1887. The Origin of the Fittest. D. Appleton and Co., N.Y., USA.
Cope, E. D. 1896. The Primary Factors of Organic Evolution. Open Court Publications Co., Chicago, IL USA.

Damuth, J. 1993. Copes rule, the Island rule and the scaling of mammalian populationdensity. Nature 365(6448):748-750.

Depéret, C. J. J. 1907. Les transformations du monde animal. E. Flammarion.
Dobzhansky, T. G. 1937. Genetics and the origin of species. New York: Columbia Univ. Press. p. 12.
Donoghue, P. C., and M. P. Smith. 2003. Telling the evolutionary time: molecular clocks and the fossil record. CRC Press.

Drummond, A., and A. Rambaut. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7:1-8.

Fairbairn, D. J. 1997. Allometry for sexual size dimorphism: pattern and process in the coevolution of body size in males and females. Ann. Rev. Ecol. Syst. 28:659-687.

Felsenstein, J. 1981. Evolutionary trees from DNA sequences: A maximum likelihood approach. J. Mol. Evol. 17:368-376.

Felsenstein, J. 1985a. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783-791.

Felsenstein, J. 1985b. Phylogenies and the comparative method. Am. Nat. 125:1-15.
Felsenstein, J. 1988. Phylogenies from molecular sequences: Inference and reliability. Annu. Rev. Genet. 22:521-565.

Fenchel, T. 1993. There are more small than large species? Oikos 68:375-378.
Finarelli, J. A., C. Badgley. 2010. Diversity dynamics of Miocene mammals in relation to the history of tectonism and climate. Proc. R. Soc. B Biol. Sci. 277.1694: 2721-2726.
Gardezi, T., and J. da Silva. 1999. Diversity in relation to body size in mammals: A comparative study. Am. Nat. 153(1):110-123.
Gaston, K. J., and T. M. Blackburn. 1995. Birds, body size and the threat of extinction. Phil. Trans. Biol. Sci. 347(1320):205-212.

Gaston, K. J., and T. M. Blackburn. 2000. Pattern and process in macroecology. Oxford: Blackwell Science Ltd, p. 377.

Gilbert, W. 1981. DNA sequencing and gene structure. Nobel lecture, 8 December 1980. Biosci. Rep. 1:353-375.

Gingerich, P. D. 1983. Rates of evolution: Effects of time and temporal scaling. Science 222:159-161.

Gingerich, P. D. 1984a. Reply to Gould, 1984. Science (Washington, D.C.) 226:995.
Gingerich, P. D. 1984b. Primate evolution: evidence from the fossil record, comparative morphology, and molecular biology. Yearb. Phys. Anthropol. 27:57-72.
Gould, S. J. 1984. Smooth curve of evolutionary rate: A psychological and mathematical artifact. Science 226: 984-985

Gould S. J. 1988. Trends as changes in variance: A new slant on progress and directionality in evolution. J. Paleont. 62:3 19-329.

Haldane, J. B. S. 1949. Suggestions as to quantitative measurement of rates of evolution. Evolution 3(1):51-56.
Hansen, T. F. 1997. Stabilizing selection and the comparative analysis of adaptation. Evolution 51:1341-1351.

Hardman, M., and L. M. Hardman. 2008. The relative importance of body size and paleoclimatic change as explanatory variables influencing lineage diversification rate: An evolutionary analysis of bullhead catfishes (Siluriformes: Ictaluridae). Syst. Biol. 57:116-130.

Harvey, P. H., R. M. Mary, and S. Nee. 1994. Phylogenies without fossils. Evolution 48:523-529.

Harmon, L. J, J. T. Weir, C. D. Brock, R. E. Glor, and W. Challenger. 2008. GEIGER: investigating evolutionary radiations. Bioinformatics 24:129-131.

Hornibrook, N. D. B. 1992. New Zealand Cenozoic marine pale climates: a review based on the distribution of some shallow water and terrestrial biota. In: R. Tsuchi and J. Ingle, Pacific Neogene Environments, Evolution and Events. Univ. Tokyo Press, Tokyo, pp. 83-106.

Hutchinson, G. E., and R. H. MacArthur. 1959. A theoretical ecological model of size distributions among species of animals. Am. Nat. 93(869):117-125.

Jablonski, D. 1997. Body-size evolution in cretaceous molluscs and the status of Cope's rule. Nature 385:250-252.

Jablonski, D. 2007. Biotic Interactions and Macroevolution: Extensions and Mismatches Across Scales and Levels. Evolution 62(4):715-739.

Jablonski, D. 2008. Extinction and the spatial dynamics of biodiversity. PNAS 105: 1152811535.

Kingsolver, J. G., and D. W. Pfennig. 2004. Individual-level selection as a cause of Cope's rule of phyletic size increase. Evolution 58(7):1608-1612.
Knights, R. W. 1979. Experimental evidence for selection on shell size in Cepea hortensis (Mull.). Genetica 502:1-60.

Knouft, J. H. 2003. Convergence, divergence, and the effect of congeners on body size ratios in stream fishes. Evolution 57(10):2374-2382.

Knouft, J. H., and L. M. Page. 2003. The evolution of body size in extant groups of North American freshwater fishes: Speciation, size distributions, and Cope's rule. Am. Nat. 161(3):413-421.

Kochmer, J. P., and R. H. Wagner. 1988. Why are there so many kinds of passerine birds? Because they are small. A reply to Raikow. Syst. Zool. 37:68-69.

Kohn, M. J., and T. J. Fremd. 2008. Miocene tectonics and climate forcing of biodiversity, western United States. Geology 36.10: 783-786.

Kozlowski, J., and A. T. Gawelczyk. 2002. Why are species' body size distributions usually skewed to the right? Funct. Ecol. 16:419-432.

Kuiper, N. H. 1960. Tests concerning random points on a circle. Proc. KNAW S. A 63:3847.

Kunkel, J. G., L. M. Cherry, S. M. Case, and A. C. Wilson. 1980. Reply to Atchley, 1980. Science (Washington, D.C.) 200:1060-1061.

Lerman, A. 1965. On rates of evolution of unit characters and character complexes. Evolution 19:16-25.

Langeani, F. (1990) Revisão do gênero Neoplecostomus, com a descrição de quatro espécies novas do sudeste brasileiro (Ostariophysi, Siluriformes, Loricariidae). Comum. Mus. Cienc. Tecnol. PUCRS, Ser. Zool. 3:3-31.

Lomolino, M. V. 1985. Body size of mammals on islands: the island rule re-examined. Am. Nat. 125:310-316.

Lundberg, J.G. 1993. African South America freshwater fish clade and continental drift: problems with a paradigm, In: P. Goldblatt (Eds.), The Biotic Relationship between Africa and South America. Yale University Press. pp. 156-199.

Lundberg, J. G., J. P. Sullivan, R. Rodiles-Hernandez, D. A. Hendrickson. 2007. Discovery of African roots for the Mesoamerican Chiapas catfish, Lacantunia enigmatica, requires an ancient intercontinental passage. Proc. Acad. Nat. Sci. Philadelphia 156:39-53.

Lynch, M. 1990. The rate of morphological evolution in mammals from the standpoint of the neutral expectation. Am. Nat. 727-741.

Maddison, W. P. 1991. Squared-change parsimony reconstructions of ancestral states for continuous-valued characters on a phylogenetic tree. Syst. Zool. 40:304-314.

Marshall, L.G., T. Sempere, and R. F. Butler. 1997. Chronostratigraphy of the mammalbearing Paleocene of South America. J. S. Am. Earth Sci. 10:49-70.

Martins, F. O., and F. Langeani. 2011. Microlepidogaster dimorpha, a new species of Hypoptopomatinae (Siluriformes: Loricariidae) from the upper rio Paraná system. Neotropical Ichthyology 9(1):79-86.

Maurer, B. A. 1998. The evolution of body size in birds. I. Evidence for non-random diversification. Evolutionary Ecology 12(8):925-934.

Maurer, B. A., J. H. Brown, T. Dayan, B. J. Enquist, S. K. Morgan Ernest, E. A. Hadly, et al. 2004. Similarities in body size distributions of small-bodied flying vertebrates. Evol. Ecol. Res. 6(6):783-797.

Maurer, B. A., J. H. Brown, and R. D. Rusler. 1992. The micro and macro in body size evolution. Evolution 46(4):939-953.

May, R. M. 1988. How many species are there on earth? Science 241:1441-1448.
Maxam, A. M., and W. Gilbert. 1977. A new method for sequencing DNA. PNAS 74:560564.

McKinney, M. L. 1990. Trends in body-size evolution. Evolutionary Trends K. J. McNamara(Eds), pp. 75-118. University of Arizona Press, Tucson, AZ.

McLain, D. K. 1993. Cope's rules, sexual selection, and the loss of ecological plasticity. Oikos 68:490-500.

McShea, D. W. 1994. Mechanisms of large-scale evolutionary trends. Evolution 48(6):1747-1763.

Miller, K.G., R.G. Fairbanks, and G.S. Mountain. 1987. Tertiary oxygen isotope synthesis, sea level history, and continental margin erosion. Paleoceanography 2:1-19.

Monroe, M. J., and F. Bokma. 2009. Do speciation rates drive rates of body size evolution in mammals? Am. Nat. 174:912-918.

Munday, P. L., and G. P. Jones. 1998. The ecological implications of small body size among coral-reef fishes. Oceanogr Mar Biol Ann Rev 36:373-411.

Near, T. J., D. I. Bolnick, and P. C. Wainwright. 2005. Fossil calibrations and molecular divergence time estimates in centrarchid fishes (Teleostei: Centrarchidae). Evolution 59(8):1768-1782.

Nee, S., A. O. Mooers, and P. H. Harley. 1992. Tempo and mode of evolution revealed from molecular phylogenies. PNAS 89:8322-8326.

Nei, M., and S. Kumar. 2000. Molecular Evolution and Phylogenetics. Oxford University Press, New York, New York.

Newell, N. D. 1949. Phyletic size increase, an important trend illustrated by fossil invertebrates. Evolution 3(2):103-124.

Olden, J. D., Z. S. Hogan, and M. J. V. Zanden. 2007. Small fish, big fish, red fish, blue fish: size-biased extinction risk of the world's freshwater and marine fishes. GEB 16(6):694-701.

Olson, V. A., R. G. Davies, C. D. L. Orme, G. H. Thomas, S. Meiri, T. M. Blackburn, et al. 2009. Global biogeography and ecology of body size in birds. Ecol. Lett. 12(3):249259.

Paradis, E. 2012. Analysis of Phylogenetics and Evolution using R. New York, Springer 211 p.

Pagel, M., C. Venditti, and A. Meade. 2006. Large punctuational contribution of speciation to evolutionary divergence at the molecular level. Science 314(5796):119-121.

Peters, R. H. 1983. The Ecological Implications of Body Size. Cambridge: Cambridge University Press.

Poulin, R., and S. Morand. 1997. Parasite body size distributions: Interpreting patterns of skewness. Intern J Parasitol 27(8):959-964.

Price, T. D. 1984. Sexual selection on body size, territory, and plumage variables in a population of Darwin's finches. Evolution 38:327-341.

Price, T. D., and P. R. Grant. 1984. Life history traits and natural selection for small body size in a population of Darwin's finches. Evolution 38:483-494.

Price, T. D., P. R. Grant, H. L. Gibbs, and P. T. Boag. 1984. Recurrent patterns of natural selection in a population of Darwin's finches. Nature 309:787-791.

Purvis, A., C. D. L. Orme, and K. Dolphin. 2003. Why are most species small-bodied? A phylogenetic view. In: T. M. Blackburn and K. J. Gaston (Eds.), Macroecology: Concepts and consequences, pp. 155-173. Oxford: Blackwell Science.
R Core Team. 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/.
Rambaut, A., and A. J. Drummond. 2007a. Tracerv1.5. http://beast.bio.ed.ac.uk/Tracer (09.04.13).

Rambaut, A., and A. J. Drummond. 2007b. TreeAnnotator
v1.7.5.http://beast.bio.ed.ac.uk/TreeAnnotator (09.04.13).

Ramirez, L., J. A. F. Diniz-Filho, and B. A. Hawkins. 2008. Partitioning phylogenetic and adaptive components of the geographical body-size pattern of New World birds. GEB 17(1):100-110.

Reis, R. E., S. O. Kullander, C. J. Ferraris. 2003. CLOFFSCA-Check list of the freshwater fishes of South and Central America. Edipucrs.

Reiss, M. J. 1989. The Allometry of Growth and Reproduction. Cambridge: Cambridge University Press.

Renema, W., D. R. Bellwood, J. C. Braga, K. Bromfield, R. Hall, K. G. Johnson, et al. 2008. Hopping hotspots: global shifts in marine biodiversity. Science 321(5889):654657.

Rensch, B. 1959. Evolution above the Species Level. New York: Columbia University Press.

Roff, D. A. 1992. The Evolution of Life Histories. New York: Chapman and Hall.
Roxo, F. F., C. Oliveira, and C. H. Zawadzki. 2012. Three new species of Neoplecostomus (Teleostei: Siluriformes: Loricariidae) from the Upper Rio Paraná basin of southeastern Brazil. Zootaxa 3233:1-21.

Rypel, A. L. 2014. The Cold-Water Connection: Bergmann's Rule in North American Freshwater Fishes. Am. Nat. 183(1):147-156.

Sanger, F., S. Nicklen, and A.R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. PNAS 74:5463-5467.

Santos, R. N., E. J. G. Ferreira, and S. Amadio. 2008. Effect of seasonality and trophic group on energy acquisition in Amazonian fish. Ecol. Freshw. Fish 12:340-348.

Savin, S. M., R. G. Douglas, and F. G. Stehli. 1975. Tertiary marine paleotemperatures. Geol. Soc. Am. Bull. 86: 1499-1510.

Schluter D., T. Price, A. O. Mooers, and D. Ludwig. 1997. Likelihood of ancestral states in adaptive radiation. Evolution 51:1699-1711.

Shackleton, N. J., and J. P. Kennett. 1975. Paleotemperature history of the Cenozoic and initiation of Antarctic glaciation: oxygen and carbon isotopic analyses in DSDP Sites 277, 279, and 281. In: J. P. Kennett and R. E. Houtz, Init. Rep. DSDP 29:743 755.

Schmidt-Nielsen, K. 1984. Scaling: Why Is Animal Size So Important? Cambridge and New York: Cambridge University Press, 241 p.

Schmidt-Nielsen, K. 1997. Animal Physiology: Adaptation and Environment (5th ed.). Cambridge University Press.

Smith, G. R. 1981. Late Cenozoic freshwater fishes of North America. Annu. Rev. Ecol. Syst. 12:163-193.
Smith, G. R., C. Badgley, T. P. Eiting, and P. S. Larson. 2010. Species diversity gradients in relation to geological history in North American freshwater fishes. Evol. Ecol. Res. 12:693-726.

Stanley, 1973. An explanation for Cope's rule. S. M. Evolution 27: 1-26.
Stanley, S. M. 1979. Macroevolution. Pattern and Process. W. H. Freeman and Co., San Francisco. 332 p.

Stanley, S. M. 1998. Macroevolution. Pattern and Process. The Johns Hopkins University Press., London. 332 p.

Stearns, S. C. 1992. The Evolution of Life Histories. Oxford: Oxford University Press.
Stephens, M. 1970. Use of the Kolmogorov-Smirnov, Cramer-von Mises and related statistics without extensive tables. J. R. Stat. Soc. B 32:115-122.

Suguio, K., L. Martin, A. C. S. Bittencourt, J. M. L. Dominguez, J. M. Flexor, and A. E. G. Azevedo. 1985. Flutuações do nível relativo do mar durante o Quaternário superior ao longo do litoral brasileiro e suas implicações na sedimentação costeira. Rev. Bras. Geoc. 15:273-286.

Sugihara, N. 1978. Further analysis of the data by Akaike's information criterion and the finite corrections. Comm. Stat. Theory Methods A7:13-26.

Sullivan, J. P., J.G. Lundberg, and M. Hardman. 2006. A phylogenetic analysis of the major groups of catfishes (Teleostei: Siluriformes) using rag1 and rag2 nuclear gene sequences. Mol. Phyl. Evol. 41:636-662.
Van Valen, L. (1974) Two modes of evolution. Nature 252:298-300.
Webster, A. J., J. L. Gittleman, and A. Purvis. 2004. The life history legacy of evolutionary body size change in carnivores. J; Evol. Biol. 17(2):396-407.
Wiley, E. O., and B. S. Lieberman. 2011. Phylogenetics: theory and practice of phylogenetic systematics. John Wiley and Sons.

Wolda, H. 1963. Natural populations of the polymorphic snail Cepea nemoralis (L.). Arch. Neerl. Zool. 15:381-471.

Wyles, J. S., J. G. Kunkel, and A. C. Wilson. 1983. Birds, behavior, and anatomical evolution. PNAS 80:4394-4397.

Zachos, J. C., G. R. Dickens, and R. E. Zeebe. 2008. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451:279-283.

Zawadzki, C. H., C. S. Pavanelli, and F. Langeani. 2008. Neoplecostomus (Teleostei: Loricariidae) from the Upper Rio Paraná Basin, Brazil, with description of three new species. Zootaxa 1757:31-48.

Figure 1. Phylogeny of Hypoptopomatinae and Neoplecostominae species with ancestral character reconstruction of size. Calibrated tree topology of unpublished phylogenetic paper. Circle size and colors in phylogeny branches and tips are proportional to $\ln (\mathrm{cm})$ BS. Branch lengths in Ma.

Figure 2. Phylogeny of Otothyrinae species with ancestral character reconstruction of size. Calibrated tree topology of unpublished phylogenetic paper. Circle size and colors in phylogeny branches and tips are proportional to $\ln (\mathrm{cm}) \mathrm{BS}$. Branch lengths in Ma estimated. See taxa names in Supplementary Table 1.

Figure 3. Comparison among darwins (d) obtained from different methods of ancestral characters reconstructions. We can observe that the most similar models in the distribution of darwins (d) are PIC vs. GLS $\left(\mathrm{R}^{2}=0.664\right)$, and the models with more differences are ML vs. PIC $\left(\mathrm{R}^{2}=0.3603\right)$.

Figure 5. Size-frequency distributions of Hypoptopomatinae ($\mathrm{H} ; \mathrm{n}=18$; skewness $=0.55$; $\mathrm{P}<0.01$, Kuiper test), Neoplecostominae ($\mathrm{N} ; \mathrm{n}=33$; skewness $=-0.71 ; \mathrm{P}<0.01$, Kuiper test), Otothyrinae ($\mathrm{O} ; \mathrm{n}=89$; skewness $=-0.34 ; \mathrm{P}<0.01$, Kuiper test) and HNO-Clade (HNO; $\mathrm{n}=140$; skewness $=0.80 ; \mathrm{P}<0.01$, Kuiper test). Size Ranging from 2.1 cm to 17 cm.

(p) абueup azis

(p) ə6иецว ə2IS

(p) əదนеци əz!

Figure 6. Rates of size-change in darwins (d) through time estimated along branches with frequency distributions. (a) Values estimated for the three subfamilies together (HNO-clade branches on the phylogeny of Figs. 1 and 2) and frequency distributions of size-change events ($60-0 \mathrm{Ma}$; $\mathrm{n}=276$; skewness $=0.42 ; \mathrm{P}<0.01$, Kuiper test). We can observe that most size diversification occurred in the last 10 Ma ; (b) Hypoptopomatinae ($30-0 \mathrm{Ma} ; \mathrm{n}=34$; skewness $=-0.03$; $\mathrm{P}<0.01$, Kuiper test); (c) Neoplecostominae (20-0 Ma; $\mathrm{n}=65$; skewness $=0.01 ; \mathrm{P}<0.01$, Kuiper test); (d) Otothyrinae ($40-0 \mathrm{Ma} ; \mathrm{n}=177$; skewness $=-1.22 ; \mathrm{P}<0.01$, Kuiper䔍

Figure 7. Box Plot comparing the dispersal of darwins (d) for ancestors of (H)
Hypoptopomatinae $($ mean $=-0.003),(\mathrm{N})$ Neoplecostominae $($ mean $=0.008)$, and (O) Otothyrinae $($ mean $=-0.006)$.

Figure 8. Average BS of all subfamilies together (HNO-Clade) through Paleogene to the present. Maximum Likelihood ancestral estimation for all branches on the phylogeny of Figs. 1 and 2. Average size of fossils for each stratigraphic interval (epoch). Error bars \pm one standard deviation of the average of branches or fossils per epoch.

Figure 9. Lineage through time plot comparing the diversification pattern among lineages of subfamilies Hypoptopomatinae, Neoplecostominae, Otothyrinae and HNO-clade. The " y " axis is log transformed.

Supplementary Figures

Figure S1. Q-Q plot comparing the log size distribution values with a theoretical normal distribution. (a) Hypoptopomatinae; (b) Neoplecostominae; (c) Otothyrinae; (d) HNOclade.

Figure S2. Q-Q plot comparing the darwins (d) distribution values with a theoretical normal distribution. (a) Hypoptopomatinae; (b) Neoplecostominae; (c) Otothyrinae; (d) HNO-clade.
Table 1. Results of model fitting tests combining likelihoods across all clades. Lower AIC values indicate better model support; the best-supported model is in bold.

	EB			OU			BM		
Clades	lnL	AICc	$\triangle \mathrm{AICc}$	lnL	AICc	$\triangle \mathrm{AICc}$	lnL	AICc	$\Delta \mathrm{AICc}$
HNO-Clade	-17.85	-29.52	0.00	-17.85	-29.52	0.00	-17.15	-30.22	0.70
Hypoptopomatinae	-1.41	-10.67	2.91	-1.41	-10.67	2.91	-1.45	-7.76	0.00
Neoplecostominae	-5.58	-18.03	0.49	-5.58	-18.03	0.49	-6.56	-17.54	0.00
Otothyrinae	-47.06	-87.85	0.00	-47.06	-87.85	0.00	-47.06	-89.99	2.94

ब犬

928 Supplementary Table 1. Species included in the present study. ANSP = Academy of Natural Sciences of Drexel University, Philadelphia; AUM =
Auburn University Natural History Museum; LBP = Laboratório de Biologia e Genética de Peixes, Universidade Estadual Paulista; MCP = Museu de Ciências e Tecnologia, Pontifícia Universidade Católica do Rio Grande do Sul; MNRJ = Museu Nacional da Universidade Federal do Rio de Janeiro; NUP = Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura, Universidade Estadual de Maringá; MHNG = Museum of Natural History of the

Number	Collection No	Fish No	GenBank (Reticulon/16S/COI/CytB)	Species	Maximum BS	ln BS
$\mathbf{1}$	LBP 6037	29054	Not submitted	Hisonotus armatus	4.60	1.53
$\mathbf{2}$	MCP 21375		--/-EU371011/-	Hisonotus armatus	4.60	1.53
$\mathbf{3}$	MCP 37682		Not submitted	Hisonotus armatus	4.60	1.53
$\mathbf{4}$	LBP 3472	20258	Not submitted	Hisonotus notatus	4.00	1.39
$\mathbf{5}$	MNRJ 37474		Not submitted	Hisonotus notatus	4.00	1.39
$\mathbf{6}$	LBP 4765	25554	Not submitted	Hisonotus taimensis	6.60	1.89
$\mathbf{7}$	LBP 13147	51066	Not submitted	Hisonotus taimensis	6.60	1.89
$\mathbf{8}$	LBP 7407	35655	Not submitted	Hisonotus leucofrenatus	6.00	1.79
$\mathbf{9}$	MCP 31819		Not submitted	Hisonotus leucofrenatus	6.00	1.79
$\mathbf{1 0}$	MCP 41351		Not submitted	Hisonotus leucophrys	5.00	1.61
$\mathbf{1 1}$	MCP 21644		Not submitted	Hisonotus charrua	5.05	1.62
$\mathbf{1 2}$	MCP 37684		Not submitted	Hisonotus laevior	5.00	1.61
$\mathbf{1 3}$	LBP 13187	51070	Not submitted	Hisonotus laevior	5.00	1.61
$\mathbf{1 4}$	LBP 3376	21246	Not submitted	Hisonotus laevior	5.00	1.61
$\mathbf{1 5}$	LBP 3376	21248	Not submitted	Hisonotus laevior	5.00	1.61
$\mathbf{1 6}$	LBP 4720	24941	Not submitted	Hisonotus cf. charrua	5.05	1.62
$\mathbf{1 7}$	MCP 40762		Not submitted	Hisonotus notopagos	5.17	1.64
$\mathbf{1 8}$	LBP 4723	24951	Not submitted	Eurycheilichthys sp. 1	4.50	1.50
$\mathbf{1 9}$	LBP 4871	24919	Not submitted	Epactionotus bilineatus	4.00	1.39
$\mathbf{2 0}$	MCP 23683		-/-/EU371004/-	Epactionotus itaimbezinho	3.80	1.34

융

21	MCP 23606		--/EU371005/-	Epactionotus gracilis	3.90	1.36
22	LBP 3335	20465	Not submitted	Hisonotus heterogaster	5.00	1.61
23	LBP 579	8565	Not submitted	Hisonotus heterogaster	5.00	1.61
24	LBP 4719	25636	Not submitted	Hisonotus nigricauda	5.00	1.61
25	LBP 5528	25343	Not submitted	Otothyropsis marapoama	3.85	1.35
26	LBP 4863	24930	Not submitted	Hisonotus ringueleti	3.90	1.36
27	MCP 40943		Not submitted	Hisonotus carreiro	3.77	1.33
28	MCP 40492		Not submitted	Hisonotus prata	3.32	1.20
29	MCP 41352		Not submitted	Hisonotus megaloplax	4.71	1.55
30	LBP 13055	51035	Not submitted	Hisonotus montanus	4.50	1.50
31	MCP 41474		Not submitted	Hisonotus aky	3.45	1.24
32	LBP 13072	51046	Not submitted	Hisonotus iota	3.34	1.21
33	MCP 40029		Not submitted	Hisonotus iota	3.34	1.21
34	LBP 8249	38464	Not submitted	Parotocinclus prata	4.19	1.43
35	LBP 7472	32387	Not submitted	Parotocinclus prata	4.19	1.43
36	LBP 8258	38298	Not submitted	Parotocinclus robustus	4.20	1.44
37	LBP 7182	34694	Not submitted	Parotocinclus cf. bahiensis	3.10	1.13
38	LBP 5867	28345	Not submitted	New taxon 1	5.00	1.61
39	LBP 17402	67143	Not submitted	Hisonotus bocaiuva	2.56	0.94
40	LBP 7244	33302	Not submitted	New taxon 2	5.00	1.61
41	LBP 3457	20293	Not submitted	Parotocinclus sp. 1	4.30	1.46
42	LBP 13923	58218	Not submitted	Hisonotus francirochai	3.60	1.28
43	LBP 871	8801	Not submitted	Hisonotus paulinus	4.00	1.39
44	LBP 3932	22661	Not submitted	Hisonotus paulinus	4.00	1.39
45	LBP 17583	69477	Not submitted	Hisonotus depressicauda	5.00	1.61
46	LBP 17583	69479	Not submitted	Hisonotus depressicauda	5.00	1.61
47	LBP 8051	37802	Not submitted	Hisonotus depressicauda	5.00	1.61
48	MCP 22602		Not submitted	Hisonotus depressicauda	5.00	1.61

49	LBP 2910	18756	Not submitted	Hisonotus depressicauda	5.00	1.61
50	LBP 4854	25626	Not submitted	Microlepidogaster dimorpha	3.77	1.33
51	LBP 7253	33309	Not submitted	Rhinolekos britskii	3.83	1.34
52	LBP 7245	34405	Not submitted	Rhinolekos britskii	3.83	1.34
53	LBP 5848	28365	Not submitted	Rhinolekos sp. 1	3.50	1.25
54	LBP 7246	34410	Not submitted	Rhinolekos garavelloi	3.62	1.29
55	LBP 7246	33305	Not submitted	Rhinolekos garavelloi	3.62	1.29
56	LBP 2869	18571	EU817527/--/--	Parotocinclus maculicauda	6.00	1.79
57	LBP 4722	24946	EU817525/--/--	Pseudotothyris sp. 1	4.00	1.39
58	LBP 2094	13851	Not submitted	Pseudotothyris obtusa	4.00	1.39
59	LBP 1971	13685	EU817526/--/-	Otothyris travassosi	3.20	1.16
60	MHNG 2586.95	BR1200	EU817552/--/--	Pseudotothyris janeirensis	5.00	1.61
61	LBP 6950	35328	Not submitted	Parotocinclus sp. 2	6.10	1.81
62	ANSP 179131		--/-/GQ225426/-	Parotocinclus britskii	6.00	1.79
63	LBP 4787	25579	Not submitted	Parotocinclus eppleyi	3.00	1.10
64	AUM 43947		--/EU359455/-	Parotocinclus eppleyi	3.00	1.10
65	LBP 5624	35327	Not submitted	Parotocinclus aff. spilurus	4.00	1.39
66	LBP 5624	35326	Not submitted	Parotocinclus aff. spilurus	4.00	1.39
67	LBP 334	4276	Not submitted	Hisonotus sp. 1	2.51	0.92
68	LBP 8276	38487	Not submitted	Hisonotus sp. 2	2.54	0.93
69	LBP 16277	61771	Not submitted	Hisonotus sp. 3	2.91	1.07
70	LBP 7948	35750	Not submitted	Hisonotus chromodontus	3.03	1.11
71	LBP 7948	35749	Not submitted	Hisonotus chromodontus	3.03	1.11
72	LBP 10981	50459	Not submitted	Parotocinclus aripuanensis	2.10	0.74
73	LBP 1572	11537	Not submitted	Parotocinclus sp. 3	2.15	0.75
74	LBP 2414	16276	Not submitted	Parotocinclus sp. 3	2.15	0.75
75	LBP 2514	13846	EU817539/---/-	Schizolecis guntheri	4.00	1.39
76	LBP 3238	19471	EU817536/--/--	Schizolecis guntheri	4.00	1.39

77	LBP 2513	15240	EU817535/---/-	Schizolecis guntheri	4.00	1.39
78	LBP 2401	15272	EU817538/--/-	Schizolecis guntheri	4.00	1.39
79	LBP 2988	19646	EU817537/--/-	Schizolecis guntheri	4.00	1.39
80	LBP 1653	11477	EU817520/----	Corumbataia tocantinensis	3.80	1.34
81	LBP 2001	12191	EU817521/-----	Corumbataia cuestae	3.30	1.19
82	LBP 5529	25381	Not submitted	Hisonotus insperatus	3.00	1.10
83	LBP 1325	11238	Not submitted	Hisonotus sp. 4	2.84	1.04
84	LBP 17256	66651	Not submitted	Hisonotus piracanjuba	2.56	0.94
85	LBP 17256	66655	Not submitted	Hisonotus piracanjuba	2.56	0.94
86	MNRJ 29502	490	Not submitted	Hisonotus sp. 5	2.75	1.01
87	LBP 17532	68706	Not submitted	Hisonotus sp. 6	2.62	0.96
88	LBP 5062	26057	Not submitted	Hisonotus sp. 7	2.91	1.07
89	LBP 5062	26056	Not submitted	Hisonotus sp. 7	2.91	1.07
90	LBP 2931	18994	JN689285/JN089823/JN089799/JN089774	Pseudotocinclus tietensis	6.00	1.79
91	LBP 616	7564	JN689286/FJ625810/FJ625819/FJ965511	Pseudotocinclus juquiae	5.87	1.77
92	LBP 4391	24189	JN689280/ FJ434517/FJ434540/FJ965510	Pareiorhina rudolphi	4.50	1.50
93	LBP 7383	34843	JN689310/ FJ965496/FJ965507/FJ965517	Neoplecostomus selenae	10.17	2.32
94	LBP 7525	34832	-/JN089843/JN089818/JN089794	Neoplecostomus botucatu	10.20	2.32
95	NUP 3560	9701	JN689293/ FJ434506/FJ434529/FJ965516	Neoplecostomus yapo	10.60	2.36
96	LBP 2732	17444	JN689303/FJ965495/FJ965505/FJ965515	Neoplecostomus paranensis	9.82	2.28
97	LBP 5901	27990	JN689304/JN089837/JN089812/JN089788	Neoplecostomus langeanii	8.55	2.15
98	LBP 2861	18616	JN689298/JN089833/JN089808/JN089784	Neoplecostomus bandeirante	10.90	2.39
99	NUP 2528	9423	JN689295/FJ434520/FJ434543/FJ965513	Neoplecostomus corumba	7.83	2.06
100	LBP 645	7593	JN689311/FJ434508/FJ434531/FJ965518	Neoplecostomus microps	10.00	2.30
101	LBP 6537	31681	JN689313/FJ965494/FJ965504/FJ965519	Neoplecostomus franciscoensis	7.50	2.01
102	LBP 2551	15243	JN689312/FJ434507/FJ434530/ FJ965512	Neoplecostomus espiritosantensis	10.00	2.30
103	LBP 8380	37559	JN689288/JN089826/JN689277/JN089777	Pareiorhina hyptiorhachis	3.88	1.36
104	LBP 1087	10256	JN689290/JN089828/JN089803/JN089779	Pareiorhina carrancas	4.10	1.41

105	LBP 8368	37559	JN689291/JN089829/JN089804/JN089780	Pareiorhina carrancas	4.10	1.41
106	LBP7385	34852	JN689324/FJ965491/FJ965502/FJ965526	Isbrueckerichthys epakmos	10.00	2.30
107	LBP 6389	29765	JN689326/FJ965489/FJ965503/FJ965529	Isbrueckerichthys cf. calvus	9.00	2.20
108	LBP 7373	34853	JN689297/FJ965490/FJ965506/FJ965525	Isbrueckerichthys alipionis	8.20	2.10
109	LBP 2650	17402	JN689325/FJ625812/FJ625821/FJ965528	Isbrueckerichthys duseni	10.00	2.30
110	LBP 7384	34837	JN689323/JN089845/JN089820/JN089796	Neoplecostomus ribeirensis	9.00	2.20
111	LBP 515	6334	JN689316/FJ965492/FJ965500/FJ965523	Kronichthys subteres	12.00	2.48
112	LBP 795	8304	JN689315/FJ434503/FJ434526/FJ965522	Kronichthys lacerta	7.00	1.95
113	LBP 2122	15096	JN689314/FJ434502/FJ434525/FJ965520	Kronichthys heylandi	15.00	2.71
114	LBP 1766	12886	JN689317/FJ965493/FJ965501/FJ965521	Kronichthys sp. 1	11.00	2.40
115	LBP 748	8257	JN689318/FJ625811/FJ625820/FJ965524	Pareiorhaphis splendens	6.50	1.87
116	MCP 41275		---/EU359438/-	Pareiorhaphis cameroni	17.00	2.83
117	LBP 902	7989	JN689319/FJ434514/FJ434537/FJ965532	Pareiorhaphis steindachneri	12.00	2.48
118	MCP 41909		---IEU359437/-	Pareiorhaphis azygolechis	11.70	2.46
119	LBP 1161	8935	JN689320/FJ434512/FJ434535/FJ965530	Pareiorhaphis vestigipinnis	10.00	2.30
120	LBP 701	7363	JN689321/FJ434513/FJ434536/FJ965531	Pareiorhaphis hystrix	11.00	2.40
121	MCP 41747		EU359443/--/-	Pareiorhaphis parmula	9.45	2.25
122	MCP 41458		EU359439/---/-	Pareiorhaphis eurycephalus	6.30	1.84
123	LBP 4042	22905	Not submitted	Hypoptopoma inexspectatum	7.10	1.96
124	LBP 693	7084	Not submitted	Hypoptopoma inexspectatum	7.10	1.96
125	MHNG 2678.015	PR 12	JN689282/FJ965486/FJ965498/FJ965508	Hypoptopoma inexspectatum	7.10	1.96
126	LBP 3081	19713	EU817541/--/-	Hypoptopoma gulare	11.00	2.40
127	MHNG 2709.024	MUS 388	EU817554/--/-	Hypoptopoma sp. 1	10.70	2.37
128	LBP 3165	19315	EU817543/--/--	Acestridium discus	6.70	1.90
129	LBP 7204	35332	Not submitted	Acestridium sp. 1	6.00	1.79
130	LBP 6973	35324	Not submitted	Oxyropsis sp. 1	5.87	1.77
131	LBP 4300	23945	Not submitted	Oxyropsis acutirostra	5.70	1.74
132	LBP 2652	17407	Not submitted	Lampiella gibbosa	5.00	1.61

133	LBP 877	8564	EU817546\|--/--	Otocinclus flexilis	5.50	1.70
134	MCP 25234		---IEU370983/-	Otocinclus arnoldi	4.80	1.57
135	LBP 5310	26831	Not submitted	Otocinclus hoppei	3.30	1.19
136	MHNG 2613.057	CA25	EU817556/--/-	Otocinclus hoppei	3.30	1.19
137	LBP 5132	26233	EU817544/-/-/-	Otocinclus vittatus	3.30	1.19
138	MCP 34842		---IEU359432/-	Otocinclus cocama	4.40	1.48
139	MHNG no number	SU07-350	EU817558/--/-	Otocinclus mariae	3.30	1.19
140	MHNG 2601.060	BR98-040	EU817557/--/-	Otocinclus mariae	3.30	1.19
141	LBP 3510	21309	JN689283/FJ625809/FJ625818/FJ965533	Hypostomus nigromaculatus	10.20	2.32
142	NUP 1725	16652	Not submitted	Hypostomus microstomus	24.00	3.18
143	LBP 2544	10887	Not submitted	Hypostomus ancistroides	21.00	3.04
144	LBP 1557	11505	Not submitted	Rineloricaria lanceolata	9.50	2.25
145	LBP 1557	11506	Not submitted	Spatuloricaria sp. 1	30.00	3.40
146	MCP 31467		-/AY307290/-/-	Delturus parahybae	21.00	3.04
147	LBP 2368	15363	JN689278/FJ434499/FJ434524/FJ965535	Hemipsilichthys gobio	16.00	2.77
148	LBP 4956	10241	JN689279/FJ625808/FJ625817/FJ965534	Hemipsilichthys papillatus	9.20	2.22
149	LBP 1352	11454	Not submitted	Astroblepus sp. 1	-	-
150	LBP 3284	20010	Not submitted	Astroblepus sp. 2	-	-
151	LBP 485	6040	Not submitted	Callichthys callichthys	-	-
152	LBP 210	4134	-/GU2 10868/---	Hoplosternum littorale	-	-
153	LBP 2809		GU210997/--/-	Corydoras oiapoquensis	-	-
154	LBP 6862	32502	-/GU210613/---	Corydoras imitator	-	-
155	LBP 449	5815	Not submitted	Diplomystes mesembrinus	-	-

Appendix 1

Article

Description of a new species of Pareiorhina (Siluriformes: Neoplecostominae) from Rio São Francisco basin

FÁBIO FERNANDES ROXO ${ }^{1}$, GABRIEL DE SOUZA DA COSTA E SILVA, MAHMOUD MEHANNA ${ }^{1}$ \& CLAUDIO OLIVEIRA ${ }^{1}$
${ }^{1}$ Laboratório de Biologia e Genética de Peixes, Departamento de Morfologia, IB-UNESP, Campus de Botucatu, 18618-000 Botucatu, SP, Brazil.
E-mail: roxoff@hotmail.com.br

Abstract

A new species of Pareiorhina (Neoplecostominae) from the Rio São Francisco basin, Minas Gerais State, Brazil, is described. The new species is distinguished from its congeners (Pareiorhina brachyrhyncha, P. carrancas, and P. rudolphi) by traits related to small plates covered with odontodes randomly distributed on the abdomen, minute lateral cusps on the teeth, pointed odontodes covering pectoral, pelvic, and anal-fin first rays, caudal-fin being completely dark with one hyaline bar, absence of a ridge on the postdorsal surface of trunk, shape of premaxillae and dentaries, and by the absence of odontodes at the ventral tip of the snout.

Keywords: cascudinhos, catfish, freshwater, Loricariidae, Neotropical region, South America

Resumo

Uma nova espécie de Pareiorhina (Neoplecostominae) é descrita da bacia do Rio São Francisco, no Estado de Minas Gerais, Brasil. A nova espécie é distinguida dos seus congêneres (Pareiorhina brachyrhyncha, P. carrancas e P. rudolphi) por caracteres relacionados à presença de pequenas placas coberta por odontódeos distribuídas aleatoriamente pelo abdômen, pequena cúspide lateral nos dentes, odontódeos pontiagudos cobrindo os primeiros raios das nadadeiras peitorais, pélvicas e anal, nadadeira caudal completamente escura com uma listra hialina, ausência de uma quilha na superfície pósdorsal do tronco, formato das pré-maxilas e dentário e pela ausência de odontódeos na extremidade ventral do focinho.

Palavras-chave: cascudinhos, catfish, água doce, Loricariidae, Região Neotropical, América do Sul

Introduction

In a revision of the family Loricariidae, Gosline (1947) proposed the genus Pareiorhina to include Rhinelepis rudolphi Miranda-Ribeiro, 1911. Also, among the main changes proposed by Gosline was the recognition of Neoplecostominae as a larger group, including Corymbophanes, Delturus, Hemipsilichthys, Kronichthys, Neoplecostomus, Pareiorhaphis, Pareiorhina, Pogonopoma, Pogonopomoides, Canthopomus (=Pseudorhinelepis), Rhinelepis, and Upsilodus. Armbruster (2004), in a phylogenetic analysis, supported the hypotheses that Pareiorhina is a Neoplecostominae and moved it from Hypostominae.

Recently, Chiachio et al. (2008) suggested that Pareiorhina rudolphi and Pareiorhina sp. formed a sister-group to the genus Pseudotocinclus. Cramer et al. (2011) also identified Pareiorhina sp. as a sister group to the genus Pseudotocinclus, but that Pareiorhina brachyrhyncha and P. carrancas formed a polytomy with some Neoplecostomus species. Gosline (1947), in the description of the genus Pareiorhina, did not propose any synapomorphies to define the group, but a combination of autopomorphic, plesiomorphic, and derived characters. Bockmann and Ribeiro (2003), in the description of Pareiorhina carrancas, proposed a combination of
synapomorphic characters to separate the genus from other Loricariidae genera: the lateral borders of the head without developed bristles; teeth simple; abdomen naked; dorsal plates meeting along the mid-dorsal line between the dorsal and caudal-fins; adipose fin absent; ventral plates covering mid-ventral line; and dorsal portion of body behind dorsal fin flattened. However, no exclusive diagnostic characters to define the genus have been proposed thus far.

Currently, Pareiorhina comprises three described species (P. brachyrhyncha, P. carrancas and P. rudolphi), but Garavello and Santana (1998) have reported the occurrence of possible new species in tributaries of the Rio Grande, Rio Tietê, Rio Paraíba do Sul, and Rio São Francisco basins. In the present paper, we present a formal description of the first species of Pareiorhina from the Rio São Francisco basin.

Material and methods

Measurements and counts were taken from left side. All measurements were taken from point to point to the nearest 0.1 mm with digital calipers. After collection the animals were anaesthetized using 1% Benzocaine in water and fixed in 10% formalin for at least two weeks, then transferred to 70% ethanol for permanent storage for morphological studies. Body plate nomenclature followed Schaefer (1997) and Bockmann and Ribeiro (2003). Osteological examination was made on cleared and double-stained specimens (c\&s) according to the procedures of Taylor and Van Dyke (1985). Vertebrae counts included five from the Weberian Apparatus. All materials examined are deposited at following institutions: LBP (Laboratório de Biologia e Genética de Peixes, Universidade Estadual Paulista Julio de Mesquita Filho, Botucatu, São Paulo); LIRP (Laboratório de Ictiologia de Ribeirão Preto, Ribeirão Preto, São Paulo); MCP (Museu de Ciências e Tecnologia, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul); MZUSP (Museu de Zoologia da Universidade de São Paulo, São Paulo, São Paulo); NUP (Coleção Ictiológica do Nupélia, Universidade Estadual de Maringá, Maringá, Paraná).

The bone plate abbreviations are parieto-supraoccipital (soc), compound pterotic (cpt), opercle (op), preopercle (pop), sphenotic (sp), infraorbitals (io1-io5), frontal (f), prefrontal (pf), nasal (na), prenasal (pn1-pn3); internasal plates (pni), rostral plates (r), postrostral plates (pr1-pr4), subocular cheek plates (cp1-cp2) and suprarostral plates (sprs).

Results

Pareiorhina cepta, new species

Fig. 1; Table 1

Holotype: MZUSP 111095, 41.5 mm SL, Brazil, Minas Gerais State, municipality of São Roque de Minas, district of São João Batista, Córrego do Lavapés, affluent Rio Santo Antônio, affluent Rio Samburá, Rio São Francisco basin, $20^{\circ} 08^{\prime} 36^{\prime \prime} \mathrm{S}^{\prime} 46^{\circ} 38^{\prime} 21^{\prime \prime}$ W, 18 May 2011, Mehanna, M. and Senhorini, J.

Paratypes: All from Brazil, Minas Gerais State, Rio São Francisco basin. LBP 10261, 1, 30.2 mm SL, municipality of São Roque de Minas, Córrego Maria da Prata, $20^{\circ} 15^{\prime} 51^{\prime \prime} \mathrm{S} 46^{\circ}{ }^{2} 0^{\prime} 57^{\prime \prime} \mathrm{W}, 9$ Apr 2010, Mehanna, M. and Senhorini, J. LBP 10287, 13, 21.5-43.6 mm SL, municipality of São Roque de Minas, district of São João Batista, Córrego do Lavapés, affluent Rio Santo Antônio, affluent Rio Samburá, Rio São Francisco basin, $20^{\circ} 08^{\prime} 36^{\prime \prime} \mathrm{S}, 46^{\circ} 38^{\prime} 21^{\prime \prime} \mathrm{W}, 12$ Abr 2010, Mehanna, M. and Senhorini, J. LBP 11835, $1 \mathrm{c} \& \mathrm{~s}, 33.4 \mathrm{~mm}$ SL, 19, 25.1-44.0 mm SL. Same data as the holotype. LIRP 8950, 2, 41.9-42.7 mm SL. MCP 46896, 2, 32.5-42.7 mm SL. NUP 13578, 2, 38.8-40.6 mm SL.

Diagnosis: The new species Pareiorhina cepta differs from all its congeners by the presence of small plates covered with odontodes randomly distributed on the abdomen, Fig. 2a ($v s$. abdomen completely naked) and by color pattern of caudal-fin completely dark with one hyaline bar ($v s$. variegated blotches corresponding to approximately three to four hyaline bars in P. brachyrhyncha and P. rudolphi and hyaline random spots in P. carrancas, Fig. 3). Moreover, the new species also differs from all congeners, except for P. brachyrhyncha, by presence of a minute lateral cusp in teeth ($v s$. unicuspid teeth in remaining species); differs from all congeners, except for P. carrancas, by having ventral surfaces of first pectoral, pelvic and anal-fin rays covered by pointed
odontodes ($v s$. conspicuously spatulate odontodes). Additionally, P. cepta differs from P. carrancas by lacking a ridge on the postdorsal surface of trunk ($v s$. postdorsal surface of trunk with a low, elongate ridge formed by 10-13 raised median unpaired plates), anterior ends of the premaxillae and dentaries gently sloped inwards, Bockmann and Ribeiro (2003) (vs. strongly sloped); from P. brachyrhyncha by lacking odontodes at the ventral tip of the snout ($v s$. tip of snout completely covered by odontodes).

FIGURE 1. Pareiorhina cepta, MZUSP 111095, 41.5 mm SL, holotype from Córrego do Lavapés, Rio São Francisco basin, municipality of São Roque de Minas, district of São João Batista, Minas Gerais State, Brazil.

TABLE 1. Morphometric data and counts of Pareiorhina cepta, from São Francisco basin. $\mathrm{IO}=$ interorbital, $\mathrm{OD}=$ orbital diameter, $\mathrm{PDS}=$ predorsal, $\mathrm{CP}=$ caudal peduncle .

	Pareiorhina cepta $\mathrm{n}=30$			
	Holotype	Range	Mean/Mode	SD
Standard length (SL)	41.5	30.2-44.3	38.5	3.78
Percents of Standard length (SL)				
Predorsal length	43.4	42.1-44.8	43.5	0.74
Preanal length	61.6	57.4-62.0	59.6	1.37
Head length	31.7	31.1-33.7	32.1	0.61
Cleithral width	28.3	27.0-30.5	28.7	0.86
Dorsal-fin spine length	24.6	21.9-26.0	23.7	0.84
Base of dorsal-fin length	16.1	13.2-16.4	15.0	0.81
Thorax length	17.8	14.1-18.3	16.7	0.97
Pectoral-fin spine length	22.1	20.8-25.0	23.1	0.97
Abdomen length	24.8	22.3-26.9	24.7	0.89
Pelvic-fin spine length	20.4	19.3-23.4	21.3	1.01
Anal-fin spine length	17.1	16.2-18.3	17.2	0.58
Lower caudal spine	25.5	24.4-29.7	26.7	1.34
Caudal peduncle depth	8.1	7.7-8.8	8.1	0.23
Caudal peduncle length	32.4	32.2-36.5	34.7	1.20
Anal width	13.4	12.2-15.8	13.8	0.87
Snout-opercle length	24.1	18.4-25.4	23.9	1.20
Percents of Head Length				
Head width	86.4	83.4-90.5	86.7	2.11
Head depth	47.8	46.9-53.4	49.3	1.76
Snout length	56.0	53.3-58.9	56.2	1.45
Interorbital width	38.0	36.1-42.8	39.1	1.44
Orbital diameter	12.3	10.7-14.8	12.4	0.92
Suborbital depth	30.5	28.8-33.7	30.8	1.15
Mandibular ramus	13.6	12.4-16.2	14.5	0.95
Lip length until cleithral	23.0	20.0-25.1	22.6	1.37
Other percents				
Anal width/cleithral width	47.5	40.0-56.0	48.3	3.72
IO/OD	32.5	26.0-36.8	31.8	2.47
IO/Mandibulary ramus	35.9	31.8-41.1	37.2	2.76
PDS length/first dorsal ray length	56.8	51.1-59.0	54.6	1.92
CP length/CP depth	25.1	21.7-25.4	23.6	1.02
Pelvic-fin length/CP depth	39.9	35.5-42.1	38.4	1.74
Lower caudal spine/CP depth	31.9	28.8-33.5	30.7	1.37
Meristics				
Dorsal plates	27	24-27	25	-
Mid-dorsal plates	20	17-21	19	-
Median plates	25	24-27	26	-
Mid-ventral plates	20	18-21	20	-
Ventral plates	23	20-23	21	-
Predorsal plates	6	5-6	5	-
Dorsal plates below dorsal-fin base	6	4-6	5	-
Postdorsal plates	16	15-17	17	-
Ventral plates above anal-fin base	3	2-3	3	-
Ventral plates between end of anal base and caudal-fin membrane	13	11-14	13	-
Premaxillary teeth	42	32-46	36	-
Dentary teeth	39	32-46	38	-

Description: Counts and measurements are summarized in Table 1. Dorsal profile of body elongated and depressed, straight from dorsal-fin to caudal-fin base. Ventral profile of body slightly convex from snout tip to caudal-fin base. Greatest body depth at dorsal-fin origin and smallest on caudal peduncle. Greatest body width at opercular region; lateral profile convex between tip snout and end of dorsal-fin; straight to caudal-fin. Body progressively narrowing from cleithrum to caudal-fin. Caudal peduncle rectangular in cross section. Dorsal profile of caudal peduncle with longitudinal depression and covered with paired plates (postdorsal plates between of 15-17). Ventral profile of caudal peduncle flat.

Head wide, rounded dorsally. Tip of snout partly naked and slightly concave towards nares. Interorbital region straight to slightly concave in frontal view. Small eyes (10.7-14.8\% of head length), dorsolaterally placed. Iris with small dorsal flap covering pupil. Nares near and almost with same diameter that eyes. Lips well developed and rounded. Lower lip far from reaching pectoral girdle and covered with papillae, decreasing in size towards posterior margin, wider anteriorly. Maxillary barbel short. Upper lip folded over itself. Teeth long and bicuspid (small lateral cusp located laterally in main crow). Rami of dentaries and premaxillae strongly curved inwards. Teeth organized in single series. Dorsal-fin I,7; spinelet presented and ovoid shaped; locking mechanism not functional. Dorsal-fin base located between vertebrae 10 and 14. Pectoral-fin I,6. Pelvic-fin I,5. Pectoral and pelvic-fins without locking mechanism. Pectoral-fin unbranched ray covered with conspicuously pointed and developed odontodes, largest at ventral portion. Tip of pectoral-fin almost reaching middle of pelvic-fins. Second and third branched pectoral-fins rays surpassing tip of unbranched pectoral-fin ray. Pelvic-fin unbranched ray slightly curved. First unbranched fin ray covered with conspicuously pointed and developed odontodes, largest at ventral portion. Tip of pelvic-fin slightly surpassing insertion of anal fin first ray. Anal-fin I,5; it base located between vertebrae 16 and 19. Adipose fin absent. Dorsal portion of caudal peduncle covered with paired plates. Caudal-fin truncated with lower unbranched ray longer than upper. Caudal-fin with I,7-7,I branched rays.

Upper hypural plate (composed of epural, uroneural, and hypurals 3-5) with I+7 rays; lower hypural plate (composed of hypurals 1, 2, and parahypural) with $7+I$ rays. Body entirely covered by bony plates, except for ventral surface of head and most part of abdomen. Small platelets randomly distributed near urogenital opening and all abdominal regions, leaving abundant naked areas surrounding them. Dorsal plates with 24 to 27 , mid-dorsal 17 to 21 , median plates 24 to 27 , mid-ventral 18 to 21 , and ventral 20 to 23 . Head with naked area beside compound pterotic. Head without crests. Head and body plates covered with developed odontodes with uniform distribution. Ventral surfaces of first pectoral, pelvic and anal-fin rays covered by pointed odontodes.

FIGURE 2. (a) Ventral view; small plates covered with odontodes randomly distributed to abdomen. (b) Dorsal view; osteology of the head. Paratype, LBP 11835, c\&s, 33.4 mm SL.

Seven pairs of ribs associated with vertebral central 8-15. First pair of ribs large and laminar; remaining ribs slender and poorly ossified. Total number of vertebrae 30. Supraorbital sensory canal with four pores s1, s3, s6+s6 and s8; s1 located on terminal portion of nasal plates; pore s3 located on anterior portion of nasal; pore s6+s6 located between frontal, on horizontal line through anteriormost limits of eyes; pore $s 8$ on division between frontal, sphenotic and parieto-supraoccipital, just above eyes. Infraorbital sensory canals with six pores; pore iol located

TERMS OF USE
This pdf is provided by Magnolia Press for private/research use.
Commercial sale or deposition in a public library or website is prohibited.

FIGURE 3. Picture showing the different color pattern of the caudal-fin in species of Pareiorhina. (a) Pareiorhina cepta, (b) P. rudolphi, (c) P. brachyrhyncha, (d) P. carrancas.
on anterior end of first infraorbital; pore io2 located in medial region between first and second infraorbitals; pore io3 located in medial region between second and third infraorbitals; pore io4 located in medial region between third and fourth infraorbitals; pore io5 located in medial region between fourth and fifth infraorbitals, and pore io6 located between sixth and sphenotic. Preopercular canal with two pores; pore pm3 located between cheek plate and preopercle; pore pm4 located between preopercle and compound pterotic. Two postotic pores; pore po 2 located just above branchial slit; and po3 located on region overlying opening of swim-bladder capsule.

Head osteology in Fig. 2b. Tip of snout with four rostral plates (r). Three pairs of prenasal plates behind rostral plates (pn1-pn3) all with varied sizes and shapes and a pair of nasal plates (na). Three internasal plates (pni) between nasal plates. Five infraorbital plates (io1-io5) on lateral surface of head; all covered by latero-sensory canal system. First infraorbital largest and fifth smallest. Preopercle (pop) just below fifth infraorbital elongated, which is also covered by latero-sensory canal. Lateral of head covered by postrostral plates, (pr1-pr4); pr4 largest, triangular-shaped plate. Suprarostral plates (sprs) just below io3 and io4. Last lateral plate series in subocular cheek plates (cp1-cp2) and opercle (op). Posterior portion of skull formed by prefrontal (pf), frontal (f), sphenotic (sp), compound pterotic (cpt) and parieto-supraoccipital (soc). Several fenestrae in lateral margin of compound pterotic.

Color in alcohol: Ground color of dorsal surface of head and body light brown to yellowish brown. Ventral surface of body and head lighter than dorsal and covered by dark spots of chromatophores widely settled. Three dark bars on dorsal surface of trunk (in some specimens not evident), anterior most poorly defined. Lateral portion of body with poorly defined dark stripe from head to caudal-fin. Fins with irregularly and poorly defined bars: three on anal fin, four on pectoral and pelvic-fins, and five on dorsal-fin. Caudal-fin completely dark with one hyaline bar.

Sexual dimorphism: Males of Pareiorhina cepta have a conspicuous urogenital papilla posterior to urogenital opening (attribute absent in females).

Distribution: Known only from Córrego do Lavapés and Córrego Maria da Prata, which are two small headwater streams in the upper Rio São Francisco basin, near Serra da Canastra, Minas Gerais State, Brazil (Figs. 4 and 5).

Habitat: Pareiorhina cepta was found at an altitude of about 810-1065 m.a.s.l. The streams were narrow (about 3-5 m width) and shallow (about $0.25-1.5 \mathrm{~m}$ deep). The stream bottom was formed of small to mediumsized rocks, loose stones, gravel and sand. The water in the sampled site was clear, cold $\left(16.6^{\circ} \mathrm{C}-19.5^{\circ} \mathrm{C}\right)$, highly acidic ($\mathrm{pH} 2.78-2.87$), poorly conductive ($\mu \mathrm{s} / \mathrm{cm} 0.013-0.014$), highly oxygenated ($5.91-13.05 \mathrm{mg} / \mathrm{l}$ OD) and moderate to fast flowing. Margins of the stream were covered by vegetation, which shadows a wide portion of its bed. In that stream, specimens of Pareiorhina cepta sympatric with other species, such as Astyanax rivularis, Neoplecostomus franciscoensis, Trichomycterus macrotrichopterus and Characidium fasciatum were captured.

Etymology: The specific name cepta is derived from CEPTA (an acronym for Centro de Pesquisa Treinamento em Aquacultura-former Centro Nacional de Pesquisa e Conservação de Peixes Continentais) from municipality of Pirassununga, São Paulo State, Brazil.

FIGURE 4. Map showing the collecting site of Pareiorhina cepta in two streams in Rio São Francisco basin, Minas Gerais State. Triangle- $20^{\circ} 08^{\prime} 36^{\prime \prime} \mathrm{S} 46^{\circ} 38^{\prime} 21^{\prime \prime} \mathrm{W}$, star- $20^{\circ} 15^{\prime} 51^{\prime \prime} \mathrm{S} 46^{\circ} 20^{\prime} 57^{\prime \prime} \mathrm{W}$.

FIGURE 5. Field picture showing type locality of Pareiorhina cepta, Córrego do Lavapés, Rio São Francisco basin, municipality of São Roque de Minas, district of São João Batista, Minas Gerais State, Brazil.

Key to species of Pareiorhina modified from Chamon et al. (2005)
la. Postdorsal surface of trunk with median low ridge formed by 10-13 azygous plates extending between dorsal and caudal-fin .

Discussion

In a molecular analysis of the subfamily Hypoptopomatinae and Neoplecostominae, Cramer et al. (2011) identified Pareiorhina brachyrhyncha and P. carrancas as sister taxa, but this clade occurred in a polytomy with other Neoplecostominae genera. Chiachio et al. (2008) identified Pareiorhina rudolphi, the type species of the genus, as a sister-group to other undescribed Pareiorhina, with both forming a sister-group to the genus Pseudotocinclus. Thus, these analyses suggest that Pareiorhina may not be monophyletic. Currently, no exclusive synapomorphic character has been presented to diagnose the genus. As a result of the conflict between morphological taxonomy and molecular phylogenies, we compared the new species with other Neoplecostominae genera Isbrueckerichthys, Kronichthys, Neoplecostomus, Pareiorhaphis, Pareiorhina and Pseudotocinclus (sensu Armbruster 2004 and Chiachio et al. 2008) in an attempt to identify its correct taxonomic position.

According to Langeani (1990) the genus Neoplecostomus is diagnosed by inferior lips with three or four papilla series just above the dentary, abdomen partially covered by a shield of plates, presence of the canal bearing plate and pectoral spine mechanism absent. Pareiorhina cepta share the canal bearing plate with species of Neoplecostomus, however this character is also present in species of Kronichthys, Isbrueckerichthys, Pareiorhaphis and other Pareiorhina. The abdomen of Pareiorhina cepta is covered by randomly distributed small plates (Fig. 2a), but these do not form a shield as in Neoplecostomus species. The other remaining characters used to distinguish Neoplecostomus listed above are absent in Pareiorhina cepta.

The genus Isbrueckerichthys was proposed by Derijst (1996) and despite lacking diagnostic characters (Pereira \& Oyakawa 2003), it can be distinguished from other Neoplecostominae by having a small naked area behind the compound pterotic, abdomen with small platelets imbedded in skin between the pectoral girdle and pelvic-fin insertions, dorsal fin with one spine and seven branched rays, and caudal peduncle ovoid in cross-section. Pareiorhina cepta has an abdomen with a wide naked area between randomly distributed small plates (Fig. 2a), while in Isbrueckerichthys species the abdominal plates form a shield without wide naked areas, moreover, the caudal peduncle is not ovoid but flatted in the dorsal and ventral portion (Fig. 1). The new species shares with Isbrueckerichthys the dorsal-fin I, 7 and the presence of a small naked area behind the compound pterotic, however these characters are also found in other Neoplecostominae and Hypoptopomatinae species.

According to Gosline (1947) Kronichthys is characterized by having a more or less cylindrical body, head rather high and quadrangular, the inner ends of both tooth rows in both jaws turning sharply inwards and running almost parallel to one another, and the presence of an adipose fin. Pareiorhina cepta does not have any of these characters, however it shares with species of Kronichthys a lateral cusp in the teeth. According to Schaefer (1987) this is a typical character present in species of Loricariidae and Astroblepidae.

Pereira (2005) resurrected the genus Pareiorhaphis and used the following combination of characters to distinguish it from other Neoplecostominae genera: fleshy lobes on lateral margins of head ornamented with hypertrophied odontodes on nuptial males, caudal peduncle ovoid in cross-section, abdomen usually naked, dorsalfin spinelet ovoid, and adipose-fin usually present. The new species Pareiorhina cepta shares only the shape of dorsa-fin spinelet (ovoid) with species of Pareiorhaphis.

According to Takako et al. (2005) the genus Pseudotocinclus can be diagnosed from other Hypoptopomatinae by the presence of a caudal peduncle that is nearly square in cross-section, by the presence of 26 or more plates along the lateral line, a dorsally positioned eye, an exposed preopercle and an abdomen covered with numerous small plates. The caudal peduncle of Pareiorhina cepta is flatted in dorsal and in ventral portions (Fig. 1), but is not completely square in cross-section as in Pseudotocinclus. The abdomen of the new species has few and small randomly distributed plates (Fig. 2a) and in species of Pseudotocinclus the number of plates covering the abdomen
is much greater in density. Also in Pareiorhina cepta the preopercle is present above the bones of the head which is different from that found in species of Pseudotocinclus. Considering the other characters listed above the new species P. cepta has all of them. However, these are polymorphic between species of Neoplecostominae and Hypoptopomatinae.

The new species Pareiorhina cepta has all characters proposed by Bockmann and Ribeiro (2003) to diagnose Pareiorhina, except the abdomen completely naked and teeth simple. The presence of minute lateral cusps in the teeth is a character shared with Pareiorhina brachyrhyncha, a species very similar to P. cepta. Thus, before a more complete elucidation of the generic composition of Neoplecostominae has been performed, we have allocated the new species to the genus Pareiorhina, rather than any other Neoplecostominae genus. Finally, a thorough morphological analysis of Pareiorhina is necessary to better elucidate the morphological variation of its member species and its relationship with other Neoplecostominae genera.

Comparative material

Hisonotus notatus: LBP 2100, 1, 55.4 mm SL, Morretes Municipality, Paraná State, Coastal Drainage. LBP 3472, 20, 21.0-34.3 mm SL, Macaé Municipality, Rio de Janeiro State, Coastal Drainage. Isbrueckerichthys alipionis: LBP 7373, 17, 31.7-81.6 mm SL, Municipality of Iporanga, SP, Coastal Drainage. Kronichthys sp.: LBP 2122, 61, 30.1-78.5 mm SL, Parati Municipality, Rio de Janeiro State, Coastal Drainage. Kronichthys subteres: LBP 515, 31, 28.4-61.9 mm SL, Iporanga Municipality, São Paulo State, Coastal Drainage. Neoplecostomus franciscoensis: LBP 6489 , 50, 42.8-55.9 mm SL, São Bartolomeu Municipality, Minas Gerais State, Rio das Velhas basin. Neoplecostomus paranensis: holotype, MZUSP 38572, 71.4 mm SL, Cajuru Municipality, São Paulo State, Rio Grande basin, LBP 2732, 1, 70.5 mm SL, Cajuru Municipality, São Paulo State, Rio Grande basin; Pareiorhaphis steindachneri: LBP 739, 6, 33.8-49.0 mm SL, Jaraguá do Sul Municipality, Santa Catarina State, Coastal Drainage. Pareiorhina carrancas: LBP 8380, 24, 21.3-35.4 mm SL, Carrancas Municipality, Minas Gerais State, Rio Grande basin. Pareiorhina brachyrhyncha: LBP 12240, 50, 26.4-36.9 mm SL, Pindamonhangaba Municipality, São Paulo State, rio Paraíba do Sul. Pareiorhina rudolphi: LBP 8044, 18, 31.7-48.9 mm SL, Piquete Municipality, São Paulo State, Rio Paraíba do Sul basin. Pareiorhina cf. rudolphi: LBP 4396, 5, 35.4-45.9 mm SL, Jundiaí Municipality, São Paulo State, Rio Tietê basin. Parotocinclus prata: LBP 11683, 3, 18.6-29.6 mm SL, Claro de Minas Municipality, Minas Gerais State, Rio São Francisco basin. Pseudotocinclus juquiae: LBP 1081, 2, 29.0-31.9 mm SL, Juquitiba Municipality, São Paulo State, Coastal Drainage. Pseudotocinclus tietensis: LBP 2931, 3, 38.6-62.3 mm SL, Salesópolis Municipality, São Paulo State, Rio Tietê basin. Schizolecis guntheri: LBP 2123, 21, 28.4-36.3 mm SL, Parati Municipality, Rio de Janeiro State, Coastal Drainage, LBP 3546, 77, 20.9-35.8 mm SL, Ubatuba Municipality, São Paulo State, Coastal Drainage.

Acknowledgements

We wish to thank José Augusto Senhorini, Paulo Sérgio Ceccarelli and Rita de Cássia Gimenez de Alcântara Rocha (CEPTA) for having invited us to participate in the project "Caracterização ambiental do Parque Nacional da Serra da Canastra", with financial support from ICMBio (Instituto Chico Mendes de Conservação da Biodiversidade) and PNUD (Programa das Nações Unidas para o Desenvolvimento); to Rita C. G. A. Rocha for all information of the limnological data; Martin I. Taylor for read the manuscript; Bruno Francelino de Melo for helping with the picture editions; Adilson Fransozo and Ricardo Benine for providing the optical equipment to design drawings of osteology and measurements. We are really in debit to Carlos Alberto S. de Lucena (MCP), Flávio Alicino Bockmann (LIRP) and Cláudio H. Zawadzki (Nupelia) for all facility curatorial assistance. We would also like to thank our sponsors for their respective financial support: FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo, FAPESP proc. 2010/01610-9 to FFR, and proc. 2009/17468-0 to MM, and proc. 2012/01622-2 to GSCS), MCT/CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), (Edital Universal, N ${ }^{\circ}$ 014/2010—Proc. n ${ }^{\circ} 473961 / 2010-5$) and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior).

References

Armbruster, J.W. (2004) Phylogenetic relationships of the suckermouth armored catfishes (Loricariidae) with emphasis on the Hypostominae and the Ancistrinae. Zoological Journal of the Linnean Society, 141, 1-80.
Bockmann, F.A. \& Ribeiro, A.C. (2003) Description of a new suckermouth armored catfish of the genus Pareiorhina (Siluriformes: Loricariidae), from southeastern Brazil. Icthyological Exploration of Freshwaters, 14, 447-458.
Chamon, C.C., Aranda, A.T. \& Buckup, P.A. (2005) Pareiorhina brachyrhyncha (Loricariidae: Siluriformes): a New Species of Fish from the Paraiba do Sul Slope of Serra da Mantiqueira, Southeastern Brazil. Copeia, 3, 550-558.
Chiachio, M.C., Oliveira, C. \& Montoya-Burgos, J.I. (2008) Molecular systematic and historical biogeography of the armored Neotropical catfishes Hypoptopomatinae and Neoplecostominae (Siluriformes: Loricariidae). Molecular Phylogenetic and Evolution, 49, 606-617.
Cramer, C.A., Bonatto, S.L. \& Reis, R. (2011) Molecular Phylogeny of the Neoplecostominae and Hypoptopomatinae (Siluriformes: Loricariidae) using Multiple Genes. Molecular Phylogenetic and Evolution, 59, 43-52.
Derijst, E. (1996) Note on the type species of the mailed catfish genus Hemipsilichthys Miranda Ribeiro, 1918 (Pisces: Siluriformes: Loricariidae), with the introduction of Isbrueckerichthys nom. nov. Aquarium Wereld, 49, 62-64.
Garavello, J.C. \& Santana, I.C. (1998) Functional morphology, ecology and geographic distribution of the Neotropical catfish genus Pareiorhina Gosline, 1947, from southeastern Brazilian rivers (Pisces, Loricariidae, Hypostominae). Verhandlungen des Internationalen Verein Limnologie, 26, 2240-2243.
Gosline, W.A. (1947) Contributions to the classification of the loricariid catfishes. Arquivos Museu Nacional, Rio de Janeiro, 41, 79-134.
Langeani, F. (1990) Revisão do gênero Neoplecostomus, com a descrição de quatro espécies novas do sudeste brasileiro (Ostariophysi, Siluriformes, Loricariidae). Comunicaçães do Museu de Ciências da PUCRS, Série Zoologia, 3, 3-31.
Pereira, E.H.L. (2005) Resurrection of Pareiorhaphis Miranda Ribeiro, 1918 (Teleostei: Siluriformes: Loricariidae), and description of a new species from the rio Iguaçu basin, Brazil. Neotropical Icthyology, 3, 271-276.
Pereira, E.H.L. \& Oyakawa, O.T. (2003) Isbrueckerichthys epakmos, a new species of loricariid catfish from the rio Ribeira de Iguape basin, Brazil (Teleostei: Siluriformes). Neotropical Icthyology, 1, 3-9.
Schaefer, S.A. (1987) Osteology of Hypostomus plecostomus (Linnaeus), with a phylogenetic analysis of the loricariid subfamilies (Pisces: Siluroidei). Contributions in Science, Natural History Museum of Los Angeles County, 394, 1-31.
Schaefer, S.A. (1997) The Neotropical cascudinhos: Systematics and biogeography of the Otocinclus catfishes (Siluriformes: Loricariidae). Proceedings of the Academy of Natural Sciences of Philadelphia, 148, 1-120.
Takako, A.K., Oliveira, C. \& Oyakawa, O.T. (2005) Revision of the genus Pseudotocinclus (Siluriformes: Loricariidae: Hypoptopomatinae), with descriptions of two new species. Neotropical Icthyology, 3, 499-508.
Taylor, W.R. \& Van Dyke, G.C. (1985) Revised procedures for staining and clearing small fishes and other vertebrates for bone and cartilage study. Cybium, 9, 107-109.

Appendix 2

Verlag Dr. Friedrich Pfeil

ISSN 0936-9902

Excerpt from

Ichthyological Exploration of Freshwaters

An international journal for field-orientated ichthyology

Volume 23
Number 4
This article may be used for research, teaching and private purposes.
Exchange with other researchers is allowed on request only.
Any substantial or systematic reproduction, re-distribution, re-selling in any form to anyone, in particular deposition in a library, institutional or private website, or ftp-site for public access, is expressly forbidden.

Ichthyological Exploration of Freshwaters An international journal for field-orientated ichthyology

Volume $23 \cdot$ Number $4 \cdot$ March 2013
pages 289-384, 46 figs., 10 tabs.

Managing Editor
Maurice Kottelat, Route de la Baroche 12, Case postale 57
CH-2952 Cornol, Switzerland
Tel. $+41324623175 \cdot$ Fax $+41324622259 \cdot$ E-mail mkottelat@dplanet.ch
\section*{Editorial board}
Pier Giorgio Bianco, Dipartimento di Zoologia, Università, Napoli, Italy
Ralf Britz, Department of Zoology, The Natural History Museum, London, United Kingdom
Sven O. Kullander, Naturhistoriska Riksmuseet, Stockholm, Sweden
Helen K. Larson, Museum and Art Gallery of the Northern Territory, Darwin, Australia
Lukas Rüber, Department of Zoology, The Natural History Museum, London, United Kingdom Ivan Sazima, Museu de Zoologia, Unicamp, Campinas, Brazil
Paul H. Skelton, South African Institute for Aquatic Biodiversity, Grahamstown, South Africa
Tan Heok Hui, Raffles Museum of Biodiversity Research, National University of Singapore, Singapore
Ichthyological Exploration of Freshwaters is published quarterly
Subscriptions should be addressed to the Publisher:
Verlag Dr. Friedrich Pfeil, Wolfratshauser Str. 27, 81379 München, Germany
PERSONAL SUBSCRIPTION : EURO 100 per Year/volume - 4 issues (includes surface mail shipping) INSTITUTIONAL SUBSCRIPTION : EURO 180 per Year/volume - 4 issues (includes surface mail shipping)

Manuscripts should be addressed to the Managing Editor:
Maurice Kottelat, Route de la Baroche 12, Case postale 57, CH-2952 Cornol, Switzerland

CIP-Titelaufnahme der Deutschen Bibliothek
Ichthyological exploration of freshwaters : an international
journal for field-orientated ichthyology. - München : Pfeil.
Erscheint jährl. viermal. - Aufnahme nach Vol. 1, No. 1 (1990)
ISSN 0936-9902
Vol. 1, No. 1 (1990) -

Copyright © 2013 by Verlag Dr. Friedrich Pfeil, München, Germany
All rights reserved.
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the copyright owner. Applications for such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the Publisher, Verlag Dr. Friedrich Pfeil, Wolfratshauser Str. 27, 81379 München, Germany.

Printed by BestPreisPrinting, Seefeld

ISSN 0936-9902
Printed in the European Union

Hisonotus bocaiuva, a new species from the rio São Francisco basin, Brazil (Teleostei: Loricariidae)

Fábio F. Roxo ${ }^{*, * *}$ Gabriel S. C. Silva*, Claudio Oliveira* and Cláudio H. Zawadzki***

Hisonotus bocaiuva, new species, is described from the rio São Francisco basin, municipality of Bocaiúva, Minas Gerais State, Brazil. It is distinguished from other members of the Otothyrinae by the following characters: a conspicuous tuft of enlarged odontodes on the posterior tip of parieto-supraoccipital; the presence of a rostral plate with posterior notch articulated with mesethmoid; the snout completely covered by odontodes; the abdomen partially covered by plates; the number of lateral median plates; the absence of adipose fin; and by morphometric characters. The new species is additionally distinguished by having three vertical dark bands on the caudal fin and the absence of broader light stripes on the dorsolateral surface of the head.

Introduction

The Loricariidae is one of the most diverse and widespread families of the Neotropical freshwater ichthyofauna and is composed of seven subfamilies which are, in alphabetical order: Delturinae, Hypoptopomatinae, Hypostominae, Lithogeninae, Loricariinae, Neoplecostominae, and Otothyrinae (Armbruster, 2004; Reis et al., 2006; Chiachio et al., 2008). Actually, Otothyrinae (sensu Chiachio et al., 2008) is composed of about 75 species classified in 10 genera (Eschmeyer, 2012): Corumbataia, Epactionotus, Eurycheilichthys, Hisonotus, Microlepidogaster, Otothyris, Otothyropsis, Parotocinclus, Pseudotothyris and Schizolecis.

The genus Hisonotus was established by Eigenmann \& Eigenmann (1889) to accommodate Hisonotus notatus, the type species collected in Santa Cruz by the Brazilian emperor Dom Pedro II and in Juiz de Fora during the Thayer Expedition. Actually, Hisonotus includes 30 valid species (Carvalho \& Reis, 2009; Carvalho \& Reis, 2011; Carvalho \& Datovo, 2012; Martins \& Langeani, 2012) and is widespread in drainages of Southern and Southeastern Brazil, from the rio Uruguay basin, upper rio Paraná basin, Laguna dos Patos and coastal drainages extending from Rio Grande do Sul to Rio de Janeiro and the Amazon basin.

Regan (1904) studied the osteology of the members of the family Loricariidae and consid-

[^0]ered Hisonotus and Parotocinclus to be synonyms of Otocinclus. Thenceforth, Eigenmann (1910) maintained the generic distinctiveness of Parotocinclus, but Hisonotus continued to be regarded as a synonym of Otocinclus until its resurrection by Schaefer (1998). Recently, during a collecting trip in tributaries of rio São Francisco basin we found an undescribed species of Otothyrinae, which meets the characteristics of Hisonotus. The present work deals with the description of this species.

Material and methods

Measurements and counts were taken from the left side. Body plate and bone nomenclature follows Schaefer (1997) and measurements follow Carvalho \& Reis (2009). All measurements were taken point to point to the nearest 0.1 mm with digital calipers. The animals were anesthetized with benzocaine and fixed in 10% formalin for at least two weeks, then transferred to 70% ethanol for permanent storage. All samples (holotype, 18 paratypes and 4 c\&s paratypes) are deposited at: DZSJRP, Departamento de Zoologia e Botânica, Universidade Estadual Paulista Júlio de Mesquita Filho, São José do Rio Preto, São Paulo; LBP, Laboratório de Biologia e Genética de Peixes, Universidade Estadual Paulista Júlio de Mesquita Filho, Botucatu, São Paulo; MZUSP, Museu de Zoologia da Universidade de São Paulo, São Paulo, São Paulo; NUP, Coleção Ictiológica do Nupélia, Universidade Estadual de Maringá, Maringá, Paraná; MNRJ, Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro. Specimens were cleared and double stained (c\&ss) according to the method of Taylor \& Van Dyke (1985). Vertebrae counts include five vertebrae of the Weberian Apparatus.

Hisonotus bocaiuva, new species

(Fig. 1)
Holotype. MZUSP 112204, male, 24.2 mm SL; Brazil: Minas Gerais State: Bocaiúva, córrego Cachoeira: rio Jequitaí drainage: rio São Francisco basin, $17^{\circ} 08^{\prime} 55^{\prime \prime} \mathrm{S} 43^{\circ} 49^{\prime} 32^{\prime \prime} \mathrm{W}$; C. Oliveira, G. J. C. Silva, F. F. Roxo \& T. N. A. Pereira, 14 May 2010.

Paratypes. LBP 9817, 9, 4 c\&s, 18.3-23.2 mm SL; DZSJRP 16461, 3, 22.0-25.6 mm SL; NUP 12331, 4,21.7-22.3 mm SL;MNRJ 40368, 2, 18.6-20.6 mm SL; collected with holotype.

Diagnosis. Hisonotus bocaiuva differs from most members of Otothyrinae, except Corumbataia britskii, Hisonotus carreiro, H. francirochai, H. iota, H. leucophrys, H. prata, Parotocinclus arandai, P. cesarpintoi and P. cristatus in having a conspicuous tuft of enlarged odontodes on posterior tip of parieto-supraoccipital in specimens with 17.925.6 mm (vs. absent) or with a conspicuous tuft of enlarged odontodes on posterior tip of parietosupraoccipital restricted to juveniles. The new species differs from Corumbataia britskii by having a rostral plate with posterior notch articulated with mesethmoid (vs. snout tip naked and lacking rostral plate), by the caudal fin with three vertical dark bands (vs. mostly dark-brown with two unpigmented spots on caudal-fin lobes; Ferreira \& Ribeiro, 2007: fig. 5a). Hisonotus bocaiuva differs from Hisonotus carreiro and H. prata in having the anterior portion of the snout completely covered with odontodes (vs. anterior portion of the snout with a narrow odontode-free band; Carvalho \& Reis, 2011: figs. 29, 35); from H. iota in having the abdomen partially covered by plates, which are surrounded by naked areas (vs. abdomen completely covered with plates not surrounded by naked areas; Carvalho \& Reis, 2009: fig. 6a) and fewer lateral median plates (18-20 vs. 20-22); from H. leucophrys in having the abdomen partially covered by plates, which are surrounded by naked areas (vs. the abdomen completely covered with plates not surrounded by naked areas; Carvalho \& Reis, 2009: fig. 6b) and absence (vs. presence) of broader light stripes on dorsolateral surface of the head from snout tip to posterior end of the compound pterotic; from H. francirochai in having three vertical dark bands on the caudal fin (vs. the caudal fin completely dark except for two hyaline rounded areas on upper and lower lobes and in a small area on the distal tip of each lobe), fewer lateral median plates (18-20 vs. 23-26), a higher suborbital depth (20$24 \%$ HL vs. 16-20) and a deeper head (depth $50-57 \%$ HL vs. 39-50); from Parotocinclus arandai, P. cesarpintoi and P. cristatus in absence (vs. presence) of an adipose fin.

Description. Morphometric and meristic data presented in Table 1. Adult size small to moder-

Fig. 1. Hisonotus bocaiuva, MZUSP 112204, holotype, male, 24.2 mm SL; Brazil: Minas Gerais: rio São Francisco basin: rio Jequitaí drainage.
ate (maximum 25.6 mm SL) for a species of Otothyrinae. Dorsal profile strongly convex from snout tip to dorsal-fin origin; descending from dorsal-fin origin to insertion of caudal fin. Ventral profile almost straight from snout tip to anal-fin origin. Caudal peduncle ascending from origin of anal-fin base to caudal-fin origin. Greatest body depth at dorsal-fin origin. Greatest body width at opercular region; lateral profile in dorsal view strongly convex from snout tip to end of dorsal fin; straight to caudal fin. Body progressively narrowing from opercular region to caudal fin. Cross-section of body between pectoral and pelvic fins dorsally rounded and ventrally flat; cross-section of caudal peduncle ellipsoid. Eyes small (16-19 \% HL), dorsolaterally positioned. Spinelet present. Dorsal fin II,7; its origin slight-
ly posterior to pelvic-fin origin. Tip of adpressed dorsal fin surpassing vertical through end of anal-fin base. Dorsal, pectoral and pelvic fins without locking mechanism. Pectoral fin I,6; its tip reaching middle of pelvic-fin length when depressed. Pectoral axillary slit absent. Pelvic fin I,5; its tip almost reaching anal-fin origin when depressed. Anal fin i,5. Caudal fin i,7-7,i. Adipose fin and azygous plates absent. Total vertebrae 25 (in 4 c\&s specimens).

Body almost entirely covered by plates, except in ventral portion of head, region between pectoral girdle and lower lip and area around anus; abdomen partially covered by plates randomly distributed and surrounded by naked areas. Lateral median plates 18-20; truncated, not reaching posterior end of caudal peduncle. Lateral line
incomplete, with gap along mid-length of body (Fig. 2a). Coracoid and cleithrum exposed, covered with odontodes. Arrector fossae partially enclosed by ventral lamina of coracoids. Odontodes randomly arranged on head and body. Snout completely covered with well-developed odontodes. Head without conspicuous crests, except conspicuous tuft of enlarged odontodes on parieto-supraoccipital posterior tip. Premaxillary teeth 14-24; dentary teeth 14-20. Teeth bifid, major (medial) cusp large and rounded, minor (lateral) cusp minute and pointed. Accessory patch of teeth absent on dentary and premaxilla. Oral disk roundish, covered with papillae.

Tip of snout with a large rostral plate, prenasal plates behind rostral plate. Lateral surface of head formed by postrostral plates; fourth postrostral plate (pr4) largest and triangular-shaped. Infraorbital series with five plates, all bearing branch of latero-sensory system. Preopercle positioned below fifth infraorbital, bearing branch of latero-sensory system. Subocular cheek plate present below preopercle plate (Fig. 2b).

Coloration. Yellowish brown ground color. Dorsal surface of head dark brown, except for yellowish areas on snout tip. Four dark brownish saddles crossing dorsum, reaching lateral line: first at dorsal-fin origin, inconspicuous, second at end of dorsal-fin base, third at typical adipose fin region, and fourth at end of caudal peduncle. Saddles inconspicuous in some specimens. Ventral region of body with few clusters of small dark chromatophores. Dorsal, pectoral, and pelvic fins with dark chromatophores forming irregular sets of bars: three on dorsal fin, one on pectoral fin, and one on pelvic fin. Anal fin exhibits few and sparse chromatophores, sometimes forming bands; caudal fin with three vertical dark bands.

Sexual dimorphism. Males possess a papilla posterior to the urogenital opening, which is not present in females. Adult males possess an expanded flap of skin on dorsal surface of the first pelvic-fin ray, which is absent in juvenile males and in females.

Table 1. Morphometric and meristic data of 23 specimens of Hisonotus bocaiuva. SD = Standard deviation.

	holotype	range	mean	SD
Standard length mm	24.2	$17.9-25.6$	20.8	2.1
Percents of standard length				
Head length	34.2	$34.1-37.0$	35.7	1.0
Predorsal length	44.7	$44.6-48.5$	46.3	0.9
Dorsal-fin spine length	24.2	$21.8-26.4$	24.3	1.3
Anal-fin unbranched ray length	17.3	$17.3-20.4$	18.5	0.8
Pectoral-fin spine length	23.3	$22.3-27.2$	24.6	1.1
Pelvic-fin unbranched ray length	20.9	$17.4-21.0$	19.3	1.0
Cleithral width	25.6	$23.0-28.7$	26.4	1.3
Thoracic length	17.7	$15.3-18.9$	17.3	0.9
Abdominal length	21.5	$19.1-24.9$	21.8	1.4
Body depth at dorsal-fin origin	20.0	$18.3-21.5$	19.6	0.8
Caudal-peduncle length	35.7	$29.7-36.8$	33.5	1.5
Caudal-peduncle depth	9.6	$8.4-10.1$	9.5	0.4
Percents of head length				
Snout length	48.4	$44.5-49.9$	46.7	1.3
Orbital diameter	18.4	$15.8-19.0$	17.5	0.7
Interorbital width	38.6	$35.5-39.1$	37.7	0.9
Head depth	56.5	$50.4-56.5$	54.0	1.7
Suborbital depth	24.1	$20.2-24.1$	22.4	1.0
Mandibular ramus	9.7	$8.8-11.3$	10.3	0.6
Counts			mode	
Premaxillary teeth	17	$14-24$	20	2.4
Dentary teeth	17	$14-20$	17	1.7
Lateral median plates	19	$18-20$	20	1.2

Fig. 2. Hisonotus bocaiuva, LBP 9817, 22.1 mm SL. a, Lateral view of plates series; b, dorsal view of head plates (cp1 is not visible). Scale bar 1 mm . Abbreviations of bones follow Schaefer (1997): cpt, compound pterotic; f, frontal; io1-5, infraorbitals; n, nasal; op, opercle; pr1-4, postrostral plates; pf, prefrontal; pn, prenasal; pop, preopercle; \mathbf{r}, rostral plates; sp, sphenotic; $\mathbf{c p} 2$, subocular cheek plate 2; soc, parieto-supraoccipital.

Etymology. Named after the municipality of Bocaiúva, the city where the specimens were collected. A noun in apposition.

Distribution. Hisonotus bocaiuva is known only from the drainages of córrego Cachoeira, rio Jequitaí drainage, rio São Francisco basin, municipality of Bocaiúva, Minas Gerais State, Brazil (Fig. 3).

Discussion

Hisonotus bocaiuva has the four characters proposed by Schaefer (1998) to support the monophyly of his tribe Otothyrini (actually subfamily Otothyrinae sensu Chiachio et al., 2008): presence of metapterygoid channel; ventral margin of preopercle medially reflected; rostral plate with posterior notch articulated with mesethmoid and

Fig. 3. Collection site of Hisonotus bocaiuva ($\star, 17^{\circ} 08^{\prime} 55^{\prime \prime} \mathrm{S} 43^{\circ} 49^{\prime} 32^{\prime \prime}$ W). The green coloration represents the rio São Francisco basin.
fourth infraorbital expanded ventrally. Additionally, Otothyrinae, sensu Chiachio et al. (2008), can be diagnosed by the almost complete fusion of pectoral dermal bony plates forming a strong pectoral armor, with the exception of the two small anteromedian apertures, a character also present in Hisonotus bocaiuva. Thus, the new species is a typical Otothyrinae species.

Schaefer (1998) re-established Hisonotus considering that fishes of this genus share the characters: (1) reduced or absent snout plates anterior to the nostril, (2) rostrum with enlarged odontodes, and (3) thickened plates forming the lateral rostral margin. Hisonotus bocaiuva has the rostrum with enlarged odontodes. Additionally, Schaefer (1998) suggested that the median plate series truncated is an additional synapomorphy for Hisonotus, a character also present in H. bocaiuva. However, Britski and Garavello (2007) considered the last character polymorphic among Hypoptopomatinae (sensu Schaefer, 1998). Hisonotus bocaiuva also shares two characters with most species of Hisonotus: a single rostral plate on the tip of the snout and an arrector fossae partially enclosed by ventral lamina of coracoids. The last character was used by Schaefer (1998) as synapomorphy of all Otothyrini except his New Taxon 3.

The main character useful to distinguish H. bocaiuva from other Otothyrinae species is a conspicuous tuft of enlarged odontodes on the posterior tip of the parieto-supraoccipital present
in all 23 specimens available. This character is also present in Corumbataia britskii, Hisonotus carreiro, H. francirochai, H. iota, H. leucophrys, H. prata, Parotocinclus arandai, P. cesarpintoi and P. cristatus. Britski \& Garavello (2009) found that young specimens of P. bahiensis (up to about 24 mm SL) have a pair of crests on parieto-supraoccipital posterior portion and an unpaired crest on posterior tip of bone. In specimens larger than 24 mm SL up to 30.3 mm SL the crests are reduced or absent. Additionally, Ferreira \& Ribeiro (2007) showed that this character can vary in intensity in C.cuestae and C.tocantinensis, where it decreases with growth, to almost absent in adults (Fig. 3,Ferreira \& Ribeiro, 2007). However, among all available specimens of H. bocaiuva (23 specimens, $17.9-25.6 \mathrm{~mm}$ SL) the conspicuous tuft of enlarged odontodes on the posterior tip of the parieto-supraoccipital is always well-developed. In species of the genus Otothyris and Pseudotothyris the posterior portion of parieto-supraoccipital is formed by three crests: an anterior pair short and an unpaired one of median length covered by odontodes. Hisonotus bocaiuva has only the median crest which consists of a conspicuous tuft of odontodes.

The subfamily Otothyrinae is one of the richest and most diverse group of the family Loricariidae, however the generic classification of most groups remains yet unsettled due to the absence of certain diagnose characters as cited above. Thus, a phylogenetic analysis of Otothy-
rinae is necessary to better understand its generic composition.

Comparative material. Corumbataia cuestae: LBP 3688, 3, 28.5-29.9 mm SL; upper rio Paraná basin. C. britskii: LBP 9590, 50, 17.9-28.8 mm SL; upper rio Paraná ba\sin.

Epactionotus sp.: LBP 12358, 6, 29.2-43.0 mm SL; coastal drainage.

Hisonotus carreiro: MCP 40943, 3, 33.6-35.8 mm SL; coastal drainage. H. cf. charrua: LBP 13147, 1, 30.7 mm SL; coastal drainage. H. chromodontus: LBP 7964, 25, 24.0-28.3 mm SL; rio Teles Pires basin. - LBP 7974, 46, 17.9-25.7 mm SL; rio Teles Pires basin. H. francirochai: LBP 5026, 1, 34.6 mm SL; NUP 67, 5, 24.2-31.4 mm SL; rio Tietê basin. - LBP 10213, 4, 29.6-34.6 mm SL; rio Paraná basin. - LBP 13923, 22, 25.7-35.7 mm SL; rio Grande basin. H. heterogaster: LBP 3335, 39, 20.8-30.1 SL; coastal drainage. H. iota: LBP 13072, 5, 32.3-33.0 mm SL; rio Uruguay basin. H. laevior: LBP 3377, 1, 25.2 mm SL; LBP 6037, 8, 33.4-47.0 mm SL; LBP 13187, 7, 19.445.8 mm SL; coastal drainage. H. leucofrenatus: LBP 2085, 7, 38.3-50.6 mm SL; coastal drainage. - LBP: 6837, 36, 35.1-43.5 mm SL; rio Ribeira de Iguape basin. H. leucophrys: LBP 13065, 6, 17.2-33.6 mm SL; LBP 13073, 1, 36.8 mm SL; rio Uruguay basin. H. megaloplax: LBP 13108, 6, 36.4-37.8 mm SL; rio Uruguay basin. H. montanus: LBP 13055, 5, 24.8-31.9 mm SL; rio Uruguay basin. H. nigricauda: LBP 579,16,34.1-40.1 mm SL; LBP 4783, 10, 16.3-35.8 mm SL; coastal drainage. H. notatus: LBP 3472, 20, 21.0-34.3 mm SL; coastal drainage. H. pra$t a:$ MCP 40492, 18, 19.5-33.2 mm SL; LBP 9918, 14, 21.7-32.6 mm SL; coastal drainage.

Microlepidogaster dimorpha: LBP 10683, 2, 28.835.6 mm SL; rio Paraná basin.

Otothyris travassosi: LBP 1971, 13, 14.0-27.2 mm SL; coastal drainage.

Otothyropsis marapoama: LBP 4698, 6, 23.9-36.3 mm SL; rio Tietê basin.

Parotocinclus cf. bahiensis: LBP 7182,3,27.9-35.6 mm SL; coastal drainage. P. maculicauda: LBP 2869, 15, 20.2-44.7 mm SL; LBP 3181, 1, 40.3 mm SL; rio Ribeira de Iguape basin. P. prata: LIRP 1136, 38, 19.8-41.9 mm SL; rio São Francisco basin. P. robustus: LBP 8258, 33, 18.5-39.5 mm SL; rio São Francisco basin.

Pseudotothyris obtusa: LBP 6822, 70, 22.5-31.7 mm SL; coastal drainage.

Rhinolekos britskii: 21.9-34.7 mm SL; rio Paranaíba basin.

Schizolecis guntheri: LBP 2123, 21, 28.4-36.3 mm SL; LBP 3546, 77, 20.9-35.8 mm SL; coastal drainage.

Acknowledgments

We wish to thank Guilherme J. da Costa Silva, Tiago N. Pereira, and Renato Devidé for their help during the collection expeditions; Mahmoud Mehanna for helping
with the map; Bruno F. de Melo for helping with the figures; Adilson Fransozo for providing the equipment to design drawings of osteology; Isaäc Isbrücker for reading the manuscript and valuable suggestions. This research was supported by the Brazilian agencies FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo, proc. 2010/01610-9 to FFR and proc. 2012/01622-2 to GSCS), MCT/CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) (Edital Universal, proc. N. 484716-2006-9 and grants to CHZ - proc. N. 306066/2009-2).

Literature cited

Armbruster, J. W. 2004. Phylogenetic relationships of the suckermouth armored catfishes (Loricariidae) with particular emphasis on the Hypostominae and the Ancistrinae. Zoological Journal of the Linnean Society, 141: 1-80.
Britski, H. A. \& J. C. Garavello. 2007. Description of two new sympatric species of the genus Hisonotus Eigenmann \& Eigenmann, 1889, from upper rio Tapajós, Mato Grosso State, Brazil (Pisces: Ostariophysi: Loricariidae). Brazilian Journal of Biology, 67: 413-420.
Britski, H. A. \& J. C. Garavello. 2009. Redescription of Parotocinclus bahiensis (Miranda-Ribeiro, 1918) (Pisces, Ostariophysi, Loricariidae). Zootaxa, 2143: 59-67.
Carvalho, M. \& A. Datovo. 2012. A new species of cascudinho of the genus Hisonotus (Siluriformes: Loricariidae: Hypoptopomatinae) from the upper Rio Tapajos basin, Brazil. Copeia, 2012: 266-275.
Carvalho, T. P. \& R. E. Reis. 2009. Four new species of Hisonotus (Siluriformes: Loricariidae) from the upper rio Uruguay, southeastern South America, with a review of the genus in the rio Uruguay basin. Zootaxa, 2113: 1-40.
Carvalho, T. P. \& R. E. Reis. 2011. Taxonomic review of Hisonotus Eigenmann \& Eigenmann (Siluriformes: Loricariidae: Hypoptopomatinae) from the laguna dos Patos system, southern Brazil. Neotropical Ichthyology, 9: 1-48.
Chiachio, M. C., C. Oliveira \& J. I. Montoya-Burgos. 2008. Molecular systematic and historical biogeography of the armored Neotropical catfishes Hypoptopomatinae and Neoplecostominae (Siluriformes: Loricariidae). Molecular Phylogenetic and Evolution, 49: 606-617.
Eigenmann, C. H. 1910. Catalogue of the fresh-water fishes of tropical and south temperate America. Reports of the Princeton University expeditions to Patagonia, 1896-1899, 3: 375-511.
Eigenmann, C. H. \& R. S. Eigenmann. 1889. Preliminary notes on South American Nematognathi. Proceedings of the California Academy of Sciences, 1: 119-172.

Eschmeyer, W. 2012. Catalog of Fishes. California Academy of Sciences. Available from: http://research.calacademy.org/research/ichthyology/ catalog/fishcatmain.asp (accessed October 2012).
Ferreira, K. M. \& A. C. Ribeiro. 2007. Corumbataia britskii (Siluriformes: Loricariidae: Hypoptopomatinae) a new species from the upper Rio Paraná basin, Mato Grosso do Sul, Central Brazil. Zootaxa, 1386: 5968.

Martins, F. O. \& F. Langeani. 2012. Hisonotus piracanjuba, a new species of Hypoptopomatinae (Siluriformes: Loricariidae) from the rio Paranaíba, upper rio Paraná system, central Brazil. Ichthyological Exploration of Freshwaters, 23: 29-36.
Regan, C. T. 1904. A monograph of the fishes of the family Loricariidae. Transactions of the Zoological Society of London, 17: 191-350.
Reis, R. E., E. H. L. Pereira \& J. W. Armbruster. 2006. Delturinae, a new loricariid catfish subfamily (Teleostei, Siluriformes), with revisions of Delturus and Hemipsilichthys. Zoological Journal of the Linnean Society, 147: 277-299.

Schaefer, S. A. 1997. The Neotropical cascudinhos: Systematics and biogeography of the Otocinclus catfishes (Siluriformes: Loricariidae). Proceedings of the Academy of Natural Sciences of Philadelphia, 148: 1-120.

- 1998. Conflict and resolution: impact of new taxa on phylogenetic studies of the Neotropical cascudinhos (Siluroidei: Loricariidae). Pp. 375-400 in: L. R. Malabarba, R. E. Reis, R. P. Vari, Z. M. S. Lucena \& C. A. S. Lucena (eds.), Phylogeny and classification of Neotropical fishes. Edipucrs, Porto Alegre.
Taylor, W. R. \& G. C. Van Dyke. 1985. Revised procedures for staining and clearing small fishes and other vertebrates for bone and cartilage study. Cybium, 9: 107-109.

Received 20 April 2012
Revised 13 December 2012
Accepted 24 January 2013

Ichthyological Exploration of Freshwaters An international journal for field-orientated ichthyology

INSTRUCTIONS TO CONTRIBUTORS

Warning

Prospective authors should read carefully the following instructions and follow them when submitting a manuscript. Doing so significantly hastens publication and saves money and efforts. Manuscripts which do not satisfy the instructions below may be rejected at the Editor's discretion and will not be returned.

Submission of manuscripts

The original manuscript should be sent to the Editor, Maurice Kottelat, by e-mail (mkottelat@dplanet.ch). Additional information is requested:

1) the name, postal and e-mail addresses, telephone and fax numbers of the corresponding author;
2) the names, postal and e-mail addresses of up to four persons outside the authors' institutions who are qualified to review the paper; and
3) a statement that the material has not been published and is not considered for publication elsewhere and that it will not be submitted elsewhere unless it is rejected or withdrawn. In submitting a manuscript, the author(s) accept(s) transfer of the copyright to the Publisher.

Co-authors, corresponding author

Authors are those who have played a significant role in designing and conducting the research and in writing the manuscript. Individuals who have only collected data, provided material or financial support, or reviewed the manuscript should be listed in acknowledgments. Honorary authorship is not accepted.

Co-authors should designate a single corresponding author to whom correspondence and proofs will be sent. All correspondence regarding the paper should go through the corresponding author. Correspondence will not be sent to other co-authors and correspondence from other co-authors regarding the manuscript will neither be answered nor taken into consideration.

Format

Files. The manuscript should be submitted in DOC or RTF format only. The text, captions, tables etc. must all be included in the same file. It the manuscript includes only a few illustrations, include them in low resolution in the word file. If the manuscript includes numerous illustrations they must be submitted in a separate PDF file; send all figures in low resolution and with caption in a single file. The files should be less than 8 MB .
Text. All manuscripts are subject to editorial revision before final acceptance for publication. Nothing in the manuscript should be underlined. Titles with numerical series designations are not permitted. Titles should be brief, fewer than 20 words and should indicate clearly the field of study and the group of fishes investigated. All abbreviations should be explained in the Method section (or figure caption when appropriate) or a reference to published explanations should be provided; exceptions are very common abbreviations, such as mm, km, kg, sec, min, yr, vs., SL. Footnotes are not permitted. All measurements must be in metric units. The first page should include: title of the paper, author(s), addresses and abstract, all left justified. The text should be followed by Material Examined (if appropriate), Acknowledgments (if any), Appendix (if any) and Literature Cited, in that order. Keys are desirable in taxonomic papers. They should be dichotomous and not serially indented.
Nomenclature. Names of living organisms should follow the appropriate and current International Codes of Nomenclature. Only formal names of genera and species should be written in italics. Names of authors and publication dates of scientific names should be mentioned once, in introduction or discussion, depending where most convenient, exceptionally as a table; bibliographical references must be included in the Literature cited section. Very old and classical works can be omitted if not absolutely justified.
Language. Manuscripts should be written in English. All papers must have a concise but informative abstract in English. In taxonomic papers, the abstract must include at least clear diagnosis of the new taxa. This maybe omitted for papers including the descriptions of many new taxa; consult the editor first. A second abstract, provided by the author(s), in the language of the country or area concerned by the text is acceptable. A maximum of two abstracts is permitted.
Acknowledgments. Identify individuals by first name(s) and surname. Do not list titles, position or institution. Acknowledge individuals, not positions. Idiosyncrasy and private jokes are not permitted.
Literature cited. Format for Literature Cited is that of the most recent issue. Do not abbreviate the names of journals. For books, give full name of publishing company or institution, and city. Manuscripts in preparation, abstracts, in-house reports and other literature not obtainable through
normal library channels cannot be cited. In-press manuscripts can be cited only if they have been formally accepted.

Tables. Tables should be included in the text file, at the end. Use Word format and do not anchor them. Tables must be numbered sequentially with Arabic numerals; they should have concise but self-explanatory headings. Do not insert frames, vertical rules, dotted lines or footnotes. The location of first citation of each table should be clearly indicated in the text.
Figures. Detailed instructions for the preparation of digital images are here: http://pfeil-verlag.de/div/eimag.php
For the submission of new manuscript only low resolution copies are needed. Do not send large files at this stage. Case by case, if needed, we may ask you to send the original files at the time of submission.
All maps, graphs, charts, drawings and photographs are regarded as figures and are to be numbered consecutively and in the sequence of their first citation in the text. When several charts or photographs are grouped as one figure, they must be trimmed and spaced as intended for final reproduction. Each part of such a group figure should be lettered with a lower case block letter in the lower left corner. Where needed, scale should be indicated on the figure by a scale bar.
All illustrations should be designed to fit a width of 68 or 140 mm and a depth no greater than 200 mm . Lettering should be large enough to be easily seen when reduced onto a journal column (68 mm).
If a vector-graphics program is used, the original files saved by this program and all linked files must be submitted. Do not export or save the figure in a different format (for more details see the informations on http:// pfeil-verlag.de/div/eimag.php
If line drawings are scanned, the resolution must be 1200 dpi or more and the format must be bitmap (1 pixel $=1 \mathrm{bit}$).
If halftones are scanned, the resolution should never be lower than 400 dpi , applied to a width of 14 cm , even for photographs designed for column width.
Photographic prints and slides and original drawings must be scanned for submission. We will ask to send the original after acceptance of the manuscript.

Colour illustrations should preferably be submitted as slides (photographic slides, not slides prepared by a printer). Digital images should be only unmodified (raw) data files as originally saved by the camera or the scanner. If the data files are modified, a copy of the original, unmodified file should be submitted too.

The decision to print in colour or in black and white any figure originally submitted in colour remains with the editor and publisher. This decision will be based on scientific justification, quality of the original, layout and other editorial, financial and production constraints. By submitting colour originals, the authors know and accept that they may be published in black and white.

Review

Each manuscript will be sent to two reviewers for confidential evaluation. When justified, the reviewer's comments will be forwarded to the corresponding author. When submitting a revised manuscript, authors should briefly indicate the reasons for disregarding any suggestion they consider unacceptable. Remember that if a reviewer had questions or did not understand you, other readers may make the same experience and the answers should be in the manuscript and not in a letter to the editor. Changes in style, format and layout requested by the Editor are non-negotiable and non-observance will result in rejection of the manuscript.

Revised manuscripts received more than 6 months after the reviewers' comments had been sent will not be considered or will be treated as new submissions.

Proofs, Reprints and Page Charges

A PDF proof file will be sent to the corresponding author; it should be checked and returned to the Editor within one week. If corrections are not received within this delay, they may be done by the Editor, at the author's risks. Authors may be charged for any changes other than printer's error. Reprint orders must be forwarded with the corrections. The corresponding author is responsible for contacting the co-authors and forwarding their reprint orders.

The authors will receive a PDF file for personal use free of charge; high-resolution PDF files for unlimited use may be ordered. There will be no page charges and no charges for justified colour illustrations.

Ichthyological Exploration of Freshwaters

An international journal for field-orientated ichthyology

Volume 23 • Number 4•March 2013

CONTENTS

Britz, Ralf, Anvar Ali and Rajeev Raghavan: Pseudolaguvia lapillicola, a new species of catfish from Peninsular India (Teleostei: Sisoridae) 289
Mattox, George M. T., Ralf Britz, Mônica Toledo-Piza and Manoela M. F. Marinho: Cyano- gaster noctivaga, a remarkable new genus and species of miniature fish from the Rio Negro, Amazon basin (Ostariophysi: Characidae) 297
Roxo, Fábio F., Gabriel S. C. Silva, Claudio Oliveira and Cláudio H. Zawadzki: Hisonotus bocaiuva, a new species from the rio São Francisco basin, Brazil (Teleostei: Loricariidae) 319
Nakajima, Jun, Tatsuro Sato, Yuichi Kano, Liangliang Huang, Jyun-ichi Kitamura, Jianhua Li and Yukihiro Shimatani: Fishes of the East Tiaoxi River in Zhejiang Province, China. 327
Costa, Wilson J. E. M.: Anablepsoides urubuiensis, a new killifish from central Brazilian Amazon (Cyprinodontiformes: Rivulidae) 345
Min, Rui, Jun-Xing Yang and Xiao-Yong Chen: Homatula disparizona, a new species of loach from the Red River drainage in China (Teleostei: Nemacheilidae) 351
Costa, Wilson J. E. M.: Leptolebias opalescens, a supposedly extinct seasonal killifish from the Atlantic Forest of south-eastern Brazil, rediscovered 31 years after its last record (Cyprinodontiformes: Rivulidae) 357
Katz, Axel M., Maria A. Barbosa and Wilson J. E. M. Costa: Two new species of the catfish genus Trichomycterus from the Paraná river basin, southeastern Brazil (Teleostei: Tricho- mycteridae) 359
Fernández, Luis, Eduardo A. Sanabria and Lorena B. Quiroga: Silvinichthys gualcamayo, a new species of catfish from the central Andes of Argentina (Siluriformes: Trichomyc- teridae) 367
Sun, Zhi-Wei, Sheng-Jie Ren and E Zhang: Liobagrus chenghaiensis, a new species of catfish (Siluriformes: Amblycipitidae) from Yunnan, South China 375
Cover photograph
Cyanogaster noctivaga (photograph by Ralf Britz)
George M. T. Mattox, Ralf Britz, Mônica Toledo-Piza and Manoela M. F. Marinho (this volume pp. 297-318)

Articles appearing in this journal are indexed in:

AQUATIC SCIENCES and FISHERIES ABSTRACTS

BIOLIS - BIOLOGISCHE LITERATUR INFORMATION SENCKENBERG

CAMBRIDGE SCIENTIFIC ABSTRACTS

Appendix 3

Pareiorhina hyptiorhachis, a new catfish species from Rio Paraíba do Sul basin, southeastern Brazil (Siluriformes, Loricariidae)

Gabriel de Souza da Costa e Silva ${ }^{1, t}$, Fábio Fernandes Roxo ${ }^{1 .,}$, Claudio Oliveira ${ }^{1,5}$
1 Laboratório de Biologia e Genética de Peixes, Departamento de Morfologia, IB-UNESP, Campus de Botucatu, 18618-000, Botucatu, SP, Brazil
\dagger urn:lsid:zoobank.org:author:BDE10BBD-857F-4EBD-81C6-1837CC05E60F
¥ urn:lsid:zoobank.org:author:EEB03ED0-6A3A-4E11-BE30-4F5642DE5632
§ urn:lsid:zoobank.org:author:2E448127-8820-4F7C-9208-E2AB42ED3153
C orresponding author: Gabriel de Souza da Costa e Silva (gabriel_biota@hotmail.com)

Academic editor: Carole Baldwin | Received 11 April 2013 | Accepted 26 June 2013 | Published 4 July 2013
urn:lsid:zoobank.org:pub:8DCD7D1F-59FD-4D27-9316-E5EF250D5C11
Citation: Silva GSC, Roxo FF, Oliveira C (2013) Pareiorhina hyptiorhachis, a new catfish species from Rio Paraíba do Sul basin, southeastern Brazil (Siluriformes, Loricariidae). ZooKeys 315: 65-76. doi: 10.3897/zookeys. 315.5307

Abstract

Pareiorhina hyptiorhachis is described from Ribeirão Fernandes and Rio Pomba, Rio Paraíba do Sul basin, Brazil. The new species is distinguished from its congeners (P. brachyrhyncha, P. carrancas, P. cepta, and P. rudolphi) by the presence of a conspicuous ridge on the trunk posterior to the dorsal fin (postdorsal ridge), simple teeth, a completely naked abdomen, a round dorsal profile of the head, greater suborbital depth and greater head width. We discuss the distributional pattern of the new species and its congeners and hypothesize that headwater capture is responsible for the distribution of Pareiorhina species across different watersheds in southeastern of Brazil.

Resumo

Pareiorhina hyptiorhachis é descrita do ribeirǎo Fernandes e do rio Pomba, bacia do rio Paraíba do Sul, Brasil. A nova espécie é distinguida de suas congêneres (P. brachyrhyncha, P. carrancas, P. cepta, e P. rudolphi) por caracteres relacionados a presença de uma quilha conspícua na superficie pós-dorsal do tronco, dentes simples, abdomen completamente nú, perfil dorsal da cabeça arredondado, altura do sub-orbital e largura da cabeça. Nós discutido o padrāo de distribuição da nova espécie e de seus congêneres e a hipótese de que a captura de cabeceira é responsável pela distribuição das espécies de Pareiorhina através das diferentes bacias hidrográficas do sudeste do Brasil.

[^1]
Keywords

Cascudinhos, Taxonomy, Freshwater, Neoplecostominae, Neotropical Region

Palavras chaves

Cascudinhos, Taxonomia, Água Doce, Neoplecostominae, Região Neotropical

Introduction

The genus Pareiorhina was proposed by Gosline (1947) to include Rhinelepis rudolphi Miranda-Ribeiro, 1911 and is currently included in the subfamily Neoplecostominae (sensu Chiachio et al. 2008; Roxo et al. 2012a, 2012b). Recently, three new species have been described: P. carrancas by Bockmann and Ribeiro (2003); P. brachyrhyncha by Chamon et al. (2005); and P. cepta by Roxo et al. (2012c). In their description of P. carrancas, Bockmann and Ribeiro (2003) proposed a combination of characters to separate Pareiorhina from other genera of Loricariidae: the lateral borders of the head lacking hypertrophied odontodes; unicuspid teeth; a naked abdomen; dorsal plates meeting along the mid-dorsal line between the dorsal and caudal fins; adipose fin absent; ventral plates covering the mid-ventral line behind the anal-fin base; and the dorsal portion of the body behind the dorsal fin flattened. However, no exclusive synapomorphies were presented to diagnose the genus. Recently, the molecular studies of Cramer et al. (2011) and Roxo et al. (2012a, 2012b) have found that Pareiorhina may not be monophyletic.

An examination of the fish collections at the Laboratório de Biologia e Genética de Peixes de Botucatu (LBP) and Museu de Ciências e Tecnologia, Pontifícia Universidade Católica do Rio Grande do Sul (MCP) revealed the existence of an undescribed Pareiorhina species from the Rio Paraíba do Sul basin, Brazil. This new species is formally described herein.

Material and methods

All measurements were taken from point to point to the nearest 0.1 mm using digital calipers (except the postdorsal ridge depth, which was measured using a stereomicroscope and analyzed using the software Axio Vision Release 4.8.2). Counts were taken from the left side when possible. In the description, counts are followed by their frequencies in parentheses. The measurements followed Bockman and Ribeiro (2003), except for the folded dorsal-fin length and the snout-opercle length that were not included in that publication. We added the following measurements from Carvalho and Reis (2009): mandibular ramus, suborbital depth and unbranched anal-fin ray length. We also added the measurement of postdorsal ridge depth (from the base of the postdorsal ridge to its upper portion). Osteology was performed on specimens cleared and double-stained (c\&s) according to the procedures of Taylor and Van Dyke (1985). The osteological and the body-plate
nomenclature followed Schaefer (1997). Vertebral counts were obtained from cleared-and-stained specimens and included the first five vertebrae modified into the Weberian apparatus. The compound caudal centrum (PU1 + U1; Lundberg and Baskin 1969) was counted as one vertebra. The pores nomenclature followed Arratia and Huaquin (1995). Asterisks in the text refer to the holotype. After collection the animals were anesthetized using 1% benzocaine in water and fixed in 10% formalin for at least two days, then transferred to 70% ethanol for permanent storage for morphological studies.

All examined material was housed at the following Brazilian institutions: LBP (Laboratório de Biologia e Genética de Peixes, Universidade Estadual Paulista Júlio de Mesquita Filho, Botucatu - SP); MCP (Museu de Ciências e Tecnologia, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre - RS); MZUSP (Museu de Zoologia da Universidade de Sáo Paulo, Sáo Paulo - SP); and NUP (Coleção Ictiológica do Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura, Universidade Estadual de Maringá, Maringá - PR).

Results

Pareiorhina hyptiorhachis, sp. n.

urn:lsid:zoobank.org:act:1D6D4D43-68CF-485B-9ABC-8FFB270E2460
http://species-id.net/wiki/Pareiorhina_hyptiorhachis
Figure 1; Table 1
"Pareiorhina sp. 1" - Roxo et al. 2012a:2443 [phylogenetic relationships]. - Roxo et al. 2012b:38 [phylogenetic relationships].

Holotype. MZUSP 111956, female, 33.6 mm SL, Brazil, Minas Gerais State, municipality of Santa Bárbara do Tugúrio, Ribeirão Fernandes, a tributary of Rio Pomba, Rio Parába do Sul basin, $21^{\circ} 14^{\prime} 47^{\prime \prime}$ S, $43^{\circ} 34^{\prime} 07{ }^{\prime \prime}$ W, 19 Jun 2011, Ferreira AT, Roxo FF, Silva GSC.

Paratypes. Brazil, Minas Gerais State, municipality of Santa Bárbara do Tugúrio, Rio Paraíba do Sul basin. LBP 12248, 2 males, 4 females, 1 c\&s, 26.6-34.8 mm SL, collected with holotype. NUP 14331, 1 female, 29.6 mm SL , collected with holotype. LBP 1093, 1 male, 33.4 mm SL, Ribeirão Fernandes, $21^{\circ} 14^{\prime} 47^{\prime \prime} \mathrm{S}, 43^{\circ} 34^{\prime} 07^{\prime \prime} \mathrm{W}, 12$ Oct 2001, Oliveira JC, Alves AL, Sato LR. LBP 8368, 5 females, 27.9-34.4 mm SL, Rio Pomba, $21^{\circ} 14^{\prime} 07{ }^{\prime \prime} \mathrm{S}, 43^{\circ} 30^{\prime} 50^{\prime \prime} \mathrm{W}, 19$ May 2009, Oliveira C, Silva GJC, Roxo FF, Pereira TNA. LBP 12257, 1 female, 27.2 mm SL, Rio Pomba, $21^{\circ} 14^{\prime} 07{ }^{\prime \prime} \mathrm{S}$, $43^{\circ} 30^{\prime} 50^{\prime \prime}$ W, 19 Jun 2011, Ferreira AT, Roxo FF, Silva GSC. MCP 29432, 3 male, 1 female, 2 unsexed, (1 juvenile not measured) $23.8-39.0 \mathrm{~mm} \mathrm{SL}$, Ribeirão Fernandes, $21^{\circ} 14^{\prime} 47^{\prime \prime}$ S, $43^{\circ} 34^{\prime} 07^{\prime \prime W}$, 12 Aug 2001, Oliveira JC, Alves AL, Sato LR.

Diagnosis. Pareiorhina hyptiorhachis is distinguished from its congeners, except for P. carrancas, by the presence of a postdorsal ridge (vs. the absence of a postdorsal ridge). The new species differs from P. carrancas by having a more elevated postdorsal

Figure 1. Pareiorhina hyptiorhachis, sp. n., MZUSP 111956, 33.6 mm SL, holotype from Ribeirão Fernandes, Rio Paraíba do Sul basin, municipality of Santa Barbara do Tugúrio.
ridge, (Fig. 2; 16.7-26.8\% of CP depth vs. 4.47-9.03\%; table 1). Additionally, the new species can be distinguished from P. cepta by having a naked abdomen (vs. having small plates covered with odontodes irregularly distributed on the abdomen); from P. brachyrhyncha and P. cepta by having unicuspid teeth (vs. teeth with a minute lateral

Table 1. Morphometric data for Pareiorhina hyptiorhachis. $\mathrm{SD}=$ Standard Deviation, $\mathrm{IO}=$ Interorbital, $\mathrm{OD}=$ Orbital Diameter, $\mathrm{CP}=$ Caudal Peduncle.

	Pareiorbina hyptiorhachis $\mathbf{n}=\mathbf{2 1}$			
	Holotype	Range	Mean	SD
Standard length (SL)	33.6	$26.6-38.8$	31.0	3.0
Percents of Standard length (SL)				
Predorsal length	44.2	$41.5-48.8$	44.7	1.6
Preanal length	59.2	$56.1-65.9$	60.5	2.4
Head length	31.7	$28.6-35.5$	31.8	1.5
Cleithral width	32.8	$30.4-36.9$	33.5	1.8
Dorsal-fin unbranched ray length	21.2	$20.3-24.1$	22.2	1.1
Base of dorsal fin length	15.4	$14.3-18.3$	16.5	1.1
Thorax length	18.1	$15.1-19.6$	17.0	1.3
Pectoral-fin unbranched ray length	20.5	$20.5-26.0$	22.6	1.5
Abdomen length	27.0	$22.6-30.1$	26.2	1.6
Pelvic-fin unbranched ray length	22.5	$17.7-26.6$	22.9	2.1
Anal-fin length	15.3	$13.7-17.8$	15.6	0.9
Ventral unbranched caudal ray	24.9	$20.3-30.5$	25.2	2.8
Caudal-peduncle depth	9.0	$8.3-11.0$	9.39	0.7
Postanal length	34.9	$31.6-38.1$	33.9	1.4
Anal width	15.4	$11.3-16.0$	14.0	1.5
Percents of Head Length (HL)				
Head width	103.8	$100.1-108.6$	103.8	2.6
Head depth	61.7	$53.5-62.8$	56.9	2.3
Snout length	63.1	$58.0-64.7$	61.2	1.9
Interorbital width	37.7	$34.8-40.7$	38.0	1.4
Orbital diameter	11.4	$11.1-15.5$	12.7	1.6
Suborbital depth	39.2	$35.0-40.5$	37.3	1.6
Mandibular ramus	18.1	$16.0-23.4$	19.9	1.9
Other measurements (expressed as percentages)				
Anal width/cleithral width	47.1	$32.0-49.7$	42.0	5.1
IO/OD	29.5	$21.6-42.1$	33.5	4.5
IO/Mandibulary ramus	50.6	$44.1-62.5$	52.4	5.6
Predorsal length/first ds ray length	47.9	$45.7-54.5$	49.7	2.6
Postanal length/CP depth	25.8	$24.8-31.1$	27.6	1.9
Pelvic-fin length/CP depth	40.0	$36.0-46.8$	41.1	3.0
Ventral unbranched caudal ray/CP depth	36.2	$32.1-46.0$	37.5	4.3
Postdorsal ridge depth/CP depth	19.0	$16.7-26.8$	21.5	3.4

cusp); from P. carrancas and P. rudolphi by having the anterior profile of the head rounded in dorsal view (vs. elliptical; Fig. 3) and by having a greater suborbital depth (35.0-40.5\% of HL vs. $27.4-34.2 \%$ in P. carrancas and $24.5-31.8 \%$ in P. rudolphi). Moreover Pareiorhina hyptiorhachis is distinguished from its congeners by having a wider head (100.1-108.6\% of HL vs. 91.7-98.1\% in P. brachyrhyncha, 82.9-96.2\% in P. carrancas, 83.4-90.5\% in P. cepta and 77.8-82.1\% in P. rudolphi).

Description. Morphometric and meristic data are given in Table 1. In lateral view, dorsal profile of body strongly convex from snout tip to distal margin of supraoccipital;

Figure 2. a Pareiorhina hyptiorhachis, sp. n., paratype, LBP 12248, 29.2 mm SL, showing the conspicuous postdorsal ridge \mathbf{b} Pareiorhina carrancas, LBP 8380, 38.2 mm SL, showing the poorly-developed postdorsal ridge \mathbf{C} Pareiorhina rudolphi, LBP $8044,40.5 \mathrm{~mm} \mathrm{SL}$, showing the absence of a postdorsal ridge.
straight from supraoccipital to dorsal-fin origin; slightly decreasing to end of caudal peduncle. Ventral surface of body, slightly concave at head portion, straight to convex from posterior end of head to pelvic-fin insertion, and straight but angled to posterior end of caudal peduncle. Snout tip rounded in dorsal view. Nostril small. Trunk and caudal peduncle rectangular in cross-section.

Greatest body depth at dorsal-fin origin. Body progressively narrowing posteriorly from cleithrum. Head flat to slightly convex between orbits; superior margin of orbits elevated. Eye small, orbital diameter 11.1-15.5\% of HL, situated dorsolaterally just posterior of midpoint of head. Rostral margin of snout with minute, posteriorlydirected odontodes; numerous small odontodes on dorsal portion of head. Opening of swimbladder capsule small. Perforations of compound pterotic distributed on whole bone, greater and more concentrated on its ventral margin; its openings nearly rounded in median region, and irregular along inferior and posterior margins of bone. Lips large; oral disk rounded, papillose; premaxillary teeth 22 (1), 29 (1), 30 (1), 32 (1), 33 (1), 34 (2), 36 (1)*, 37 (2), 38 (1), 39 (2), 40 (2), 42 (2) or 44 (1). Dentary teeth 17 (1), 21 (1), 23 (1), 28 (1), 30 (2), 32 (2)*, 33 (2), 34 (2), 35 (1), 36 (1), 39 (1), or 45 (1). Teeth unicuspid. Maxillary barbel short and free distally.

Dorsal-fin rays ii,7; dorsal-fin originating at vertical through posterior end of pelvicfin base; distal margin slightly convex. Pectoral-fin rays i,6; distal margin slightly convex; unbranched pectoral-fin ray reaching middle of unbranched pelvic-fin ray; unbranched pectoral-fin ray covered with large and pointed odontodes. Pelvic-fin rays i,5; distal margin of fin slightly convex; tip of adpressed pelvic fin almost reaching anal-fin origin; unbranched pelvic-fin ray covered with conspicuously pointed and well-developed, and uniformly distributed odontodes which are larger at ventral portion. Anal-fin rays i,5; distal margin slightly convex. Caudal fin rays i,7-7,i. Adipose fin absent. Caudal fin truncated with ventral unbranched principal ray longer than dorsal ray.

Body entirely covered by bony plates, except for ventral surface of head, abdomen and region overlaying swimbladder capsule. Dorsal series of plates 24-26, mid-dorsal $17-21$, median perforated plates 24-26, mid-ventral 17-22, and ventral 19-22. Trunk with conspicuous, elongated, postdorsal ridge formed by 13-15 raised, unpaired, median plates; ridge continuous posteriorly with procurrent caudal-fin rays. Head lacking crest. Head and body plates covered with minute, uniformly sized and distributed odontodes. Seven pairs of ribs associated with vertebrae $8-14$. Ribs slender and poorly ossified. Total vertebrae 29.

Supraorbital sensory canal with four pores; pore s1 located on prenasal plate below nasal plate; pore s3 located on posterior portion of nasal; pore s6+s6 located between frontal plates, on horizontal line through anterior limits of eye; pore s8 located on division between frontals, sphenotic and supraoccipital plates, just above eye. Infraorbital sensory canals with six pores; pore io1 located on anterior portion of first infraorbital; pore io2 located in medial region between first and second infraorbitals; pore io3 located in medial region between second and third infraorbitals; pore io4 located in medial region between third and fourth infraorbitals; pore io 5 located in medial region between fourth and fifth infraorbitals and pore io6 located between sixth infraorbital and sphe-

Figure 3. a Pareiorbina carrancas, LBP $8380,36.5 \mathrm{~mm}$ SL, showing the elliptical anterior profile of the head elliptical in dorsal view b Pareiorbina rudolphi, LBP $8044,42.0 \mathrm{~mm}$ SL, showing the elliptical anterior profile of the head in dorsal view C Pareiorhina hyptiorhachis, new species, holotype, MZUSP 111956, 33.6 mm SL , showing the rounded anterior profile of the head in dorsal view.

Figure 4. Additional coloration pattern of coloration of Pareiorhina hyptiorhachis, sp. n., LBP 12257, female, 27.2 mm SL.
notic. Preopercular canal with three pores; pore pm 2 located on ventral portion of cheek plate, pore pm3 located between cheek plate and preopercle; pore pm 4 located between preopercle and compound pterotic. Two postotic pores; pore po2 located just above of branchial slit; pore po3 located in region of overlying opening of swim-bladder capsule.

Color in alcohol. Two body-coloration patterns observed. First pattern (Fig. 1): Ground color of dorsal surface of head and body yellowish brown. Ventral surface of body and head lighter than dorsal with dark spots of melanophores widely separated. Three dark saddles on dorsal surface of trunk (in some specimens not present), most anterior one inconspicuous. Lateral portion of body with inconspicuous dark stripe from head to caudal fin. Pectoral, pelvic and dorsal fins with three irregular, poorly defined bands. Caudal fin with variegated blotches. Second pattern (Fig. 4): Ground color of body uniformly dark except, ventral portion of body mostly clear; Fins with inconspicuous, irregularly defined bands: one in anal fin, two in pectoral and pelvic fins. Dorsal and caudal fins entirely dark.

Sexual dimorphism. Males with a papilla at urogenital opening and fewer teeth in premaxillary 22-39 (vs. 32-44 females) and 17-32 dentary (vs. 30-45 females).

Figure 5. The Rio Paraíba do Sul basin indicating the type locality of Pareiorhina hyptiorhachis in Ribeirão Fernandes, a tributary of Rio Pomba, Rio Paraíba do Sul basin, $21^{\circ} 14^{\prime} 47^{\prime \prime} \mathrm{S}, 43^{\circ} 34^{\prime} 07^{\prime \prime} \mathrm{W}$.

Etymology. The specific name, hyptiorhachis is a combination of Greek, hyptios = supine, lying on the back, and rhachis = ridge, midrib, and is in reference to the conspicuous postdorsal ridge found in this species.

Distribution and habitat. Pareiorhina hyptiorhachis is known from Rio Pomba and one of its tributaries, the Ribeiráo Fernandes, in the municipality of Santa Barbara do Tugúrio, Minas Gerais State, Brazil (Fig. 5). This species inhabits moderate to fast-flowing streams, with a substrate of rocks and sand and margins covered by aquatic vegetation. Specimens were collected in association with loose stones, on the streambed. The new species is syntopic throughout its distribution with Astyanax sp., Characidium sp., Geophagus brasiliensis, Harttia cf. carvalhoi, Imparfinis sp., Neoplecostomus microps, Trichomycterus cf. alternatus, and Trichomycterus sp.

Discussion

Bockmann and Ribeiro (2003) proposed seven characters to diagnose Pareiorhina. The new species described herein, P. hyptiorhachis, possesses all of these characters. On the other hand, Pareiorhina did not form a monophyletic group in the molecular analysis of Roxo et al. (2012a, 2012b); in that analysis, P. hyptiorhachis, cited as Pareiorbina sp. 1, appeared as the sister group of P. carrancas, and these two species formed the sister group of Neoplecostomus. Furthermore, P. rudolphi, the type species of Pareiorhina was the sister group of Pseudotocinclus. Considering that P. hyptiorhachis exhibits all of the characters listed by Bockmann and Ribeiro (2003) for Pareiorhina, the molecular data conflict with the available morphological data for Neoplecostominae, and new morphological studies in Neoplecostominae are in progress (Edson Henrique Lopes Pereira, pers. comm.), we prefer to include P.
byptiorhachis in Pareiorhina rather than in another Neoplecostominae genus or in a new genus.

Pareiorhina hyptiorhachis is similar to P. carrancas from the upper Rio Paraná basin. The two species share unicuspid teeth and the presence of a postdorsal ridge of unpaired plates, although the postdorsal ridge is better developed in P. hyptiorhachis (all female and male samples) (Fig. 2). Moreover, the new species has more raised median unpaired plates in the postdorsal ridge (13-15 vs. 10-13 in P. carrancas). The close relationship between P. hyptiorhachis and P. carrancas suggested by the molecular data of Roxo et al. (2012b) is thus at least superficially supported by morphology.

Pareiorhina is distributed across three hydrographic basins, with P. rudolphi, P. brachyrhyncha and P. hyptiorhachis from the Rio Paraíba do Sul basin; P. carrancas from the upper Rio Paraná basin; and P. cepta from the Rio Sáo Francisco basin. Ribeiro et al. (2006) suggested that the activation of old faults in southeastern Brazil during the Miocene and Pliocene resulted in several headwater captures between adjacent drainages of the Sáo Francisco, upper Paraná and Coastal rivers. Roxo et al. (2012a) suggested that the lineage that gave rise to P. carrancas and P. hyptiorhachis was from the upper Rio Paraná basin and that P. hyptiorhachis reached the Rio Paraíba do Sul basin about 6.2 (2.3-11.2) million years ago, probably through headwater captures between the upper Paraná and several coastal drainages (Rio Paraíba do Sul and Ribeira do Iguape basin) during the late Miocene. Chamon et al. (2005) suggested that the evolutionary history of P. rudolphi and P. brachyrhyncha was linked to Pleistocene and pre-Pleistocene climatic fluctuations that may have temporarily isolated hillside streams at or near the headwaters of the Ribeirão Grande, producing the events that subsequently led to the sympatry of P. brachyrhyncha and P. rudolphi. However, as suggested by Crammer et al. (2008, 2011), Chiachio et al. (2008) and by Roxo et al. (2012a, 2012b), P. brachyrhyncha and P. rudolphi do not share an exclusive most recent common ancestor, which negates the hypothesis of Chamon et al. (2005). Additionally, Roxo et al. (2012a) suggested that the origin of the lineages that gave rise to the species of Pareiorhina were much older, originating in the Miocene [17.87 (8.24-28.42) million years ago for Pareiorhina rudolphi and 6.27 (2.33-11.21) million years ago for Pareiorhina carrancas plus P. hyptiorhachis (Pareiorhina sp. 1 in Roxo et al. 2012a)].

Comparative material

Isbrueckerichthys alipionis: LBP 7373, 17, 31.7-81.6 mm SL, municipality of Iporanga, SP, Rio Ribeira de Iguape basin; LBP 2660, 1, 55.1 mm SL, municipality of Iporanga, SP, Rio Ribeira de Iguape basin. Kronichthys subteres: LBP 515, 31, 28.4-61.9 mm SL, municipality of Iporanga, SP, Rio Ribeira de Iguape basin. Neoplecostomus microps: LBP 8036, 38, 41.3-65.0 mm SL, municipality of Piquete, SP, Rio Paraíba do Sul basin. Neoplecostomus franciscoensis: LBP 6489, 50, 42.8-55.9 mm SL, municipality of São Bartolomeu, MG, Rio São Francisco basin. Neoplecostomus paranensis: holotype, MZUSP 38572, 71.4 mm SL, municipality of Cajuru, MG, Rio Grande
basin. Pareiorhaphis splendens: LBP 1117, 20, 32.0-100.0 mm SL, municipality of Morretes, PR, Coastal Drainage. Pareiorhaphis steindachneri: LBP 739, 6, 33.8-49.0 mm SL, municipality of Jaraguá do Sul, SC, Coastal Drainage. Pareiorhina brachyrhyncha: LBP 12240, 50, 26.4-36.9 mm SL, municipality of Pindamonhangaba, SP, Rio Paraíba do Sul basin. Pareiorhina carrancas: LBP 8380, 24, 21.3-38.2 mm SL, municipality of Carrancas, MG, Rio Grande basin. Pareiorhina cepta: holotype, MZUSP 111095, 41.5 mm SL, municipality of Sáo Roque de Minas, MG, Rio Sáo Francisco basin, paratypes, LBP 10261, 1, 30.2 mm SL, municipality of São Roque de Minas, MG, Rio Paraíba do Sul basin, LBP 10287, 13, 21.5-43.6 mm SL, municipality of São Roque de Minas, MG, Rio Paraíba do Sul basin, LBP 11835, 19, 25.1-44.0 mm SL, municipality of Sáo Roque de Minas, MG, Rio Paraíba do Sul basin. Pareiorhina rudolphi: LBP 8044, 18, 31.7-48.9 mm SL, municipality of Piquete, SP, Rio Paraíba do Sul basin. Pseudotocinclus juquiae: LBP1081, 2, 29.0-31.9 mm SL, municipality of Juquitiba, SP, Coastal Drainage. Pseudotocinclus tietensis: LBP 2931, 3, 38.6-62.3 mm SL, municipality of Salesópolis, SP, Rio Tietê basin.

Acknowledgements

The authors thank Anderson L. Alves, Alex T. Ferreira, José C. Oliveira, Luciana R. Sato, Guilherme J. C. Silva, and Tiago N. A. Pereira for helping with the fish sampling of fishes; Mahmoud Mehanna for help with the etymology; and Edson H. L. Pereira for reading the manuscript and providing valuable suggestions. This research was supported by the Brazilian agencies FAPESP (Fundação de Amparo à Pesquisa do Estado de Sáo Paulo; proc. 2012/01622-2 to GSCS, and proc. 2010/01610-9 to FFR) and MCT/CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico).

References

Arratia G, Huaquin L (1995) Morphology of the lateral line system and of the skin of diplomystid and certain primitive loricarioid catfishes and systematics and ecological considerations. Bommer Zoologische Monographien 36: 1-110.
Bockmann FA, Ribeiro AC (2003) Description of a new sucker-mouth armored catfish of the genus Pareiorhina (Siluriformes: Loricariidae), from southeastern Brazil. Icthyological Exploration of Freshwaters 14: 447-458.
Chamon CC, Aranda AT, Buckup PA (2005) Pareiorhina brachyrhyncha (Loricariidae: Siluriformes): a new species of fish from the Paraíba do Sul Slope of Serra da Mantiqueira, Southeastern Brazil. Copeia 3: 550-558. doi: 10.1643/CI-04-276R
Chiachio MC, Oliveira C, Montoya-Burgos JI (2008) Molecular systematic and historical biogeography of the armored Neotropical catfishes Hypoptopomatinae and Neoplecostominae (Siluriformes, Loricariidae). Molecular Phylogenetic and Evolution 49: 606-617. doi: 10.1016/j.ympev.2008.08.013

Cramer CA, Bonatto SL, Reis RE (2011) Molecular Phylogeny of the Neoplecostominae and Hypoptopomatinae (Siluriformes: Loricariidae) using Multiple Genes. Molecular Phylogenetic and Evolution 59: 43-52. doi: 10.1016/j.ympev.2011.01.002
Cramer CA, Liedke AMR, Bonatto LS, Reis RE (2008) The phylogenetic relationship of the Hypoptopomatinae and Neoplecostominae (Siluriformes: Loricariidae) as inferred from mitochondrial cytochrome c oxidase I sequences. Bulletin of Fish Biology 9: 51-59.
Gosline WA (1947) Contributions to the classification of the loricariid catfishes. Arquivos do Museu Nacional do Rio de Janeiro 41: 79-134.
Lundberg JG, Baskin JN (1969) The caudal skeleton of the catfishes, order Siluriformes. American Museum Novitates 2398: 1-49.
Ribeiro AC (2006) Tectonic history and the biogeography of the freshwater fishes from the coastal drainages of eastern Brazil: an example of faunal evolution associated with a divergent continental margin. Neotropical Ichthyology 4: 225-246. doi: 10.1590/S167962252006000200009
Roxo FF, Zawadzki CH, Alexandrou MA, Costa Silva GJ, Chiachio MC, Foresti F, Oliveira C (2012a) Evolutionary and biogeographic history of the subfamily Neoplecostominae (Siluriformes: Loricariidae). Ecology and Evolution 1-12.
Roxo FF, Zawadzki CH, Costa Silva GJ, Chiachio MC, Foresti F, Oliveira C (2012b) Molecular systematics of the armored neotropical catfish subfamily Neoplecostominae (Siluriformes, Loricariidae). Zootaxa 3390: 33-42.
Roxo FF, Silva GSC, Mehanna M, Oliveira C (2012c) Description of a new species of Pareiorhi$n a$ (Siluriformes: Neoplecostominae) from Rio São Francisco basin. Zootaxa 3512: 64-74.
Schaefer SA (1997) The Neotropical cascudinhos: Systematics and biogeography of the Otocinclus catfishes (Siluriformes: Loricariidae). Proceedings of the Academy of Natural Sciences of Philadelphia 148: 1-120.
Taylor WR, Van Dyke GC (1985) Revised procedures for staining and clearing small fishes and other vertebrates for bone and cartilage study. Cybium 9: 107-109.

[^0]: * Universidade Estadual Paulista, Departamento de Morfologia, Laboratório de Biologia e Genética de Peixes, Rubião Júnior s/n, 18618000 Botucatu, São Paulo State, Brazil.
 E-mail: roxoff@hotmail.com.br; gabriel_biota@hotmail.com; claudio@ibb.unesp.br
 ** Corresponding author
 *** Universidade Estadual de Maringá, Departamento de Biologia, Nupélia G90, Av. Colombo, 5790, 87020900 Maringá, Paraná State, Brazil. E-mail: chzawadzki@hotmail.com

[^1]: Copyright G. de Souza da Costa e Silva. This is an open access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC-BY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

