The 2-dimensional lightcone integrals with momentum shift

A. T. Suzuki

Citation: Journal of Mathematical Physics 29, 1032 (1988); doi: 10.1063/1.528018
View online: http://dx.doi.org/10.1063/1.528018
View Table of Contents: http://scitation.aip.org/content/aip/journal/jmp/29/4?ver=pdfcov
Published by the AIP Publishing
The 2$\omega$-dimensional light-cone integrals with momentum shift

A. T. Suzuki

Instituto de Fisica Teorica, Universidade Estadual Paulista, Rua Pamplona, 145, 01405-Sao Paulo, Brazil

(Received 22 July 1987; accepted for publication 16 September 1987)

A class of light-cone integrals typical to one-loop calculations in the two-component formalism is considered. For the particular cases considered, convergence is verified though the results cannot be expressed as a finite sum of elementary functions.

I. INTRODUCTION

In the evaluation of one-loop diagrams (such as the "swordfish" diagrams) in the two-component formalism of the light-cone gauge, one finds integrals of the type

$$K(p,q) = \int \frac{dr}{r^2(r-q)^2(p^+ + r^+)}$$

and

$$K'(p,q) = \int \frac{dr}{r^2(r-q)^2(p^+ + r^+)}, \quad l = 1,2,$$

where the measure $dr$ according to the dimensional regularization technique is defined over an analytically continued space-time of $2\omega$ dimensions.

Right from the start one should be aware that naive shifts of integration variable are not permissible in light-cone integrals that are linearly divergent by power counting assessment. Happily none of the above integrals falls into this category and for convenience I consider the shifted versions

$$\tilde{K}(p,q) = \int \frac{dr}{r(q-p)^2(r-q)^2}$$

and

$$\tilde{K}'(p,q) = \int \frac{dr}{r(q-p)^2(r-q)^2}$$

instead of Eqs. (1.1) and (1.2). Here I treat the singularity at $r^+ = 0$ according to the prescription first suggested by Mandelstam, namely,

$$1/r^+ = \lim_{\epsilon \to 0^+} [1/(r^+ + i\epsilon r^-)].$$

II. EVALUATION OF $\tilde{K}(p,q)$

Using the standard procedure of exponentiating propagators, Eq. (1.1') becomes

$$\tilde{K}(p,q) = -\int_0^\infty d\alpha d\beta e^{i\alpha p^+ + i\beta p^-} \int r^+ e^{i\epsilon (p^+ + \epsilon r^-)}.$$
\[ F_1(\alpha, \beta; x, y) = (1 - x)^{-\alpha} (1 - y)^{-\beta}, \]  
\[ F_1(\alpha, \beta; y; x, y) = \sum F_1(\alpha, \beta; y, y), \]
and expanding, wherever necessary, for \( w - 2 \), one gets
\[ K(p, q) = \frac{\pi^2}{(p^+ + q^+)} \left[ \ln \left( \frac{2p^+ p^-}{q^2} \right) - \tilde{\xi} \ln \left( \frac{\tilde{\xi} - 1}{\tilde{\xi}} \right) \right. \]
\[ - \tilde{\xi} \ln \left( \frac{\tilde{\xi} - 1}{\tilde{\xi}} \right) \left] + \frac{\pi^2}{(p^+ + q^+)} \sum_{k=1}^{\infty} \frac{\sigma^k}{(k + 1)(k + 1)} \right. \]
\[ \times \left[ \frac{2}{(k + 1)} + \ln \left( \frac{2p^+ p^-}{q^2} \right) \right. \]
\[ - \tilde{\xi} \ln \left( \frac{\tilde{\xi} - 1}{\tilde{\xi}} \right) - \tilde{\xi} \ln \left( \frac{\tilde{\xi} - 1}{\tilde{\xi}} \right) \]
\[ + \sum_{m=1}^{k} \frac{1}{m} - \sum_{m=0}^{k} \left( \frac{\tilde{\xi} - m + \tilde{\xi} - m}{1 + m} \right) \]
\[ + O(2 - \omega). \]

Furthermore, using the expansion\(^d\)
\[ 2F_1(1, k + 2; k + 3; 2) \]
\[ \frac{(k + 2)}{2} \]
\[ = - \frac{\ln(1 - z)}{z(k + 2)} - \sum_{m=0}^{k} \frac{z^{m-k-1}}{1 + m}, \]
the final expression for \( \tilde{K} \) is written as
\[ \tilde{K}(p, q) = \frac{\pi^2}{(p^+ + q^+)} \left[ \ln \left( \frac{2p^+ p^-}{q^2} \right) - \tilde{\xi} \ln \left( \frac{\tilde{\xi} - 1}{\tilde{\xi}} \right) \right. \]
\[ - \tilde{\xi} \ln \left( \frac{\tilde{\xi} - 1}{\tilde{\xi}} \right) \left] + \frac{\pi^2}{(p^+ + q^+)} \sum_{k=1}^{\infty} \frac{\sigma^k}{(k + 1)} \right. \]
\[ \times \left[ \frac{2}{(k + 1)} + \ln \left( \frac{2p^+ p^-}{q^2} \right) \right. \]
\[ - \tilde{\xi} \ln \left( \frac{\tilde{\xi} - 1}{\tilde{\xi}} \right) - \tilde{\xi} \ln \left( \frac{\tilde{\xi} - 1}{\tilde{\xi}} \right) \]
\[ + \sum_{m=1}^{k} \frac{1}{m} - \sum_{m=0}^{k} \left( \frac{\tilde{\xi} - m + \tilde{\xi} - m}{1 + m} \right) \]
\[ + O(2 - \omega). \]

### IV. CONCLUDING REMARKS

The explicit calculation showed that the integral defined in Eq. (1.2) has its pole part canceled out. It suggests that in the Mandelstam prescription the transversal components of the vector momentum, \( p^+ \), over the longitudinal component, \( p^- \), yield \( n < 0 \) as far as power counting is concerned. There remains to be seen whether the lower limit for \( n \) can be determined accurately. In any case, it is interesting to note that this pattern of convergence for momentum integrals in the light-cone gauge à la Mandelstam is characteristic of this gauge.

### ACKNOWLEDGMENT

This work was supported by FAPESP-São Paulo, under Contract No. Proc. 86/2.376-9.

---