Technical Note

Musca domestica as a Host for Mass Rearing of Parasitoid Palmistichus elaeisisis (Hymenoptera: Eulophidae)

Zaché Bruno1, Zaché Ronelza Rodrigues da Costa1, Candelária Murici Carlos1, Wilcken Carlos Frederico1

1São Paulo State University (UNESP), Department of Plant Protection, School of Agronomic Sciences. Botucatu, São Paulo, Brazil. Correio eletrônico: bzache@bol.com.br

Summary

Musca domestica (Diptera: Muscidae), is a potential mechanical vector of etiological agents such as viruses, bacteria, protozoan cysts and larvae of helminthes. It has shown potential as an alternative host for the mass raising of parasitoids. Studies demonstrate the possibility of producing large quantities of hosts in a small space and a short time. Palmistichus elaeisisis (Hymenoptera: Eulophidae) is a potential parasitoid for insects of different orders. This is the first report of P. elaeisisis parasitizing pupae of Musca domestica in Brazil.

Key words: alternative host, etiological agents, biological control, pupal parasitoid

Introduction

The development of techniques that allow the rearing of natural enemies on a commercial scale is one of the basic requirements for biological control. Among the main natural enemies, parasitoids have been evaluated for their performance in controlling agricultural and forest pests. The success of parasitoids implies compatibility with their hosts (Strand and Pech, 1995; Strand, 2008). Beyond mass production, the study of alternative hosts elucidates the ability of a natural enemy to control the pest population (Pratissoli et al., 2005; Soares et al., 2007).

The ease of rearing Musca domestica L. (Diptera: Muscidae) on an artificial diet, and its short life cycle, have rendered it a strong candidate as an alternative host for parasitoid mass rearing in several biological control programs. Further studies are being carried out to contribute to a better understanding of the host and parasitoid population biodynamic. M. domestica has shown potential as an alternative host for the mass raising of parasitoids. Research studies on M. domestica larvae demonstrate the possibility of producing large quantities of hosts in a small space and a short time (Hou et al., 2007).

Parasitoids are important regulators of insect populations of different orders (Pennacchio and Strand, 2006). The family Eulophidae presents 283 genera and 3,977 species, in tropical and temperate regions, as endoparasitoids or ectoparasitoids, idiobiont or coinobiont, solitary or gregarious, primary or hyperparasitoids, specialists or generalists, and many of these species have been studied and utilized suc-
P. elaeisis parasitoid M. domestica

cessfully in biological control programs (Noyes, 1998; Gauthier et al., 2000; Hansson, 2004).

Tetrastichinae is a major subfamily of Eulophidae, and has as hosts representatives of 100 insect families of different orders (Lasalle, 1993; Lasalle and Schauff, 1995). A new Tetrastichinae species was described as *Palmistichus elaeisis* (Hymenoptera: Eulophidae) and reported in pupae of *Eupseudosoma involuta* (Lepidoptera: Arctiidae), *Euselasia eucerus* (Lepidoptera: Riodinidae) (Delvare and Lasalle, 1993), *Sabulodes sp.* (Lepidoptera: Geometridae) (Bittencourt and Berti, 1999), *Thyrinteina arnobia* and *Thyrinteina leucocerae* (Lepidoptera: Geometridae) (Pereira et al., 2008) and *Sarsina violascens* (Lepidoptera: Lymantriidae) (Zaché et al., 2012).

The generalist behavior of *P. elaeisis* characterizes this natural enemy as a promising agent for utilization in biological control programs.

The objective of this study was to evaluate the impact of *P. elaeisis* as a pupal parasitoid on *M. domestica* and as a host for mass rearing.

Material and Methods

Parasitoids used in this test were originally collected on pupae of *E. eucerus* (Lepidoptera: Riodinidae) in eucalyptus plantations in Lençois Paulista, São Paulo State, Brazil, in 2011. Thereafter, a laboratory culture has been maintained, using pupae of *Spodoptera frugiperda* (J. E. Smith) (Lepidoptera: Noctuidae) as hosts. The parasitoid rearing technique was described in detail by Zaché et al. (2010) for *Trichospilus diatreae* (Hymenoptera: Eulophidae) Pupae of *M. domestica* were removed from the rearing and placed individually in glass tubes, 4 cm in diameter, closed with «voil», wherein 15 pupae were offered to *P. elaeisis* females at a 5:1 (parasitoid: host) ratio for 72 h. Thereafter, the female was removed and containers with *M. domestica* pupae were maintained in a climate-controlled chamber at 26 ± 2 °C, 60 ± 10% relative humidity, and a 12 hour photophase. The following parameters were determined: level of parasitism, number of emerged and non-emerged parasitoids and duration of egg-

Results and Discussion

This represents the first report of this species parasitizing *M. domestica* pupae (Fig.1) and offers new opportunities for research to determine the potential of *M. domestica* as an alternative host for mass rearing.

The level of parasitism reached 80%, with an emergence rate of 60%. It was verified an emergence of 11.3 ± 0.2 parasitoids/individual pupa versus only 0.8±0.2 non-emerged parasitoids. The *P. elaeisis* egg-adult cycle was 17.3±0.4 days in *M. domestica* pupa.

Conclusions

More studies are needed to determine the potential of *P. elaeisis*, given that this biocontrol agent may enable the use of this host in mass rearing.

Acknowledgements

We are grateful to the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for funding this study.

Figure 1. *Palmistichus elaeisis* female parasitizing *Musca domestica* pupa (A); parasitoid larvae within the host (B); the parasitoid pupae (C); parasitoid emergence (D).
References

