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Resumo

Nesta tese, estamos interessados em tratar de maneira integrada dois conhecidos pro-
blemas da literatura. Esta integração é referida na literatura como problema integrado
de dimensionamento de lotes e corte de estoque. A ideia consiste em considerar simul-
taneamente, as decisões relacionadas com ambos os problemas, de modo a capturar a
interdependência entre estas decisões e, assim, obter uma melhor solução global. Propõe-
se um modelo matemático geral para o problema integrado de dimensionamento de lotes
e corte de estoque (GILSCS ), que considera vários níveis de integração e nos permite
classi�car a literatura, em termos de modelos matemáticos, dos problemas integrados. A
classi�cação é organizada a partir de dois principais aspectos de integração que são: a
integração através dos períodos de tempo e a integração entre os níveis de produção .
Em um horizonte de planejamento que considera vários períodos, o estoque fornece uma
ligação entre os períodos. Esta integração, por períodos de tempo, constitui o primeiro
tipo de integração. O problema geral também considera a produção em diferentes níveis:
objetos são fabricados ou comprados e então são cortados para produzir peças menores
e estas, por sua vez, constituem componentes para a produção dos produtos �nais. A
integração entre os diferentes níveis de produção consiste no segundo tipo de integração.
A revisão da literatura também possibilita direcionar interessantes áreas para pesquisas
futuras. O comportamento da solução para este tipo de problema, com três níveis e vá-
rios períodos, é estudado a partir do desenvolvimento de métodos de solução considerando
abordagens que superam as di�culdades do problema, que consistem no alto número de
padrões de corte, estruturas em vários níveis (multiestágios) e variáveis binárias de pre-
paro. Os métodos de solução propostos para o problema GILSCS são baseados em duas
abordagens conhecidas da literatura, usadas com sucesso para resolver os problemas sepa-
radamente, que são o procedimento de geração de colunas e heurísticas de decomposição
do tipo relax-and-�x. Estas estratégias e suas variações são combinadas à um pacote de
otimização em um estudo computacional com dados gerados aleatoriamente. Uma revi-
são da literatura, em termos de métodos de solução, para o problema integrado também
é apresentada. Outras contribuições desta tese consistem em propor diferentes modelos
matemáticos para o problema integrado, combinando modelos alternativos para cada um
dos problemas separadamente. Neste estudo, o objetivo é comparar e avaliar, com um
extensivo estudo computacional, a qualidade e o impacto das diferentes formulações. O
outro trabalho trata de uma aplicação do problema integrado em um indústria de móveis
de pequeno porte, em que restrições especí�cas do ambiente industrial são abordadas,
como estoque de segurança e ciclos da serra. A solução obtida pelo modelo proposto é
comparada com uma simulação da prática da empresa.

Palavras Chave: Problema Integrado de Dimensionamento de Lotes e Corte de
Estoque. Revisão e Classi�cação da Literatura. Geração de Colunas. Relax-and-Fix.
Heurística Híbrida. Restrição de Ciclos da Serra. Indústria de Móveis.



Abstract

In this thesis, the subject of interest is in treating, in an integrated way, two well-
known problems in the literature. This integration is referred in the literature as the inte-
grated lot-sizing and cutting stock problem. The basic idea is to consider, simultaneously,
the decisions related to both problems so as to capture the interdependency between these
decisions in order to obtain a better global solution. We propose a mathematical model
for a general integrated lot-sizing and cutting stock (GILSCS ) problem. This model con-
siders multiple dimensions of integration and enables us to classify the current literature,
in terms of mathematical models, in this �eld. The main classi�cation of the literature is
organized around two types of integration. In a planning horizon which consists of mul-
tiple periods, the inventory provides a link between the periods. This integration across
time periods constitutes the �rst type of integration. The general problem also considers
the production in di�erent levels: objects are fabricated or purchased and then, they are
cut to produce the pieces which are then assembled as components in the production of
�nal products. The integration between these production levels constitutes the second
type of integration. The literature review also enables us to point out interesting areas
for future research. The behavior of a solution to this type of problem, with three levels
of production and several time periods, is studied considering the development of solution
approaches that overcome the di�culties of the problem, which are the high number of
cutting patterns, multi-level structures and the binary values of the setup variables. The
solution methods proposed to the GILSCS problem are based on two known strategies
from the literature which are used successfully to solve the problems separately, which
are the column generation procedure and decomposition heuristics based on relax-and-
�x procedure. These strategies and their variations are combined into an optimization
package in a computational study with randomly generated data. A literature review, in
terms of solution methods, to the integrated problem, is also presented. Other contribu-
tions of this thesis consist of proposing di�erent mathematical models for the integrated
problem combining alternative models for each one of the problems separately. In this
study, the aim is to compare and evaluate, with an extensive computational study, the
quality and the impact of these di�erent formulations. Another study is an application of
the integrated problem in a small furniture factory, in which speci�c constraints related
to the industrial environment are addressed, such as, safety stock level constraints and
saw cycles constraints. The solution obtained from the proposed model is compared to a
simulation of the common practice in the company.

Keywords: Integrated Lot-sizing and Cutting Stock Problems. Review and Classi-
�cation of the Literature. Column Generation. Relax-and-Fix. Hybrid Heuristic. Saw
Cycles Constraints. Furniture Factory.
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Chapter 1

Introduction

Continuously, the representation of reality is a necessity of modern society, either

because of the inability to deal directly with this, or by economic aspects, or by its

complexity. Therefore, the industries face the challenge of improving their competitiveness

searching for the representation of reality through models which are well structured and

as representative as possible, in order to produce more, with better quality and lower

costs. This competitiveness increasingly faster has expanded demand for new tools to

support decision-making, consequently induces academic research of optimization models

related to planning and controlling of production systems. Among the various decision

processes, this research is part of the tactical/operational planning of production related

to two problems known as lot-sizing problem and cutting stock problem.

The lot-sizing problem and the cutting stock problem have been the object of ex-

tensive research for more than 50 years. Much progress has been made with respect to

formulations and solution methods for these two problems. Most of the research has been

focused on solving these problems separately, since each problem is itself difficult to solve.

However, with the fast progress in optimization theory, software, hardware and, a better

understanding of the individual problems, as well as the dependencies among decisions

observed in practical cases, more attention has been paid to the integration of these two

problems in recent years. This integration is the subject of interest in this thesis and

it is referred to in the literature as the integrated/combined lot-sizing and cutting stock

problem. In this thesis, the problem is referred to as integrated problem.

The interest in these problems often originates from direct practical applications of

the integrated environments in various industries. For example, in the paper industry,

large coils are manufactured to then be cut into smaller coils (reel) that correspond to

customer’s requests. In the furniture industry, wooden plates are cut into several wooden

parts to be assembled into final products. In the fiber glass industry, fiber glass plates

are cut to manufacture printed circuit boards and in the aluminum industry, aluminum
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profiles are cut to make several window types.

The Lot-Sizing Problem (LSP) considers the tradeoff between the setup and inventory

holding costs to determine the minimal cost of a production plan for one (or several) ma-

chine(s) in order to meet the demand for each item. The LSP can be classified according

to several characteristics, such as, the number of levels in the production structure (sin-

gle level or multi-level), demand (constant or dynamic), time horizon (finite or infinite)

and the consideration of capacity constraints and setup times. In the literature, many

papers address the lot-zing problem in different environments, among which we high-

light the review papers of Karimi et al. (2003), Brahimi et al. (2006), Buschkühl et al.

(2008), Jans and Degraeve (2008) and Robinson et al. (2009). There is a EURO Working

Group on Lot-Sizing (EWG LOT ) (https://www.euro-online.org/web/ewg/37/ewg-on-

lot-sizing-ewg-lot). A thorough discussion of lot-sizing problems is provided in the book

by Pochet and Wolsey (2006) and a review of solution approaches can be found in Jans

and Degraeve (2007).

The Cutting Stock Problem (CSP) involves the cutting of large objects available in

stock into smaller pieces, in order to meet the demand of the pieces and optimize an

objective function, such as the minimization of the total waste, the minimization of the

costs of the used objects, or the maximization of profit. The economic and operational

importance of the cutting stock problem and the difficulties in solving it, have motivated

the academic community in this area to develop efficient solution methods, as can be

seen in the review papers and special editions of Hinxman (1980), Dyckhoff et al. (1985),

Dyckhoff et al. (1997), Arenales et al. (1999), Hifi (2002), Wang and Wäscher (2002),

Oliveira and Wäscher (2007) and Morabito et al. (2009). There is also a EURO Special

Interest Group on Cutting and Packing ESICUP (http://paginas.fe.up.pt/esicup/). In

order to synthesize and classify the literature, Dyckhoff (1990) introduced a typology for

the cutting stock problem. The typology is based on four characteristics of the problem,

which are dimensionality (i.e. the number of relevant dimensions in the cutting process),

type of assignment (i.e. the selection of objects and pieces), assortment of large objects

and small pieces. Subsequently Wäscher et al. (2007) presented changes in Dyckhoff’s

typology, refining aspects of the problems analyzed and considered other problems.

The literature mostly deals with the lot-sizing problem and cutting stock problem

separately through models that capture just the main trade-off in each problem. How-

ever, some reviews papers (Thomas and Griffin, 1996; Drexl and Kimms, 1997; Jans and

Degraeve, 2008) have pointed out a tendency that dealing with various problems in an in-

tegrated way is an important aspect for future research. Over the last years, this tendency

was observed for the lot-sizing and cutting stock problems, and the analysis of practical

cases focusing more on the incorporation of relevant industrial concerns provided a fur-
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ther impetus. Therefore, this thesis aligns with this trend of evolution in dealing with

the problems in an integrated way. The basic idea of the integrated lot-sizing and cutting

stock problem is to consider, simultaneously, the decisions related to both problems so as

to capture the interdependency between these decisions in order to obtain a better global

solution.

Chapters of this thesis are organized as follows. In Chapter 2, we propose a general

formulation for the integrated lot-sizing and cutting stock problem that considers two main

aspects of integration, which are the integration across time periods and the integration

between production levels. This model provides an instrument that allows us to classify

the various models proposed in the literature. The concern in this thesis in classifying

the integrated problems from the literature is due to the fact that when the authors refer

to an integrated problem, they often consider different assumptions with respect to the

level of integration considered, and hence present quite different models. In this way, the

aim of this chapter is to standardize and classify the concept of the integrated lot-sizing

and cutting stock problems. The classification is performed by firstly presenting a general

integrated model composed of three production levels and multiple time periods. The

models in the literature are then classified according to their characteristics with respect

to the time horizon and production levels. Other important issues related to the objects,

pieces and final products, as well as the consideration of capacity constraints and setups

at different levels, are also evaluated. The presentation of a general integrated model and

the classification of the various integrated models in the current literature are the main

contributions of this chapter. To the best of our knowledge, no general review and analysis

of integrated lot-sizing and cutting stock problems have been done so far. Furthermore,

this analysis also allows us to point out interesting areas for future research. This research

has also the collaboration of professor Raf Jans from University of Montréal, Canada and

it is based on the working paper Melega et al. (2017a).

Chapter 3 presents the solution methods proposed to the general integrated lot-sizing

and cutting stock problem (see Chapter 2). The cutting process modeled in the general

integrated problem is considered as an one-dimensional problem in this chapter. A lit-

erature review of the solution methods to integrated problems is also addressed in this

chapter, in order to highlight the main strategies used in this field. The solution meth-

ods in the literature are classified as exact and heuristic approaches and we consider the

same studies previously classified in Chapter 2. Considering the solution methods to the

general integrated problem, we are interested in heuristic approaches that overcome the

difficulties faced in the cutting stock problem and take advantages of multi-level structures

and/or deals wisely with the binary values of the setup variables in the lot-sizing problem.

Faced on these, the solution methods proposed in this thesis are based on known solution
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methods from the literature, which have showed to be the best way to deal with these

difficulties. The solution methods consider the column generation procedure as a first step

in Level 2 and then integer programming and decomposition heuristics are addressed in

an attempt to find a feasible solution to the problem. The decomposition heuristics con-

sider two strategies to select the variables in order to decompose the problem. A hybrid

heuristic that combines the relax-and-fix and the column generation procedures is also

proposed. A whole set of data is generated to the general integrated problem based on

known data set in the literature for each problem individually. The computational study

is performed around four analysis which are in terms of size of the problem, the length

of pieces, the capacity constraint and costs in the objective function in order to evaluate

the impact of these variations in the computational results. This research is based on the

working paper Melega et al. (2017b).

Other contributions of this research are in Appendix A and Appendix B of this thesis.

We consider these studies in the appendix in order to keep in the chapters the studies which

more directly are related to each other. However, the models and solution approaches

presented in the papers from appendixes are classified in Chapter 2 and Chapter 3 of this

thesis.

In the Appendix A, a study of mathematical models to the integrated lot-sizing and

cutting stock problem is presented. Most of the studies in the literature that address

the integrated lot-sizing and cutting stock problem study several cases of the problem

in practice. In these studies, alternative formulations for the LSP and CSP are not

tested in order to choose the formulation that best fits the problem and the data set. So,

this research tries to cover the gap by proposing alternative mathematical formulations,

considering different features of the lot-sizing and cutting stock problems. The capacitated

lot- sizing problem is modeled using the mathematical model proposed by Trigeiro et al.

(1989). We also considered the variable redefinition strategy (Eppen and Martin, 1987)

which reformulates the lot-sizing problem as a shortest path problem. To model the

one-dimensional cutting stock problem, we consider three mathematical models from the

literature. The first model is based on the ideas present in Kantorovich (1960) (to a

mathematical formulation see Valério de Carvalho (1999)), which determines the best way

to cut objects to meet the demand, minimizing the number of objects used. For this model,

an upper bound on the number of objects is considered. The second model dealt with, and

perhaps the best known among the academic community, is the one proposed by Gilmore

and Gomory (1961, 1963). This model produces good lower bounds when compared to

the Kantorivich’s model, however it has an large number of variables, which indicates

the use of column generation to deal with this difficulty. The third model was proposed

by Valério de Carvalho (1999, 2002). The author proposes an alternative mathematical
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model for the one-dimensional cutting stock problem based on an arc flow problem. This

model is strong in the sense that it presents a linear relaxation as good as the Gilmore and

Gomory model. The cutting stock models from the literature are extended to consider

several time periods and several types of objects in stock. In a second part of this study,

these models are integrated into the uncapacitated lot-sizing problem proposed by Wagner

and Whitin (1958) and different types of objects are considered. The column generation is

used to solve the linear relaxation of the proposed models and the mixed integer problems

are solved by an optimization package. An extensive computational study using randomly

generated data is performed, in order to evaluate and indicate the impact of these different

formulations. This study also has the collaboration of professor Raf Jans and has been

published in the journal Pesquisa Operacional (see Melega et al. (2016)).

The research presented in Appendix B consists of a practical application of the in-

tegrated lot-sizing and cutting stock problem in a furniture industry. An integrated

mathematical model is proposed that includes lot-sizing decisions with safety stock level

constraints and saw capacity constraints taking into account saw cycles. The solution

method proposed to the integrated model is compared to a simulation of the company’s

decision, which consists of taking the lot size and the cutting stock decisions separately

and sequentially. A column generation solution method is proposed to solve the related

problem and the mixed integer problem is solved by an optimization package. An exten-

sive computational study is conducted using instances generated based on data collected

at a typical small scale Brazilian factory. The integrated approach performs well, both

in terms of reducing the total cost of raw materials as well as the inventory costs of

pieces. They also indicate that the model can support the main decisions taken and can

bring improvements to the factory’s production planning. This research extend the ideas

present in Vanzela (2012) and in Vanzela et al. (2013) in order to admit that different

cutting patterns are not able to be cut in the same saw-cycle, which consists of relaxations

in the previous studies. Our contribution in this paper consists of the extension of the

model, the adaptations of the solution methods considering the extended model, with saw

cycle constraints, and in the performing of the computational study. This paper has the

collaboration of professor Socorro Rangel from Universidade Estadual Paulista, São José

do Rio Preto - SP, Brazil and has been recently published in the journal Computers &

Operational Research (see Vanzela et al. (2017)).

Finally in Chapter 4, we highlight the main contributions of this thesis and point

out future interesting directions of the studies to integrated lot-sizing and cutting stock

problems.
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Chapter 2

Classification and Literature Review

of Integrated Lot-Sizing and Cutting

Stock Problems

In this chapter, a literature review and classification of integrated lot-sizing and cut-

ting stock problems are presented, in which a general mathematical formulation to the

integrated lot-sizing and cutting stock (GILSCS ) problems is proposed and used as a

tool in the classification of the studies in the literature. The general integrated model

is composed of three levels and takes into account two main aspects of integration. In a

planning horizon which consists of multiple periods, the inventory provides a link between

the periods. This integration, across time periods, constitutes the first type of integration.

The general integrated problem also considers the production of different types of items:

objects are fabricated or purchased and then they are cut into pieces which are assembled

into final product. The integration between these three production levels constitutes the

second type of integration. The characteristics of the general integrated model, such as,

the different types of integration, provide an instrument that allows us to use it to classify

the various models proposed in the literature, as can be seen in this chapter.

This Chapter is organized as follows. Firstly, in Section 2.1, we present a brief dis-

cussion of the problems from the literature which are addressed in this thesis and some

models which are used as references in the formulation of the general integrated model.

For each problem, it is also highlighted some relevant extensions to the scope of this

chapter.

The classification of the literature is presented in Section 2.2, by first showing the

classification criteria, which is built from the two types of integration presented in the

general integrated model, i. e., the integration across time periods and the integration

between production levels. Other important issues related to the objects, pieces and final
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products, as well as the consideration of capacity constraints and setups at different levels,

are also evaluated. In Section 2.3, conclusions and new future research are pointed out

based on the literature review of integrated lot-sizing and cutting stock problem and based

on the formulation of the general integrated model.

The presentation of a general integrated model and the classification of the various

integrated models in the current literature are the main contributions of this chapter. To

the best of our knowledge, no general review and analysis of integrated lot-sizing and

cutting stock problems have been done so far. Furthermore, this analysis also allows us to

point out interesting areas for future research. The scope of the chapter is limited to the

modelling aspects related to the integrated models. A detailed discussion of the solution

approaches is presented in Chapter 3.

2.1 Mathematical Models

In this section, basic models for the lot-sizing problem and cutting stock problem are

presented, as well as a brief discussion of some relevant extensions for each problem. Next,

the general integrated model is proposed.

2.1.1 Discussion of the Lot-Sizing Problem (LSP)

The lot-sizing problem was firstly introduced by Wagner and Whitin (1958) for a sin-

gle item and by Manne (1958) for multiple items and with capacity constraints. In this

chapter, we consider a capacitated lot-sizing problem with setup times (CL) which was

proposed by Trigeiro et al. (1989) and analyzed further in Degraeve and Jans (2007),

among others. Consider the following sets, parameters and decision variables:

Sets:

T = {1, . . . , s}: set of time periods (index t);

I = {1, . . . , q}: set of items (index i).

Parameters:

scit: setup cost of item i in period t;

vcit: unit production cost of item i in period t;

hcit: unit holding cost of item i in period t;

stit: setup time of item i in period t;

vtit: unit production time of item i in period t;

dit: demand of item i in period t;

sditτ : sum of demands of item i from period t to period τ ;
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Capt: capacity (time limit) available to produce the items in period t.

Decision Variables:

X i
t : production quantity (in units) of item i in period t;

Sit : inventory (in units) for item i at the end of period t,

Y i
t : binary variable indicating the production or not of item i in period t.

Model CL

min
∑

t∈T

∑

i∈I

(

scitY
i
t + vcitX

i
t + hcitS

i
t

)

(2.1)

Subject to :

Sit−1 +X i
t = dit + Sit ∀i, ∀t (2.2)

X i
t ≤ sditsY

i
t ∀i, ∀t (2.3)

∑

i∈I

(

stitY
i
t + vtitX

i
t

)

≤ Capt ∀t (2.4)

Y i
t ∈ {0, 1} ∀i, ∀t (2.5)

X i
t , S

i
t ∈ R+ ∀i, ∀t (2.6)

The objective function (2.1) minimizes the total setup cost, production cost and in-

ventory holding cost. Constraints (2.2) are the demand balance constraints: inventory

carried over from the previous period and production in the current period are used to

meet the current demand, and build up inventory that can be used in the next periods.

Constraints (2.3) force the setup variable to one if any production takes place in the pe-

riod. The next constraints (2.4) impose that the total production and setup time cannot

exceed the available capacity in each period. Finally, constraints (2.5) and (2.6) are the

integrality and non-negativity constraints.

This model corresponds to a big bucket problem, in which different items can be pro-

duced in the same time period, while in a small bucket problem at most one type of item

can be produced within a time period. The CL model represents a single level system,

which corresponds to a problem in which the final products are obtained directly after

processing in a single operation. The corresponding demand for the final products is

known as independent demand. In a multi-level system, there is a relationship among the

items described in the Bill-of-Material. Production of final products will trigger a demand

for components, which represents the dependent demand. In the multi-level model, the

demand balance constraint (2.2) is changed to distinguish between the dependent and

independent demand. To formulate a multi-level problem we consider the following addi-

tional data:
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S(i): set of direct successors of item i (index l);

ril : number of items i used in one unit of item l.

Item i can have its own independent demand, as well as, its dependent demand created

by the production of its direct successors. The new demand balance constraint is then

written as:

Sit−1 +X i
t = dit +

∑

l∈S(i)

rilX
l
t + Sit ∀i, ∀t (2.7)

Among the various extensions of the lot-sizing problem we highlight the use of several

machines to produce the items (Toledo and Armentano, 2006; Jans, 2009; Fiorotto and

de Araujo, 2014; Fiorotto et al., 2015), as well as the possibility of backlogging some

part of the demand (Pochet and Wolsey, 1988). The setup structure in the capacity

constraint is another consideration that affects the problem complexity (Karimi et al.,

2003). The setup of a product can be dependent or independent of the previous product

in the production sequence (Guimarães et al., 2014), or the final setup in a period can be

carried over to the next period (Gopalakrishnan et al., 2001; Sahling et al., 2009).

Alternative formulations for the lot-sizing problem have been proposed in the liter-

ature. We point out the network reformulation proposed by Eppen and Martin (1987),

which reformulates the lot-sizing problem as a shortest path problem, and the simple

plant location reformulation proposed by Krarup and Bilde (1977). These reformulations

are strong formulations, since they provide tighter lower bounds when compared with the

original formulations. Extensions of these reformulations have been successfully applied in

decomposition algorithms to obtain further improved lower bounds (Jans and Degraeve,

2004; Süral et al., 2009; de Araujo et al., 2015; Fiorotto et al., 2015).

The variable redefinition strategy (Eppen and Martin, 1987), called here as SP, is

of particular interest of this thesis (see Appendix A) and it is detailed as follows. The

original idea was proposed for uncapacitated problems and Jans and Degraeve (2004),

Jans (2009), Melega et al. (2013) and Fiorotto and de Araujo (2014) extended it to cases

with capacity constraints, related parallel machines, various plants and unrelated parallel

machines, respectively.

In order to formulate the lot-sizing problem as a shortest path problem, we need the

following definitions of parameters and variables, respectively:

cvitτ : total production and inventory holding cost for producing item i in period t

at a quantity that meets the demands for the periods from t until τ , cvitτ = vcitsd
i
tτ +

τ
∑

v=t+1

v−1
∑

u=t

hciud
i
v;



2.1. Mathematical Models 17

zvitτ : fraction of the production plan for item i to meet demand from period t to

period τ .

The lot-sizing problem variables have the following correspondence:

Xit =
s

∑

τ=t

sditτzvitτ ∀i, ∀t (2.8)

and the demand constraints (2.2) and setup constraints (2.3) are rewritten in terms of the

new decision variables as follows:

∑

τ∈T

zvi1τ = 1 ∀i (2.9)

t−1
∑

τ=1

zviτt−1 =
s

∑

τ=t

zvitτ ∀i, ∀t\{1} (2.10)

s
∑

τ=t

zvitτ ≤ Yit ∀i, ∀t (2.11)

Constraints (2.9) and (2.10) define the flow constraints in the SP model. For each item

i, a unit flow is sent through the network (constraint (2.9)), imposing that its demand

has to be meet without backlogging in each period (2.10). Constraint (2.11) ensures that

item i will be produced in period t only if there is a setup prepared to produce that item.

To an application of this reformulation, see Appendix A.

2.1.2 Discussion of the Cutting Stock Problem (CSP)

To model the cutting stock problem and its main elements, three formulations from

the literature are considered in this thesis. The first one is a compact formulation for the

one-dimensional case and was proposed by Kantorovich (1960). This formulation is also

known as the generalized assignment model for the CSP (Degraeve and Peeters, 2003).

Here it is called KT. Consider the following sets, parameters and decision variables for

the KT model:

Sets:

P : set of pieces (index p).

Parameters:

UB: upper bound on the number of objects;

L: object length;

lp: length of piece p;

dp: demand of piece p.
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Decision Variables:

yo: binary variable that indicates whether object o is used or not;

hpo: number of units of piece p cut from object o.

Model KT

min
UB
∑

o=1

yo (2.12)

Subject to :

UB
∑

o=1

hpo ≥ dp ∀p (2.13)

∑

p∈P

lph
p
o ≤ Lyo ∀o (2.14)

yo ∈ {0, 1} ∀o (2.15)

hpo ∈ Z+ ∀p, ∀o (2.16)

The objective function (2.12) minimizes the number of cut objects. Constraints (2.13)

ensure that the demand for each piece is satisfied. Constraints (2.14) are the knapsack

constraints and guarantee that if object o is cut, then the combination of the piece sizes

that will be cut from it cannot exceed its size. Finally, the set of constraints (2.15) and

(2.16) impose integrality and non-negativity conditions.

The second formulation presented was proposed by Valério de Carvalho (1999, 2002),

here denoted by VC. The author proposed an alternative mathematical model for the one-

dimensional cutting stock problem based on an arc flow problem. The formulation uses

the idea of cutting patterns, which define the way that the pieces are cut from an object.

The problem of finding a valid cutting pattern, is modeled as a problem of finding a path

in a directed acyclic graph G = (V,A), with V = {0, 1, . . . , L}, where L is the length of the

object, i. e., the distance of one vertex to other represents one unit of objects length. The

set of arcs in the graph is defined as A = {(g, h); 0 ≤ g < h < L and h−g = lp for all p ∈

P}. The losses in the object generated from the cutting process are represented in the

graph by additional arcs between the vertices (g, g + 1) to g = 0, . . . , L − 1. The author

also considers additional constraints to guarantee that demand of each piece is meet and

the resulting problem consists of a cutting stock problem. As decision variables for the

VC model considers:

f : flow through the network;

zgh: number of cutting patterns which have a piece of size (h− g) allocated at a dis-

tance g from the beginning of the object.
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Model VC

minf (2.17)

Subject to :

−
∑

(0,h)∈A

z0h = −f (2.18)

∑

(g,h)∈A

zgh −
∑

(h,s)∈A

zhs = 0 l = 1, . . . , L− 1 (2.19)

∑

(h,L)∈A

zhL = f (2.20)

∑

(h,h+lp)∈A

zh,h+lp = dp ∀p (2.21)

zgh, f ∈ Z+ ∀(g, h) ∈ A (2.22)

The objective function (2.17) minimizes the flow through the network. The flow set for

this problem represents the number of used objects (cutting patterns), since one flow unit

defines a path, which in turn defines a cutting pattern. The set of constraints (2.18), (2.19)

and (2.20) correspond to flow conservation constraints. Constraints (2.21) guarantee that

the demand of each piece is meet and finally constraints (2.22) are the integrality and

non-negativity constraints.

This model presents many symmetric solutions, or alternatives that correspond to

the same cutting patterns. For this reason, Valério de Carvalho (1999) presented some

reduction criteria to eliminate some arcs, reducing the number of symmetric solutions

without eliminating any valid cutting pattern from set A. One of the criteria consists in

allocating the items in order of decreasing length in each cutting pattern, that is, an item

of length i1 can only be placed after another item length i2 if i1 ≤ i2, or at the beginning

of the object. Another criterion does not allow starting a cutting pattern with loss. Thus,

the first arc of loss will be inserted in the graph at a distance from the beginning of

the object representing the shortest item length. To an application of the KT and VC

formulation see Appendix A.

Next, we introduce the last model addressed in this thesis for the CSP. This is probably

the most well-known model for the cutting stock problem and was proposed by Gilmore

and Gomory (1961, 1963), and here it is referred to as GG. This formulation is more

flexible when compared with the KT and VC models in the sense that it can easily be

adapted to take into account multi-dimensional problems and other extensions of the CSP.

The GG formulation makes use of the idea of cutting patterns, which define the way

that the pieces are cut from an object. To define a cutting pattern considers apj as the

number of pieces p cut in the cutting pattern j. The vector (a1j , a
2
j , . . . , a

P
j )

t represents

the jth cutting pattern and must respect the physical limitations of the object to be cut.
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In the one-dimensional case, each jth cutting pattern must satisfy the constraints (2.23)

- (2.24).

∑

p∈P

lpa
p
j ≤ L (2.23)

apj ∈ Z+ ∀p (2.24)

The Figure 2.1 shows an exemple of one-dimensional cutting patterns, i. e., just one

dimension is taken into account in the cutting process. In this example, there is available

one type of object from stock with length L and three pieces of lengths l1, l2 and l3 are

demanded. The pieces can be cut from the objects according to possible cutting patterns,

i. e., satisfying (2.23) - (2.24).

 

Figure 2.1: One-Dimensional Cutting Patterns.

Considering two-dimensional cutting patterns, the problem consists of geometrically

combining pieces along the length and width of objects in stock (rectangle) without over-

lapping. The Figure 2.2 illustrates this type of problem, in which an object of dimensions

L × W (length and width) has to be cut into smaller rectangular pieces of dimensions

l1 × w1, . . . , l5 × w5 according to a cutting pattern.

The built of a two-dimensional cutting patterns can be influenced by the production

environment in which it is inserted and can present several characteristics, such as, type

of item, type of cut and number of stages, that impact in the evaluation of the cutting

pattern quality. For example, the majority of furniture industries, due to the cutting

machines limitations, considers that only ortogonal guillotine cuts can be performed (see

Figure 2.3).

Another important consideration is related to the number of stages in the cutting

process, i. e., the sequence in which the cutting patterns are performed in order to obtain

the pieces. The number of stages in a cutting pattern is determined by the number of

times that the object must be rotated in 90 ◦ in order to cut all the pieces (Yanasse and



2.1. Mathematical Models 21

 

Figure 2.2: Two-Dimensional Cutting Pattern.

 

Figure 2.3: Guillotine and Non-Guillotine Cutting Patterns.

Morabito, 2008). The Figure 2.4 presents a cutting pattern in which it is necessary just

one rotation of the object. In the first stage, the guillotine cutting results in a set of strips,

whereas in the second stage guillotine cuts are made in each strip. At the end of the final

stage, if all the items have been obtained, the cutting pattern is said to be exact, otherwise

it is said to be non-exact. The trimming in a non-exact cutting pattern is usually done

in a secondary cutting machine and therefore it is not counted as an additional stage

(Morabito and Arenales, 2000).

Several exact, approximate or heuristic approaches to the generation of two-dimensional

cutting patterns can be found in the literature, due to its fundamental importance in the

cutting stock problems (Gilmore and Gomory, 1965; Lodi and Monaci, 2003; Rangel and

Figueiredo, 2008; Yanasse and Morabito, 2008). For more details of two-dimensional cut-
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Figure 2.4: Guillotine Two-Stages Cutting Pattern.

ting stock problems see Appendix B, which considers an application in a furniture industry.

After these considerations, the following sets, parameters and decision variables are

necessary for the GG model:

Sets:

J = {1, . . . , N}: set of all possible cutting patterns (index j).

Parameters:

apj : number of times piece p cut in the cutting pattern j.

Decision Variables:

Zj: number of objects cut according to the cutting pattern j.

Model GG

min
∑

j∈J

Zj (2.25)

Subject to :
∑

j∈J

apjZj ≥ dp ∀p (2.26)

Zj ∈ Z+ ∀j (2.27)

The objective function (2.25) minimizes the number of cut objects. Constraints (2.26)

ensure that the demand for each piece is met through the cutting of objects in stock using

different cutting patterns. Constraints (2.27) are integrality constraints. Each solution of

the GG model consists of a set of cutting patterns, and their corresponding application

frequencies (Zj). Each cutting pattern (apj) must satisfy the physical limitations of the

object to be cut and, in the one-dimensional case, the constraints (2.23)-(2.24).
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In this thesis, we limit the presentation of mathematical models for cutting stock

problems to the KT, VC and GG models. However, other mathematical models can also

be found in the literature, such as, the model proposed by Dyckhoff (1981). In the model,

called as “one-cut”model, each decision variable corresponds to a single cutting operation

performed in a single object. An object of any size is cut in two pieces, and at least one

piece has the size of a demanded piece. A cut operation can be made in large objects

from stock or in pieces resulting from previous cuts.

The GG formulation can be obtained by applying the Dantzig-Wolfe decomposi-

tion principle to the KT formulation, which gives rise to a very tight linear relaxation

(Valério de Carvalho, 2002; Ben Amor and Valério de Carvalho, 2005). It is possible to

show that the linear relaxations values of the VC and GG models are equivalents, i. e.,

they provide the same lower bound (see Valério de Carvalho (1999)).

Due to the large number of decisions variables, the GG formulation becomes difficult

to solve. For this reason, Gilmore and Gomory (1961, 1963, 1965) proposed relaxing

the integrality constraints and solving the resulting linear programming problem using

a column generation technique. The Zj columns and the associated parameters aj in

(2.26) are generated by solving a subproblem and attractive columns are added to the

master problem to improve the current solution. For the one-dimensional cutting stock

problem, the subproblem is an integer knapsack problem (Gilmore and Gomory, 1961,

1963; Martello and Toth, 1990). Considering higher dimensions for the subproblems, other

solution methods have also been proposed in the literature (Christofides and Whitlock,

1977; Arenales and Morabito, 1995; Yanasse and Katsurayama, 2005).

Typically, the solution of the relaxed problem is fractional and an integer solution

can be obtained using heuristics based on the approximate fractional solution and round-

ing procedures (Stadtler, 1990; Wäscher and Gau, 1996; Poldi and Arenales, 2009) or

by a branch-and-price procedure, which embeds a column generation process within a

branch-and-bound approach (Vance et al., 1994; Degraeve and Peeters, 2003; Belov and

Scheithauer, 2006; Alves and Valério de Carvalho, 2008).

The CSP in its standard form consists in determining how large objects from stock can

be cut into smaller pieces in order to meet the demand for the pieces. However, industrial

cutting problems are often embedded in a production environment which is significantly

different from the standard CSP model. Consequently, over the years, the standard model

has been extended to consider several different aspects found in industrial practice, which

results in different features, constraints and objectives. Some extensions which will be of

particular interest for the general integrated model are described as follows.

The use of different types of objects (e. g. with different lengths, weights or thick-

nesses) is an important feature in some industries and can lead to a better overall material
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utilization. In general, the addition of costs associated with different objects is necessary.

This results in other objective functions, such as minimizing the costs of the objects or

the waste of material. When the costs of objects is proportional to the object length, a

trim loss minimization arises (Belov and Scheithauer, 2002). With the addition of dif-

ferent objects, establishing an optimal solution for this problem becomes more difficult.

The objects may be available in an unlimited quantity (Valério de Carvalho, 2002; Furini

and Malaguti, 2013) or may be subject to an upper bound (Belov and Scheithauer, 2002;

Poldi and Arenales, 2009). In general, after the objects pass through the cutting process,

inevitable trim loss is produced, which at the end can become a significant waste of raw

material. In some cases, however, the trim loss of a cutting pattern does not necessarily

become a waste of material. If its size is long enough, the raw material can be stored

in the warehouse to be used later as input in the cutting process to produce the pieces

(Arbib et al., 2002; Andrade et al., 2014; Cherri et al., 2014).

In the extensions discussed up to now, the raw material cost has a huge impact in

the cutting stock problem. However, in some industrial applications such as in the paper

industry, the raw material has a low value per unit, whereas several complex processing

operations are required to obtain the final products. In such a case, it is typically inap-

propriate to define the decision criterion as the minimization of trim loss or objects costs

and a more realistic criterion is the minimization of other control costs (Haessler, 1975).

An important case is the incorporation of costs associated with the use of a new cutting

pattern different from the previous one, since a setup is necessary whenever a new cutting

pattern is started and the cutting equipment has to be prepared for this new cutting

pattern. Setups of this kind involve the loss of production time capacity, additional costs

and consumption of resources. In such cases, the minimization of setup cost is added to

the minimization of objects or waste costs (Haessler, 1975).

To model a setup constraint in the GG formulation, we first define Wj as a binary

variable indicating if cutting pattern j is used or not and M as a large number. The

following constraint is added to the GG model (Diegel et al., 1996; Vanderbeck, 2000):

Zj ≤MWj ∀j (2.28)

Constraint (2.28) ensures that a cutting pattern setup is done whenever a cutting

pattern is used at least once. In some cases, the number of cutting patterns is minimized

(Vanderbeck, 2000). In other cases, a limit is imposed on the number of cutting pattern

setups, while optimizing some other objective, such as the deviation from the demand

(Umetani et al., 2003) or the minimization of the number of objects used (Umetani et al.,

2006). Other approaches first optimize a regular objective such as the minimization of the

number of objects used or the waste, and next find a solution that minimizes the number



2.1. Mathematical Models 25

of cutting patterns used (Foerster and Wäscher, 2000; Yanasse and Limeira, 2006; Cui

et al., 2015). Some papers also consider a multi-objective problem (Golfeto et al., 2009;

de Araujo et al., 2014). A recent literature review on the cutting stock problem with

setups can be found in Henn and Wäscher (2013).

2.1.3 A General Integrated Problem

A General Integrated Lot-Sizing and Cutting Stock model (GILSCS ) is proposed in

this section, with the purpose of discussing and classifying the papers in the literature that

address both problems simultaneously. We consider a production environment composed

of three levels (see Figure 2.5), where objects are acquired and next cut into pieces. These

pieces form the input for the assembly process, in which final products are made. The

general integrated model is based on the LSP proposed by Trigeiro et al. (1989) and on

the CSP proposed by Gilmore and Gomory (1961, 1963).
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Figure 2.5: Integration Between Production Levels.

Level 1 corresponds to the planning of the acquisition and/or production of the ob-

jects which will be cut in pieces. This can be done either by internal production or by
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ordering from an outside supplier. The objects may differ in size, thickness and other

characteristics, as well. Level 2 corresponds to the cutting process, in which the objects

are cut into pieces according to cutting patterns. The pieces can be used as components

for the assembly of final products or they can be directly considered as the final products

which still need to undergo some finishing process. The production of the final products

is modeled at Level 3. In most of the cases, a final product requires more than one type

of piece as a component. There is an independent demand for the final products, which

will trigger a dependent demand for pieces and objects. We assume that, apart from final

products, both pieces and objects may have independent demand.

Although Figure 2.5 shows a first type of integration, i. e., among different produc-

tion levels, it does not yet show the second type of integration, i. e., among different

time periods. Indeed, the integrated model is a dynamic model where multiple periods

are considered simultaneously, whereas the standard cutting stock model is a one-period

model. This dynamic aspect is shown in Figure 2.6, which presents an integrated problem

with three levels and two time periods. In each period, we have independent demand for

the final products and possibly for the cut pieces and objects as well. The link between

the different periods is provided by the inventory which can be carried over from one

period to the next. We can keep inventory for the final products, for the cut pieces and

for the objects. Demand can be satisfied either from production in the current period or

from inventory carried over from the previous period.

In order to formulate the general integrated model, consider the following sets, param-

eters and decision variables:

Sets:

T = {1, . . . , s}: set of time periods (index t);

O = {1, . . . , l}: set of different types of objects (index o);

P = {l + 1, . . . , l +m}: set of pieces (index p);

F = {l +m+ 1, . . . , l +m+ n}: set of final products (index f);

Jo = {1, . . . , No}: set of cutting patterns for object type o (index j).

Parameters:

scot : setup cost/fix ordered cost for object type o in period t;

vcot : unit production cost/purchase cost of object type o in period t;

hcot : unit holding cost of object type o in period t;

dot : independent demand of object type o in period t;

stot : setup time for object type o in period t;

vtot : unit production time of object type o in period t;
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Figure 2.6: Integration Between Production Levels with |T | = 2.

CapOt: production capacity (in time units) available to produce the objects in period

t;

uoj : setup cost for cutting pattern j for object type o;

coj : cost of cutting an object type o according to cutting pattern j;

hcpt : unit holding cost of piece p in period t;

dpt : independent demand of piece p in period t;

rpf : number of pieces of type p required in the final product f

apoj: number of pieces p cut from object type o using the cutting pattern j;

stojt: setup time of the object type o cut according to cutting pattern j in period t;

vtojt: production time to cut object type o according to cutting pattern j in period t;

CapPt: cutting capacity (in time units) available in period t;

scft : setup cost of final product f in period t;

vcft : unit production cost of final product f in period t;

hcft : unit holding cost of final product f in period t;

stft : setup time of final product f in period t;

vtft : unit production time of final product f in period t;

dft : demand of final product f in period t;
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sdftr: sum of demand of final product f from period t until period r;

CapFt: production capacity (in time units) available to produce the final products in

period t;

M : large number.

Decision Variables:

Xo
t : production/purchase quantity (in units) of object o in period t;

Sot : inventory (in units) of object o at the end of period t,

Y o
t : binary variable indicating the production/purchase or not of object o in period t;

Xp
t : production quantity (in units) of piece p in period t;

Spt : inventory (in units) of piece p at the end of period t,

Zo
jt: number of objects of type o cut according to cutting pattern j in period t;

W o
jt: binary variable indicating the setup or not of cutting pattern j for object type o

in period t;

Xf
t : production quantity (in units) of final product f in period t;

Sft : inventory (in units) of final product f at the end of period t,

Y f
t : binary variable indicating the setup or not of final product f in period t.

The general integrate model is as follows:

Model GILSCS

min
∑

t∈T

∑

o∈O

(scotY
o
t + vcotX

o
t + hcotS

o
t )+

∑

t∈T

∑

o∈O

∑

j∈Jo

uojW
o
jt +

∑

t∈T

∑

o∈O

∑

j∈Jo

cojZ
o
jt +

∑

t∈T

∑

p∈P

hcptS
p
t+

∑

t∈T

∑

f∈F

(

scft Y
f
t + vcftX

f
t + hcft S

f
t

)

(2.29)

Subject to:

Sft−1 +Xf
t = dft + Sft ∀f, ∀t (2.30)

Xf
t ≤MY f

t ∀f, ∀t (2.31)
∑

f∈F

(

stft Y
f
t + vtftX

f
t

)

≤ CapFt ∀t (2.32)
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Spt−1 +Xp
t =

∑

f∈F

rpfX
f
t + dpt + Spt ∀p, ∀t (2.33)

Xp
t =

∑

o∈O

∑

j∈Jo

apojZ
o
jt ∀p, ∀t (2.34)

Zo
jt ≤MW o

jt ∀j, ∀o, ∀t (2.35)
∑

o∈O

∑

j∈Jo

(

stojtW
o
jt + vtojtZ

o
jt

)

≤ CapPt ∀t (2.36)

Sot−1 +Xo
t =

∑

j∈Jo

Zo
jt + dot + Sot ∀o, ∀t (2.37)

Xo
t ≤MY o

t ∀o, ∀t (2.38)
∑

o∈O

(stotY
o
t + vtotX

o
t ) ≤ CapOt ∀t (2.39)

Xo
t , S

o
t ∈ R+, Y

o
t ∈ {0, 1} ∀o, ∀t (2.40)

Xp
t , S

p
t ∈ R+, Z

o
jt ∈ Z+, W

o
jt ∈ {0, 1} ∀p, ∀j, ∀o, ∀t (2.41)

Xf
t , S

f
t ∈ R+, Y

f
t ∈ {0, 1} ∀f, ∀t (2.42)

The objective function (2.29) minimizes the overall costs at each level. At Level 1, the

costs are related to the production (or purchase) of objects and consist of a fixed setup (or

order) cost, the production (or purchasing) cost and the inventory cost. At Level 2, the

costs refer to the cutting process. At this level, we take into account the setup cost of a

cutting pattern, the cost of cut of each object according to a cutting pattern and the cost

of holding the pieces in inventory. The last terms in the objective function correspond to

the setup, production and inventory costs of final products at the Level 3.

Constraints (2.30), (2.31) and (2.32) refer to the final products and jointly with con-

straints (2.42) can be seen as a lot-sizing problem at Level 3. Constraints (2.30) are the

demand balance constraints for the final products. Constraints (2.31) force the setup

variable to one if any production takes place in that period. Constraint (2.32) imposes

the capacity limits of the production process for final products.

Constraints (2.33), (2.34), (2.35), (2.36) and (2.41) are related to the production of

the cut pieces and can be seen as a multi-period cutting stock problem with capacity

constraints at Level 2. Constraint (2.33) ensures that the dependent demand (
∑

f∈F r
p
fX

f
t )

and the independent demand (dpt ) for pieces is satisfied. This constraint also models the

interdependency between the decisions of Level 2 and Level 3 and corresponds to an

integration between the levels of the LSP and CSP. Constraint (2.34) is a definition

constraint and defines the number of pieces of type p cut in period t in function of the

selected cutting patterns. Note that the variable Xp
t in constraint (2.33) can be replaced

by
∑

o∈O

∑

j∈Jo
apojZ

o
jt according to the definition constraint (2.34). Constraint (2.35)

forces a pattern setup in the cutting machine, whenever an object is cut according to a
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different cutting pattern. The setup addressed in this formulation is independent from

the preceding cutting pattern. The capacity constraint (2.36) considers the use of only

one machine in the cutting process and takes into account the time consumed for setting

up the cutting patterns, as well as the time for cutting the objects according to a specific

cutting pattern.

Constraint (2.37) is the demand balance constraint for objects at Level 1. This con-

straint also links Level 1 and Level 2 ensuring the production (or purchase) of a sufficient

number of objects needed in the cutting process and corresponds to another integration

between the levels of the CSP and LSP. Constraints (2.38) is the setup forcing constraint

related to the production of objects. The capacity limit for the production of objects

is modeled by constraint (2.39). The time spent to setup the machine for a specific ob-

ject type and to produce the objects consumes the capacity available. Note that if the

objects are purchased from a supplier instead of internally produced, there is no such

capacity constraint. Constraints (2.37) - (2.40) model a lot-sizing problem at Level 1

with both dependent and independent demand. Finally, (2.40), (2.41) and (2.42) are the

non-negativity and integrality constraints for the GILSCS model.

Some remarks related to the general integrated problem are necessary before using

this model as a tool for classifying the current literature. The motivation to choose the

GG formulation to model the cutting stock problem is mainly due to the flexibility of this

formulation. More specifically, it allows the consideration of setup costs and setup times

related to the cutting pattern, as well as a specific cost and time related to the cutting

of an object according to a specific cutting pattern. The models of Dyckhoff (1981) and

Valério de Carvalho (1999, 2002) are less suitable for being extended to include setup

aspects (Henn and Wäscher, 2013). Another point of flexibility of the GG formulation

is the generation of the cutting patterns through the solution of a subproblem. The

formulation GG itself does not need to specify the dimensionality of the problem, which

contributes to its use in different industrial applications, which is not the case of the KT

nor VC formulation.

As we mentioned before, stronger reformulations, such as variable redefinition, depend

on the sum of the demand of the items thought of periods. In this way, if there is

any unknown demand, due to dependent demand of items, for example, the variable

redefinition is not possible in this case. Therefore, the variable redefinition, when applied

to the general integrated problem, is done just at Level 3, which consists of the production

of final products, with known independent demand. To an example of this reformulation,

see Appendix A.

In order to analyze the dimensions of the problem, Table 2.1 shows the number of

continuous, integer and binary variables present in the GILSCS problem, as well as, the
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number of constraints. We consider values to some parameters, as an example, in order to

estimate the size of the problem in this instance. The value for each one of the variables

and constraints are present in the last column of the table. The values assign for the

parameters are: T = 20, O = 3, P = 10 and F = 50. Due to the fact that cutting patterns

are influenced by other aspects, we consider the number of possible cutting patterns as a

parameter (No). We can see that at the step that the number of cutting patterns grows

the number of integer and binary variables and constraints grows proportionally.

Dimension of the GILSCS Model

Number of GILSCS Example

Continuous Variables 2s(3l + 2m+ 2n) 720

Integer Variables lNos 60No

Binary Variables s(2l + lNo +m+ n) 160 + 60No

Constraints s(6l + 4l + 2n+ lNo + 3) 660 + 60No

Table 2.1: Dimension of the GILSCS Model.

2.2 A classification and discussion of the literature

In this section, a literature review of the integrated lot-sizing and cutting stock problem

is carried out using classification criteria based on various aspects of the newly proposed

general integrated model (GILSCS ).

2.2.1 Classification Criteria

The models from the literature that address the integration of lot-sizing problems and

cutting stock problems are analyzed and classified according to two main aspects. The

first is the integration between production levels (see Figure 2.5). A model is classified

at a specific level (1, 2 and 3) if there is a decision variable associated with this level.

The second main criterion is related to the integration across multiple time periods (see

Figure 2.6). The standard lot-sizing problem (CL), as defined before, has a discrete time

horizon consisting of multiple periods. The integration between periods comes from the

possibility to hold items in inventory. Some lot-sizing models assume a continuous time

horizon and infinite time periods with a constant demand rate, in which it is also possible

to hold inventory. The standard cutting stock problem (GG) only considers one period,

and hence there is no possibility to keep inventory. The pieces which are left at the end

of the single period are considered waste.
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Once classified according to these two main axes of integration, i. e., between produc-

tion levels and across time periods, other features are also analyzed such as capacity and

setups. Several aspects with respect to the three types of products (objects, pieces and

final products) are also discussed. Since most of the current research in this area is based

on practical applications, we also provide information on the type of industry in which

the model is based.

In order to define the search criteria for the papers addressed in the literature review

of integrated lot-sizing and cutting stock problem, keywords were defined and then used

to identify those relevant studies. Two groups of keywords were defined and used as a

toll in a search in Google Scholar. The first group contains keywords related to the word

”integrated” (”integrated lot sizing and cutting stock problem”, ”integrated lot-sizing and

cutting stock problem”, ”integrated cutting stock and lot sizing problem” and ”integrated

cutting stock and lot-sizing problem”). The second group of keywords are related to

”combined” (”combined lot sizing and cutting stock problem”, ”combined lot-sizing and

cutting stock problem”, ”combined cutting stock and lot sizing problem” and ”combined

cutting stock and lot-sizing problem”). A third group were also considered where the

words ”lot-sizing” and ”cutting stock” appears together (”lot-sizing and cutting stock”,

”lot sizing and cutting stock”, ”cutting stock and lot-sizing” and ”cutting stock and lot

sizing”). These searches are able to find 20 studies in the literature which are addressed in

the classification. We also considers more 12 other papers that are considerably mentioned

as integrated/combined problems by most of the authors in these previous papers and they

seem to be relevant to improve the quality of literature review.

Tables 2.2, 2.3 and 2.4 show a summary of papers in the literature that address the

integration of the lot-sizing problems and cutting stock problems. In this literature review,

we restrict our analysis to studies which are publicly available and have been published

in English in international journals, technical reports, and conference proceedings. We

classified 32 papers in total, of which 24 have been published in the last 10 years, which

shows the increasing interest on this topic of the academic community (see Graphic 2.7).

2.2.2 Classification and Discussion
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Production Levels

Time Horizon Time Periods Level 1 Level 2 Level 3 Application

Farley (1988) discrete one period — X X Textile

Reinders (1992) discrete multiple periods X X(2) — Wood Processing

Hendry et al. (1996) discrete multiple periods X X — Copper

Krichagina et al. (1998) continuous infinite X X — Paper

Non̊as and Thorstenson (2000, 2008) continuous infinite — X — Off-road truck

Resṕıcio and Captivo (2002) discrete multiple periods — X — Paper

Correia et al. (2004) discrete multiple periods X X(2) — Paper

Arbib and Marinelli (2005) discrete multiple periods X X X Gear Belts

Gramani and França (2006) discrete multiple periods — X — Furniture

Ghidini et al. (2007) discrete multiple periods* — X X Furniture

Trkman and Gradisar (2007) discrete multiple periods — X — General

Ouhimmou et al. (2008) discrete multiple periods X X X Wood Processing

Poltroniere et al. (2008, 2016) discrete multiple periods X X — Paper

Aktin and Özdemir (2009) discrete multiple periods — X — Medical Apparatus

Gramani et al. (2009) discrete multiple periods — X X Furniture

Malik et al. (2009) discrete multiple periods X X — Paper

Gramani et al. (2011) discrete multiple periods — X X Furniture

Santos et al. (2011) discrete multiple periods* — X X Furniture

Alem and Morabito (2012) discrete multiple periods — X X Furniture

Suliman (2012) discrete multiple periods — X X Aluminium

Alem and Morabito (2013) discrete multiple periods — X X Furniture

Silva et al. (2014) discrete multiple periods X X — Furniture

de Athayde Prata et al. (2015) discrete multiple periods — X — Precast Concrete Beams

Silva et al. (2015) discrete one period X X — Textile

Agostinho et al. (2016) discrete multiple periods X X — General

Leão and Toledo (2016) discrete multiple periods X X — Paper

Melega et al. (2016) discrete multiple periods X X X General

Poldi and de Araujo (2016) discrete multiple periods X X — Paper

Vanzela et al. (2017) discrete multiple periods — X X Furniture

Wu et al. (2017) discrete multiple periods — X X General

() Number of sub-levels.

(*) Use of sub-periods

Table 2.2: Classification According to the Time Dimension and Production Levels
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Figure 2.7: Number of Published Papers on Integrated Lot-Sizing and Cutting Stock Problems.

In the literature, the term “integrated lot-sizing and cutting stock model” can refer to

many different types and degrees of integration. As discussed, the main types of integra-

tion which we observe are the integration between production levels and the integration

across time periods. In Table 2.2, with respect to the integration across time periods, we

indicate the time horizon (continuous or discrete), the number of time periods (one period,

multiple periods or infinite) and the consideration of sub-periods (in case the current time

period is split into sub-periods according to some characteristic, such as cutting machine

capacity). With respect to the integration between production levels, we indicate which

production levels (Level 1, Level 2 or Level 3) are being considered in the problem. In

some cases, two sub-levels are considered for the cutting stock problem (Level 2). This is

indicated by adding the number of sub-levels between brackets. Finally, we also indicate

if the problem originates from an application in a specific industry. From Table 2.2, the

variety in the different degrees of integration is immediately clear. Some papers extend

the standard cutting stock problem to deal with multiple time periods, while others keep

the assumption of one time period but extend the problem to multiple production levels.

However, most of the papers deal with an integration of both types, but this is usually

restricted to two levels, i. e., either Level 1 and Level 2 are integrated or Level 2 and

Level 3 are integrated. Only a limited number of papers deal with multiple time periods

and an integration between the three production levels.

Analyzing Table 2.2 in more details, we see that three papers (Krichagina et al., 1998;

Non̊as and Thorstenson, 2000, 2008) differ from the others due to the type of time horizon

used in the model. These three papers consider a continuous time horizon and infinite time

periods. Although the models presented in these papers do not entirely fit in the proposed

framework, their classification contributes to a more general review of the literature. In
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Krichagina et al. (1998), besides dealing with a continuous time horizon, the model also

takes into account two levels of integration. The constraints at Level 1 deal with idle

processing time in the paper machine, i. e., the decision to turn the paper machine

on and off in order to produce the objects, whereas the constraints at Level 2 guarantee

that the demand of pieces is met allowing backorder. Non̊as and Thorstenson (2000, 2008)

propose a model for just one level (Level 2), which models the cutting stock problem using

cycle times. It is worth mentioning that the authors classify the model as an integrated

lot-sizing and cutting stock problem. However, according to this classification, the model

is considered as a cutting stock problem with an integration across time periods, due

to the fact that there are neither constraints nor variables related to the production of

objects and final products.

Further analyzing the aspect of time periods, two studies (Farley, 1988; Silva et al.,

2015) address integrated models which take into account just one time period. The models

deal only with the integration between levels. Farley (1988) proposed a model to describe

the production process in the textile industry. According to the classification, the model

integrates Level 2 and Level 3, where at Level 3 constraints guarantee a minimum and

maximum production level in the processes after the cutting and Level 2 consists of a

capacitated cutting stock problem with setup. In the model, each cut piece at Level 2

corresponds directly to a final product at Level 3, i. e., there is no assembly process

of pieces into final products. In our general model, this implies that there is a one-to-

one relationship between the cut pieces and final products, which can be modeled via

an appropriate setting of the rpf parameter. One of the costs in the objective function is

associated with oversupply quantity, which according to the authors represents the idea of

holding cost in some form. Also dealing with the production process in a textile industry,

Silva et al. (2015) propose a model which integrates Level 1 and Level 2. At Level 1,

the planning of the production of objects is done considering a minimum production

quantity, a setup for each type of produced object and a maximum quantity of objects

that can be used from inventory, guaranteeing a sufficient amount of objects necessary

in the cutting process. At Level 2, a cutting stock problem with setup for each cutting

pattern is modeled.

Some studies propose models which consider the integration only across multiple pe-

riods at Level 2. There is no integration between production levels and the cutting stock

problem is extended to multiple periods. Resṕıcio and Captivo (2002) proposed a model

which is an extension of the formulation presented in Gilmore and Gomory (1961) by

considering cumulative demand and initial inventory to meet the demanded pieces. Some

aspects are neglected such as holding costs over the whole planning horizon. A capacity

constraint is modeled in terms of the total processing time to produce and cut objects in
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each period. In their model, the capacity is aggregated and belongs to Level 1 and Level

2 of the our classification. However, the production level is inserted at Level 2.

In Gramani and França (2006), a problem from the furniture industry is modeled in

which the demand of final products is converted into demand of pieces and the resulting

model is a capacitated multi-period cutting stock problem with setups. In their model,

a setup is related to the overall production level in a specific period, i. e., if there is

some production in a period, a setup must be done in that period, otherwise no setup is

done. For a more general problem, Trkman and Gradisar (2007) proposed a model which

consists in satisfying order sets in consecutive times periods. The objects which are not

cut at the end of a period or which are long enough (within a size limit) to be used later

are returned to the warehouse and become available for cutting in future time periods.

For each period, a new order must be satisfied without backorder, by either using new

objects available in that period or by objects/leftovers from stock. The proposed model

consists in a multi-period cutting stock problem with usable leftovers.

In Aktin and Özdemir (2009), a two stage methodology is developed, which is im-

plemented at a medical apparatus manufacturer. In the first stage, a model is used to

determine the cutting patterns with minimum waste necessary to meet the demand of

pieces. These generated cutting patterns are used in the second stage, which consists in a

capacitated cutting stock problem with a setup for each cutting pattern. The whole pro-

cess is considered for each order and a due date is determined considering the minimum

number of days required to fulfill the demand of this order, which is a negotiation between

the manufacturer and the customer. If the company cannot fulfill the order completely

in time, a penalty cost is incurred for this delay. The total time used to cut the objects

according to a cutting pattern and to setup the machine for each cutting pattern cannot

exceed the total time available (regular time, over time and excess-of-overtime).

de Athayde Prata et al. (2015) proposed a model for the problem found in the precast

concrete beams industry. The authors notice that the problem studied is similar to the

multi-period cutting stock problem, where the forms used to model the concrete beams

represent the objects and the beams represent the pieces which are demanded by the

customers. The loss of production is due to unfilled spaces in the forms. In the model,

the number of time periods necessary to meet de demand of pieces (precast beams) is

determined by dividing the total demand by the total capacity of the forms and rounded.

The multiple time periods are basically used in order to reduce the loss, since the inventory

of pieces is not modeled. Therefore, these models do not have an integration between the

levels. The integration takes place across periods taking into account the production

planning for several periods at the level of the cutting stock problem.

The remainder of the studies propose models that treat both types of integration, i. e.,
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among different time-periods and among different levels. Firstly, we will start with papers

that consider the integration between Level 1 and Level 2, i. e., the models have decision

variables related to the production (inventory, purchase or setup) and cutting of objects

over a planning horizon. The integration between these two levels appears in different

applications, such as the copper, paper and furniture industry. Some papers (Reinders,

1992; Correia et al., 2004; Silva et al., 2014; Agostinho et al., 2016; Poldi and de Araujo,

2016) assume that the production of objects is already decided, as a parameter, and the

inventory balance constraints at Level 1 just model the planning of objects in stock. In

cases where leftovers are allowed (Silva et al., 2014; Agostinho et al., 2016) the same

inventory balance constraint is modeled. These models do not take into account a setup

for producing objects. Consequently, there are also no setup cost associated with Level 1

production and no capacity constraint at Level 1 is modeled. In our general model, this

implies that Level 1 is modeled just using constraint (2.37) via an appropriate setting of

the Xo
t variables, which in this case are considered as a parameter.

Hendry et al. (1996), Poltroniere et al. (2008, 2016) and Leão and Toledo (2016)

proposed integrated models where at Level 1 a complete capacitated lot-sizing problem

with setup is modeled. In Malik et al. (2009), the number of pieces cut from an object

according to a cutting pattern is a decision variables, whereas the number of objects

cut according to a cutting pattern is an input parameter. A constraint guarantees that

the number of objects produced over the whole planning horizon is equal to the number

of objects cut in the cutting process and there is no inventory of objects. A capacity

constraint limits the number of objects produced in each period at Level 1. In all these

papers, a multi-period cutting stock problem at Level 2 is modeled, in which cut pieces

can be kept in inventory using an inventory balance constraint. In addition, Reinders

(1992) models a capacity constraint in the cutting stock problem and overtime can be

used, i. e., if necessary, additional time is available to the cutting process.

It is worth mentioning that Reinders (1992) and Correia et al. (2004) proposed lin-

ear programming models composed of three production processes. The first production

process corresponds to Level 1 of the classification and the second and third production

processes correspond to Level 2 of the classification, i. e., the cutting process is per-

formed twice and consecutively. For example, in Reinders (1992) the production planning

of tree trunks is done at Level 1, followed by a crosscutting process to produce the logs

and a sawing process to produce the boards, which constitute the final demand in the

production planning. The crosscutting process and the sawing process correspond to cut-

ting processes belonging to Level 2 of the classification and are operated sequentially.

Correia et al. (2004) do not present a mathematical model of the process described, but

only describe the general ideas of the constraints and objective function. In Agostinho
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et al. (2016) and Poldi and de Araujo (2016), the models described are postulated as a

multi-period cutting stock problem. However according to this classification, the models

are considered as an integrated lot-sizing and cutting stock problem, due to the fact that

there are decision variables related to the inventory and the cutting of the objects.

Considering papers that address integrated problems at Level 2 and Level 3, the main

models are based on applications in the furniture industry, with the exceptions of Suliman

(2012) which discusses an application in the aluminum industry andWu et al. (2017) which

analyse a model for a general application. The papers differ from each other mainly at

Level 3, where in some cases (Gramani et al., 2011; Suliman, 2012; Vanzela et al., 2017),

the production planning of the final products takes place using only the demand balance

constraint of final products. In others studies, there is the addition of a capacity constraint

(Ghidini et al., 2007; Santos et al., 2011; Alem and Morabito, 2013), or a setup cost

(Gramani et al., 2009). The capacity constraint at Level 3 represents the capacity of the

production process necessary to obtain the final products, such as drilling or assemblying.

In Alem and Morabito (2012) and Wu et al. (2017), the standard lot-sizing problem is

modeled at Level 3. Wu et al. (2017) present a formulation which is similar to the one

proposed by Gramani et al. (2009), and consider a setup time related to the assembly of

final products. In some papers, there are further restrictions with respect to the inventory

accumulation. A number of studies (Ghidini et al., 2007; Gramani et al., 2009; Alem and

Morabito, 2012, 2013; Wu et al., 2017) impose that inventory accumulation is allowed at

the level of the final products (Level 3), but not at the level of the cut pieces (Level 2).

Consequently, if a piece is used in the production process at Level 3, it must be cut at

Level 2 in the same time period. In some studies (Gramani et al., 2009, 2011; Vanzela

et al., 2017), a capacity constraint is modeled at Level 2, while in others (Ghidini et al.,

2007; Suliman, 2012; Alem and Morabito, 2013) there is also the addition of a setup

cost or setup time. Only in Santos et al. (2011) a multi-period capacitated cutting stock

problem with setups takes place. In several models, additional constraints and variables

are needed to model the peculiarities of the production process. For example, in the

furniture industry (Santos et al., 2011; Vanzela et al., 2017), safety inventory, overtime

and limitations regarding to the saw cycle on the cutting machines need to be taken into

account in order to obtain a practical feasible solution. These additional constraints fall

outside of the scope of our general model.

Only a few papers in the literature address the integration between the three pro-

duction levels. However, these models typically represent simplifications when compared

to the GILSCS model proposed in this thesis, since they do not include all the features

present in the GILSCS model. Arbib and Marinelli (2005) presented a case study that

arises in the production of gear belts. At Level 1, a lot-sizing problem models the trade-off
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between objects inventory and objects delivery to the cutting process. The quantity of

objects that must be provided to the cutting process cannot be less than what is needed

and, once sent to the cutting process, a setup cost associated with the delivery of material

is imposed. Level 2 consists basically of a multi-period cutting stock problem with a ca-

pacity constraint. The cut pieces can either be transformed directly into a final product,

or they can be assembled with other pieces to form a final product. The stock of pieces

is limited by an inventory capacity. At Level 3, the production planning ensures that the

demand of each final product is satisfied in each period directly from production, without

inventory.

Ouhimmou et al. (2008) studied the processes from a furniture company. The whole

system observed in the company, which consists of the activities of sawing, drying in a kiln

and transportation, is not fully modeled by the authors in the presented model. At Level 1,

the planning of the procurement of objects takes place, with a supplier capacity constraint

and a flow balancing constraint at each sawmill. Level 2 consists of a capacitated cutting

stock problem with a setup for each object processed at the sawmill. The last process

is the drying process and it is modeled as a lot-sizing problem. The drying process

involves transforming green wood boards (pieces) into dry wood boards (final products).

Each piece passes through the drying process and subsequently becomes a final product.

Constraints ensure that the capacity in the kiln is not violated by the production of pieces

and a setup is necessary for each piece in the drying process. The demand of customers

needs to be met either from production or from purchase on the market.

In Melega et al. (2016), several models with a general application that integrate the

lot-sizing problem and cutting stock problem at different levels are proposed. One of the

models is composed of three levels, where at Level 1, a demand balance constraint of

objects is modeled with a parameter that limits the number of objects available in each

period for each type of object, i. e., the production of objects is considered as a parameter

and the decisions variables are those related only to the planning of the objects in stock.

At Level 2, a cutting stock problem takes place, where a constraint ensures that a sufficient

amount of pieces is cut to meet the planned production. Cut pieces cannot be kept in

inventory and must be processed at Level 3 in the same time period. Each piece at Level 2

corresponds directly to a final product at Level 3 and this level is modeled by a capacitated

lot-sizing problem with setup.

In conclusion, we observe that the proposed classification allows to standardize the

concept of a multi-period cutting stock problem and integrated lot-sizing and cutting

stock problem based on the dimensions of production levels and time periods. We classify

as a multi-period cutting stock problem those models that consider more than one time

period, i. e., consider the integration across time periods, but which do not consider
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more than one production level (Resṕıcio and Captivo, 2002; Gramani and França, 2006;

Trkman and Gradisar, 2007; Aktin and Özdemir, 2009; de Athayde Prata et al., 2015).

There are those models that we classify as integrated lot-sizing and cutting stock problems,

i. e. which take into account the integration between production levels. They can consider

just one time period (Farley, 1988; Silva et al., 2015) or multiple time periods, and in the

latter case, they consider both types of integration presented in the GILSCS problem.

Regarding to these integrated problems, i. e., which consider both types of integration,

some studies integrates Level 1 and Level 2 (Reinders, 1992; Hendry et al., 1996; Correia

et al., 2004; Poltroniere et al., 2008, 2016; Malik et al., 2009; Silva et al., 2014; Agostinho

et al., 2016; Leão and Toledo, 2016; Poldi and de Araujo, 2016), other Level 2 and Level 3

(Ghidini et al., 2007; Gramani et al., 2009, 2011; Santos et al., 2011; Alem and Morabito,

2012, 2013; Suliman, 2012; Vanzela et al., 2017; Wu et al., 2017), which consists mostly

of applications in the furniture industry. Only few of them deal with Level 1, Level 2

and Level 3 (Arbib and Marinelli, 2005; Ouhimmou et al., 2008; Melega et al., 2016). In

general, the classification of the literature showed that most of the studies in the literature

consists of extensions or simplification of the general integrated lot-sizing and cutting stock

problem. This fact indicates some possible applications of the general integrated model

in different industrial environments, such as, furniture, paper industry and aluminium,

among others.

2.2.3 Discussion of Further Operational Aspects

In this section, we discuss some further particularities of the various models proposed

in the literature, such as, the use of inventory, capacity and setups. In Table 2.3, we

discuss some features related to the objects which are modeled in the lot-sizing problem

at Level 1 (third column). With respect to the cutting stock problem at Level 2, we

indicate the dimensionality of the problem and features regarding the pieces (second and

fourth columns, respectively). In the last column, we report the features with respect to

the final products in the lot-sizing problem at Level 3.
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Dimensionality Objects Pieces Final Products

Farley (1988) two-dimensional several types (materials, colors) oversupply / undersupply no inventory (directly pieces)

Reinders (1992) one/two-dimensional several types (classes) / inventory independent demand / inventory —

objects availability out of stock / purchase (limited)

Hendry et al. (1996) one-dimensional several types (diameters) / inventory (limited) inventory —

Krichagina et al. (1998) two-dimensional one type / no inventory inventory / backorder —

Non̊as and Thorstenson (2000, 2008) two-dimensional one type inventory cost —

Resṕıcio and Captivo (2002) one-dimensional several types (families) initial inventory —

Correia et al. (2004) one/two-dimensional several types (grades) / no inventory inventory / independent demand —

Arbib and Marinelli (2005) one-dimensional one type / inventory inventory (limited) no inventory

Gramani and França (2006) two-dimensional one type inventory —

Ghidini et al. (2007) two-dimensional several types (thickness) no inventory inventory / extra demand

Trkman and Gradisar (2007) one-dimensional several types (lengths) / leftover no inventory / one order per period —

Ouhimmou et al. (2008) two-dimensional several types (qualities) /inventory inventory / transportation inventory / purchase

transportation / supplier capacity transportation (directly pieces)

Poltroniere et al. (2008, 2016) one-dimensional several types (grades) / inventory inventory —

Aktin and Özdemir (2009) one-dimensional one type / object availability no inventory —

Gramani et al. (2009) two-dimensional one type no inventory inventory

Malik et al. (2009) one-dimensional several types (grades) / no inventory inventory —

Gramani et al. (2011) two-dimensional one type inventory inventory

Santos et al. (2011) two-dimensional several types (thickness) inventory inventory

safety inventory level safety inventory level

Alem and Morabito (2012) two-dimensional one type no inventory stochastic demand / backlog

inventory (limited)

Suliman (2012) one-dimensional one type / inventory cost inventory / purchase cost inventory / backlog cost

object availability

Alem and Morabito (2013) two-dimensional one type no inventory uncertain demand / backlog

inventory

Silva et al. (2014) two-dimensional one type / inventory / leftover inventory —

de Athayde Prata et al. (2015) one-dimensional several types (lengths) no inventory —

Silva et al. (2015) several types (materials) no inventory / upper and lower

two-dimensional minimum production bound for demand —

limited objects used from stock

Agostinho et al. (2016) several types (lengths) / inventory

one-dimensional leftover (limited) inventory —

objects and leftover availability

Leão and Toledo (2016) one-dimensional several types (grades) / inventory inventory —

Melega et al. (2016) one-dimensional several types (lengths) no inventory inventory

inventory / object availability (directly pieces)

Poldi and de Araujo (2016) one-dimensional several types (lengths) inventory —

inventory / object availability

Vanzela et al. (2017) two-dimensional several types (thickness) inventory inventory / safety inventory

Wu et al. (2017) one-dimensional one type no inventory inventory

Table 2.3: Level Features
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Capacity Levels Capacity Setup

Level 1 Level 2 Level 3

Farley (1988) — X X total of cut material setup cost (cut of object)

total time (several machines)

Reinders (1992) — X — total time with over time —

Hendry et al. (1996) X — — total time setup constraint (object)

setup time (object)

Krichagina et al. (1998) X — — idle time setup cost (machine shutdown)

Non̊as and Thorstenson (2000, 2008) — — — — setup cost (startup / pattern)

Resṕıcio and Captivo (2002) X X — total production and —

cutting time (aggregate)

Correia et al. (2004) — — — — —

Arbib and Marinelli (2005) — X — total of cut material setup cost (object delivery)

Gramani and França (2006) — X — total time setup cost (cutting machine)

Ghidini et al. (2007) — X X total time setup cost (pattern)

Trkman and Gradisar (2007) — — — — —

Ouhimmou et al. (2008) — X X total time / total amount (volume) setup cost / time (cutting machine)

(several plants) setup cost (machine)

Poltroniere et al. (2008, 2016) X — — total amount of material (ton) setup cost / setup in capacity

(several machines) (object)

Aktin and Özdemir (2009) — X — total time with overtime and setup cost / time (pattern)

excess of overtime

Gramani et al. (2009) — X — total amount of cut material setup cost (final product)

Malik et al. (2009) X — — total time setup cost / time (object)

Gramani et al. (2011) — X — total time —

Santos et al. (2011) — X X saw cycle /total time (several machines) setup cost / time (pattern)

Alem and Morabito (2012) — — X total time with overtime (limited) setup cost (final product)

Suliman (2012) — X — total number of cuts setup cost (pattern)

Alem and Morabito (2013) — X X total time with overtime uncertain setup time (pattern)

setup constraint (pattern)

Silva et al. (2014) — — — — —

de Athayde Prata et al. (2015) — — — — —

Silva et al. (2015) — — — — setup constraint (object/pattern)

Agostinho et al. (2016) — — — — —

Leão and Toledo (2016) — X — total time (several machines) setup cost / time (object)

Melega et al. (2016) — — X total time setup cost / time (final product)

Poldi and de Araujo (2016) — — — — —

Vanzela et al. (2017) — X — saw cycles —

Wu et al. (2017) — — X total time setup cost / time (final product)

Table 2.4: Classifications According to Capacity-Related Features

Analyzing the features of the objects at Level 1, we can see from Table 2.3 that less

than half of the studies consider only one type of object, whereas most of the studies

address multiple types, which correspond to different materials, lengths, colors, classes,

diameters, families, grades, thicknesses and qualities. In some studies, the objects at

Level 1 can be available in a limited number (Reinders, 1992; Aktin and Özdemir, 2009;

Suliman, 2012; Agostinho et al., 2016; Melega et al., 2016; Poldi and de Araujo, 2016).

In other studies, that consider usable leftover, there are also residual objects available in

addition to the limited number of standard objects (Trkman and Gradisar, 2007; Silva

et al., 2014; Agostinho et al., 2016).
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In most of the papers that considers Level 1, i. e., there is a decision variable related to

this level, the inventory of objects is taken into account in the demand balance constraint.

In some studies (Hendry et al., 1996; Silva et al., 2015) the number of objects that can be

stored or used from stock is limited, while in other studies (Krichagina et al., 1998; Correia

et al., 2004; Malik et al., 2009) no inventory of objects is allowed at Level 1. Ouhimmou

et al. (2008) consider additional constraints related to the transportation of the objects

to the cutting process and the suppliers capacity with respect to the acquisition of the

objects. In Silva et al. (2015), a minimum production quantity is imposed if there is

any production of objects. Suliman (2012) does not model a demand balance constraint

of objects. However, a holding cost is related to the difference between the number of

objects used in the cutting process and the number of objects available in each period

(parameter). In Poldi and de Araujo (2016), the number of objects acquired in each period

is considered as a parameter in a first model and also as an additional decision variable

in a second model, in order to enable a more realistic decision. As discussed before, in

some of the papers that include Level 1 (Reinders, 1992; Agostinho et al., 2016; Melega

et al., 2016; Poldi and de Araujo, 2016), it is assumed that the production of objects is

already decided up front. As such, the demand balance constraints are only related to the

planning of objects in stock.

Table 2.3 indicates that the cutting problems at Level 2 deal with either one or two

dimensions, and the latter appears more frequently, due to the type of the applications.

For instance, there are many papers that present applications in the furniture industry.

Using our search criteria, we are not able to find any study which deal with a three-

dimensional cutting stock problem.

In some applications, where the cutting stock problem arises at two sub-levels (Rein-

ders, 1992; Correia et al., 2004), the cutting process changes in dimensionality from one

sub-level to the other sub-level. In Wu et al. (2017), although a two-dimensional cutting

process arises, one of the piece dimensions (width) is considered fixed as the width of the

object, in this way, we classified it as a one-dimensional cutting process. For most of the

studies in the literature, the demand balance constraint of pieces is modeled at Level 2.

The inventory of pieces is modeled either by oversupply (Farley, 1988), initial inventory

(Resṕıcio and Captivo, 2002) or inventory variables (Reinders, 1992; Hendry et al., 1996;

Krichagina et al., 1998; Correia et al., 2004; Arbib and Marinelli, 2005; Gramani and

França, 2006; Ouhimmou et al., 2008; Poltroniere et al., 2008, 2016; Malik et al., 2009;

Gramani et al., 2011; Santos et al., 2011; Suliman, 2012; Silva et al., 2014; Agostinho et al.,

2016; Leão and Toledo, 2016; Vanzela et al., 2017). Due to the specific environment, some

practical applications need additional constraints to model the inventory limits (Arbib

and Marinelli, 2005), safety inventory levels (Santos et al., 2011), upper and lower bound
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for pieces demand (Silva et al., 2015) or the transportation of the pieces (Ouhimmou et al.,

2008).

In order to meet the demand of pieces, some studies consider the possibility of ex-

ternally purchasing the pieces in the demand balance constraints (Reinders, 1992) or an

additional cost in the objective function. Other strategies, such as undersupply (Farley,

1988), out of stock (Reinders, 1992) or backorders (Krichagina et al., 1998) are also con-

sidered in the models to meet the pieces demand. Only few papers consider independent

demand of pieces at Level 2 (Reinders, 1992; Correia et al., 2004). In the studies where

the inventory of pieces is not incorporated at Level 2 (Ghidini et al., 2007; Trkman and

Gradisar, 2007; Aktin and Özdemir, 2009; Gramani et al., 2009; Alem and Morabito,

2012, 2013; Silva et al., 2015; Melega et al., 2016; Wu et al., 2017), a piece necessary in

the assembly or further processing must be cut in the same time period as the production

of the corresponding final product.

As mentioned before, in some applications (textile, wood processing furniture), there

is a one-to-one relationship between a cut piece and a final product. After being cut, the

pieces undergo some transformation processes to become final products, but there is no

assembly process (Farley, 1988; Ouhimmou et al., 2008; Melega et al., 2016). However,

most of the papers that model both Level 2 and Level 3 consider an assembly structure,

in which cut pieces correspond to components which are assembled into a final product.

In most of the studies that consider Level 3, the demand balance constraints contain only

the decisions related to the production and stocking of final products (Ghidini et al.,

2007; Ouhimmou et al., 2008; Gramani et al., 2009, 2011; Santos et al., 2011; Alem and

Morabito, 2012; Suliman, 2012; Alem and Morabito, 2013; Melega et al., 2016; Vanzela

et al., 2017; Wu et al., 2017). In a few other papers (Ouhimmou et al., 2008; Alem and

Morabito, 2012, 2013), purchase and backlog variables are added in the balance constraints

in order to meet the demand of final products.

In Suliman (2012), there is a cost in the objective function related to the non-fulfilled

demand of final products. Similar to the extensions at Level 1 and Level 2, safety inventory

and inventory limits can be added at Level 3 (Santos et al., 2011; Alem and Morabito, 2012;

Vanzela et al., 2017). The complexity at Level 3 is increased if a stochastic environment

(with respect to demand and production costs) is taken into account (Alem and Morabito,

2012, 2013).

In Table 2.4, we provide a further analysis in terms of capacity constraints and setups.

Concerning the capacity, we indicate the presence or absence of a capacity constraint

at each of the three levels and report the features of this capacity in terms of resource

consumption. Regarding to the setup, we evaluate the type of the setup considered (cost

and/or time) and the type of product the setup refers to (i. e., a setup related to the
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object, cutting machine, pattern or final product).

We observe that capacity constraints are most frequently imposed at Level 2, followed

by Level 3 and then by Level 1. In the studies which consider more than one level, the

capacity constraint is generally imposed at just one level. However, some papers (Farley,

1988; Resṕıcio and Captivo, 2002; Ghidini et al., 2007; Ouhimmou et al., 2008; Santos

et al., 2011; Alem and Morabito, 2013) consider a capacity constraint at more than one

level, mostly in models which integrate Level 2 and Level 3. None of the papers has a

capacity constraint at each level, as it is the case of the GILSCS model.

The resource consumption in the capacity constraint is stated mostly in terms of

total time availability. However, the capacity constraint can be imposed in different ways

according to the specific application and the level that it is related to, such as, the total

amount of produced material (Poltroniere et al., 2008, 2016), total amount of cut material

(Farley, 1988; Arbib and Marinelli, 2005; Gramani et al., 2009), saw cycles (Santos et al.,

2011; Vanzela et al., 2017) and number of cuts (Suliman, 2012). Krichagina et al. (1998)

consider a capacity constraint that calculates the idleness of the machine with respect to

the production of objects at Level 1 and guarantees that it is always positive. In Resṕıcio

and Captivo (2002), the capacity constraint is modeled in terms of the total processing

time of produced and cut objects in each period. In this way, an aggregate capacity is

modeled considering Level 1 and Level 2 simultaneously. In papers where a capacity is

considered at more than one level, the resource consumption is not necessarily modeled in

the same way at each level (Farley, 1988; Ouhimmou et al., 2008; Santos et al., 2011). In

some studies (Reinders, 1992; Aktin and Özdemir, 2009; Alem and Morabito, 2012, 2013),

overtime is allowed, whereas in other (Farley, 1988; Poltroniere et al., 2008, 2016; Santos

et al., 2011; Leão and Toledo, 2016), several machines are used to produce the items.

It is worth to mention that the addition of setups in a model considerably increases its

complexity. Faced with this challenge, some studies consider the occurrence of setups in

the model, but only few of them consider both setup costs and setup times (Ouhimmou

et al., 2008; Aktin and Özdemir, 2009; Malik et al., 2009; Santos et al., 2011; Leão and

Toledo, 2016; Melega et al., 2016; Wu et al., 2017). In some papers, the setup is incorpo-

rated in the problem through the consideration of a setup time in the capacity constraint

and/or a setup constraint, but no setup cost in the objective function is addressed (Hendry

et al., 1996; Alem and Morabito, 2013; Silva et al., 2015). Different classes of setup can be

found, such as setups related to the cutting of objects (Farley, 1988), a machine shutdown

in objects production (Krichagina et al., 1998), a startup of pieces production (Non̊as

and Thorstenson, 2000, 2008), the delivery of objects to the cutting process (Arbib and

Marinelli, 2005) and the use of the cutting machine (Gramani and França, 2006; Ouhim-

mou et al., 2008). In Poltroniere et al. (2008, 2016), each machine on which the objects are
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produced has a capacity constraint in terms of tons of objects, which takes into account

the quantity of objects produced and the waste of objects due to the changes in the type

of object (setup). A stochastic setup time related to the use of a cutting pattern further

increases the complexity of the model (Alem and Morabito, 2013).

2.3 Conclusions and New Research Directions

In this thesis, we are interested in the integration of two known problems from the

literature, which are the lot-sizing problem (LSP) and the cutting stock problem (CSP).

A general integrated lot-sizing and cutting stock problem (GILSCS ), which considers two

types of integration, is proposed. The GILSCS model incorporates several aspects found

in practice and enables us to classify the current literature and give directions for future

research that addresses integrated problems.

The general integrated model is composed of three levels. At the final level (Level 3)

we have a lot-sizing problem for the production of final products. At the intermediate level

(Level 2) we have a cutting stock problem based on the idea of cutting patterns and at

the first level (Level 1), we have a lot-sizing problem related to the production of objects.

The model incorporates some features which are inspired by general practical observations,

and enables us to classify the current literature in this field. The classification is based

on two aspects: the integration across multiple time periods and the integration between

production levels. The integration across time periods comes from the possibility to hold

items in inventory. Other features are also evaluated, such as the dimensionality in the

cutting process, and the capacity and setup structure.

The classification of the literature shows that most of the studies consider the integra-

tion across time periods and the integration between production Level 2 and Level 3. The

large number of papers which integrate Level 2 and Level 3 is due to the practical appli-

cability of this type of model in some industries such as the furniture industry. Another

relevant feature inherited from the focus on practical applications is the dimensionality

of the cutting problem, which is predominantly a two-dimensional cutting stock problem.

The capacity constraint is often employed at just one level and is typically computed in

terms of total time consumption. Only a few studies consider both setup cost and setup

time in their models. Setups can relate to various aspects such as the cutting of objects, a

machine shutdown in the objects production, the startup of the production, the delivery

of objects to the cutting process or the use of the cutting machine. An uncertain envi-

ronment related to the demand, setup time and production costs is rarely considered in

the literature of integrated problems.

As a conclusion, the classification indicates that, even though many papers in the cur-
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rent literature analyse an integrated lot-sizing and cutting stock problem, they vary widely

with respect to the level of integration on the time and production level dimensions. Fur-

thermore, our analysis indicates that the current models also consider varying assumptions

with respect to the inventory, the production capacities and the setups. Therefore, we are

able to say that the models studied so far correspond mainly to simplifications or simple

extensions of the general integrated lot-sizing and cutting stock problem (GILSCSL) and

this highlights the value of a comprehensive model, as formulated in this thesis.

After analyzing and classifying the literature of integrated lot-sizing and cutting stock

problems, some insights and opportunities for future research are observed and discussed

next.

The bulk of the research on this topic has been done fairly recently, i. e., in the

past decade. There is still a lot of work to be done on the integrated problems. Sev-

eral extensions can be considered. In the multi-level problems, there might be different

characteristics of the production environment that need to be incorporated for each level

specifically, such as, supplier capacity, backlog, out of stock, safety inventory, and others

that we present as follows. In addition to the GILSCS model, there might be an integra-

tion with other processes, such as the supplier selection, in which the choice of different

suppliers may be based on the quality, price and speed of the orders, or the routing and

packing/loading of the final products to the customers.

A direct extension of the GILSCS model which is common in practice, is the use

of multiple machines to produce the customers’ order. This can arise at Level 1 and

Level 3 of the model considering multiple machines used to produce different objects

and final products. At Level 2, multiple machines may also arise with the problem of

assigning orders to parallel or sequential cutting machines (Menon and Schrage, 2002) or

the allocation of cutting patterns to specific machines (Giannelos and Georgiadis, 2001).

Some of the extensions discussed for the CSP, such as reusable leftovers (Cherri et al.,

2014), may be of interest for insertion in the integrated model in order to better describe

specific industry practices.

The optimization of two or more time periods, i. e., the integration across time

periods, is typically done in production planning problems, such as the capacitated lot-

sizing problem. However, the standard cutting stock problem only considers one time

period and its extension to multiple periods is little explored in the literature (Trkman

and Gradisar, 2007; Poldi and de Araujo, 2016). With the use of multiple time periods,

the demand and supply of materials arise in all time periods and pieces produced in excess

as well as material unused at the end of a time period may be used at a later period.

Capacity limitations are important in real life problems and should be taken into

account in the models. Henn andWäscher (2013) notice that in the cutting stock literature
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no models with setups exist which consider capacity constraints, i. e., there is no model

that takes into account the limitations of the capacity in the cutting stage, considering

the cutting and the setup processes. Therefore, a multi-period cutting stock problem with

capacity constraint as addressed at Level 2 in the GILSCS model is not explored in the

literature to model cutting processes and provides an interesting and relevant avenue for

future research.

The capacity constraint may not only be related to the production time of the cutting

process, but may also be related to other aspects, such as the total amount of area to

produce the final products (in two-dimensional problems) and saw cycles (Santos et al.,

2011; Vanzela et al., 2017). In some industrial applications, delivering the orders on

time can be far more important than reducing the resulting waste and the cost of cut

objects. Models that consider due dates in the formulation better describe the need of the

industry in such a case (Arbib and Marinelli, 2014; Reinertsen and Vossen, 2010; Arbib

and Marinelli, 2017).

Beyond the various objectives discussed previously for both problems, an alternative

approach is a multi-criteria optimization (Wäscher, 1990). In a multi-criteria optimization

approach, a good solution is not the result of the optimization of one criterion (such as

total cost), but constitutes a good compromise between several criteria. The need for such

an alternative approach can arise from the difficulty to obtain real values for the costs

associated in the objective function.

The cutting plan described by the current models provides a set of cutting patterns

and the corresponding frequencies of the patterns. However, in some settings, it becomes

necessary to determine a production plan that also indicates the optimal sequence of the

cutting patterns. The inclusion of the pattern sequence in the model may be related

to a specific objective function, usually related to a practical application, such as, the

minimization of the knives changes, where each insertion and removal of knives takes

time to be processed; the minimization of open stacks (i. e. the number of mounting

compartments around the cutting machine), in which a stack remains open until the last

cutting pattern that contains the piece of the stack is cut; the minimization of the order

spread, which refers to the number of open stacks during the cutting process (Foerster

and Wäscher, 1998; Rinaldi and Franz, 2007; Garraffa et al., 2016; Yanasse and Lamosa,

2007). It is worth to mention that this sequencing problem which emerges as an extension

at Level 2 can also be relevant at Level 1 and Level 3 in the production of objects and final

products. As the lot-sizing problems at Level 1 and Level 3 also consider the production

of several items, the sequence in which these items are produced can influence the quality,

total cost, and even the feasibility of the solution. In such a case, an integrated lot-sizing

and scheduling problem with sequence-dependent setups arises at Level 1 and Level 3
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(Drexl and Kimms, 1997; Copil et al., 2016).

As said before, the integrated problems so far discussed in this literature review take

into account one or two-dimensional cutting stock problems. Another extension for the

general integrated problem proposed is the consideration of a three dimensional cutting

stock problem, or even its extension to consider packing problems instead of the cutting

stock problem (Molina et al., 2016).

A final important aspect for future research is the consideration of uncertainty. Few

papers in the literature of integrated lot-sizing and cutting stock problems address op-

timization problems with uncertain parameters. Alem and Morabito (2012) employed

robust optimization tools to derive robust models for production planning in the furni-

ture industry, when production costs and products demands are uncertain parameters.

Alem and Morabito (2013) proposed a two-stage stochastic optimization model under

stochastic demand and setup times. Beraldi et al. (2009) consider the case of demand

uncertainty for a cutting stock problem.

In conclusion, we see that there is no shortage of challenging and relevant avenues for

future research. The resolution of industrial problems will continue to be an important

source of inspiration to further refine the models.
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Chapter 3

The General Integrated Lot-Sizing

and Cutting Stock Problems:

Solution Methods

In this chapter, we present solution methods to the general integrated lot-sizing and

cutting stock (GILSCS ) problem proposed in Chapter 2. Due to the fact that integrated

lot-sizing and cutting stock problems are derivative from two problems in the literature

which are classified as NP-hard (Maes et al., 1991; McDiarmid, 1999; Yanasse and Limeira,

2006), the approaches proposed in this chapter, in order to search for a feasible solution

for the general integrated problem, are based on solution methods which offer a satisfac-

tory solution quality with reasonable computational effort, such as, easily approximation

algorithms and/or faster heuristic procedures. As mentioned before, we are interested in

heuristic approaches that overcome the difficulties faced in the cutting stock problem and

takes advantages of multi-level structures presents in the lot-sizing problem. The solution

methods are also proposed as generic as possible in order to be able to be extended to

other integrated problems.

This chapter is organized as follows. In Section 3.1, we present a review and classifica-

tion of the solution methods in the literature to the integrated lot-sizing and cutting stock

problems. We consider the same studies previously classified, according to their models

in Chapter 2, and we point out the main strategies addressed in these studies in order to

solve the integrated problem.

The solution methods proposed for the general integrated model are presented in

Section 3.2. We consider three solution strategies based on column generation and relax-

and-fix procedures. In order to obtain the matrix of cutting patterns at Level 2 of the

general integrated model, the column generation is applied as a first step in all the pro-

cedures and then, integer programming and relax-and-fix procedure are addressed in an
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attempt to find a feasible solution to the general integrated problem. We also consider

two selection strategies of the variables to decompose the problem, which are according

to the time horizon and the final products.

A computational study is presented in Section 3.3, which consists of data generation,

setting of the parameters to the relax-and-fix procedure and computational results. A

whole set of data is generated to the general integrated problem based on known data set

in the literature. The computational study is performed around four analysis, which are

in terms of the size of the problem, the length of pieces, the capacity constraints and the

costs in the objective function. Finally, conclusions and future research are presented in

Section 3.4.

The main contributions of this chapter are a literature review and classification of the

solution methods to integrated lot-sizing and cutting stock problems, the development

of solution methods based on column generation and relax-and-fix procedures and the

complete set of data to this type of the problem, with three levels and multiple time

periods.

3.1 Solution Methods: a Literature Review

In this section, a literature review and classification of the solution methods to the

integrated lot-sizing and cutting stock problems are discussed in order to point out the

main strategies used in this field.

In the cutting stock problems, the difficulty to obtain an optimal solution comes from

the large number of possible cutting patterns and the cutting patterns frequency be an

integer number, which considerably increases the difficulty in solving the problem. One

of the strategies largely used and probably the best known to overcome large number of

variables is the column generation procedure. Gilmore and Gomory (1961, 1963, 1965) pro-

pose relaxing the integrality of the variables and solving the resulting linear programming

problem with column generation technique. The columns (cutting patterns) are generated

by solving a subproblem and attractive columns are added to the master problem interac-

tively to improve the current solution. For the one-dimensional cutting stock problem, the

subproblem is an integer knapsack problem (Gilmore and Gomory, 1961, 1963; Soma and

Toth, 2002). Considering higher dimensions for subproblems, other strategies have also

been proposed in the literature (Christofides and Whitlock, 1977; Arenales and Morabito,

1995; Yanasse and Katsurayama, 2005). Typically, the solution of the relaxed master

problem is fractional and an integer solution can be obtained using heuristics based on

approximate fractional solution and rounding procedures (Stadtler, 1990; Wäscher and

Gau, 1996; Poldi and Arenales, 2009) or by a branch-and-price procedure, which embeds
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the column generation procedure within a branch-and-bound approach (Vance et al., 1994;

Degraeve and Peeters, 2003; Belov and Scheithauer, 2006; Alves and Valério de Carvalho,

2008)

The main difficulties in solving lot-sizing problems are related to the integrality of the

setup variables. In the literature, many solution approaches to solve the lot-sizing problem

are proposed. They can be generally divided into two areas: exact and heuristic solution

approaches. The exact solution approaches are related to mathematical programming,

which includes valid inequalities and strong reformulation, whereas the heuristic solu-

tion approaches involve neighborhood search and decomposition strategies. According

to Akartunali and Miller (2009), heuristic approaches regarding to decomposition ideas

can be grouped as: (i) Lagrangian-based decomposition; (ii) Coefficient modification; (iii)

Forward/Backward schemes and Relax-and-Fix; (iv) Local search.

Considering the integrated lot-sizing and the cutting stock problem, a literature review

and classification of the solution approaches to solve the problems is presented. The

solution methods are classified according to two main aspects, which are related to the

difficulties from both problems embedded in the integrate problem, i. e., the high number

of cutting patterns and the integrality of the decision variables (cutting patterns and

setups). Firstly, the solution methods are analyzed takeing into account the manners

in which the cutting patterns are addressed in the solution methods and in a second

analysis, the solution methods are investigated over the strategies employed to find a

feasible solution to the mixed-integer problem.

Table 3.1 shows a summary of all the papers considered in this literature review and

their classification according to the solution methods addressed to solve the integrated

lot-sizing and cutting stock problem. The classification, in terms of cutting patterns

generation, considers a priori and iteratively cutting patterns generation. The strategies

used in an attempt to find a feasible solution to the integrated problem are classified as

exact and heuristic solution approaches. The benchmark used to compare the approaches

and the indication if the problem originates from an application in a specific industry are

also presented. For a further review and classification, in terms of mathematical models,

of the literature to integrated problems, see Chapter 2.
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Cutting Pattern

Generation Solution Methods

Application A Priori Iteratively Exact Heuristic Benchmarks

Farley (1988) Textile (clothing) X X Integer Programming

Reinders (1992) Wood Processing X X —

Hendry et al. (1996) Copper X X Other Approaches; Practical Results

Krichagina et al. (1998) Paper X X Other Approaches

Non̊as and Thorstenson (2000, 2008) Off-road truck X X X Other Approaches

Resṕıcio and Captivo (2002) Paper X X —

Correia et al. (2004) Paper X X Integer Programming

Arbib and Marinelli (2005) Gear Belts X X Models/Heuristics based on practice

Gramani and França (2006) Furniture X X X Models/Heuristics based on practice

Integer Programming

Ghidini et al. (2007) Furniture X X —

Trkman and Gradisar (2007) General X X Other Approaches

Ouhimmou et al. (2008) Wood Processing Furniture X X Practical Results; Integer Programming

Poltroniere et al. (2008) Paper X X Other Approaches

Aktin and Özdemir (2009) Medical Apparatus X X Other Approaches

Gramani et al. (2009) Furniture X X Models/Heuristics based on practice

Malik et al. (2009) Paper X X Models/Heuristics based on practice

Gramani et al. (2011) Furniture X X X Models/Heuristics based on practice

Santos et al. (2011) Furniture X X Other Approaches

Alem and Morabito (2012) Furniture X X Integer Programming

Suliman (2012) Aluminium X X Practical Results

Alem and Morabito (2013) Furniture X X Integer Programming

Silva et al. (2014) Furniture X X X Models/Heuristics based on practice

de Athayde Prata et al. (2015) Precast Concrete Beams X X Other Approaches

Silva et al. (2015) Textile X X Other Approaches

Agostinho et al. (2016) General X X Other Approaches

Leão and Toledo (2016) Paper X X X Other Approaches

Melega et al. (2016) General X X X Integer Programming

Poldi and de Araujo (2016) Paper X X X Integer Programming

Vanzela et al. (2017) Furniture X X Models/Heuristics based on practice

Table 3.1: Classification of the Solution Methods for Integrated Problems.
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From Table 3.1, we can observe that most of the studies consider a iteratively cutting

pattern generation and as expected, most of the studies address heuristic methods in

order to solve the integrated problem, since the two problems, as we previously said, are

classified as NP-Hard. In some studies (Gramani and França, 2006; Gramani et al., 2011;

Silva et al., 2014; Leão and Toledo, 2016; Melega et al., 2016; Poldi and de Araujo, 2016)

both types of strategies, exact and heuristic, are employed to solve the integrated problem

and compared in the computational results.

The studies are mostly inspired by practical applications, hence, the computational

results of the solution methods proposed in these studies are compared in different ways,

in order to point out the efficiency and quality of the solution approaches. In some cases,

the results are compared with the practical results from the company (Hendry et al., 1996;

Ouhimmou et al., 2008; Suliman, 2012) or with models and heuristics that simulate the

practical production process found in the plant (Arbib and Marinelli, 2005; Gramani and

França, 2006; Gramani et al., 2009, 2011; Malik et al., 2009; Silva et al., 2014; Vanzela

et al., 2017). Another comparison strategy is based on integer programming, which con-

sists of a mixed-integer model solved by an optimization package (Farley, 1988; Correia

et al., 2004; Gramani and França, 2006; Ouhimmou et al., 2008; Alem and Morabito,

2012, 2013; Melega et al., 2016; Poldi and de Araujo, 2016). Due to some aspects and

difficulties of the models, the comparison of the results is performed by comparing with

other approaches also proposed by the authors in order to compare the efficiency and

quality of the solution approaches (Hendry et al., 1996; Krichagina et al., 1998; Non̊as

and Thorstenson, 2000, 2008; Trkman and Gradisar, 2007; Poltroniere et al., 2008; Aktin

and Özdemir, 2009; Santos et al., 2011; de Athayde Prata et al., 2015; Silva et al., 2015;

Agostinho et al., 2016; Leão and Toledo, 2016). The details about the solution methods,

their similarities and particularities are given in the following sections.

3.1.1 A Priori Cutting Pattern Generation

As one of the problems embedded in integrated problems is the cutting stock problem,

the solution approaches must take into account manners in which the cutting patterns are

addressed in the solution methods.

In this section, we are interested in the studies, in which the cutting patterns are

provided a priori to the solution methods, i. e., before applying the solution methods to

obtain an integer solution to the integrated problem, the cutting patterns are generated

and then inserted in the mathematical model, which can then be solved by the corre-

sponding method. An example of this is the two-step procedure with a priori cutting

pattern generation. In such solution approach, the priori cutting patterns generation is

considered as a first step of the solution method and the search for a feasible solution to
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the integrate problem is addressed in the second step of the procedure.

In Table 3.2, the studies in the literature are classified considering firstly the strategies

employed to a priori generation of the cutting patterns and then the solution approach

used in an attempt to find a feasible solution to the integrated problem. We also remark

(with *) those studies, in which the solution methods consist of a two-step procedure.

Ways of Priori Cutting Patterns Generation

Heuristic Linear Lexicographic Provided by

Approach Programming Search the Company Approach to Feasible Solution

Farley (1988) X Integer Programming

Hendry et al. (1996)* X Integer Programming; First Fit Decreasing;

Hybrid Heuristic

Krichagina et al. (1998)* X Brownian Analysis

Non̊as and Thorstenson (2000, 2008) X Local and Global Solution Procedures

Correia et al. (2004)* X Simplex Method with Rounding Heuristic;

Integer Programming

Arbib and Marinelli (2005) X Branch-and-Bound Approach

Ouhimmou et al. (2008) X Time Decomposition Heuristic;

Integer Programming

Aktin and Özdemir (2009)* X Integer Programming

Santos et al. (2011) X Rolling Horizon Strategy

Alem and Morabito (2012) X Robust Optimization and

Integer Programming

risk-neural stochastic approach

Alem and Morabito (2013) X and Integer Programming;

risk-averse two-stage stochastic approach

and Integer Programming

(*) Two-Step Procedure

Table 3.2: Solution Methods: A Priori Cutting Pattern Generation and Feasible Solutions.

In the most of the studies with a priori cutting pattern generation, the cutting pattern

used in the solution methods are those provided by the company (Farley, 1988; Arbib and

Marinelli, 2005; Ouhimmou et al., 2008; Santos et al., 2011; Alem and Morabito, 2012,

2013), i. e., these cutting patterns are usually used by the company and also considered in

these studies. Some specific approaches such as, linear programming (Krichagina et al.,

1998), lexicography search (Correia et al., 2004), heuristic approaches (Hendry et al.,

1996; Non̊as and Thorstenson, 2000, 2008; Aktin and Özdemir, 2009) are also addressed to

generate a priori cutting patterns. The procedures based on linear programming consist of

linear models, in which the output solutions correspond to the matrix of cutting patterns,

whereas heuristic approaches generate all possible cutting patterns or select those that

provide a waste within a certain limit or even respect some physical restrictions.

In this literature review, the solution approaches based on two-step procedures, as

mentioned before, consider the generation of the cutting patterns as a first step of the

solution methods, and these cutting patterns are used to build the mixed-integer models

addressed in the second step. The studies vary in relation to the procedure used in the
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first step, such as, heuristics and lexicographic search, whereas in the second step are used

either integer programming, i. e., the mixed-integer model is solved by an optimization

package (Hendry et al., 1996; Correia et al., 2004; Aktin and Özdemir, 2009) or the

simplex method with a rounding procedure (Correia et al., 2004). Hendry et al. (1996)

also consider integer programming to the first step of the procedure, in which the subset

of possible cutting patterns are generated by a heuristic approach. The results obtained

with the proposed approaches are compared each other and with the current production in

the industry using real-world data. The strategies show better results than those provided

by the industry.

Although Krichagina et al. (1998) propose a suboptimal two-step procedure, due to

the characteristics of the proposed model and the practical environment in which it is

embedded, the authors consider a continuous time horizon. The two-step procedure con-

sists in solving a linear programming model at first step to select a small subset of cutting

patterns and the resulting model is approximated as a control problem for Brownian mo-

tion in the second step. The results show that the proposed approach outperforms others

from the literature regarding to the total costs, whereas it is simpler to employ when com-

pared with others. Non̊as and Thorstenson (2000) also consider a continuous time horizon

and obtain a model with concave objective function and linear constraints. As solution

methods, two global search procedures and three local search procedures are considered.

For the global search procedures the authors propose a tailor-made version of Murthy’s

extreme point raking method (Murty, 1968). Other approaches (sequential heuristic, suc-

cessive partitioning, cutting planes) are also compared to the Murty’s procedure without

success.

In the remaining of the studies, the set of cutting patterns is provided a priori by the

company (see Table 3.2) and interesting solution approaches have been proposed in the

literature to solve the integrated problem. Arbib and Marinelli (2005) propose a branch-

and-bound approach to solve two proposed models, being one of the models based on

the policy employed in the company. In the first analysis, both models are considered in

a daily basis, in which they differ each other by the used cutting pattern. The models

provides a significant trim loss reduction and the gains are rather high when considering

week planning. In Ouhimmou et al. (2008), an heuristic based on a time decomposition

approach is proposed, where just binary variables that are equal to 1 are fixed in a

subproblem. The results show that the heuristic performs better when compared with an

integer linear programming for the same computational time and with a reduction of 22%

of the total operations cost, when compared with industry results.

Santos et al. (2011) solve the problem making use of the rolling horizon planning

strategy with an optimization package. Instances are generate with real data from in-
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dustry for two different types of cutting patterns generated a priori. The results show

that the instance with the n-group cutting patterns obtained an average objective value

slight smaller than the one given with the cutting patterns from the factory. Alem and

Morabito (2012) propose models considering an environment with uncertain costs and

demand. The models are analyzed on real and simulated instances and solved by an opti-

mization package. The results show that the optimal objective function value increases as

robustness is enforced. In Alem and Morabito (2013), a risk-neutral stochastic approach

and risk-averse two-stage stochastic approach are presented to deal with the uncertain

data (setup times in cutting processes and demand). The resulting proposed models are

solved by an optimization package using real-life data. In all proposed strategies, elapsed

times increase as the number of scenarios increased.

Due to the derivation from practical applications, which can results into difficult mod-

els, Farley (1988) presents some reductions in the model proposed in order to enable a

currently available software to find a feasible solution. The author does not show the

results obtained with the proposed models, however he has tested in the operational en-

vironment and run together with the present manual planning system of the factory.

3.1.2 Iteratively Cutting Pattern Generation

In this section, we are interested in solution approaches that take into account iter-

atively the generation of cutting patterns, i. e., the solution methods are responsible to

generate the cutting patterns and also to find a feasible solution to the mixed-integer

model. Table 3.3 shows the papers which apply this type of approach. Firstly, we present

the way in which the cutting patterns are generated and then the approach addressed in

order to find a feasible solution to the integrated problem.

The column generation procedure is probably the most well-known approach to gen-

erate the cutting patterns in cutting stock problems, and this is not different in the

integrated problems, in which it is the main approach used to interactively generate

the cutting patterns in the solution methods (Reinders, 1992; Non̊as and Thorstenson,

2000, 2008; Resṕıcio and Captivo, 2002; Gramani and França, 2006; Ghidini et al., 2007;

Gramani et al., 2009, 2011; Silva et al., 2015; Agostinho et al., 2016; Leão and Toledo,

2016; Melega et al., 2016; Poldi and de Araujo, 2016; Vanzela et al., 2017). Heuristic

approaches are addressed iteratively as well (Poltroniere et al., 2008; Suliman, 2012). The

use of models that treat the cutting pattern as a decision variable can be seen in the liter-

ature (Trkman and Gradisar, 2007; Malik et al., 2009; Silva et al., 2014; de Athayde Prata

et al., 2015; Leão and Toledo, 2016; Melega et al., 2016; Poldi and de Araujo, 2016), in

which in most cases, the formulations to the cutting stock problem are basically based on

the formulation attributed to Kantorovich (1960) (see Valério de Carvalho (1999)), i. e.,



3.1. Solution Methods: a Literature Review 58

Ways of a Iteratively Cutting Pattern Generation

Variables Heuristic Approach Column Generation Approach to Feasible Solution

Reinders (1992) X —

Non̊as and Thorstenson (2000, 2008) X Local and Global Solution Procedures

Resṕıcio and Captivo (2002) X Branch-and-Price Approach

Gramani and França (2006) Rounding with procedures

X to Minimum Path Problem;

Decomposition Heuristics

Ghidini et al. (2007) X —

Trkman and Gradisar (2007) X Exact Methods with leftovers

Poltroniere et al. (2008) X Lagrangian Relaxation with

Feasibility Heuristics

Gramani et al. (2009) Lagrangian Relaxation with

X Feasibility Heuristics;

Decomposition Heuristics

Malik et al. (2009) X Excel Based Genetic Procedure

Gramani et al. (2011) X —

Suliman (2012) X Backward Lot-Sizing Approaches

Silva et al. (2014) X Integer Programming;

Practical Heuristics

de Athayde Prata et al. (2015) X Integer Programming

Silva et al. (2015) X Integrality Constraints with

Optimization Package

Agostinho et al. (2016) X Integrality Constraints with

Optimization Package

Leão and Toledo (2016) Integer Programming;

X X Integrality Constraints

with Optimization Package

Melega et al. (2016) Integer Programming;

X X Integrality Constraints

with Optimization Package

Poldi and de Araujo (2016) X X Integer Programming;

Rolling Horizon Planning Strategy

Vanzela et al. (2017) Integrality Constraints with

X Optimization Package;

Decomposition Heuristics

Table 3.3: Solution Methods: Iteratively Cutting Pattern Generation and Feasible Solution.

constraints that represent the physical restrictions of the object are added in the model.

We can see from Table 3.3 that three studies consider linear models, i. e., no solution

approaches are addressed to obtain a feasible solution (with − in place) and, in these

cases, the authors analyze the linear solution found by the column generation procedure.

In Reinders (1992), the model is validated in a real-word industry in Germany and incor-

porated in a prototype for a decision support system. The authors observe that the cost

of stock out is useful to obtain a balance between production efficiency and profit. Ghidini

et al. (2007) propose a model based on a practical application in the furniture industry

and, after simplifications in the model, the simplex method with column generation is

used. The authors observe that just with very tight machine capacities the objective

function is perturbed. In Gramani et al. (2011), the column generation procedure is ap-
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plied in the linear restricted master problem, which is solved by an optimization package.

The results show a significant overall gain when compared to a decomposition approach.

In order to obtain a feasible solution to the problem, some authors embedded the col-

umn generation procedure into other approaches. Non̊as and Thorstenson (2000) propose

local and global search procedures that generate the cutting patterns during the search

for a solution by column generation procedure, in order to avoid memory allocation prob-

lems. The cutting patterns are generate in the way that a large production requirement

is obtained, without excess of production and with a small amount of waste. In general,

this solution method performes better than sequential heuristic. Non̊as and Thorstenson

(2008) propose improvements in the column generation procedure presented in Non̊as and

Thorstenson (2000), which includes characteristics from different heuristics (three-search

heuristic and sequential heuristic), in an attempt to solve the model more quickly and

with large size. The results obtained show that the new procedure obtain better solutions

in terms of objective function and solution time. Resṕıcio and Captivo (2002) solve the

proposed model using a branch-and-price approach with an optimization package. Due

to the strategies used to branch the variables, the master problem structure changes and

the new values of the dual variables associated with these new constraints are also taken

into account in the objective function of the column generation subproblem. The results

show that computing time depends on the instance characteristics and not on its size.

In Gramani and França (2006), the authors propose a heuristic method using an anal-

ogy with a network shortest path problem. In the network shortest path, each node

represents a period and each arc corresponds to an associated capacitated cutting stock

problem. The capacitated cutting stock problem is solved by the simplex method with

column generation and the solution is round up to integer values. In this way, the network

is assembled, which consists in solving a minimum path problem, solvable by algorithms

in the literature. The authors compare the proposed method with a decomposition ap-

proach. The gains show to be considerable in terms of total costs and it shows also to

be fast and capable of solving industrial-size problems. The authors also compared the

solution obtained by the proposed method with the optimal solution obtained by solving

the integrated problem with a commercial package. For this analysis, just small examples

are generated, since it is necessary to generate all possible cutting patterns for the opti-

mization package. In these instances, the proposed approach finds the optimal solution

for half of the instances and very good results for the other instances. Poldi and de Araujo

(2016) propose a heuristic, which consists in a simplex method without commercial pack-

age, with column generation and rolling horizon strategies. The heuristic approach shows

to be much faster than the integer programming. The authors also consider the number

of objects available in each period as a decision variable and the obtained results show to
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be even better than the previous one.

In some studies (Silva et al., 2015; Agostinho et al., 2016; Leão and Toledo, 2016;

Melega et al., 2016; Vanzela et al., 2017), after the column generation procedure has been

finished, the integrality constraints of the variables are added in the master problem and

the resulting problem is solved by an optimization package. The studies differ each other

basically by the proposed models, which consider specific constraints due to the practical

application embedded, for more details about the mathematical models see Melega et al.

(2017a). In Vanzela et al. (2017), the company practice is reproduced by a decomposition

heuristic. The authors observe a reduction in the total cost, as well as, a light reduction

in terms of loss of raw material when compared to the company’s decision. In Silva

et al. (2015), the authors conclude that the proposed approach is highly dependent on the

different costs considered in the objective function.

Agostinho et al. (2016) solve the proposed model considering each period separately,

in which the retails generated in the previous period are included into the stock and there

is no inventory of items. The results show that, in terms of waste, generating retails is

better than considering situations that do not allow the generation of retails. In Leão and

Arenales (2012), the authors propose alternative models to the integrated problem based

on different models for the cutting stock problem and approaches to the lot-sizing problem.

In terms of lower bound and computational time, the models based on decomposition

approaches to lot-sizing problem, show better results, whereas the compact model shows

to be more eficiente in terms of quality of the feasible solution when compared with

the decomposition models. Melega et al. (2016) propose several models for the integrated

problem using known models for each problem separately. The number of feasible solutions

and the quality of these solutions, found by the proposed models, are influenced by the

tightness of the capacity and the data set.

Solution methods based on Lagrangian relaxation are also explored in the literature

of integrated problems. Poltroniere et al. (2008) propose two heuristics based on the

Lagrangian relaxation of the linking constraints, in which the cutting patterns are gen-

erated by heuristic approaches. The resulting problem in turn can be decomposed into

two separable problems: the lot-sizing problem with capacity and setup and, the cutting

stock problem, which are solved by specific heuristics. The heuristics differ each other by

the order in which the problems are solved. In general, the best results for the objective

function, gap and running time are found by cutting-lot heuristic. In Gramani et al.

(2009), the Lagrangian relaxation is applied to the linking and capacity constraints and

as in Poltroniere et al. (2008) and the Lagrangian problem can be decomposed in the

lot-sizing problem and cutting stock problem. The lot-sizing problem is decomposed and

solved by dynamic programming, whereas the cutting stock problem is solved by column



3.1. Solution Methods: a Literature Review 61

generation. A smoothing heuristic is applied in each iteration of the Lagrangian heuristic

in order to obtain a feasible solution. The results showed that the gap obtained with the

heuristic is always smaller than or equal to the results from decomposition heuristic and,

in some cases, it is very close or even equal to zero.

In some studies (Trkman and Gradisar, 2007; Malik et al., 2009; Silva et al., 2014;

de Athayde Prata et al., 2015; Leão and Toledo, 2016; Melega et al., 2016; Poldi and

de Araujo, 2016), as we previously said, the integrated problem addresses the cutting

patterns as decision variables, in which restrictions are added in the model in order to

limite the physical restrictions of the objects. Malik et al. (2009) develop an Excel-

based Genetic procedure to search for the optimal solution for the proposed model. The

strategy has found solutions which are likely close the global optimum and compared

with a decomposition approach, a high reduction in the total costs and improvements in

the customer service levels is observed. In some studies (de Athayde Prata et al., 2015;

Leão and Toledo, 2016; Melega et al., 2016; Poldi and de Araujo, 2016) the proposed

mathematical model is basically solved by an optimization package. In de Athayde Prata

et al. (2015), to solve the proposed model it is necessary firstly to determine the required

production time, that is calculated by dividing the total demand of products by the total

daily capacity. According to the authors, the feasibility in the application of the model

to find an optimal solution to practical cases is observed with small computational time.

An extension of the model is presented, which allows the control of maximum admissible

losses with an increase in the computational time.

An exception of the studies that considers the cutting patterns as a decision variable

is Silva et al. (2014). The authors propose two mathematical models based on the ”one-

cut” from Dyckhoff (1981), which is solved by an optimization package. The authors also

present two heuristics based in industrial practice to evaluate and analyze the proposed

model using real-world instances. The Heuristic I consists in the anticipation of the

production of all items to the period one and Heuristic II solves in each period a cutting

stock problem. The heuristics are compared each other and with the best (optimal in

some cases) solutions found by the models. The Heuristic II is able to find values very

close or even equal to the optimal.

A non-linear integer model is proposed in Suliman (2012), which is solved using a

strategy based on backward lot-sizing solution approaches with a pattern generation se-

lection procedure to generate the cutting patterns. In this way, the approach proceeds

in the backward direction from the last planning period establishing for each period, the

final products to be produced, their quantities and the cutting patterns to be used. The

proposed approach is compared with the industry policy, which shows to be quite better

with respect to the trim loss.
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3.2 Solution Methods for GILSCS Problem

In this section, the solution methods proposed to the general integrated lot-sizing

and cutting stock problem are presented. The solution methods are strongly related to

two known strategies from the literature, which has been successfully used to solve the

problems separately. The cutting process considered in the general integrated problem is

the one-dimensional case, i. e., just one dimension is taken into account in the cutting

process.

One of the approaches addressed in this chapter is based on the column generation

procedure, which has been largely used as solution approach itself or embedded in other

solution methods in order to solve cutting stock problems (Hifi, 2002; Wang and Wäscher,

2002; Oliveira and Wäscher, 2007; Wäscher et al., 2007; Morabito et al., 2009) or even

to solve the integrated problems. In this section, the column generation procedure is

considered as common step for all the solution approaches in order to generate the matrix

of cutting patterns at Level 2 of the general integrated model from Chapter 2.

The other proposed approaches are based on decomposition strategies, more precisely,

in relax-and-fix procedures. The relax-and-fix procedure is a relatively simple and straight-

forward approach, which has been used successfully to solve lot-sizing problems, in partic-

ular multi-levels lot-zing problems. Stadtler (2003) propose a time-oriented decomposition

heuristic to solve the multi-item multilevel lot-sizing problem with setup times. For each

subproblem a formulation based on the simple plant location formulation is developed

(Krarup and Bilde, 1977). These mixed-integer subproblems are solved by a mathemat-

ical programming software. The computational tests show that the proposed heuristic

provides a better solution quality than a well-known special purpose heuristic. Akartu-

nali and Miller (2009) propose a heuristic framework which generates both good solutions

and competitive lower bounds using strong formulations to multi-levels lot-sizing prob-

lems. The heuristic uses the relax-and-fix idea considering a time-oriented decomposition.

The computational results demonstrate the efficiency of the heuristic, particularly for chal-

lenging problems. Mohammadi et al. (2010) consider the multi-level capacitated lot-sizing

problem with sequence-dependent setups. To solve the problem, MIP-based heuristics all

relied on rolling-horizon heuristics and relax-and-fix procedure are provided. Toledo et al.

(2015) propose a heuristic that is based on constructive and improvement heuristics to

solve multi-level capacitated lot-sizing problem with backlogging. A relax-and-Fix heuris-

tic is firstly used to build an initial solution, and this is further improved by applying a

Fix-and-optimize heuristic. The computational results show that our combined heuristic

approach is very efficient and competitive, outperforming benchmark methods for most

of the tests. In this chapter, the relax-and-fix ideas, considering different decomposition

strategies, are used to search a feasible solution to the general integrated lot-sizing and
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cutting stock problem.

3.2.1 Column Generation Procedure - common step

In this section, the column generation procedure is described and addressed as a com-

mon, and first, step in all the heuristic solution approaches. The column generation

procedure is used to overcome difficulties present in the GILSCS problem, which consists

of the high number of variables Zo
jt, i. e., the high number of possible cutting patterns at

Level 2 of the GILSCS model.

The column generation procedure starts relaxing the integrality constraints of the

variables in the GILSCS problem and just the columns related to the homogeneous cutting

patterns, i. e., columns of type: (0, · · · , apop, · · · , 0), where apop = ⌊L
o

lp
⌋, ∀p ∈ P , are

considered in the sub-matrix associated to the Zo
jt variables (restricted master problem).

The cutting patterns and the corresponding Zo
jt variables are generated as the column

generation procedure evolves and new columns become necessary. The columns related

to the other variables are already included in the restricted master problem, except W o
jt

setup variables, which are created as the corresponding Zo
jt are generated (constraints

(2.35) and (2.36)).

The current restricted master problem is solved using the optimization package and

the dual variables associated to the constraints (2.33), (2.36) and (2.37) are recovered.

Note that, in the linear relaxation of the GILSCS problem, the constraint (2.35) becomes

an equality and the variables W o
jt can be replaced by Zo

jt/M in the constraint (2.36) and

consequently the constraint (2.35) is eliminated from the model. In this way, the dual

variables associated to this constraints are equal to 0 and they are not considered in the

column generation procedure.

Let

[

∑

p∈P

πpt γt τt

]T

be the dual variables associated to constraints (2.33), (2.36)

and (2.37), respectively. For each period t and object type o, a subproblem of the type

(3.1)-(3.3), which consists of a knapsack problem, is solved in order to find if there is an

attractive cutting pattern for the restricted master problem. The subproblem is given by:

OFSUB = min coj

(

Lo −
∑

p∈P

lpapoj

)

−
∑

p∈P

πpt a
p
oj − vtojtγt + τt (3.1)

Subject to:

∑

p∈P

lpapoj ≤ Lo (3.2)

apoj ∈ Z+ ∀p (3.3)
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For each period t and type of object o a new cutting pattern is included in the re-

stricted master problem if OFSUB < 0 and the new restricted master problem is solved.

The optimization package is also used to solve the subproblem. At the point of the gen-

erated columns no longer price out attractively to the restricted master problem in the

subproblem (3.1)-(3.3), that is, OFSUB ≥ 0, the column generation procedure stops.

After the column generation procedure (common step), the matrix of cutting patterns

at Level 2 of the GILSCS problem is generated and then different heuristic approaches are

addressed in order to search for a feasible solution for the resulting mixed-integer GILSCS

problem. The heuristics are described in more the details in the sections as follows.

3.2.2 Column Generation Based Heuristic - CGH

The Column Generation Based Heuristic (CGH ) consists of a solution approach which

uses a commercial optimization package in order to search for a feasible solution for the

GILSCS problem, considering the mixed-integer problem descendent, after apply the

column generation procedure. In this way, the resulting GILSCS problem, considering all

the generated column in the column generation procedure and the integrality constraints

of the variables, is solved in order to obtain a feasible integer solution to the GILSCS

problem.

3.2.3 Relax-and-Fix Based Heuristic - RFH

The relax-and-fix is a constructive heuristic approach that determines a solution from

solving several mixed-integer problems. The original model is decomposed according to

a selected strategy of the variables and relaxed with respect to integrality constraints

for some variables and then it is solved as a linear programming problem. The solution

information from the linear programming problem is taken to fix decisions according to

a selected freezing strategy. Given these fixed decisions, the resulting problem is solved

by an optimization package. The iterative procedure of fixing and solving the resulting

problem is continued until a feasible integer solution is generated or the resulting problem

is infeasible. At each step of the relax-and-fix strategy, integrality constraints for a subset

of variables are included according to the selected strategy, while decisions made in pre-

vious steps are kept fixed and remaining variables stay relaxed. In this chapter, the set of

variables considered in the decomposition of the problem are the binary setup variables.

The Relax-and-Fix Based Heuristic (RFH ) proposed in this research is used to over-

come the difficulties faced with the binary variables of setup and takes advantages of multi-

level structures, in order to find a feasible solution for the GILSCS problem. The pro-

posed approach is based on the internally rolling schedule heuristic proposed by Stadtler
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(2003). In the RFH, the column generation procedure is applied as a first step in order

to generated the matrix of cutting patterns at Level 2 of the general integrated problem,

thenceforward, the relax-and-fix is applied in the resulting problem.

The Relax-and-Fix Based Heuristic is a relatively simple and straightforward approach

with a disadvantage that setup decisions are optimized only in a subset of the variables in

each iteration and setup decisions fixed in earlier iterations might adversely affect setup

decisions in later iteractions.

We propose in this chapter, two selected strategies to the setup variables in order to

decompose the problem, which are: time-oriented decomposition and product-oriented

decomposition. The decompositions are described in more details as follows.

• Time-Oriented Decomposition: RFH T

In the time-oriented decomposition, the entire planning horizon is divided into three

parts according to setup decisions, which are: fixed, integral and relaxed decisions.

In the planning horizon composed of ∆ periods, called time-window, all the interre-

lations between final products, pieces and objects on different levels are considered

as the same as in the GILSCS and integral setup decisions are made only within the

time-window. For periods preceding the time-window, setup decisions have already

been made (fixed) in previous step and for later periods, binary variables are relaxed.

Inside of the time-window, two subsets are considered (ψ and φ , with ψ + φ = ∆),

which correspond to the number of periods in which the setup variables have been

fixed at their binary values in each time-window and the number of overlapping

periods of two consecutive time-windows, respectively. Setup decisions belonging to

overlapping periods are reconsidered in the next time-window.

The binary solution obtained for the setup variables in the first few periods within

the time-window (ψ periods) are fixed at their binary values. A new mixed-integer

problem derived from the GILSCS problem is obtained by adding the following

constraints:

Y o
t′ = Y

o

t′ ∀o, ∀t′ ∈ Tψ (3.4)

W o
jt′ = W

o

jt′ ∀j, ∀o, ∀t′ ∈ Tψ (3.5)

Y f
t′ = Y

f

t′ ∀f, ∀t′ ∈ Tψ (3.6)

where Y
o

t′ ,W
o

jt′ and Y
f

t′ are the values of the fixed setup variables and Tψ is the set

of periods for which the setup variables are fixed in the problem. Although this is

not the most compact form to add these constraints, modern solvers automatically

detect and resolve the redundancies of the formulation.

The next time-window moves forward for the next ∆ period and the resulting model

is then processed in the same manner until all the setup variables are fixed. The last
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time-window in the relax-and-fix procedure is reached once the number of periods

remaining for setup decisions is less then or equal to 3/2(∆− φ) (Stadtler, 2003).

In the last step of the Relax-and-Fix Based Heuristic, no relaxation takes place and

the integrality constraints for all the remaining variables, binary or not, are added in

the model. In this way, the solution in the last time-window, if it exists, corresponds

to a feasible solution for the GILSCS problem.

• Product-Oriented Decomposition: RFH F

In the product-oriented decomposition, the set of final products is split into three

parts according to setup decisions, which are: fixed, integral and relaxed decisions.

In the set of final products composed of ∆ products, called product-window, the

entire planning horizon is considered, as well as, the set of cutting patterns related to

these final products, that is, for those cutting patterns which have a piece belonging

to a final product in the product-window, the integral constraint of setup variables

are added to the subproblem, if it has not been added in previous steps. The

remaining of the heuristic proceeds as in the time-oriented decomposition.

Figures 3.1 and 3.2 shows the ideia of the rolling schedule with time-oriented and

product-oriented decompositions, respectively. The size of the window is considered as 4,

the number of overlapping decisions as 2 and the number of fixed decisions as 2, as well.

As we can see, the next window moves forward for the next products/periods until all the

decisions variables are fixed.

The Relax-and-Fix Based Heuristic can be fully controlled by three parameters ∆/ψ/φ,

hence the assigned values are directly related to the final result of the heuristic. The size

of a time/product-window, ∆, reflects in the time spent to run the resulting problem, the

quality of the solution obtained and the feasibility of the heuristic. Clearly, the shorter

the time/product-window, the easier the resulting problem is to solve. However, this

can deteriorate the solution quality since decisions become more myopic and the number

of time/product-windows grows, hence the time allocated to solve the resulting problem

decreases. In this way, we seek for a value to ∆ which neither takes too much time nor

finds too poor solutions, in order to move for the next time/product-window.

The consideration of capacity constraints is also an aggravating factor to obtain a

feasible solution, due to the fact that there is no way to lookahead in order to notice future

bottlenecks. To deal with this issue, the use of overlapping strategies can be considered,

which makes better setup decisions to early periods/products of a time/product-window in

view of the setup decisions expected in the overlapping time/product-window. However,

overlapping strategies increase the number of time/product-windows to be solved, as
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Time Periods:                                                                                                                                                                                                     
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Figure 3.1: Example of Rolling Schedule with Time-Oriented Decomposition.

previously said, they decrease the time allocated to solve the resulting problem and it

can also result in poor solutions.

Therefore, the assigned values to the parameters ∆/ψ/φ must be well managed to

obtain a quality solution to the GILSCS problem within the time limit available. An

analysis of the assigned values to the parameters ∆/ψ/φ in this chapter are described in

Section 3.3. The final solution given by the Relax-and-Fix Based Heuristic, if it exists,

corresponds to a feasible solution to the GILSCS problem.

3.2.4 Hybrid Heuristic - HH

The Hybrid Heuristic proposed in this thesis interacts simultaneously two known pro-

cedures already used in this research separately, which are the column generation proce-

dure and the relax-and fix procedure. As in previous approaches, the column generation

is applied as a first step in order to generated the matrix of cutting patterns at Level 2

of the general integrated problem, followed by the Hybrid Heuristic, in order to find a

feasible solution to the general integrated problem.

The Hybrid Heuristic consists of applying the column generation procedure in each

step of the relax-and-fix procedure, i.e., after fixing the setup decisions according to a
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Final Products:                                                                                                                                                                                                     
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Figure 3.2: Example of Rolling Schedule with Product-Oriented Decomposition.

selected freezing strategy in the relax-and-fix procedure, the column generation procedure

is applied in the resulting problem. The Hybrid Heuristic arises due to the fact that in

the relax-and-fix procedure several different mixed-integer problems are solved in order

to find a feasible solution to the original problem. However, a mixed-integer problem in

a step is different from the previous one due to the fixing of the setup variables. In this

way, when applying the column generation in each step of the relax-and-fix procedure after

fixing the variables, new columns can be attractive to the current problem and can help to

improve the solution. These new columns are added to the matrix of the cutting patterns

at Level 2 of the general integrated problem. As we consider overlapping strategies, before

applying the column generation, all the integrality constraints of the setup variables are

removed in order to obtain a linear programming problem.

3.3 Computational Study

This section presents the data generation and the computational results obtained by

applying the solution methods described in Section 3.2 to the general integrated problem

(GILSCS ). The building of the proposed model and heuristic approaches were imple-

mented in C++ using the C callable library of the IBM ILOG Cplex 12.6.1 (1 thread)
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solver. All the computational testes were conducted in a computational time limit of 1800

seconds for each instance and on a 2 x Intel Xeon X5675 @ 3.07 GHz (6 cores each) with

96 Go RAM. We also used the Cplex version with default parameters.

Figure 3.3 presents a summary of all the four solution methods proposed in this chap-

ter. The solution methods initiated at a common step, which consists of the column

generation procedure at Level 2 of the general integrated problem. Then, in order to

find a feasible solution to the general integrated lot-sizing and cutting stock problem the

heuristics are applied. In the CGH an optimization package is used to solve the integer

problem and in the RFH, the relax-and-fix procedure with product-oriented and time-

oriented decomposition is addressed. The Hybrid Heuristic considers both procedures,

i. e., the relax-and-fix procedure and the column generation procedure interact in the

heuristic.

      Solution Methods to The General Integrated Problem 

 

 

 

 

     Column Generation Procedure 

 

 

 

 

 

1.  Column Generation          2.  Relax-and-Fix               3.  Hybrid Heuristic - HH 

   Based Heuristic – CGH            Based Heuristic - RFH 
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Figure 3.3: Solution Methods to the General Integrated Problem.

Considering the classification of the solution methods presented in Section 3.1, the

approaches proposed in this thesis can be classified as heuristic solution methods. The

Column Generation Based Heuristic (CGH ) and Relax-and-Fix Based Heuristic (RFH )

consider the column generation applied as a first step in order to generate the cutting

patterns, in this way, they are classified with a priori cutting pattern generation. On the

other hand, as the Hybrid Based Heuristic (HH ) interacts the column generation in the

heuristic approach, we classify it with a interactively cutting pattern generation.
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In the Column Generation Based Heuristic (CGH ) the resulting problem considering

all the generated cutting patterns in the column generation procedure and the integrality

constraints of the variables is solved by an optimization package with a time limit of 1800

seconds and an optimality gap of 0.1%, in order to search for a feasible solution to the

GILSCS problem.

In the Relax-and-Fix Based Heuristic (RFH ) and in the Hybrid Heuristic (HH ), the

column generation procedure is applied as a first step, with the objective of obtain the

matrix of cutting patterns at Level 2 of the general integrated problem. After this,

the relax-and-fix procedure or the hybrid heuristic is applied in order to find a feasible

solution to the GILSCS problem. The heuristics have the support of an optimization

package to solve the mixed-integer problems with total time limit of 1800 seconds and an

optimality gap of 0.1%. The computational time of 1800 seconds is split equally between

all time/product-windows. The time left in a time/product-window is added to the next

time/product-window time in order to solve the corresponding GILSCS problem. At the

end of the heuristics, a feasible solution to the GILSCS problem is found or the GILSCS

problem is infeasible using the corresponding decomposition strategy.

The CGH, RFH T and RFH F heuristics consider in each step of the column gen-

eration procedure, the master problem and the subproblem solved by the optimization

package and, the time spent in this initial column generation is not considered in the

computational time of 1800 seconds. The time spent in the column generation inside of

the Hybrid Heuristic is removed from the total time available to solve the window in each

step of the relax-and-fix procedure.

In the column generation procedure no time limit is imposed to stops the procedure,

in fact, the column generation stops by optimality or 5 iterations of the procedure without

improvements in the objective function value of the restricted master problem. In the last

case, the procedure stops and no lower bound is generated. After the column generation

procedure, the heuristics are applied in an attempt to find a feasible solution to the

GILSCS problem. To the instances in which no lower bound is provided by the column

generation procedure, the gap is not calculated.

The gap is calculated according to the equation (3.7), where ZH is the objective

function value of the corresponding heuristic and ZLB is the objective function value from

column generation procedure.

GAP =
100(ZH − ZLB)

ZLB
(3.7)
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3.3.1 Data Set

The data set used to generate instances for the GILSCS problem is directly related

to the well-known data from the literature of the lot-sizing and cutting stock problems,

which are the instances from Trigeiro et al. (1989) (lot-sizing problem) and the CUTGEN1

generator proposed by Gau and Wäscher (1995) (cutting stock problem). Consider the

data generated in intervals [a, b] with a uniform distribution as follows:

This first part of the data is based on Trigeiro et al. (1989).

• number of time periods (days): T = 20;

• number of final products: F =















5, small;

7, medium;

10, high.

In the original instances of Trigeiro et al. (1989), sets of 10, 20 and 30 products are

considered . The choice of a smaller number of final products is due to the size of

the GILSCS problem compared to the Trigeiro’s model. To F = 5 and F = 7, the

values corresponds respectively, to the first 5 and 7 final products of F = 10.

• demand of final products: dft ∈

{

[0,125], medium;

[0,200], high.

• setup cost of final product: scft ∈

{

[25,75], low;

[400,1200], high.

• production cost of final product: vcft = 0;

• inventory cost of final product: hcft ∈ [0.8, 1.2];

• setup time of final product: stft ∈

{

[5,17], low;

[21,65], high.

• production time of final product: vtft = 1;

• capacity of final products production: CapFt =















capt/0.75, loose;

capt, normal;

capt/1.1, tight.

The capacity capt is generated by the average of lot-by-lot policy: for every period

t, it is calculated the amount of resources needed to produce exactly the demands

of the final products, sum up this amount for all periods and divide by the number

of periods T , i.e., capt =
∑T

t=1

∑
f∈F (vtft d

f
t +st

f
t )

T
.



3.3. Computational Study 72

For other parameters, some relationship with final products parameters are consid-

ered, for which the values are generated according to the intervals [a, b] with a uniform

distribution as follows:

• types of objects: O = 1;

• number of pieces:











































P = F, small (each final product corresponds directly to a piece);

P = F, medium (each final product needs 2 pieces, with the number

of different pieces equal the number of final products);

P = 2 ∗ F, high (each final product needs 2 different pieces, with the

number of different pieces equal to twice the number of

final products).

• number of pieces in each final product:
∑

p∈P

rpf =

{

1, if P = F ∗;

2, if P = F ∗∗ or P = 2 ∗ F.

(*) each final product corresponds directly to a piece;

(**) each final product needs 2 pieces, with the number of different pieces equal the

number of final products;

• inventory cost of pieces: hcpt = hcft /r
p
f ;

• independent demand of pieces: dpt = 0;

• setup cost of cutting pattern: uoj =

{

2 ∗ scft small;

5 ∗ scft high.

• production cost of cutting pattern: coj =















1, small;

5, medium;

10, high.

• setup time of a cutting pattern: stojt = stft ;

• production time of cutting pattern: vtojt = vtft ;

• independent demand of objects: dot = 0;

• setup cost of objects: scot =

{

5 ∗ scft , small;

10 ∗ scft , high.

• production cost of objects: vcot = 0;

• inventory cost of objects: hcot = 0.02coj ;

• setup time of objects: stot = stft ;

• production time of objects: vtot = vtft ;
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• capacity of cutting machine: CapCt = {1, 2} ∗ CapFt;

• capacity of objects production: CapOt = {1, 2} ∗ CapFt;

The capacity of the cutting machine and objects production is proportional the

number of pieces that compose a final product, i.e., CapOt = CapFt and CapCt =

CapFt, when each piece corresponds directly to a final product; CapOt = 2 ∗CapFt

and CapCt = 2 ∗ CapFt, when are necessary 2 pieces to compose a final product.

The data as follows are based on CUTGEN1 (Gau and Wäscher, 1995):

• object length: Lo = 10, 000;

• pieces length: lp ∈















[0.01, 0.2] ∗ Lo, small;

[0.01, 0.8]∗Lo, medium;

[0.2, 0.8]∗Lo, high.

To some of the parameters used in this chapter (final products) are assigned the values

from the original instances present in Trigeiro et al. (1989), to the remain parameters, we

consider the generation of the data according to the intervals previous described.

In this computational study, we are interested in evaluate short-term decision, which

are related to the trade-off present in setup and inventory, as well as, the trade-off in

the integration between the different levels. For this, four analysis relating the different

classes present in these data are explored. The analysis are in terms of the size of the

problem, length of pieces, capacity constraints and costs in the objective function.

3.3.2 Setting the Parameters in the Relax-and-fix Procedure

In this section, the parameters used in the relax-and-fix procedure (∆/ψ/φ, which cor-

respond to the size of the window, the number of fixed decision variables and the number

of overlapping decisions variables, respectively) are evaluated and selected, which either

provide valuable results in terms of feasible solutions and/or showed superior solution

quality in a reasonable computational time. In the Table 3.4, the tested values for the

parameters, in each one of the decomposition approaches, are presented.

Time-Oriented Decomposition

Tests ∆ ψ φ Tests ∆ ψ φ

Test 1 5 1 4 Test 3 10 3 7

Test 2 7 2 5 Test 4 14 4 10

In order to choose the appropriated parameters in the relax-and-fix procedure, the

average of 20% of the total number of instances generated in this computational study is
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Product-Oriented Decomposition

5 final products 7 final products 10 final products

Tests ∆ ψ φ ∆ ψ φ ∆ ψ φ

Test 1 2 1 1 3 1 2 4 1 3

Test 2 3 1 2 4 1 3 5 1 4

Test 3 4 1 3 5 1 4 7 2 5

Table 3.4: Parameters in the Relax-and-Fix Procedure.

used to evaluate the tested parameters, which corresponds to 84 instances. The results are

presented in Table 3.5. The details of the classes in each one of the analysis is presented

in the following sections.

Table 3.5 presents, for each one of the tested parameters, the number of instances in

which the solution methods are not able to find a feasible solution. The average values for

the gap and computational time are also shown in Table 3.5. We consider in this analysis

just those instances that are able to find a feasible solution in all the solution approaches

and in all the Tests, for each decomposition strategy. A feasible solution is not found by the

heuristics either because there is not enough computational time or because the instance

is infeasible. The last case only occurs, in this computational tests, to the decomposition

heuristics, which is a known fact in the relax-and-fix procedures. The number of instances

with no feasible solution is represented by the sum of the infeasible instances (number

in bracket) plus the instances that the decomposition approach could not find a feasible

solution within the available computational time. For example, considering Test 3 with

product-oriented decomposition, of those four instances with no feasible solution, one of

them is due to infeasibility of the instance according to the corresponding decomposition.

The results show that the time-oriented decomposition (RFH T ) is able to find a

feasible solution for all the tested instances, whereas the product-oriented decomposition

(RFH F ) has some difficulties. We can see that, as the size of the window in the product-

oriented decomposition increase, as expected, the number of infeasibility decreases (num-

ber in bracket), however, the number of instances with no feasible solution, due to no

available computational time to search for a feasible solution increases, i. e., with large

size to the window the resulting mixed-integer problem is bigger and although the in-

stance became feasible, the optimization package is not able to find a feasible solution in

the available computational time. In general, the product-oriented decomposition found

the best results to gap at the price of up to 84% bigger computational time (Test 1 in the

time-oriented decomposition).

In a further analysis of these values, in order to choose which parameters provide better

results and must be fixed in the relax-and-fix procedure, consider firstly the product-
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oriented decomposition. Comparing Test 2 and Test 3 with Test 1, we can see that there

is an improvement of 0.67% and 4.86% in the gap at the price of 26.28% and 41.79% of

increase in the computational time, respectively. Therefore, the Test 3 showed to be the

best choice to the product-oriented decomposition. Performing the same analysis with

the time-oriented decomposition and comparing Test 2, Test 3 and Test 4 with Test 1,

the Test 2 is able to find quite good solutions in a reasonable computational time. In this

way, the Test 2 is considered to the time-oriented decomposition.

RFH F RFH T

Test 1 Test 2 Test 3 Test 1 Test 2 Test 3 Test 4

No Feasible Solution (3) 3 (2) 2 (1) 4 0 0 0 0

Gap 45.61 45.30 43.40 46.07 45.67 45.00 44.63

Computational Time 860.89 1087.13 1220.66 195.98 371.58 926.96 1309.31

( ) number of infeasible instances

Table 3.5: Number of Instances with No Feasible Solution and Average for Gap and Time.

Therefore, the tests which provides valuable insights in terms of number of feasible

solutions and a reasonable solution quality are the Test 3 to the RFH F heuristic and the

Test 2 to the RFH T.

The results from these tests are also useful to select the decomposition strategy ad-

dressed in the Hybrid Heuristic, in which according to these results, we select the time-

oriented decomposition, which presented similar results, in terms of gap, compared to the

product-oriented decomposition in a quite shorter computational time. In this way, it is

considered in the hybrid heuristic.

3.3.3 Computational Results

This section presents the computational results obtained with the solution methods

proposed in Section 3.2 applied to the general integrated problem (GILSCS ). In this chap-

ter, the computational study considers different analysis, which are in terms of the size of

the problem, length of pieces, capacity constraints and costs in the objective function. In

each of the analysis, some aspects such as, objective function value, gap, computational

time and number of feasible/infeasible solutions are evaluated. For each class in each anal-

ysis, 10 instances are considered, which consists in the variation of demand (medium/high)

and in the generation of 5 instances for each variation. For some parameter that do not

belong to the classes variations, their values are fixed in order to analyze the performance

of the model in such type of instances. At the end of this section, we present Tables 3.15
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3.16 that shows all the parameters that are common to all the analysis and their corre-

sponding values and a summary of all the classes and their variations in the parameters,

respectively. Each of of the classes are described in more details as follows.

We use the default settings of Cplex parameters except a tolerance from the optimal

integer solution that is fixed at 0.1%. As we said before, the column generation stops by

optimality or 5 iterations of the procedure without improvements in the objective function

value, in the last case, the procedure stops and no lower bound is generated. After the

column generation procedure, the heuristics are applied in an attempt to find a feasible

solution to the GILSCS problem.

3.3.3.1 Size of the Problem

In this analysis, the classes consider variations in terms of the size of the problem,

i.e, variation related to the number of final products (small / medium / high) and the

number of pieces (small / medium / high). The lot-sizing problems have experienced that

the higher the number of items, the better is the quality of the solution (Trigeiro et al.,

1989). We are interested in seeing what is the impact of the size of the problem, based on

the variation of the quantity of final products and pieces, in the solution of the general

integrated problem.

In Table 3.6, the 9 classes obtained with the data variation, totalling 90 instances, are

shown. For example, the Class 8 (HM) corresponds to a high number of final products,

i. e., F = 10 and a medium number of pieces, i. e., P = F , in which each final products

needs 2 pieces. The remain of the data variations are fixed as follows:

• setup cost of final product: scft ∈ [400, 1200];

• setup time of final product: stft ∈ [21, 65];

• capacity of final products production: CapFt = capt/1.1;

• setup cost of cutting pattern: uoj = 5 ∗ scft ;

• production cost of cutting pattern: coj = 1;

• setup cost of objects: scot = 10 ∗ scft ;

• capacity of cutting machine: CapOt = CapCt = 2 ∗ CapFt;

• pieces length: lp ∈ [0.01, 0.8] ∗ Lo.

Considering the variations in the number of final products and pieces, the classes with

the high number of final products (Classes 7, 8 and 9) have a considerable impact in
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Size of the Problem

Description Description Description

Classes F/P Classes F/P Classes F/P

Class 1 SS Class 4 MS Class 7 HS

Class 2 SM Class 5 MM Class 8 HM

Class 3 SH Class 6 MH Class 9 HH

Table 3.6: Classes of Instances: Size of the Problems.

the number of instances with no feasible solution. The Relax-and-Fix Based Heuristics

with time-oriented decomposition (RFH T ) and the Hybrid Heuristic (HH ) are not able

to find a feasible solution to just 2 instances (Class 8), of which one is by infeasibility,

whereas the Column Generation Based Heuristic (CGH ) and the Relax-and-Fix Based

Heuristics with product-oriented decomposition (RFH F ) obtain the same 13 instances

with no feasible solutions, of which 3 are by infeasibility considering the decomposition

heuristic.

Table 3.7 shows, for each class, the number of the instances in which the column

generation is not able to find a lower bound, i. e., the column generation stopped by 5

iterations without improvements in the objective function value of the restricted master

problem. The average for the gap and computational time in each class and heuristic

approach are presented as well. The average values for the gap and computational time

is considering those instances which are solved by all the heuristics. Only in Class 9, it is

not possible to obtain an average for the gap and the computational time, due to difficulty

in finding a feasible solution for the instances in this class, in which just one instance is

commonly solved by all the heuristics.

In this analysis, the instances with no lower bound is shared by almost all the classes,

where Class 9 has a slightly larger number of instances. The column generation procedure

spent around 12 seconds to generate the matrix of cutting patterns at Level 2. These 11

instances are the same instances for all the solution approaches and they were removed

from the gap calculations.

We can see from Table 3.7 a little improvement, on overall average, in the results

obtained for the gap by the HH when compared to the RFH T, at the price of a slight

increase in the computational time. The CGH finds, for the most of classes, the best

results for the gap. However, in general, the solution approaches have a quite similar

behavior related to the gap, in which, comparing to the worst case, the difference is less

than 2% (Class 6). The highest values for the gap are in the classes with medium number

of final products (Classes 4, 5 and 6). For high number of final products (Classes 7, 8 and

9), the decomposition heuristics show an increase in the solution quality when compared
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to the integer programming approach. As we expected, the computational time spent in

the decomposition heuristics are shorter when compared to the CGH and considering the

RFH T, the computational time is, on overall average, 85% shorter.

No Lower Gap Computational Time

Classes Bound CGH RFH F RFH T HH CGH RFH F RFH T HH

Class 1 0 23.62 23.67 23.88 23.94 743.47 415.35 6.18 13.22

Class 2 2 11.29 11.33 11.44 11.48 1222.75 548.27 8.50 13.10

Class 3 1 21.64 21.67 22.37 22.28 1445.54 1020.16 20.38 28.41

Class 4 1 28.46 28.48 28.91 28.96 1424.27 1009.66 26.40 30.89

Class 5 0 30.06 30.28 30.31 30.39 1613.51 823.11 88.05 195.38

Class 6 2 64.54 65.43 66.48 66.05 1793.05 1550.24 325.21 427.81

Class 7 1 23.70 23.63 24.40 24.16 1792.19 1729.79 605.93 803.50

Class 8 0 20.17 19.76 19.57 19.57 1792.37 1332.06 676.59 941.17

Class 9 4 — — — — — — — —

Sum/Average 11 27.94 28.03 28.42 28.35 1478.39 1053.58 219.65 306.69

Table 3.7: Number of Instances with No Lower Bound and Average for Gap and Computational

Time: Size of the Problem.

Based on this analysis, the number of final products considered in the remaining of the

computational study, for all the analysis and all the classes, is F = 7, which corresponds

to relatively difficult instances compared to the 5 final products. Moreover, with this

value for the number of final products, the solution methods find feasible solutions for all

the instances.

3.3.3.2 Length of Pieces

The variations related to the length of pieces (small / medium / high) are analyzed

in this section. Cutting stock problems have shown difficulties in the column generation

procedure when the length of pieces are shorter when compared to the object. In this

analysis, we are interested in seeing the behavior of the general integrated problem for

different length of pieces. Melega et al. (2016) observed that length of pieces have a main

influence on the results considering different mathematical models for the integrated lot-

sizing and cutting stock problem.

Table 3.8 shows the classes obtained with the data variation, totalling 30 instances.

The remain of the data variations are fixed in the following values:

• number of final products: F = 7;

• number of pieces: P = 2 ∗ F (each final product needs 2 different pieces, with the

number of different piece equal to twice the number of final products);
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• setup cost of final product: scft ∈ [400, 1200];

• setup time of final product: stft ∈ [21, 65];

• capacity of final products production: CapFt = capt/1.1;

• setup cost of cutting pattern: uoj = 5 ∗ scft ;

• production cost of cutting pattern: coj = 1;

• setup cost of objects: scot = 10 ∗ scft ;

• capacity of cutting machine: CapOt = CapCt = 2 ∗ CapFt.

Length of Pieces

Description

Classes lp

Class 10 S

Class 11 M

Class 12 H

Table 3.8: Classes of Instances: Length of Pieces.

In Table 3.9, we present, for each class and solution approach, the average for the gap

and the computational time. The number of instances in which the column generation

is not able to find a feasible solution is presented as well. We can see that for the Class

10, which consists of the smallest length of pieces compared to the length of object, the

column generation procedure is not able to stop the procedure by optimality for all the

instances, in this way, the gap in Table 3.9 for Class 10, it is not presented.

The CGH found the best values for the gap in each one of the classes, hence the

best average, however, the difference between the solution approaches is less than 0.71%,

whereas to computational time, the CGH spent around 60% more time compared to the

RFH T.

Although the lower bound is not found by all the approaches considering Class 10, an

analysis is possible in terms of objective function value, since feasible solutions are found

for all the instances and solution approaches. To Class 10, the RFH T obtains gains of

3% compared to the CGH, which contribute to a gain of 0.9%, over all the classes.

The length of pieces have also a huge impact in the gap and computational time. As

the length of pieces increase compared to the length of object, the gap and computational

time decrease. This is due to the high quantity of different cutting patterns generated

in the column generation procedure in each class, which makes difficult the search for
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a feasible solution, since smaller the length of pieces higher is the number of cutting

patterns. In the class where the length of pieces is bigger compared to object (Class 12),

the number of cutting patterns generated is smaller, hence the search of a feasible solution

is facilitated, however, the percentage of waste is increased due to lower combinations of

the pieces in the cutting patterns. An interesting point is that, in the Hybrid Heuristic,

the number of new generated cutting patterns is around 565 in Class 10 compared to the

144 at Class 12.

No Lower Gap Computational Time

Classes Bound CGH RFH F RFH T HH CGH RFH F RFH T HH

Class 10 10 — — — — 1793.06 1744.81 1796.12 1799.18

Class 11 5 45.52 45.53 46.83 46.25 1792.64 1629.27 266.03 388.65

Class 12 6 2.58 2.61 2.70 2.73 1625.81 1136.01 45.61 58.52

Sum/Average 21 24.05 24.07 24.76 24.49 1737.17 1503.36 702.59 748.78

Table 3.9: Number of Instances with No Lower Bound and Average for Gap and Computational

Time: Length of Pieces.

3.3.3.3 Capacity Constraint

In this analysis, the classes consider variations in terms of the the capacity constraint,

i. e, variations related to the setup time of final products (small / high) and tightness of

capacity (loose / normal / tight). The same variations are also considered in the capacity

constraints related to objects and pieces, due to relationship in the parameters.

The capacities are of crucial importance in industrial environments, due to limitations

caused in the production or even to a better consumption of the resources, in this way,

we consider evaluating the variations related to the capacity constraint. In lot-sizing

problems, variations in the capacity and setup time have a considerable effect in the

solution quality (Trigeiro et al., 1989).

In Table 3.10, it is shown the 6 classes obtained with the data variation, totalling 60

instances. The remain of the data variations are fixed in the following values:

• number of final products: F = 7;

• number of pieces: P = 2 ∗ F (each final product needs 2 different pieces, with the

number of different piece equal to twice the number of final products);

• setup cost of final product: scft ∈ [400, 1200];

• setup cost of cutting pattern: uoj = 5 ∗ scft ;
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• production cost of cutting pattern: coj = 1;

• setup cost of objects: scot = 10 ∗ scft ;

• pieces length: lp ∈ [0.01, 0.8] ∗ Lo;

Capacity Constraint

Description Description

Classes stft /CapFt Classes stft /CapFt

Class 13 SL Class 16 HL

Class 14 SN Class 17 HN

Class 15 ST Class 18 HT

Table 3.10: Classes of Instances: Capacity Constraint.

Table 3.11 shows the sum of instances with no lower bound found by the column

generation procedure, the average for the gap and computational time for each class and

heuristic. In order to generate the matrix of cutting patterns at Level 2 of the general

integrated problem, the heuristic approaches spent around 0.19 seconds in the column

generation procedure, in which for 21 instances it is not possible to find a lower bound,

i. e., the column generation stops by 5 iterations without improvements in the objective

function value of the restricted master problem. These 21 instances are the same instances

for all the heuristic approaches and are removed from the gap calculations.

In this analysis, a feasible solution is found by all the instances. On overall average,

the RFH F obtain better results for the gap followed by the CGH, however, the solution

approaches, also in this analysis, present quite similar behavior, in which the difference

between the best and the worst results is not bigger than 3%. We can see a slight

improvement of 0.3% in the gap by the HH compared to the RFH T. The decomposition

approaches, for all the classes have a time consumption smaller than the CGH, in which

the difference is up to 85% considering the RFH T. There is a slight increase in the

computational time of the HH compared to the RFH T.

The impact of the data in the computational results is given by two sides. Considering

small setup time (Classes 13, 14 and 15), the difficulties in the instances arise to loose and

tight capacity, obtaining high values for the gap. Considering high setup time (Classes 16,

17 and 18), there is an increase in the quality of the solution to loose and tight capacity,

in this way, the normal capacity presents the high values for the gap.
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No Lower Gap Computational Time

Classes Bound CGH RFH F RFH T HH CGH RFH F RFH T HH

Class 13 3 73.62 73.66 75.88 75.35 1791.84 1604.79 128.87 262.70

Class 14 5 42.75 42.56 43.25 43.29 1792.21 1500.22 229.58 411.72

Class 15 3 83.26 82.53 85.18 84.66 1792.48 1655.68 497.42 611.22

Class 16 1 51.78 52.07 52.82 52.56 1792.83 1495.40 120.30 230.19

Class 17 4 70.59 70.81 72.67 72.72 1792.32 1321.38 138.06 276.46

Class 18 5 53.69 53.08 54.32 54.38 1792.67 1564.77 287.41 419.87

Sum/Average 21 62.61 62.45 64.02 63.83 1792.39 1523.71 233.60 368.69

Table 3.11: Number of Instances with No Lower Bound and Average for Gap and Computational

Time: Capacity Constraint.

3.3.3.4 Costs in the Objective Function

The variations related to the costs in the objective function considering the different

levels are explored in this analysis, which consist of the setup cost of final products (small

/ high), setup cost of cutting patterns (small / high), setup costs of objects (small / high)

and waste cost of cutting patterns (small / medium / high). The aim of this analysis is

to evaluate the impact of the data variation related to the costs present in the objective

function in the quality of the solution and time consumption. For lot-sizing problems, the

setup cost has a slight effect in the solution quality and, high values to setup cost lead to

high values for gaps. Table 3.12 presents the 24 classes obtained with the data variation

with a total of 240 instances. The remain of the data variation are fixed in the following

values:

• number of final products: F = 7;

• number of pieces: P = 2 ∗ F (each final product needs 2 different pieces, with the

number of different piece equal to twice the number of final products);

• setup time of final product: stft ∈ [21, 65];

• capacity of final products production: CapFt = capt/1.1;

• pieces length: lp ∈ [0.01, 0.8] ∗ Lo.

In Table 3.13, the average for the gap and computational time for each class and each

heuristic approach are presented, as well as, the sum in each class of the instances with no

lower bound. The solution approaches spent around 0.17 seconds to generate the matrix

of cutting patterns by the column generation procedure, with 54 instances of which the
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Costs in the Objective Function

Description Description

Classes scft /u
o
j/sc

o
t/c

o
j Classes scft /u

o
j/sc

o
t/c

o
j

Class 19 SSSS Class 31 HSSS

Class 20 SSSM Class 32 HSSM

Class 21 SSSH Class 33 HSSH

Class 22 SSHS Class 34 HSHS

Class 23 SSHM Class 35 HSHM

Class 24 SSHH Class 36 HSHH

Class 25 SHSS Class 37 HHSS

Class 26 SHSM Class 38 HHSM

Class 27 SHSH Class 39 HHSH

Class 28 SHHS Class 40 HHHS

Class 29 SHHM Class 41 HHHM

Class 30 SHHH Class 42 HHHH

Table 3.12: Classes of Instances: Costs in the Objective Function.

procedure is not able to find a lower bound and these instances are removed from the

calculations. A feasible solution is found for all the instances in all the solution methods.

The heuristic approaches again have an analogous behavior in each one of the classes,

which is more similar in this analysis compared to the other, with a slight gain of the

CGH. However, the computational time spent is on overall average up to 90% higher than

the RFH T.

Considering all the variations in the costs, we can notice a considerable increase in the

gap, when the setup cost of final products is high. The other variations in the costs do

not present significant variations in the computational results.

Table 3.14 shows the average of the costs in the objective function related to objects

(setup and stock), cutting patterns (setup and waste), pieces (stock) and final products

(setup and stock). We can see that a huge percentage of the costs in the objective function

is related to waste of the cutting patterns followed by the stock of pieces and setup of

cutting patterns. The decomposition heuristics considering the time-oriented strategy

look at some point only locally related to the time horizon and the heuristics make more

setups in order to satisfy the demand of final products and reduce the costs related to the

waste, hence reduces the stock of final products.
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No Lower Gap Computational Time

Classes Bound CGH RFH F RFH T HH CGH RFH F RFH T HH

Class 19 4 6.70 6.75 6.77 6.77 555.13 249.26 28.00 46.25

Class 20 6 1.62 1.64 1.65 1.64 181.22 72.24 4.04 5.98

Class 21 1 3.10 3.12 3.15 3.15 359.46 122.14 54.67 82.56

Class 22 1 5.09 5.12 5.16 5.15 198.59 72.87 4.29 7.44

Class 23 1 2.68 2.69 2.71 2.73 12.66 5.76 1.23 2.14

Class 24 3 1.14 1.14 1.17 1.16 4.63 3.34 0.84 1.46

Class 25 3 5.38 5.41 5.46 5.44 586.11 306.53 10.83 15.80

Class 26 2 1.84 1.87 1.90 1.90 11.99 7.60 1.81 2.94

Class 27 0 3.13 3.14 3.17 3.18 540.37 276.03 59.95 118.33

Class 28 3 7.05 7.07 7.15 7.12 125.61 131.13 10.50 13.66

Class 29 1 6.28 6.32 6.37 6.36 443.35 120.95 7.71 11.66

Class 30 3 1.30 1.32 1.35 1.36 283.70 121.70 13.31 28.54

Class 31 3 17.50 17.55 17.51 17.45 1792.33 1446.60 348.39 548.55

Class 32 2 21.20 21.41 21.46 21.57 1373.94 971.93 199.33 231.72

Class 33 3 13.30 13.28 13.56 13.45 680.27 497.72 24.82 31.44

Class 34 1 62.25 62.41 62.74 62.83 1792.10 1503.76 537.68 636.56

Class 35 1 11.80 11.88 11.94 11.96 1400.22 987.11 66.91 83.98

Class 36 0 15.65 15.78 15.80 15.82 1217.62 693.44 36.58 47.21

Class 37 7 62.24 62.24 62.93 63.55 1792.90 1411.11 182.93 298.80

Class 38 1 12.74 12.72 13.01 12.92 1742.24 1033.53 73.08 134.26

Class 39 1 23.97 25.29 24.26 24.26 1471.70 983.09 48.87 70.64

Class 40 4 32.14 32.18 32.80 32.70 1792.65 1659.40 201.71 322.06

Class 41 2 42.00 41.87 42.55 42.54 1527.73 1067.51 212.57 296.01

Class 42 1 26.93 27.02 27.83 27.85 1450.00 926.54 52.68 111.66

Sum/Average 54 16.13 16.22 16.35 16.37 889.02 611.30 90.95 131.23

Table 3.13: Number of Instances with No Lower Bound and Average for Gap and Computational

Time: Costs in the Objective Function.

3.3.3.5 Performance Profile

This section presents an overall overview of the computational study performed in this

chapter with the use of the performance profile (Dolan and Moré, 2002), which provides

a tool to facilitate the exhibition and the interpretation of comparisons.

Consider I as the set of ni instances and M as the set of nM solution methods described

in Section 3.2. The values obtained for each instance (gap and computational time) i ∈ I

using the m ∈ M solution methods is denoted by vi,m. For each solution method m ∈ M

a comparison of its performance on the instance i ∈ I relative to the performance of the
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Costs in the Percentage of Costs

Objective Function CGH RFH F RFH T HH

Objects Costs - Setup 0.55 0.55 0.56 0.56

Objects Costs - Stock 0.03 0.03 0.03 0.03

Cutting Patterns - Setup 1.13 1.15 1.20 1.21

Cutting Patterns - Waste 92.73 92.71 92.63 92.64

Pieces - Stock 4.78 4.79 4.81 4.79

Final Products - Setup 0.31 0.33 0.34 0.34

Final Products - Stock 0.46 0.45 0.42 0.42

Table 3.14: Percentage of Costs in the Objective Function.

Parameters Values Parameters Values

T 20 dpt 0

O 1 stojt stft

dft [0,125];[0,200] vtojt vtft

vcft 0 dot 0

hcft [0.8, 1.2] vcot 0

vtft 1 hcot 0.02coj

rpf {1,2} stojt stft

hcpt hcft /r
p
f vtojt vtft

Table 3.15: Fixed Values of the Parameters for all the Classes.

best solution method is given by the following performance ratio:

ri,m =
vi,m

min
m∈M

{vi,m}

.

If the solution method m does not find the corresponding value for an instance i then

ri,m is defined as rM , which is set at one unit more than the worst value of the performance

ratio found for all the instances in all the solution methods. The performance of the

solution method m compared to other methods is given by the performance profile:

ρm(τ) =
1

ni

|{i ∈ I : ri,m ≤ τ}|

with |.| representing the number of elements in the set. The performance profile ρm(τ)

is a function that is associated to a given value τ ∈ R, and indicates the fraction of

instances solved by the solutio method m with a performance within a factor τ of the

best performance found. With this, each model has a curve that shows its performance
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Parameters

Classes F P scft stft CapFt uoj coj scot CapCt or CapOt lp

Class 1 5 F [400,1200] [21,65] capt/1.1 5scft 1 10scft 2CapFt [0.01, 0.8]Lo

Class 2 5 F [400,1200] [21,65] capt/1.1 5scft 1 10scft 2CapFt [0.01, 0.8]Lo

Class 3 5 2F [400,1200] [21,65] capt/1.1 5scft 1 10scft 2CapFt [0.01, 0.8]Lo

Class 4 7 F [400,1200] [21,65] capt/1.1 5scft 1 10scft 2CapFt [0.01, 0.8]Lo

Class 5 7 F [400,1200] [21,65] capt/1.1 5scft 1 10scft 2CapFt [0.01, 0.8]Lo

Class 6 7 2F [400,1200] [21,65] capt/1.1 5scft 1 10scft 2CapFt [0.01, 0.8]Lo

Class 7 10 F [400,1200] [21,65] capt/1.1 5scft 1 10scft 2CapFt [0.01, 0.8]Lo

Class 8 10 F [400,1200] [21,65] capt/1.1 5scft 1 10scft 2CapFt [0.01, 0.8]Lo

Class 9 10 2F [400,1200] [21,65] capt/1.1 5scft 1 10scft 2CapFt [0.01, 0.8]Lo

Class 10 7 2F [400,1200] [21,65] capt/1.1 5scft 1 10scft 2CapFt [0.01, 0.2]Lo

Class 11 7 2F [400,1200] [21,65] capt/1.1 5scft 1 10scft 2CapFt [0.01, 0.8]Lo

Class 12 7 2F [400,1200] [21,65] capt/1.1 5scft 1 10scft 2CapFt [0.2, 0.8]Lo

Class 13 7 2F [400,1200] [5,17] capt/0.75 5scft 1 10scft 2CapFt [0.01, 0.8]Lo

Class 14 7 2F [400,1200] [5,17] capt 5scft 1 10scft 2CapFt [0.01, 0.8]Lo

Class 15 7 2F [400,1200] [5,17] capt/1.1 5scft 1 10scft 2CapFt [0.01, 0.8]Lo

Class 16 7 2F [400,1200] [21,65] capt/0.75 5scft 1 10scft 2CapFt [0.01, 0.8]Lo

Class 17 7 2F [400,1200] [21,65] capt 5scft 1 10scft 2CapFt [0.01, 0.8]Lo

Class 18 7 2F [400,1200] [21,65] capt/1.1 5scft 1 10scft 2CapFt [0.01, 0.8]Lo

Class 19 7 2F [25,75] [21,65] capt/1.1 2scft 1 5scft 2CapFt [0.01, 0.8]Lo

Class 20 7 2F [25,75] [21,65] capt/1.1 2scft 5 5scft 2CapFt [0.01, 0.8]Lo

Class 21 7 2F [25,75] [21,65] capt/1.1 2scft 10 5scft 2CapFt [0.01, 0.8]Lo

Class 22 7 2F [25,75] [21,65] capt/1.1 2scft 1 10scft 2CapFt [0.01, 0.8]Lo

Class 23 7 2F [25,75] [21,65] capt/1.1 2scft 5 10scft 2CapFt [0.01, 0.8]Lo

Class 24 7 2F [25,75] [21,65] capt/1.1 2scft 10 10scft 2CapFt [0.01, 0.8]Lo

Class 25 7 2F [25,75] [21,65] capt/1.1 5scft 1 5scft 2CapFt [0.01, 0.8]Lo

Class 26 7 2F [25,75] [21,65] capt/1.1 5scft 5 5scft 2CapFt [0.01, 0.8]Lo

Class 27 7 2F [25,75] [21,65] capt/1.1 5scft 10 5scft 2CapFt [0.01, 0.8]Lo

Class 28 7 2F [25,75] [21,65] capt/1.1 5scft 1 10scft 2CapFt [0.01, 0.8]Lo

Class 29 7 2F [25,75] [21,65] capt/1.1 5scft 5 10scft 2CapFt [0.01, 0.8]Lo

Class 30 7 2F [25,75] [21,65] capt/1.1 5scft 10 10scft 2CapFt [0.01, 0.8]Lo

Class 31 7 2F [400,1200] [21,65] capt/1.1 2scft 1 5scft 2CapFt [0.01, 0.8]Lo

Class 32 7 2F [400,1200] [21,65] capt/1.1 2scft 5 5scft 2CapFt [0.01, 0.8]Lo

Class 33 7 2F [400,1200] [21,65] capt/1.1 2scft 10 5scft 2CapFt [0.01, 0.8]Lo

Class 34 7 2F [400,1200] [21,65] capt/1.1 2scft 1 10scft 2CapFt [0.01, 0.8]Lo

Class 35 7 2F [400,1200] [21,65] capt/1.1 2scft 5 10scft 2CapFt [0.01, 0.8]Lo

Class 36 7 2F [400,1200] [21,65] capt/1.1 2scft 10 10scft 2CapFt [0.01, 0.8]Lo

Class 37 7 2F [400,1200] [21,65] capt/1.1 5scft 1 5scft 2CapFt [0.01, 0.8]Lo

Class 38 7 2F [400,1200] [21,65] capt/1.1 5scft 5 5scft 2CapFt [0.01, 0.8]Lo

Class 39 7 2F [400,1200] [21,65] capt/1.1 5scft 10 5scft 2CapFt [0.01, 0.8]Lo

Class 40 7 2F [400,1200] [21,65] capt/1.1 5scft 1 10scft 2CapFt [0.01, 0.8]Lo

Class 41 7 2F [400,1200] [21,65] capt/1.1 5scft 5 10scft 2CapFt [0.01, 0.8]Lo

Class 42 7 2F [400,1200] [21,65] capt/1.1 5scft 10 10scft 2CapFt [0.01, 0.8]Lo

Table 3.16: Summary of all the Classes and the Variations of the Parameters in the Computa-

tional Study.

for each level τ . Due to the fact that rM can be considerably large, the logarithm scale is

used to represent the performance profile. It is done as follows (Dolan and Moré, 2002):

τ 7→
1

ni

|{i ∈ I : log2(ri,m) ≤ τ}|
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.

The τ factor varies in [0, rM), with rM = 1 +max{log2(ri,m) : i ∈ I and m ∈M}.

Figures 3.4 and 3.5 show performance profiles obtained with the gap and computational

time for all the instances and heuristics in this computational study. As we observed in

the previous analysis, the CGH showed the best results for most of the analysis and this

is also confirmed by performance profile, more precisely in almost 50% of the instances,

the CGH obtained the best results for gap. The HH and RFH T obtained quite similar

results in terms of gap.

In this analysis, we are able to see that, although the RFH T finds better results for

the gap in just 6% of the instances, the RFH T is from the best results a value of τ

small than 0.5, more precisely τ = 0.19. In other words, to value of τ bigger than 0.19,

the RFH T presents the better performance than any one of the heuristics, hence, its

performance curve dominates the other (see Figure 3.4).

Considering the computational time (see Figure 3.5), the RFH T showed to be faster

in 85% of the instances and its performance curve dominates the others in all the anal-

ysis, followed by the HH. An approximated value for each heuristic related to the best

performance to gap and computational time are presented in Table 3.17.
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Figure 3.4: Performance Profile: Gap.
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Figure 3.5: Performance Profile: Computational Time.

τ = 0 CGH RFH F RFH T HH

Gap 0.5 0.17 0.06 0.04

Computational Time 0.05 0.02 0.85 0.07

Table 3.17: Performance Profile Values to Gap and Computational Time.

3.3.3.6 Additional Computational Results

As we observed in the previous analysis, the Column Generation Based Heuristic

(CGH ) finds considerably good results when compared to the other heuristic approaches

at a price of a high computational time. In this section, we performed an analysis with the

purpose of comparing the relative quality of these solutions by considering the same com-

putational time. For this, the Column Generation Based Heuristic (CGH ) is compared

with the Relax-and-Fix Based Heuristic with time-oriented decomposition (RFH T ) con-

sidering all the 420 instances of this computational study and the computational time

used by the RFH T, which corresponds to the smallest computational time between all

the solution approaches.
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Table 3.18 shows the sum for the number of instances in which the heuristics are not

able to find a feasible solution and the average for the gap in each of the analysis related

to capacity constraints, costs in the objective function, length of pieces and size of the

problem. We can see that the number of instances with no feasible solution increases

to the CGH and the quality of these solutions is not kept for the same computational

time used by RFH T. The instances in which the heuristics are not able to find a feasible

solution are removed from the calculation. Considering the analysis related to capacity

constraints and length of pieces, the CGH found a gap slight better than the RFH T, due

to a overall overview of the problem compared to the decomposition heuristic. However,

to other analysis (costs and size of the problem), the RFH T found gaps up to 34%

better. On overall average, the gains considering the RFH T are around 5%, which

shows a considerable advance of the decomposition approaches compared to the linear

programming models.

No Feasible Solution Gap

Analysis CGH RFH T CGH RFH T

Size Problem 16 2 35.88 35.14

Size Pieces 0 0 26.76 27.21

Capacity 0 0 64.28 64.78

Costs 4 0 24.18 15.86

Sum/Average 20 2 37.77 35.75

Table 3.18: Number of Instances with No Feasible Solution and Average for Gap.

3.4 Conclusions and Research Directions

In this chapter, we provide a literature review and classification of solution methods

to the integrated lot-sizing and cutting stock problems, in order to highlight the main

strategies used in this field. The solution methods are classified according to two aspects,

which are the way in which the cutting patterns are addressed in the solution methods

and the approach employed to find a feasible solution to the mixed-integer problem. The

literature is split into a priori cutting pattern generation and iteratively cutting pattern

generation, whereas the solution methods are classified as exact or heuristic approaches.

The literature review shows that most of the studies considers the cutting patterns gen-

erated iteratively and heuristic methods.

Based on the literature review and considering the GILSCS problem, we are interested

in approaches that overcome the difficulties from both problems, which are high number of
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the variables in the cutting stock problem and takes advantages of multi-levels structures

in the lot-sizing problem at the same time that deals wisely with the binary values of the

setup variables. Two strategies are proposed, which are the well-known column generation

procedure and decomposition heuristics, more precisely, relax-and-fix procedure. The

column generation is applied at Level 2 of the GILSCS problem, whereas the Relax-and-

Fix is applied in the three levels of the GILSCS problem.

The first solution method, called Column Generation Based Heuristic (CGH ), consists

of applying the column generation procedure at Level 2 in order to find the matrix of

cutting patterns and the resulting mixed-integer problem is solved by an optimization

package in order to obtain a feasible solution for the GILSCS problem. In the second

solution method, called Relax-and-Fix Based Heuristic (RFH ), the column generation is

also applied as first step in order to obtain the matrix of cutting patterns and to obtain

a feasible solution for the GILSCS problem, the relax-and-fix procedure is applied. The

decomposition of the problem is performed by a product-oriented decomposition (RFH F )

and a time-oriented decomposition (RFH T ). Another solution method proposed in this

chapter also applies the column generation as a first step in order to obtain the matrix of

cutting patterns and also interacts the two previous solution methods addressed, i. e., the

column generation and the relax-and-fix. This solution method is called Hybrid Heuristic

(HH ).

In order to analyze the solution methods, a complete set of data is generated based

on two data sets from the literature, since no data set for this kind of problem has

already been proposed. The computational study is performed around 4 analysis which

are related to the capacity constraint, costs in the objective function, length of pieces and

size of the problem. The analysis are evaluated over some aspects, such as, number of

feasible solutions, gap and computational time.

In the computational study we are able to see that the column generation procedure

is considerably fast to find a lower bound for the general integrated problem, however, for

some instances, the column generation have some difficulties to find a lower bound, due to

the tailing-off effect. The CGH and RFH F had some troubles to find a feasible solution

considering a high number of final products. The results showed that, in terms of the size

of the problem and costs in the objective function analysis, the CGH presented better

results for upper bound and gap. Considering the analysis related to the length of pieces

and capacity constraints, the better results are recovered by the RFH T and RFH F,

respectively. The HH presented slight better results for gap with a small increase in the

computational time compared to the RFH T. We noted that, even considering different

analysis, in general, the procedures present quite similar results to upper bound and

gap. Based in its performance profile, the CGH obtain the best results, in terms of
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gap, however, from a certain point, the RFH T is able to dominate the remaining of the

approaches. The same conclusion is not possible considering the computational time, in

which the time consumption to the CGH is considerable high compared to the RFH T.

The CGH and the RFH T are also compared considering the same computational

time used by the RFH T. The results showed that the number of instances without a

feasible solution is 10 times more in the CGH. The RFH T is able to find gap up to 34%

better, in which in a overall average is around 5%.

The impact of the data set in the computational results is observed in each one of

the analysis in which the number of final products considerably increase the difficulty of

the problem and computational time, i. e., the number of instances without a feasible

solution increases with the increases of the number of final products. The quality of the

gap is influenced by the length of pieces compared to the size of the object, in other words,

as the gap decreases, the size of the pieces increases, at the price of an increase in the

percentage of waste. The length of pieces also influences directly in the quality of the

column generation, i. e., in the number of instances in which it is not possible to find a

lower bound. For small length of pieces, it is more difficult to find a lower bound. The

gap is also influenced by the setup costs to final products in objective function, in which

the higher the setup costs are, the more difficult the instances.

We can see from the computational results that, in general, the heuristic approaches

find gaps considerably high. Therefore, as future research we intend to apply improved

heuristics, such as, fix-and-optimize, in order to improve the quality of the solution to the

GILSCS problem, as well as, heuristics based on decompositions per level of the general

integrated problem. It is worth mentioning that, a general calculation to the lower bound

and strategies of stabilization in the column generation procedure applied to the GILSCS

problem are also important points to be researched.
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Chapter 4

Conclusions and Future Perspectives

In this thesis, the integration of two problems is the subject of interest, which consists

in integrating of the lot-sizing problem and the cutting stock problem. The basic idea of

integrated problems is to consider, simultaneously, the decisions related to both problems

so as to capture the interdependency between these decisions in order to obtain a better

global solution.

We propose a general formulation to the integrated lot-sizing and cutting stock problem

which is composed of three levels and several time periods. In each one of the levels there

is a different type of production. At Level 1 (first level), we have a lot-sizing problem,

which is related to the production of objects. At Level 2 (intermediate level), we have

a cutting stock problem based on the idea of cutting patterns, which is responsible for

cutting the objects into pieces and theses pieces are used as an input to Level 3 (final

level), which consists of a lot-sizing problem for the production of final products. The

model incorporates some features which enables us to classify the current literature in

this field. The classification is based on two aspects: the integration across multiple time

periods and the integration between production levels. Other features are also evaluated,

such as the dimensionality in the cutting process, capacity constraint and setups. We are

also capable to point out, based on the literature review and on the formulation of the

general integrated model, new future research directions to integrated problems.

The solution methods over the years have received support from the improvements of

optimization theory, software and hardware, which provide better results and a bigger in-

tegration among the production processes. In this thesis, we present a literature review of

the solution methods applied to the integrated problem and we propose different solution

approaches to solve the general integrated model. The solution methods are based on

well-known procedures from the literature and intended to overcome the difficulties from

both problems, which are the high number of the variables in the cutting stock problem

and the integrality of the variables, at the same time that take advantages of multi-levels
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structure.

Four strategies are proposed to solve the general integrated problem, in which all of

them initiate in a common step that consists of the column generation procedure at Level

2. The solution approaches apply integer programming and relax-and-fix procedure to

find a feasible solution to the general problem. Another solution method proposed in

this thesis interacts the column generation and the relax-and-fix in a hybrid procedure.

In order to analyze the solution methods, a computational study is performed around

four analysis which are in terms of the size of the problem, length of pieces, capacity

constraints and costs in the objective function. The computational study shows that the

column generation have some difficult into finding a lower bound, due to the tailing-off

effect. We also noted that, even considering different analysis, in general, the procedures

presents quite similar results to upper bound and gap. However, the same conclusion is

not possible considering the computational time, in which the time consumption to the

approaches based on the relax-and-fix procedures is substantially shorter compared to

integer programming. The impact of the data set in the computational results is observed

in each one of the analysis.

We also present in this thesis (see Appendix A), a study of mathematical models

proposed in the literature for modelling the lot-sizing problem and the one-dimensional

cutting stock problem. The aim is to propose and compare new integrated models pointing

out the advantages of each model, as well as, the impact of the data set on the solutions.

For the lot-sizing problem, we study the model proposed by Wagner and Whitin (1958),

the model proposed by Trigeiro et al. (1989) and a reformulation of the lot-sizing problem

proposed by Eppen and Martin (1987). For the cutting stock problem, extensions of the

models proposed by Kantorovich (1960), Valério de Carvalho (1999, 2002) with reduction

criteria and Gilmore and Gomory (1961, 1963) have been proposed to incorporate multiple

periods and several types of objects. As solution methods, we present two strategies. The

first one uses an optimization package for finding the solution and in the second one, the

column generation technique is used in a heuristic strategy to obtain a feasible solution.

The use of the reformulated lot-sizing model shows significant improvements in the lower

bound compared to the classical lot-zing model. In general, the models integrated with the

classical lot-sizing problem and the cutting stock problem based on Valério de Carvalho

(1999, 2002) obtained the largest number of feasible solutions compared to other math-

ematical models in all analysis. It is also possible to generalize the fact that the models

that integrate with the model proposed by Kantorovich (1960) have produced poor results

in all experiments. Although the integration with the Gilmore and Gomory model does

not show the best results for all classes, the proximity to the best results contributes to

the achievement of best overall average.



94

An application of the integrated lot-sizing and cutting stock problem is also presented

in this thesis (see Appendix B), in which a mathematical model is proposed in order to

analyze the main decisions of the production process of small furniture factories. The pro-

posed model is compared to practice simulation, which consists of solving each problem

separately and sequentially. A column generation technique is used to solve the problems

in each approach. Good overall results are obtained when comparing the solutions of

the integrated problem with the approach of sequentially solving the problems. Further

computational tests are carried out in order to evaluated the impact of the different costs

in the objective function for each approach, which are variations in the inventory costs of

pieces, costs of objects and inventory costs of final products. The results showed that, in

general, the integrated approach is better and the variations on the costs of plates and

inventory costs of final products do not have a strong impact on the differences among

the approaches. As a main conclusion, the computational study shows that the obtained

solution can be put into practice, i. e., the models can support the main decisions taken

and can bring improvements to the factory’s production planning decisions.

Aiming to extend this work, we suggest as future research:

• The consideration of reformulations, such as, shortest path and facility location,

applied to the GILSCS model.

• The consideration of higher dimensions to the cutting process in the GILSCS model.

• An integration of the GILSCS model with other processes, such as the supplier

selection, in which the choice of different suppliers may be based on the quality, price

and speed of the orders, or the routing and packing/loading of the final products to

the customers.

• The inclusion of the cutting pattern sequence in the GILSCS model that may be

related to a specific objective function, such as, the minimization of the knives

changes, where each insertion and removal of knives takes time to be processed.

• The application of improved heuristics, such as, fix-and-optimize, as well as, heuris-

tics based on decompositions per level in order to improve the quality of the solution

to the GILSCS problem.

• A general calculation to the lower bound in the column generation procedure con-

sidering the different mathematical models in the literature.

• Strategies of stabilization in the column generation procedure applied to the GILSCS

problem.
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S. Henn and G. Wäscher. Extensions of cutting problems: setups. Pesquisa Operacional, 33:133

– 162, 08 2013.

M. Hifi. Special issue: Cutting and packing problems. Studia Informatica Universalis, 2(1):

1–161, 2002.

A. I. Hinxman. The trim-loss and assortment problems: A survey. European Journal of Opera-

tional Research, 5(1):8 – 18, 1980.

R. Jans. Solving lot-sizing problems on parallel identical machines using symmetry-breaking

constraints. INFORMS Journal on Computing, 21(1):123–136, 2009.

R. Jans and Z. Degraeve. Improved lower bounds for the capacitated lot sizing problem with

setup times. Operations Research Letters, 32(2):185 – 195, 2004.

R. Jans and Z. Degraeve. Meta-heuristics for dynamic lot sizing: A review and comparison of

solution approaches. European Journal of Operational Research, 177(3):1855 – 1875, 2007.

R. Jans and Z. Degraeve. Modeling industrial lot sizing problems: a review. International

Journal of Production Research, 46(6):1619–1643, 2008.

L. V. Kantorovich. Mathematical methods of organizing and planning production. Management

Science, 6(4):366 – 422, 1960.



Bibliography 100

B. Karimi, S. M. T. Fatemi Ghomi, and J. M. Wilson. The capacitated lot sizing problem: a

review of models and algorithms. Omega, 31(5):365 – 378, 2003.

J. Krarup and O. Bilde. Plant location, set covering and economic lot size: An 0 (mn) - algorithm

for structured problems. In L. Collatz, G. Meinardus, and W. Wetterling, editors, Numerische

Methoden bei Optimierungsaufgaben Band 3, volume 36 of International Series of Numerical

Mathematics, pages 155 – 180. Birkhäuser Basel, 1977.
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ABSTRACT. Production processes comprising both the lot-sizing problem and the cutting stock problem

are frequent in various industrial sectors. However these problems are usually treated separately, which can

generates suboptimal overall solution and consequently causes production losses. In this paper, we propose

different mathematical models for the integrated problem combining alternative models for the lot-sizing

and the cutting stock problem, in order to evaluate and indicate the impact of these changes on the models’

performance. An extensive computational study is done using randomly generated data and as a solution

strategy we used a commercial optimization package and the application of a column generation technique.

Keywords: Capacitated Lot-Sizing Problems, One-Dimensional Cutting Stock Problem, Column Genera-

tion.

1 INTRODUCTION

Technological advances and increasing competition in industries have become worldwide phe-
nomena. Some prominent aspects of these advances are the emphasis on knowledge and the
development of new technologies. Inserted on this context, mathematical models that describe
and improve the production processes have been studied and used as tools to support decision
making in the business environment. Among the various decision processes, this work is part
of the tactical/operational planning of production with the lot-sizing problem and cutting stock
problem. The Lot-Sizing Problem (LSP) considers the tradeoff between the setup and inventory
costs to determine at minimal cost the size of production lots to meet the demand of each final
product, while the cutting stock problem (CSP) involves the cutting of large objects into smaller
items, so as to minimize the total loss of material.

The literature mostly deals with these two problems separately. However, in industrial sectors
such as furniture, paper and aluminum, the lot-sizing and cutting stock problems are found in
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consecutive phases. For these cases, a decoupled vision of the problems usually used by com-
panies, can provide good local solutions but, at the end of planning processes, these solutions
may conflict with the global objectives and feasibility of production. This fact was observed in
Gramani et al. (2009) in the furniture industry. In this case, solutions generated from the lot-
sizing problem can lead to infeasible solutions for the cutting stock problem with regard to the
production capacity of the cutting machine. If, on the other hand, for a given period, the pro-
duction exceeds demand, this circumstance may generate cutting patterns with less loss, and a
decrease of setup costs. However, there is an increase of inventory costs and physical space for
allocation of items to be stored will be needed, which may not exist in practice. For this reason,
the relevance of these issues in the industrial sectors and the benefits in dealing with problems in
an integrated way makes this an appropriate research topic today. Motivated by this, the present
paper proposes mathematical models and solution methods for solving the integrated lot-sizing
and cutting stock problem.

In this work, the capacitated lot-sizing problem is modeled using the mathematical model pro-
posed by Trigeiro et al. (1989), denoted here by CL. We also considered the variable redefinition
strategy (Eppen & Martin, 1987) which reformulates the lot-sizing problem as a shortest path
problem. This reformulation is called SP. The idea of this variable redefinition was originally
proposed for uncapacitated problems and Jans & Degraeve (2004), Jans (2009), Fiorotto & de
Araujo (2014) and Melega et al. (2013) extended this to cases with capacity constraints, related
parallel machines, unrelated parallel machines and various plants, respectively. More informa-
tion on reformulation for lot-sizing problems can be found in Denizel et al. (2008), which shows
several theoretical and computational results between some reformulations.

To model the one-dimensional cutting stock problem, we consider three mathematical models
from the literature. The first one is the model developed by Kantorovich (1960), here denoted
by KT. This model is also called the generalized assignment formulation for CSP (Degraeve &
Peeters, 2003) and determines the best way to cut objects to meet the demand, minimizing the
number of objects used. For this model, an upper bound on the number of objects is considered.
The second model dealt with, and perhaps the best known among the academic community, is
the one proposed by Gilmore & Gomory (1961, 1963) denoted here by GG. This model produces
good lower bounds when compared to the KT model, however it has an large number of variables,
which indicates the use of column generation to deal with this difficulty.

The third model was proposed by Valério de Carvalho (1999, 2002), here denoted VC. The au-
thors propose an alternative mathematical model for the one-dimensional cutting stock problem
based on an arc flow problem. Thus, finding a valid cutting pattern for the cutting stock problem is
equivalent to finding a path in a directed acyclic graph. The authors also consider additional con-
straints to guarantee that demand is satisfied. This model is efficient in the sense that it presents
a linear relaxation as good as the Gilmore and Gomory model.

Furthermore, the cutting stock models described above were originally proposed for a single
object type so they are extended to consider several types of objects in stock (MO from multi-
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objects). In a second part of this study, these models are integrated into the uncapacitated lot-
sizing problem proposed by Wagner & Whitin (1958), here called WW.

Next, in Section 2, there is a literature review with the major studies that address the lot-sizing
and the cutting stock problem in an integrated way. The Sections 3, 4 and 5 describe the proposed
integrated models with capacity constraints, several object types and a reformulation for the lot-
sizing, respectively. In Section 6, the solution strategies are described. The computational results
are presented in Section 7. And finally, the conclusions are presented in Section 8.

2 LITERATURE REVIEW

The importance of addressing the problems in an integrated way has become increasingly ev-
ident in the literature and is closely related to industrial applications. Possibly Farley (1988)
had been the first paper that treats these problems in an integrated way. The author addressed
the problem in an clothing industry, where the problem involves irregular two-dimensional cuts.
Hendry et al. (1996) conducted a case study on a copper components factory. The objective was
to investigate alternative methods of generating production plans for casting in order to minimize
costs and meet demand. Nonås & Thorstenson (2000, 2008) studied the problem coupled with
the addition of setup cost in a Norwegian company that produces off-road trucks. The company
needed a production plan that minimizes the total cost in the cutting process and in the produc-
tion line. Therefore, the authors proposed a model and different solution methods. Gramani &
França (2006) formulated a mathematical model for the integrated problem in a furniture industry
and proposed a solution method based on an analogy with the shortest path problem. Compu-
tational results compared the proposed method to the method used in the industry. Poltroniere
et al. (2008) studied the integrated problem applied to the paper industry. The authors analyzed
the production process and proposed a mathematical model for machines operating in paral-
lel and presented two heuristics based on Lagrangian relaxation considering the problems in a
decoupled way.

Ghidini & Arenales (2009) treated the coupled problem applied to the furniture industry. To
solve the problem, which considers the final composition of the products, the authors proposed
two heuristics based on the primal simplex method with column generation. A procedure for
obtaining an integer solution has been proposed. Gramani et al. (2009) proposed a mathematical
model that considers final products and a capacity constraint on the saw machine in a furniture
industry. Two solution methods were proposed. One is a decomposition heuristic and the other
one is a Lagrangian based heuristic, in which the resulting problem is decomposed into two
subproblems. A smoothing heuristic to recover feasibility is used. Gramani et al. (2011) extend
their model from 2009 to consider cut items inventory and this model decomposed into two, one
for the lot-sizing problem and one for the cutting stock problem in order to portray the solution
method that industries practiced. The integrated problem was solved using the column generation
technique. The computational results showed that the column generation technique can obtain
gains of more than 12.7%, compared with the decomposition model used in practice. Also in
the context of a furniture factory Santos et al. (2011) presented a mixed integer programming
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model for the integrated problem in the context of a furniture factory. The authors considered the
cutting patterns used by industry and n-groups cutting pattern to solve the problem with a set of
real data provided by the factory. An extension to Gramani et al. (2011) model was proposed in
Vanzela et al. (2013) in order to simulate the practice of a small furniture factory.

Alem & Morabito (2012) used robust optimization tools to solve the integrated problem in the
furniture industry, where the production costs and demand of products are uncertain parame-
ters. Computational tests were performed using real and simulated data. Leão & Arenales (2012)
studied a simplification of the model studied in Poltroniere et al. (2008). Two approaches have
been studied: (i) for a single type of object and (ii) for various types of objects. Three mathemat-
ical models for each approach have been proposed and they used the column generation as the
solution method. To obtain a feasible solution, the columns obtained with the column generation
method are used and the resulting integer problem with this limited set of columns is solved.

Silva et al. (2014) presented two integer programming models for the integrated problem. In
these models, both the bringing forward of items for production and also the stocking of reusable
leftovers for the cutting process in later periods were allowed. The authors proposed two heuris-
tics and evaluated the models through a computational study, checking the quality of the so-
lutions when compared to work described in the literature. In more recent papers, Poldi & de
Araujo (2016) studied the multi-period cutting stock problem and Molina et al. (2016) proposed
an integrated lot sizing and packing problem that is related to the problem studied in this paper.

Most of the studies in the literature that address the integrated lot-sizing and cutting stock prob-
lem study several cases of the problem in practice. In these studies, alternative formulations for
the LSP and CSP are not tested in order to choose the formulation that best fits the problem and
the data set. So, extending the ideas of Longhi et al. (2015) this paper tries to cover the gap by
proposing alternative mathematical formulations, considering different features of the lot-sizing
and cutting stock problem such as capacity constraints and several object types. Furthermore,
through the use of extensive computational tests, it intends to evaluate and point out the impact
of these changes in the performance of the models.

3 MATHEMATICAL MODELS WITH CAPACITY CONSTRAINT

In this section the lot-sizing problem proposed by Trigeiro et al. (1989) (CL model) is integrated
with various cutting stock formulations as described above. The integrated lot-sizing and cutting
stock model is a two level production model, with production of final products at the final level,
and the cutting of the pieces at the preceding level. The proposed model assumes that final prod-
ucts can be kept in inventory, but pieces cannot be kept in inventory. Furthermore, the Bill of
Material indicates that one final product requires exactly one piece, and each type of final prod-
uct requires a different piece. Therefore, there is a one-to-one relationship between final products
and pieces in the model.

This might be a relevant model in various industrial applications. A first relevant setting is
present, for instance, in the furniture industry. There is a demand for the final products (wardrobe,
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for example) which creates demand for subassemblies or components (a door, for example)
(Gramani & França, 2006). After the cutting process, the cut items pass through another produc-
tive process (e.g. drilling and painting) before being ready to be assembled into a final product.
Usually these other productive processes are considered the bottlenecks of the complete pro-
duction process (Ghidini et al., 2007; Santos et al., 2011; Alem & Morabito, 2013), and their
capacity is considered in the model, whereas the final assembly is not considered in the model
since it is not a bottleneck process. Ghidini et al. (2007) and Alem & Morabito (2013) considered
the drill machine capacity in terms of items. Santos et al. (2011) considered aggregated capac-
ity constraints for all the other machines (except the cutting machine). For the one-dimensional
case, considered in this paper, the same type of capacity constraints appear. For instance, in
tubular furniture industries, the bending machine is a bottleneck of the production process and
its capacity must be considered in the mathematical model.

A second potential practical background appears in industries where the cut items are directly
transformed in end items, i.e., there is no need to assemble several items to compose a final
product, but there is a production process between the cut items and the end items. The capac-
ity constraint in terms of end items means that the capacity constraints are related to the final
production process to transform the cut items into the final items.

Consider the following parameters and decision variables:

Parameters:
T : number of time periods (index t );
I : number of items (index i);
scit : setup cost of item i in period t ;
hcit : unit holding cost of item i in period t ;
stit : setup time of item i in period t ;
vtit : production time of item i in period t ;
capt : capacity (in unit of time) in period t ;
dit : demand of item i in period t ;
sditr : sum of demand of item i from period t until period r;
L : object length;
li : length of item i;
co: fixed cost of an object.

Decision Variables:
Xit : production quantity of item i in period t ;
Sit : inventory for item i at the end of period t ; Yit : binary variable indicating the production or
not of item i in period t .

The first cutting model used to formulate the integrated problem, is the KT model, which gives
the model CLKT from CL+KT. For this, consider the following data and variables specific to this
model:

Pesquisa Operacional, Vol. 36(1), 2016
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Q: number of objects available in stock (index q);
yqt : binary variable that indicates whether object q is used in period t ;
hiqt : variable that indicates the amount of item i cut from object q in period t .

Model CLKT

min
T∑

t=1

I∑
i=1

(scit Yit + hcit Sit ) +
T∑

t=1

Q∑
q=1

coyqt (1)

Subject to :
Xit + Si,t−1 = dit + Sit ∀i, ∀t (2)

Xit ≤ sdit T Yit ∀i, ∀t (3)

I∑
i=1

(stit Yit + vtit Xit ) ≤ Capt ∀t (4)

I∑
i=1

li hiqt ≤ Lyqt ∀q, ∀t (5)

Q∑
q=1

hiqt = Xit ∀i, ∀t (6)

Yit , yqt ∈ {0, 1} ∀i, ∀q, ∀t (7)

hiqt ∈ Z+ ∀i, ∀q, ∀t (8)

Xit , Sit ∈ R+ ∀i, ∀t (9)

The objective function (1) minimizes the machine setup costs, inventory holding costs and the
cost of cutting objects. Constraints (2) are the demand constraints: inventory carried over from
the previous period and production in the current period are available to be used to satisfy current
demand and build up inventory. Constraints (3) force the setup variable to one if any production
takes place in that period. Next, there is a constraint on the available capacity in each period (4).
Constraints (5) are from the cutting stock problem and ensure that if object q is used, the com-
bination of the lengths of items that will be cut from it should not exceed its length. Constraints
(6) are responsible for the integration of the lot-sizing and cut stock problem decision, that is,
we have to cut a sufficient amount of items to meet the planned production amount. Finally, the
set of constraints (7), (8) and (9) define the non-negativity and integrality conditions. It is known
that the model KT for the cutting stock problem has a weak linear relaxation and presents many
symmetric solution (Valério de Carvalho, 2002).

Observe that the variables Xit and constraints (6) could be eliminated by replacing Xit by∑Q
q=1 hiqt in the rest of the model. However to compare this model with other proposed models,

the variable Xit and the constraints (6) are kept explicitly in the model. This remark is also valid
for the other models presented below in the Sections 3 and 4.

Pesquisa Operacional, Vol. 36(1), 2016



�

�

“main” — 2016/4/29 — 12:19 — page 173 — #7
�

�

�

�

�

�

GISLAINE MARA MELEGA, SILVIO ALEXANDRE DE ARAUJO and RAF JANS 173

The second integrated formulation presented below (CLVC) uses the VC model for the cutting
stock problem, which is modeled as an arc flow problem. Consider a path in a directed acyclic
graph G = (V , A), with V = {0, 1, . . . , L} and the set of arcs of the graph defined as A =
{( j, l); 0 ≤ j < l < L and l − j = li for all i ≤ I }. The losses in the object generated from
the cutting process are represented in the graph by additional arcs between the vertices ( j, j +1)

to j = 0, . . . , L − 1. As decision variables for the integrated model CLVC we have:

ft : flow through the network in period t ;
z jlt : number of cutting patterns which have an item of size (l − j ) allocated at a distance j from
the beginning of the object in period t .

Model CLVC

min
T∑

t=1

I∑
i=1

(scit Yit + hcit Sit) +
T∑

t=1

co ft (10)

Subject to :
Xit + Si,t−1 = dit + Sit ∀i, ∀t (11)

Xit ≤ sdit T Yit ∀i, ∀t (12)

I∑
i=1

(stit Yit + vtit Xit ) ≤ Capt ∀t (13)

−
∑

(0,l)∈A

z0lt = − ft ∀t (14)

∑
(g,l)∈A

zglt −
∑

(l,h)∈A

zlht = 0 l = 1, . . . , L − 1, ∀t (15)

∑
(l,L)∈A

zl Lt = ft ∀t (16)

∑
(h,h+li )∈A

zh,h+li ,t = Xit ∀i, ∀t (17)

Yit ∈ {0, 1} ∀i, ∀t (18)

zlht , ft ∈ Z+ ∀(l, h) ∈ A, ∀t (19)

Xit , Sit ∈ R+ ∀i, ∀t (20)

The objective function (10) minimizes the machine setup and inventory costs of the items, as well
as the cost of the flow through the network. The flow set for this problem represents the number
of used objects (cutting patterns), since one flow unit defines a path, which in turn defines a
cutting pattern.

Constraints (11), (12) and (13) refer to the lot-sizing problem and are defined as in CLKT. The set
of constraints (14), (15) and (16) correspond to flow conservation constraints and are characteris-
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tic of the Valério de Carvalho model. Constraints (17) integrate the two problems and constraints
(18), (19) and (20) are non-negativity and integrality constraints.

This model also presents many symmetric solutions, or alternatives that correspond to the same
cutting patterns. For this reason, Valério de Carvalho (1999) presented some reduction criteria to
eliminate some arcs, reducing the number of symmetric solutions without eliminating any valid
cutting patterns from set A. This study applies the criterion consisting of allocating the items
in order of decreasing length in each cutting pattern, that is, an item of length i1 can only be
placed after another item length i2 if i1 ≤ i2, or at the beginning of the object. Another criterion
also used does not allow starting with a cutting pattern with loss. Thus, the first arc of loss will
be inserted in the graph at a distance from the beginning of the object representing the shortest
item length.

The third model CLGG combines the lot-sizing model CL with the cutting stock model GG
(Gilmore & Gomory, 1961, 1963), which has the following parameters and decision variables:

J : set of cutting patterns (index j );
ai j : parameter indicating the quantity of item i cut according to the cutting pattern j ;
x jt : variable indicating the number of objects cut according to cutting pattern j in period t .

Model CLGG

min
T∑

t=1

I∑
i=1

(scit Yit + hcit Sit ) +
T∑

t=1

∑
j∈J

cox jt (21)

Subject to :
Xit + Si,t−1 = dit + Sit ∀i, ∀t (22)

Xit ≤ sdit T Yit ∀i, ∀t (23)

I∑
i=1

(stit Yit + vtit Xit ) ≤ Capt ∀t (24)

∑
j∈J

ai j x j t = Xit ∀i, ∀t (25)

Yit ∈ {0, 1} ∀i, ∀t (26)

x jt ∈ Z+ ∀ j, ∀t (27)

Xit , Sit ∈ R+ ∀i, ∀t (28)

The objective function (21) minimizes the sum of setup costs, inventory costs and cost related
to the number of objects used in the cutting process. The sets of constraints (22), (23) and (24)
refer to the lot-sizing problem and are defined as in the model CLKT. Constraints (25) link the
cutting variable with the production variable and finally the constraints (26), (27) and (28) are
non-negativity and integrality constraints on the variables. The model GG is an extended model
and can be obtained by applying Dantzig – Wolfe decomposition on the KT and VC models
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(Valério de Carvalho, 2002). As a consequence this model has a large amount of variables and is
generally solved by column generation.

4 MATHEMATICAL MODELS WITH SEVERAL TYPES OF OBJECTS

For the mathematical models presented in this section, we integrate the model proposed by
Wagner & Whitin (1958), here denoted by WW with the cutting stock models extended to con-
sider several types of objects. The WW model describes the uncapacitated lot-sizing problem.
In this case, consider the following parameters and additional decision variables:

Parameters:
K : number of object types available in stock (index k);
ekt : planned supply of object type k at the beginning of period t ;
Lk : object length of type k;
cw: cost per unit of raw material waste.

Decision Variable:
skt : number of objects of type k stocked at end of period t .

The model described below (WWKTMO) models the cutting stock problem based on model KT,
considering several types of objects MO. In the original variables a new index is inserted, which
refers to the type of object to be cut.

Parameters:
sekt : sum of planned supply of objects of type k from period 1 to period t

(
sekt = ∑t

a=1 eka
)
;

q ∈ {1, . . . , sekt }, index for the available objects.

Decision Variables:
yqkt : binary variable that indicates whether object q of type k is used in period t ;
hiqkt : quantity of item i cut from object q of type k in period t .

Model WWKTMO

min
T∑

t=1

I∑
i=1

(scit Yit + hcit Sit) + cw

⎛
⎝ T∑

t=1

K∑
k=1

sekt∑
q=1

Lk yqkt −
T∑

t=1

K∑
k=1

sekt∑
q=1

I∑
i=1

li hiqkt

⎞
⎠ (29)

Subject to:

Xit + Si,t−1 = dit + Sit ∀i, ∀t (30)

Xit ≤ sdit T Yit ∀i, ∀t (31)

I∑
i=1

li hiqkt ≤ Lk yqkt ∀q, ∀k, ∀t (32)

K∑
k=1

sekt∑
q=1

hiqkt = Xit ∀i, ∀t (33)
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ekt + sk,t−1 =
sekt∑
q=1

yqkt + skt ∀k, ∀t (34)

Yit , yqkt ∈ {0, 1} ∀q, ∀i, ∀k, ∀t (35)

hiqkt ∈ Z+ ∀q, ∀i, ∀k, ∀t (36)

Xit , Sit , skt ∈ R+ ∀i, ∀t (37)

The objective function (29) minimizes machine setup costs, inventory holding costs and waste
cost in the cutting process. Constraints (30) and (31) refer to the lot-sizing problem and are
defined as in the CLKT model. The set of constraints (32) ensure that if an object q of type
k is used, the combination of the items that will be cut from it should not exceed its length.
Constraint (33) is responsible for the integration of the decision variables of the lot-sizing and
cutting stock problems. It ensures that a sufficient amount of items are cut to meet the demand.
The set of constraints (34) ensure that the number of objects cut in each period does not exceed
the availability in stock.

The integrated model presented below (WWVCMO), is based on the VC formulation to model
the cutting stock problem. Since several object types are available in stock, we need to define
the maximum object length Lmax = max∀k{Lk}, corresponding to the numbers of nodes in the
network. The following decision variables are also needed:

fkt : flow through the network in the period t for the object type k;

z jlt : number of cutting patterns which have a item of size (l − j ) allocated at a distance j from
the beginning of the object used in period t .

Model WWVCMO

min
T∑

t=1

I∑
i=1

(scit Yit + hcit Sit ) + cw

⎛
⎝ T∑

t=1

K∑
k=1

Lk fkt −
T∑

t=1

I∑
i=1

∑
(l,l+li )∈A

li zl,l+li ,t

⎞
⎠ (38)

Subject to:

Xit + Si,t−1 = dit + Sit ∀i, ∀t (39)

Xit ≤ sdit T Yit ∀i, ∀t (40)

−
∑

(0,l)∈A

z0lt = −
K∑

k=1

fkt ∀t (41)

∑
(g,l)∈A

zglt −
∑

(l,h)∈A

zlht = 0 l = {1, . . . , Lmax − 1}\
K⋃

a=1

{La}, ∀t (42)

∑
(g,Lk )∈A

zgLkt = fkt ∀k, ∀t (43)

∑
(h,h+li )∈A

zh,h+li ,t = Xit ∀i, ∀t (44)
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ekt + sk,t−1 = fkt + skt ∀k, ∀t (45)

Yit ∈ {0, 1} ∀i, ∀t (46)

zglt , fkt ∈ Z+ ∀(g, l) ∈ A, ∀k, ∀t (47)

Xit , Sit ∈ R+ ∀i, ∀t (48)

The objective function (38) minimizes machine setup costs and storage costs of the items, and
waste cost of raw material. Constraints (39) and (40) are defined as in the CLKT model. The
set of constraints (41), (42) and (43) correspond to the flow conservation constraints. Constraints
(44) integrate the cutting stock and lot-sizing problem. Constraints (45) ensure that the stock
of the different types of available objects is respected and constraints (46), (47) and (48) are
non-negativity and integrality constraints.

The following formulation (WWGGMO) models the cutting stock problem proposed by Gilmore
& Gomory (1961) with an extension for several objects, which has the following parameters and
decision variables. Observe that an index that refers to the type of object is also needed.

Parameters:
Jk : set of cutting patterns that use object type k (index j );
aikj : quantity of item i cut from object type k according to cutting pattern j .

Decision Variable:
xkj t : number of objects of type k cut using cutting pattern j in period t .

Model WWGGMO

min
T∑

t=1

I∑
i=1

(scit Yit + hcit Sit ) + cw

⎛
⎝ T∑

t=1

K∑
k=1

∑
j∈Jk

Lkxkj t −
T∑

t=1

K∑
k=1

∑
j∈Jk

I∑
i=1

li aikj xkj t

⎞
⎠

(49)

Subject to:

Xit + Si,t−1 = dit + Sit ∀i, ∀t (50)

Xit ≤ sdit T Yit ∀i, ∀t (51)

K∑
k=1

∑
j∈Jk

aikj xkj t = Xit ∀i, ∀t (52)

ekt + sk,t−1 =
∑
j∈Jk

xkj t + skt ∀k, ∀t (53)

Yit ∈ {0, 1} ∀i, ∀t (54)

xkj t ∈ Z+ ∀k, ∀ j, ∀t (55)

Xit , Sit ∈ R+ ∀i, ∀t (56)
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The objective function (49) minimizes machine setup cost and inventory cost of items, and costs
of waste due to the cutting of objects. Constraints (50) and (51) refer to the lot-sizing problem.
The set of constraints (52) is responsible for the integration of the decision variables of the two
problems. The constraints (53) ensure that the number of cut objects in each period does not
exceed the availability in stock, and the constraints (54), (55) and (56) are non-negativity and
integrality constraints.

5 INTEGRATED MODELS USING THE REFORMULATED LOT-SIZING PROBLEM
SP

The integrated models presented in Sections 3 and 4 use the classical formulation for the lot-
sizing problem. In order to obtain better lower bounds, the lot-sizing problem is reformulated
as a shortest path problem (Eppen & Martin, 1987) and then integrated into the respective cut-
ting stock problem. For that, we need the following definitions of parameters and variables,
respectively:

cvitr : inventory holding cost of item i in period t at a quantity that meets the demands for the
periods from t until r;

zvitr : fraction of the production plan for item i to satisfy demand from period t to period r.

The lot-sizing problem variables have the following correspondence:

Xit =
T∑

r=t

sditr zvitr ∀i, ∀t (57)

and the demand constraints (2) and setup constraints (3) are rewritten in terms of the new decision
variables as follows:

T∑
r=1

zvi1r = 1 ∀i (58)

t−1∑
r=1

zvirt−1 =
T∑

r=t

zvitr ∀i, ∀t\{1} (59)

T∑
r=t

zvitr ≤ Yit ∀i, ∀t (60)

Constraints (58) and (59) define the flow constraints in the SP model. For each item i, a unit
flow is sent through the network (constraint (58)), imposing that its demand has to be satisfied
without backlogging in each period (59)). Constraint (60)) ensures that item i will be produced
in period t only if there is a setup prepared to produce that item.

Note that the constraint (58) forces production in the first period, which it is not a problem for
the data set used in this work, because all the demand equal 0 in the used data set is replaced to
be strictly greater than zero (equal 1 unit). Otherwise, if the demand for some item is zero for
the first period, it would be necessary to slightly adapt the formulation (Pochet & Wolsey, 2006;
Jans & Degraeve, 2004).
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Thus, we propose new mathematical models that integrate the cutting stock problems (KT, VC,

GG, KTMO, VCMO, GGMO) into the reformulated lot-sizing problem (SP). This is done by
replacing the decision variables in the models, by the new variables and constraints described
above.

As an example, the integrated model SPKT is shown next.

Model SPKT

min
T∑

t=1

I∑
i=1

(
scit Yit +

T∑
r=t

cvitr zvitr

)
+

T∑
t=1

Q∑
q=1

coyqt (61)

Sujeito a :
T∑

r=1

zvi1r = 1 ∀i (62)

t−1∑
r=1

zvirt−1 =
T∑

r=t

zvitr ∀i, ∀t\{1} (63)

T∑
r=t

zvitr ≤ Yit ∀i, ∀t (64)

I∑
i=1

(
stit Yit +

T∑
r=t

vtit sditr zvitr

)
≤ Capt ∀t (65)

I∑
i=1

li hiqt ≤ Lyqt ∀q, ∀t (66)

Q∑
q=1

hiqt =
T∑

r=t

sditr zvitr ∀i, ∀t (67)

Yit , yqt ∈ {0, 1} ∀i, ∀q, ∀t (68)

hiqt ∈ Z+ ∀i, ∀q, ∀t (69)

zvitr , Sit ∈ R+ ∀i, ∀t (70)

The objective function (61) minimizes the setup costs and inventory holding costs according to
the SP model, as well as, the cost of the number of objects to be cut. The constraints (62) and (63)
define the flow constraints of the SP model. The set of constraints (64) also refers to the model
SP and ensures that there will be production for an item i in period t , only if the machine is setup

to produce this item. Capacity constraints (65) ensure that the capacity available is not violated.
Constraints (66) refers to the knapsack constraints in the KT model. The set of constraints (67)
integrates the two problems and finally (68), (69) and (70) are non-negativity and integrality

constraints.

Pesquisa Operacional, Vol. 36(1), 2016



�

�

“main” — 2016/4/29 — 12:19 — page 180 — #14
�

�

�

�

�

�

180 MIP MODELS FOR THE INTEGRATED LOT-SIZING AND ONE-DIMENSIONAL CUTTING STOCK PROBLEM

6 SOLUTION STRATEGIES

Two heuristic strategies are proposed for solving the models described in sections 3, 4 and 5.
The first heuristic consists of solving the models integrated with KT and VC using a commercial

optimization package with a stopping criteria. The solver is stopped at the end of 600 seconds or
when the gap between the upper bound and lower bound is less than 0.1%. The second heuristic
proposes the search for a feasible solution by using the column generation technique for the

models integrated with VC and GG. The solver is used to solve the restricted master problems,
the sub-problems and also to solve the resulting integer restricted master problem.

Next, the column generation based heuristic is explained in more detail together with the proce-
dure to obtain a feasible solution.

6.1 Initial Basic Solution

Considering the model with capacity constraint and integrated with the GG model, the master
problem starts with the columns related to the homogeneous cutting pattern, i.e., columns of
type: (0, . . . , aii , . . . , 0), where aii = � L

li
�, ∀i. The same columns are inserted for each period,

t = 1, . . . , T .

For the problems with several objects, the master problem starts with homogeneous cutting pat-
terns generated for each object type, i e., for each object k columns of type (0, . . . , aiki , . . . , 0),
where aiki = � Lk

li
�, ∀i, are inserted in order to avoid the infeasibility of an initial basic solution.

The same columns are inserted for all periods. Similar ideas are applied to the models integrated
with VC.

6.2 Column Generation Procedure

The sub-problems in the column generation consist of finding a new cutting pattern for the master
problem. For the models integrated with GG, the sub-problem is composed of the knapsack
constraint and for those integrated with VC the sub-problem is composed of the flow constraints

imposing a flow equal to one, which represents a cutting pattern.

Considering the models with one type of object and a capacity constraint, a sub-problem is solved
for every period, and the column with the smallest reduced cost over all periods is included in
the master problem. As a consequence, the same column is also inserted for each period. For the

problems with several objects, a sub-problem is solved for each period and object type, and the
column with the smallest reduced cost is inserted into the master problem. The same column is
used for all periods according to the corresponding object in the restricted master problem.

6.3 Feasibility Strategy

The column generation part is stopped when the minimum reduced cost is non-negative for each
subproblem or when the time limit is reached. The integer restricted master problem including
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all the columns obtained in the column generation procedure is solved using the optimization

package with a time limit of 600 seconds and an optimality gap of 0.1%.

Table 1 presents a summary of all proposed mathematical models and solution strategies.

Table 1 – Mathematical Models and Solution Strategies.

Models Considered Problems Solution Strategies

CLKT

SPKT LSP with capacity constraint Optimization package
CLVC CSP single object type based heuristic

SPVC

CLGG CG

SPGG CG LSP with capacity constraint Column generation

CLVC CG CSP single object type based heuristic
SPVC CG

WWKTMO

SPKTMO LSP without capacity constraint Optimization package

WWVCMO CSP with several object types based heuristic
SPVCMO

WWGGMO CG

SPGGMO CG LSP without capacity constraint Column Generation

WWVCMO CG CSP with several object types based heuristic
SPVCMO CG

7 COMPUTATIONAL STUDY

This section presents the computational results used to evaluate and compare the performance

of the proposed models. The analysis of the results is done through tables containing the aver-
age values found by models with respect to different aspects, as well as the use of the perfor-
mance profile technique (Dolan & Moré, 2002). This technique provides a tool which facilitates

the exhibition and the interpretation of comparisons and it is briefly described in the following
paragraphs.

Consider P as the set of �p instances andM as the set of �M models described in sections 3, 4 and
5. The values obtained for each instance (upper bound and gap) p ∈ P using the m ∈ Mmodel is

denoted by vp,m . For each model m ∈ M a comparison of its performance on the instance p ∈ P
relative to the performance of the best model is given by the following performance ratio:

rp,m = vp,m

minm∈M{vp,m} .

If the model m does not find a feasible solution for an instance p then rp,m is defined as rM ,
which is set at one unit more than the worst value of the performance ratio found for all the
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feasible instances in all the models. The performance of the model m compared to the other

models is given by the performance profile:

ρm(τ ) = 1

�p
|{p ∈ P : rp,m ≤ τ }|

with |.| representing the number of elements in the set. The performance profile ρm(τ ) is a
function that is associated to a given value τ ∈ R, and indicates the fraction of instances solved

by the model m with a performance within a factor τ of the best performance found. With this,
each model has a curve that shows its performance for each level τ . Due to the fact that rM can
be considerably large, the logarithm scale is used to represent the performance profile. It is done

as follows (Dolan and Moré, 2002):

τ �→ 1

�p
|{p ∈ P : log2(rp,m ) ≤ τ }|.

This way, the τ factor varies in [0, rM ), with rM = 1 + max{log2(rp,m) : p ∈ P and m ∈M}.
The models are written in the AMPL syntax (Fourer et al., 1990) and CPLEX 12.5 (IBM, 2009)
is used as solver. All the computational tests are conducted on a 2.93GHz Intel Core i7 processor

with 8GB of RAM memory.

7.1 Experiment 1

Next, we describe the data generation and computational results for the integrated problem with

capacity constraints (models in Section 3 and the corresponding models in Section 5). In this
experiment we present two sets of data: the first one called Data 1, is based on a data generator
for the cutting stock problem. The second set, referred to as Data 2, is based on some examples

widely used in the literature to solve the lot-sizing problem.

7.1.1 Data Sets

For the Data 1 set, the CUTGEN1 generator proposed by Gau & Wäscher (1995) is used and for
the lot-sizing problem the data set is based on Trigeiro et al. (1989). The parameters are generated

in intervals [a, b] with a uniform distribution as follows:

• number of periods: T = 15

• object length: L = 1000

• number of items: I = {10, 20, 40}
• length of items are generated in three intervals according to li ∈ [v1, v2], with v1 =

0.01L or 0.2L and v2 = 0.02L or 0.8L

• demand for items is generated according to the idea of Gau & Wäscher (1995) for a single
period, so that the average demand over all items in a specific period is equals 100.
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• raw material cost: co = 1;

• setup cost: scit ∈ [100, 500]
• inventory cost: hcit ∈ [1, 5]
• production time: vtit = 1

• setup time: stit ∈ [10, 50]
• capacity (capt ) is generated by the average of lot-by-lot policies: for every period t cal-

culate the amount of resources needed to produce exactly the demands of the items in this

period, sum up this amount for all periods and divide by the number of periods T , this is,

capt =
∑T

t=1
∑I

i=1 (vtit dit +stit )
T .

In the cutting stock problem modeled by KT, an upper bound on the number of objects in stock
(Q) is needed. Poldi & Arenales (2010) is the basis for calculating the upper bound as Q = 2	λ

with, λ =

∑T
t=1

∑I
i=1 li dit

L .

Thus, the Data 1 defines 9 classes (see Table 2), and for each class 10 random instances are
generated considering the three levels of capacity, totaling 270 instances.

Table 2 – Classes of Data 1.

Classes
Data 1

Items v1; v2

Class 1 10 0.01; 0.2
Class 2 10 0.01; 0.8

Class 3 10 0.2 ; 0.8

Class 4 20 0.01; 0.2
Class 5 20 0.01; 0.8

Class 6 20 0.2 ; 0.8

Class 7 40 0.01; 0.2

Class 8 40 0.01; 0.8
Class 9 40 0.2 ; 0.8

The second data set, called Data 2, is based on the lot-sizing problem. This set is created using
7 specific instances from Trigeiro et al. (1989) (see Table 3). These instances are considered
difficult and have been used in several studies in the literature (Jans & Degraeve, 2004; Vyve &

Wolsey, 2006; Degraeve & Jans, 2007; de Araujo et al., 2015).

To complete the data file the CUTGEN1 is used as generator for the cutting stock parameters
and it was described above. Thus, Data 2 defines 3 classes (see Table 3), and for each class 10
random instances are generated for each of the 7 specific instances, totaling 210 instances.
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Table 3 – Specific Instances and Classes of Data 2.

Instance Items Periods

G30 6 15

G30wol 6 15
G53 12 15

G57 24 30
G62 6 30

G69 12 30

G72 24 30

Classes
Data 2

v1; v2

Class 10 0.01; 0.2
Class 11 0.01; 0.8

Class 12 0.2 ; 0.8

7.1.2 Computational Results

Firstly, we present the computational results using Data 1.

A preliminary test is performed in order to evaluate the impact of the models and the capacity
tightness on the number of feasible solutions found. It is considered three different levels of

capacity: cap0 where we have the integrated problem without capacity constraint; cap1 where
the value of the capacity is capt/0.3; cap2 where we have tighter capacity given by capt/0.85.
The results shown that the number of feasible solutions decreases as the capacity becomes more

scarce. The CLVC model is the only formulation able to find feasible solutions for all instances,
but only for the uncapacitated case. The CLVC model obtained the largest number of feasible
solutions for the three capacity levels using the optimization package based heuristic. For the

column generation based heuristic the best performance in this analysis is obtained by CLVC CG
model. In general, the difficulty to find a feasible solution is in Classes 4 and 7, which correspond
to classes in which the ratio between the item length and object length is small.

The following results are evaluated considering the uncapacitated model (column cap0) and with

capt/0.3 (column cap1).

In Table 4 the lower bound obtained with the linear relaxation for the models is presented. As a
general conclusion, regarding the cutting stock problem, the models integrated with VC, VC CG
and GG CG are equivalent with relation to the value of the lower bound obtained. For this reason

just one of them is presented and the lower bounds are better than the lower bounds resulting from
the models integrated with KT. The value obtained with cap0 and cap1 are the same for all the
models and just one value is presented. Regarding the lot sizing problem the models integrated

with SP obtain a substantially better lower bound than the models using CL.

Figures 1 and 2 show the performance profiles obtained with the upper bound for all the instances
in Data 1. Considering the optimization package based heuristic (see Fig. 1), the CLVC model
shows a good overall performance in both variations of capacity, since its performance profile

dominated the rest of them. This model could find the best upper bound for around 70% of the in-
stances, followed by the SPVC. For the column generation based heuristic (see Fig. 2), CLVC CG
obtained the best performance for around 50% of the instances, followed by SPGG CG. Just
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Table 4 – LP Relaxation for Data 1.

Classes CLKT SPKT CLVC SPVC

Class 1 10978.63 34793.33 10978.65 34794.62
Class 2 15735.78 39828.10 16801.00 41005.42

Class 3 17110.47 41202.79 18733.81 42964.73
Class 4 22083.04 70486.11 22083.04 70486.11

Class 5 31493.67 79562.22 33074.99 81292.92

Class 6 34020.87 82345.81 36519.61 85032.61
Class 7 43091.46 137835.25 43091.46 137835.25

Class 8 59926.51 154188.53 61315.45 155838.87
Class 9 65761.36 159574.61 68065.34 162285.77

Average 33355.75 88868.53 34518.15 90170.70

considering the cap0 instances it is possible to obtain an upper bound for all the instances with
the CLVC, CLVC CG and CLGG CG models. The lowest number of feasible solutions, around
10% and 40%, are found respectively by the SPKT and SPVC CG models. In general, mathemat-

ical models integrated into VC obtained the best results for most instances in both the capacity
variations and heuristic strategies.

Figure 3 shows the performance profile obtained for the gap for models solved with the opti-
mization package based heuristic. The gap is that provided by the solver for the final solution

for both the cases cap0 and cap1. In both variations of capacity, the SPKT could not find a
satisfactory results for the gap. The CLVC model showed a good overall performance, in which
100% and 90% of the instances obtained a feasible solution for cap0 and cap1, although it has

the best performance in just 30% of the instances. On the other hand, the SPVC model showed
the best performance in approximately 60% of the instances, but with the disadvantage of not
having solved all the instances. Since the column generation procedure is subject to a time limit,

we cannot guarantee the optimality of this lower bound, and therefore no results on the gap are
presented for the CG methods.

The computational results for Data 2 are given as follow.

The same analysis for Data 2 is performed in order to evaluate the impact of the models and
the capacity tightness on the number of feasible solutions found. It is noticed a big difficulty of

the SPKT model to solve these instances. The SPVC CG model also shows great difficulties in
finding a feasible solution. Class 12 presents the largest number of feasible solutions (378 from
560), followed by Class 11 (369 from 560). In Class 12, half of the models found a feasible

solution for all the instances; this class is related with the longest items when compared to object
length.

In the Table 5 the lower bound obtained with the linear relaxation for the models solved with the
optimization package are presented. As discussed above the models VC, VC CG and GG CG are

equivalent with relation to the lower bound obtained and due to this reason just one of them is
presented. The use of a reformulated lot-zing model once again, improves the results compared
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Figure 1 – Performance Profiles: Upper Bound for the Optimization Package Based Heuristic – Data 1.

to the models integrated with the classical lot-zing model. This improvement is 260% on average.
The models integrated with KT did not achieve a value for the linear relaxation for some instances
within a time of 5 hours.

Figure 4 shows the performance profile of the upper bound and gap considering the optimization

package based heuristic. The first impact observed in the figure is due to the huge difference
between the models integrated with KT and VC to obtain an upper bound. The SPKT and CLKT
models found an upper bound for around just 5% and 40% of the instances, respectively. On

the other hand, the SPVC and CLVC models found a upper bound for around 65% and 90% of
the instances, respectively. The best performance to obtain the upper bounds is found using the
CLVC model with more than 80% of the instances (τ = 0), compared with the other models,
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Figure 2 – Performance Profiles: Upper Bound for the Column Generation Based Heuristic – Data 1.

which reached at most 10% of the best results (at τ = 0). The performance obtained with the
SPVC models changes a little when the gap is analyzed. The performance of the SPVC becomes
around the same as CLVC, 40% of the best results (τ = 0). And one more time, results obtained

with CLVC model dominate the other models considering the performance values (τ ).

Figure 5 presents the performance obtained in the column generation based heuristic for the
upper bounds. We can see that the CLVC CG model found an upper bound for around 98% of
the instances, although it could reach the best performance for just 20% of the instances. On the

other hand, CLGG CG found the best results for the upper bound for almost 75% of the instances
solved.
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Figure 3 – Performance Profiles: Gap for Optimization Package Based Heuristic – Data 1.

7.2 Experiment 2

The following describes the generation of data and computational results for the integrated un-

capacitated lot-sizing and the cutting stock problem with several types of objects (the models in
Section 4 and its corresponding model in Section 5).

7.2.1 Data Set

The proposed data set is based on Poldi & Arenales (2010) and for the lot-sizing problem the
data is based on Trigeiro et al. (1989), but without considering capacity constraints.
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Table 5 – LP Relaxation for Data 2.

Class 10 CLKT SPKT CLVC SPVC

Example 1 12552.56 38450.41 12552.81 38455.10
Example 2 12534.92 38645.79 12535.19 38649.20

Example 3 25058.61 74650.39 25058.67 74651.33
Example 4 46554.59 143706.15 46554.59 143706.16

Example 5 13311.81 63092.75 13312.38 63096.81
Example 6 30428.71 136060.92 30428.72 136062.38

Example 7 64483.84 299427.41 64483.84 299427.59

Average 29275.01 113433.40 29275.17 113435.51

Class 11

Example 1 14831.41 40729.26 15257.52 41292.36

Example 2 14813.77 40924.64 15243.59 41476.43
Example 3 29619.41 79211.19 30346.19 80104.87

Example 4 56385.07 153536.63 57257.32 154658.84
Example 5 18060.64 67841.58 18919.93 68835.03

Example 6 40162.36 145794.58 41623.78 147495.46

Example 7 — — 86738.85 322311.95

Average — — 37912.46 122310.71

Class 12

Example 1 15702.19 41600.04 16508.34 42542.73

Example 2 15684.55 41795.42 16493.35 42720.26
Example 3 31270.20 80861.98 32472.08 82150.89

Example 4 59625.74 156777.30 61617.88 158934.87
Example 5 19827.17 69608.12 21501.31 71404.10

Example 6 43685.89 149318.11 46154.93 152056.45
Example 7 — — 95674.65 331111.52

Average — — 41488.93 125845.83

(−) time limit with no lower bound

• number of periods: T = {3, 6}
• types of objects: K = {3, 5}
• number of items: I = {10, 20}
• object length: Lk ∈ [300, 1000]

• planned supply of object type k in period t : ekt ∈ [1.5	λt
, 2	λt
] with, λt =
∑I

i=1 li dit∑K
k=1 Lk

.

• item length: li ∈ [0, 1L, 0, 4L], whith L =
∑K

k=1 Lk
K

• item demand: dit ∈ [10, 200]
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Figure 4 – Performance Profiles: Upper Bound for the Optimization Package Based Heuristic – Data 2.

• raw material cost: cw = 1;

• setup cost: scit ∈ [100, 500]
• inventory cost: hcit ∈ [1, 5]

Thus, the data set defines 8 classes (see Table 6), and for each class 10 random instances are
generated, totalling 80 instances.

7.2.2 Computational Results

This data set included 3 infeasible instances (Class 16 instance 10 and Class 20 instances 5 and
10) and these were removed from the analysis.
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Figure 5 – Performance Profiles: Upper Bound for the Column Generation Based Heuristic – Data 2.

Table 6 – Classes with several types of objects.

Classes Periods Objects Items

Class 13 3 3 10
Class 14 3 3 20

Class 15 3 5 10

Class 16 3 5 20
Class 17 6 3 10

Class 18 6 3 20
Class 19 6 5 10

Class 20 6 5 20

Table 7 presents the computational results obtained for the lower bound. The use of the refor-
mulated lot-sizing model shows significant improvements in the lower bound. A slight improve-
ments can be seen in the use of VC model when compared with the KT model.

Tables 8 and 9 show the average upper bounds in each class for each mathematical model.

TheWWKTMO and SPKTMO models did not find a feasible solution for most classes. Con-
sidering the optimization package based heuristic the WWVCMO model found the best results
for almost all the classes (except Classe 16). For the column generation based heuristic the best

results are shared between WWGGMO CG and SPGGMO CG models. As the WWGGMO CG
model obtained results which are very close to the best found, this fact contributed to the best
global average. Note that WWVCMO performs very poorly on Class 20, compared to the column

generation methods. This is also confirmed by the largest gap for this class.

Table 10 presents the average for the gap obtained in each class for models solved with the
optimization package based heuristic. For this strategy the gap used is that provided by the solver
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Table 7 – LP Relaxation.

Classes WWKTMO WWVCMO SPKTMO SPVCMO

Class 13 4861.68 4861.68 5472.80 5472.80
Class 14 9840.43 9840.43 9931.05 9931.05

Class 15 4801.52 4868.99 5201.06 5201.06
Class 16 9872.04 9873.19 9872.04 9873.19

Class 17 6831.39 6831.39 8743.99 8779.76
Class 18 13455.68 13455.68 13510.54 13510.54

Class 19 6584.89 6584.89 7436.32 7436.32
Class 20 13626.16 13637.07 13626.16 13637.07

Average 8734.22 9225.75 8742.66 9230.23

Table 8 – Upper Bounds for the Optimization Package Based Heuristic.

Classes WWKTMO WWVCMO SPKTMO SPVCMO

Class 13 18014.40 8081.20 40179.80 8081.70
Class 14 (*5) 15188.20 — 15214.40

Class 15 17307.50 7629.40 30391.60 7629.90
Class 16 (*6) 14634.00 — 14627.67
Class 17 (*4) 16447.10 — 16507.30
Class 18 (*2) 28801.30 — 29546.30

Class 19 (*5) 15560.80 — 15721.90
Class 20 — 219048.63 — (*1)

Average — 40673.83 — —

(−) time limit with no integer solution

(∗) number of instances with feasible solution

Table 9 – Upper Bounds for the Column Generation Based Heuristic.

Classes WWGGMO CG WWVCMO CG SPGGMO CG SPVCMO CG

Class 13 8171.40 8509.50 8161.40 8456.80

Class 14 15440.90 20884.90 15442.40 21045.90
Class 15 7586.40 9196.00 7577.20 9373.10

Class 16 14941.00 22470.22 14999.89 22707.78
Class 17 16616.10 19200.20 16675.70 19736.20

Class 18 29996.20 47068.00 33889.80 51973.40
Class 19 15335.90 19712.30 15334.60 20369.80

Class 20 32340.50 45904.88 52861.25 47941.50
Average 17553.55 24118.25 20617.78 25200.56

for the final solution. As can be seen, most of the best gaps are found by WWVCMO model. In
general, the influence of data on the results relates to the increase in the number of items (in the

even-numbered classes), where the gaps are significantly higher compared to the odd-numbered
classes.
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Table 10 – Final Gap.

Classes WWKTMO WWVCMO SPKTMO SPVCMO

Classe 13 58.79 0.10 80.41 0.11

Classe 14 (*5) 0.29 — 0.46
Classe 15 58.94 0.08 74.78 0.08

Classe 16 (*6) 0.39 — 0.35
Classe 17 (*4) 0.24 — 0.22
Classe 18 (*2) 2.78 — 3.96

Classe 19 (*5) 0.50 — 1.55
Classe 20 — 48.16 — (*1)

Average — 6.57 — —

8 CONCLUSIONS

In this paper, we present a study of mathematical models from the literature for modeling the lot-
sizing problem and the one-dimensional cutting stock problem, in order to propose and compare
new integrated problems. For the lot-sizing problem, we study the model proposed by Wagner

& Whitin (1958), the model proposed by Trigeiro et al. (1989) and a reformulation of the lot-
sizing problem proposed by Eppen & Martin (1987). For the cutting stock problem, extensions
of the models proposed by Kantorovich (1960), Valério de Carvalho (1999, 2002) with reduction

criteria and Gilmore & Gomory (1961) have been proposed to incorporate multiple periods.
These models have been extended also to consider various types of objects.

In the literature, there are several studies of practical cases, which use these formulations to
model the problems found, as simple or integrated problems. This study aims to present alter-

native mathematical models for the integrated problem in order to compare and point out the
advantages of each model, as well as, the impact of the data set on the obtained solutions. As
solution methods, we present two strategies. The first one uses a solver for finding the solution.

In the second one, the column generation technique is used in a heuristic strategy to get a feasible
solution. An extensive computational study is conducted with different data sets.

The difficulty of the models to obtain a feasible solution becomes clear when considering the
capacity constraint in the lot-sizing problem, and this impact is even greater when the capacity

constraint is tight. The main influence of the data set on the results is in instances that have
an item length considerably smaller when compared to the object length. For the models that
consider various object types in stock, the main impact of the data in the results comes from the

increase in the number of items.

In general, models integrated with the classical lot-sizing problem and the cutting stock prob-
lem model based on Valério de Carvalho (1999, 2002) with column generation obtained the
largest number of feasible solutions compared to other mathematical models in all analyses. It

is also possible to generalize the fact that the models that integrate with the model proposed
by Kantorovich (1960) have produced bad results in all experiments. For models with capacity
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constraints, the classical lot-sizing model integrated with the Valério de Carvalho model and

Gilmore and Gomory in both capacity variations (uncapacitated model and capt = capt/0, 3)
obtained a lot of good upper bounds. However the use of the shortest path model (Eppen &
Martin, 1987) significantly improved the LP lower bound and obtained gaps smaller when com-

pared to other models, for most classes. In an analysis for the mathematical models with various
object types, although the integration with the Gilmore and Gomory model does not show the
best results for all classes for the upper bound, the proximity to the best results contributes to the

achievement of best overall average.

A possible direction for future research is to study other extensions of the models proposed and
develop more elaborate solution methods, in order to address a greater variety of instances.
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A B S T R A C T

The integrated lot sizing and cutting stock problem is studied in the context of furniture production. The goal is
to capture the interdependencies between the determination of the lot size and of the cutting process in order to
reduce raw material waste and production and inventory costs. An integrated mathematical model is proposed
that includes lot sizing decisions with safety stock level constraints and saw capacity constraints taking into
account saw cycles. The model solution is compared to a simulation of the common practice of taking the lot size
and the cutting stock decisions separately and sequentially. Given the large number of variables in the model, a
column-generation solution method is proposed to solve the problem. An extensive computational study is
conducted using instances generated based on data collected at a typical small scale Brazilian factory. It includes
an analysis of the performance of the integrated approach against sequential approaches, when varying the costs
in the objective function. The integrated approach performs well, both in terms of reducing the total cost of raw
materials as well as the inventory costs of pieces. They also indicate that the model can support the main
decisions taken and can bring improvements to the factory's production planning.

1. Introduction

The Brazilian furniture industry is concentrated in regional centers,
mostly situated in the southern and southeastern regions of the
country. The state of São Paulo, situated in the southeast, is responsible
for 20% of the national production. The cities of Mirassol and
Votuporanga together with their surrounding towns form Local
Productive Arrangements (APL – the Portuguese term for Arranjo
Produtivo Local), when referring to the production of furniture. These
two APL represent about 10% of the furniture production in the state of
São Paulo [8,33]. An overview of this sector shows a predominance of
micro and small businesses and these are responsible for 61.9% of the
jobs created in the sector. The furniture demand depends on the
behavior of different economic factors such as the residential building
market, consumer budgets and the stability of the economy, which
explain the growth of the Brazilian furniture industry in recent decades.

The sector in Brazil is divided into segments according to the raw
materials (e.g. wood, metal and plastic) and the use for which the
product is intended (e.g. residential, commercial and institutional).
Due to organizational and marketing factors, the companies specialize
in one or two types of furniture, such as kitchen and bathroom fittings,
bedroom furniture, sofas and armchairs among other groups. Some

companies manufacture furniture on a large scale and others are
specialized in the production of customized furniture according to
specific individualized projects.

The competition among the companies in the sector is directly
related to the technology and management tools involved. Also,
competition with international markets lead to a series of challenges
for the Brazilian furniture industry. One approach to these challenges is
to invest large amounts of capital in more sophisticated machines and
acquiring new technologies. Making improvements focusing on redu-
cing managerial and manufacturing problems is a less common
approach but could be the best solution for survival in a highly
competitive market, in particular in the case of small-scale factories
that are not able to invest much in their equipment. In fact, the
modernization of machinery in these types of factories occurs in stages;
it is common to find both new modern machines and outdated ones in
the same factory. The visits and interviews conducted in the factories
located in the Votuporanga APL showed that good, specialized Decision
Support Systems are needed to speed up and improve the production
planning decision process.

The production planning in these factories basically involves two
main decisions: lot sizing and cutting stock (e.g. [28,2]). The lot sizing
decisions provide the quantity of furniture to be produced in each
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period of the planning horizon and the cutting decisions generate the
best possible cutting patterns to obtain the pieces that make up a final
product. When these decisions are taken separately, a large amount of
raw material could be used and/or more pieces could be kept in
storage. As a result, higher production costs might be incurred.

Taking the lot sizing and the cutting stock decisions simultaneously,
there is a possibility of bringing forward the production of some final
products and to have better combinations of pieces in cutting patterns,
which might decrease the total use of raw material and the total
number of pieces in storage. However, this bringing-forward might
result in additional holding costs associated to final products and
therefore a trade-off between bringing forward and postponing pro-
duction needs to be considered.

In this paper, a study of the production process of a typical small
scale Brazilian furniture factory (Factory L) is conducted and a
mathematical model that captures the production process of Factory
L is proposed and tested using instances based on real data. The
remainder of this paper is organized as follows. Section 2 presents a
review of some papers that are relevant to this work and highlights its
main contributions. Section 3 contains a description of the production
process in a typical small-scale furniture factory. In Section 4, a
mathematical model that considers the integrated lot sizing and the
cutting stock decisions is presented as well as a proposal for the
simulation of common practice in the factory at the time of the
interviews. The solution procedure based on the column-generation
technique is presented in Section 5. In Section 6, results of a
computational study using instances based on real data conducted to
compare the effectiveness of the integrated and the non-integrated
solution approaches are presented. This section also presents results
that show the impact on the models when the costs in the objective
function are changed. Section 7 presents concluding remarks.

2. Review of related papers

Lot sizing and cutting stock are two well-known problems that have
attracted the attention of the production and operations research
scientific community in terms of case studies, models and efficient
solution methods [20,18,38].

However, only a few papers have considered their integration, also
known in the literature as the combined lot sizing and cutting stock
problem. Among them, Farley [6] is the first author to publish an
integrated cutting stock and production planning problem. The pro-
blem is considered in the context of clothing production. Hendry et al.
[16] present a two stage solution procedure for the integrated cutting
stock and lot sizing problem in the context of copper production. In the
first stage, the cutting stock problem with capacity constraints is solved
heuristically. The solution of stage one is then used in an integer
programming model to determine the lot sizes. Arbib and Marinelli [3]
consider a mixed integer programming model to solve the integrated
problem. The proposed model allows for the cutting of non-ordered
pieces that may be later grouped to meet future demand (cut-and-
reuse). The model also includes inventory and transportation costs.
Nonas and Thorstenson [21,22] consider a one-dimensional cutting
stock problem with holding costs and setup costs associated to cutting
patterns. In Nonas and Thorstenson [21] a column generation proce-
dure is proposed with good results for small scale problems. They
extend their paper and, in Nonas and Thorstenson [22], the ideas
presented in Haessler [15] are considered and the column generation
procedure is improved with good results for small and large scale
problems. Applications of the integrated problem in the paper industry
can be found in Respício and Captivo [27] and Poltroniere et al. [25].

The integrated problem applied in the context of furniture produc-
tion is presented in Gramani and França [12], Gramani et al. [13], Silva
et al. [30], Gramani et al. [14], Alem and Morabito [1,2] and Silva et al.
[32]. In Gramani and França [12] the authors analyze the multi-period
cutting stock problem where the goal is to minimize the total number of

plates used in the cutting process, the inventory costs of pieces and the
setup costs, but they do not consider the production and inventory
costs of final products. They propose a solution method based on an
analogy with the shortest path problem. Gramani et al. [13] extend the
model proposed in Gramani and França [12] by including the decisions
about the final products. They propose a heuristic method based on
Lagrangian relaxation applied to the integrated lot sizing and cutting
stock problem. The difficulty faced by the Lagrangian solution
approach is that the resulting Lagrangian subproblems are NP-hard
capacitated lot sizing problems. Gramani et al. [14] address the model
proposed in Gramani et al. [13] by relaxing setups and maintaining the
storage of pieces. They consider a trade-off between pieces inventory
and raw material waste. For solving this integrated model, they use the
CPLEX package with a column generation technique. Silva et al. [30]
consider the capacity of the cutting machine and of the drilling
machines. They relax the integrality of the setup variables, and use
the Simplex method with column generation to deal with the enormous
quantity of cutting patterns. Alem and Morabito [1,2] apply robust
optimization tools to the integrated lot sizing and cutting stock models
considering production costs and product demands as stochastic
parameters. Silva et al. [32] proposed two integer programming models
to optimize a production process in a furniture industry. The proposed
models allow the inventory of items and leftovers, which can be used in
subsequent periods. The first model is an extension of the model
proposed in a previous research [31]. The second model is based on the
model proposed by Dyckhoff [5] for the one-dimensional cutting stock
problem (called one-cut), where each decision variables corresponds to
a single cutting operation in a single object. Computational results are
presented using real data from a furniture industry.

Still related with the present work, we mention that Wagner [37]
discusses the cutting stock problem in which lumber is cut in bundles;
Henn and Wäscher [17] and Cui et al. [4] study the cutting stock
problems with reduction on the number of different cutting patterns;
and Poldi and de Araujo [23] consider the multiperiod cutting stock
problem.

In this paper, we present a new mathematical model to integrate
the lot sizing and the cutting stock decisions in the context of furniture
production of small factories. The main difference from other models
proposed in the literature is the consideration of safety stock level of
final products and capacity constraints taking into account saw cycles.
This last characteristic is important because the cutting machine allow
the simultaneous cutting of several plates. That is, the plates can be
stacked in the machine so that they can be cut simultaneously
according to the same cutting pattern. The total number of plates that
can be stacked depends on the machine maximum load and on the
thickness of the plates. The time necessary to adjust the cutting
machine and to cut a stack of objects according to a given cutting
pattern is named saw cycle [39,34]. So, the total number of saw cycles
is an important aspect to be considered when solving the cutting stock
problem.

In summary the paper has the following contributions. First, the
proposal of an innovative integrated model. Second, the simulation of
the practice of small-scale furniture factories through mathematical
models that considers the sequential decisions, i.e., first taking the lot
sizing decision and afterwards the cutting stock decision. Third, the
proposal of a solution method based on column-generation for solving
the mathematical models. Finally, the presentation of computational
results that show the quality of the proposed integrated approach when
compared to a simulation of the factory practice, as well as a study of
the impact of cost variations on the different approaches.

This paper extends the initial research published in Santos et al.
[28] and in Vanzela et al. [36]. In the latter a relaxed version of the saw
cycle constraint is considered and limited computational results are
presented. Santos et al. [28] consider a detailed cutting machine
capacity and an approximated capacity of the remaining production
process. The operational details considered are the setup time for

M. Vanzela et al. Computers & Operations Research 79 (2017) 148–160

149



cutting patterns changeover and saw machine capacity in terms of the
number of plates that can be simultaneously cut. They solve the
problem using a rolling horizon strategy and present results for just
two instances considering only a set of a priori defined cutting
patterns.

3. The furniture production process in small-scale factories

The focus of this work is on factories that produce rectilinear
furniture using as its main raw material rectangular wooden plates
such as MDF (Medium-Density Fiberboard), OSB (Oriented Strand
Board) and other similar materials. The furniture production process
described below is based on the information collected at Factory L
situated at the Votuporanga APL, a typical small scale Brazilian factory
according to a classification based on the number of employees [29].
The furniture production process involves several stages and equip-
ment, the different types of equipment are grouped in sectors according
to their function and the production stage. The main differences in the
production process of Factory L and of the other companies visited are
in specific stages of the production process or in the modernity of
certain equipment.

The production floor at Factory L is divided into four main sectors:
cutting, woodwork, painting and dispatching. At the first stage (cut-
ting), the required number of plates are cut to produce the pieces that
compose each final product. At the time the data was collected, the
cutting sector had one automatic cutting machine (main) and one semi-
automatic one (secondary) which is used only at peak periods or during
maintenance of the main machine.

After cutting the plates, the pieces move on to the woodworking
sector. Several operations are conducted in this sector. Some rectan-
gular pieces are processed to form non rectangular shapes according to
the product design. All pieces pass through some type of finishing in
order to take out any irregularities, and some of them receive edge
finishing. The drilling operations are also done is this sector. Due to the
precision needed in these operations, the woodworking area is crucial
and the quality control must be rigorous. Once the pieces go through all
the necessary woodwork operations they are ready to be painted.

The painting sector houses two types of painting (i) Polyurethane
(PU) painting, which is a manual process and (ii) Ultraviolet (UV)
painting, which is semi-automatic. This area also includes the sanding
and cleaning operations. To end the production process, the painted
pieces go to the dispatching sector where they are packed according to
the final product specifications, labeled and stored for future delivery.
Fig. 1 shows the production flow at Factory L. More information about
the furniture production process can be found in Vanzela [35] and the
references therein.

The Factory L catalogue considered in this study contains eight
types of furniture: a multi-cabinet, a dressing table and six different
models of wardrobe, from now on named as MC, DT and W1 to W6,
respectively. The furniture can be produced in seven different single
colors or in a combination of two colors, resulting in over 150 different
final products. At the time the data was collected, two products
(W4,W6) represented 50% of total sales and thus they received more
attention in the production process.

Each final product is composed of a number of rectangular pieces
cut from rectangular plates of different thicknesses. The type and
number of pieces necessary to obtain one final product represents a
major concern for the production manager. Besides the associated
cutting stock decision, the total number of pieces will influence other
decisions such as total number of drilling operations, final product cost,
packaging and transportation. The number of pieces that compose each
final product ranges from six to twenty. Some of these products share
the same pieces (in terms of size and thickness). This information must
be taken into account when considering a combination of final products
in the same lot.

From the above description, it is possible to infer that the

production manager has a difficult task when taking the lot sizing
and the cutting stock decisions. These decisions are taken weekly based
on the forecast demand, the sales of similar periods in previous years
and on the results of marketing campaigns already in progress. Also,
the factory has previous commitments to meet and therefore efficient
production planning and control is mandatory. The main concern of
the production managers of the factories visited is the final product
cost. According to the Factory L data, the main raw material (wooden
plates) costs represent 50% of the final product cost.

4. Mathematical model for the Integrated Lot Sizing and
Cutting Stock Problem for Furniture Production (ILSCSP)

In this section, we present a new mathematical model for the
integrated lot sizing and cutting stock problem. The model is based on
the description of the production process of small scale furniture
factories presented in Section 3. Before stating the problem and
presenting the mathematical model, some simplifications to the
production process are considered to obtain a computer solvable
model.

Simplifications:

1. Only the cutting sector capacity is considered and it is assumed that
the other sectors can handle the decisions taken for the cutting stock
problem. This is a common assumption in the literature because in
most of the furniture plants the cutting sector is the bottleneck of the
production process. We have found nine papers in the literature that
consider the integrated lot sizing and cutting stock problem applied
to furniture industry. Five of them (Gramani and França [12],
Gramani et al. [13,14], Alem and Morabito [1] and Vanzela et al.
[36]) consider capacity constraints only in the cutting sector, as we
do. Three of them (Silva et al. [30], Santos et al. [28] and Alem and
Morabito [2]) consider capacity constraints in the cutting sector and
also in the drilling sector. Silva et al. [32] do not consider capacity

Fig. 1. Furniture production flow diagram.
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constraints. Furthermore, Toscano et al. [34] focus specifically on
the optimization of the cutting sector of Factory L, which shows the
relevance of the cutting sector in furniture industries and that this is
a realistic simplification.

2. Setup time for the cutting machine was not taken into account, nor
was the cutting patterns changeover time. The estimated impact of
these simplifications is taken into account indirectly on the cutting
machine capacity.

3. Late delivery and overtime working to meet demand are not allowed.
4. The colors of the final products are not considered.

Considering the simplifications (1)–(4) and a planning horizon
divided into periods, the integrated problem considered in this study
can be stated as: determine the lot size of final products, the total
number of plates and cutting patterns necessary to obtain the pieces
that compose the final products, taking into account the demand of
each final product in each period, the cutting machine capacity and
safety stock levels for final products. The decisions are taken aiming to
minimize the overall costs computed in terms of production and
inventory costs of the final products, plates cost and pieces inventory
costs.

The usual practice of the majority of the factories visited is to divide
this problem in two sequential problems. First they solve the lot sizing
problem to define the quantities of final products. After that they obtain
the total number of pieces necessary to compose the final products and
then solve the cutting stock problem to decide the total number of
plates to be cut and the associated cutting patterns.

The process of cutting the plates may involve waste of material. The
factory is interested in reducing this waste given that it has a strong
impact on the cost of the final product. One way of reducing this waste
is by increasing the number of types of ordered pieces. A wider variety
of pieces may allow for a better arrangement of the pieces on the plate
(cutting pattern). Moreover, increasing the demand for given pieces
might help to reduce the number of saw cycles due to the fact that more
plates may be cut simultaneously with the same cutting pattern. All this
can be achieved if the factory brings forward the production of some
final products. However, this early production may incur additional
inventory costs. To best capture all these cutting stock and lot sizing
elements in the decision process, an integrated decision should be
taken.

4.1. The model description

To define the integrated mathematical model, let T be the number
of periods in the planning horizon and F be the total number of ordered
final products. As stated in Section 3, one final product is composed of
rectangular pieces of different thicknesses cut from rectangular wooden
plates. So, let E be the total number of different plates or pieces
thicknesses, and P the total number of pieces. We consider that the
stock of rectangular plates of each different thickness is enough to
meet all the pieces demand, and that they are all of the same length (L)
and width (W). To simplify the model description, we will consider that
J is the number of all possible cutting patterns (pre-supposing that
these cutting patterns have been generated a priori considering all the
pieces necessary to obtain the final products). Since two dimensions are
relevant in the cutting processes, the cutting patterns in this context are
classified as two-dimensional.

The following indices are used to define the parameters, constraints
and variables used in the model.
Indices:

t T= 1,…, : periods;
f F= 1,…, final products (or simply products below);
p P= 1,…, pieces;
e E= 1,…, plate thickness;
j J= 1,…, cutting patterns.

The following parameters are presumed to be known.
Parameters:

cf production cost for product f;
hf inventory cost for product f;
Dft demand for product f in period t;
Ct maximum production capacity in period t, computed in nu-

mber of saw cycles.
oe thickness of plate e;
coe cost of the plate with thickness e;
S height of the saw;
cape maximum number of plates of thickness e that can be sim-

ultaneously cut (cap = ⌊ ⌋e S
oe );

hp
e

inventory cost of piece p with thickness e;
qpf

e number of pieces p of thickness e necessary to produce one
unit of product f;

L: length of the plates;
W: width of the plates;
lp

e length of piece p with thickness e;
wp

e width of piece p with thickness e;
apj

e number of pieces p with thickness e in the cutting pattern j;
If 0 initial inventory of product f;
IPp

e
0 initial inventory of piece p with thickness e;

ts demand percentage used to impose safety stock level of pr-
oducts;

tx parameter used to adjust the approximated capacity.

The following variables are used to model the decisions associated
with the mathematical model.
Variables:

Xft number of product f produced in period t;
Ift number of product f stored at the end of period t;
IPpt

e number of pieces p of thickness e stored in period t;
yjt

e number of plates of thickness e, cut according to cutting p-
attern j in period t;

zjt
e number of saw cycles necessary to cut plates of thickness e

according to cutting pattern j in period t.

The proposed integrated lot sizing and cutting stock model consists
of coupling the characteristics and considerations for both the lot sizing
and the cutting stock decisions in a single model that is defined by the
expressions (1)–(10).

The ILSCSP model

∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑Z c X h I co y h IPMin = ( + ) + +
f

F

t

T

f ft f ft
e

E

j

J

t

T
e

jt
e

e

E

p

P

t

T

p
e

pt
e

=1 =1 =1 =1 =1 =1 =1 =1

(1)

Subject to:

X I I D f F t T+ − = = 1,…, ; = 1,…,ft f t ft ft, −1 (2)

I tsD f F t T≥ = 1,…, ; = 1,…, − 1ft ft (3)

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑I ts D f F≥ = 1,…,fT

t

T

ft
=1 (4)

∑ ∑a y IP IP q X p P t T e

E

+ − = = 1,…, ; = 1,…, ; = 1,

…,

j

J

pj
e

jt
e

p t
e

pt
e

f

F

pf
e

ft
=1

, −1
=1

(5)
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∑ ∑ z C t T≤ = 1,…,
e

E

j

J

jt
e

t
=1 =1 (6)

z
y

cap
j J t T e E≥ = 1,…, ; = 1,…, ; = 1,…,jt

e jt
e

e (7)

X I f F t T, ∈ = 1,…, ; = 1,…,ft ft + (8)

 z y j J t T e E∈ , ∈ = 1,…, ; = 1,…, ; = 1,…,jt
e

jt
e

+ + (9)

IP p P t T e E∈ = 1,…, ; = 1,…, ; = 1,…,pt
e

+ (10)

• Objective function (1): the optimization criterion is the minimiza-
tion of the total cost calculated by the sum of the production costs
(cf), inventory costs of products (hf), raw material costs (coe) and
inventory costs of pieces (hp

e
). This expression translates the tradeoff

that should be achieved considering the costs of production,
inventory of products and of pieces as well as the cost of the plates.

• Meeting demand constraints (2): these constraints guarantee that
the demand for products f (Dft) is met by balancing the production
in period t, the inventory from the previous period (t − 1), and the
unshipped products that remain in inventory in period t for later
use.

• Safety stock level constraints (3) and (4): these constraints impose
safety stock levels for the product f as a percentage of the demand
for each product. For the first (T − 1) periods, the safety levels are
stated in terms of the individual demands (tsDft), and for the final
period, the safety stock levels are stated in terms of the total
demands ts D( ( ∑ ))t

T
ft=1 .

• Coupling constraints (5): these constraints model the interdepen-
dence between the decisions. They take into account the decisions
relative to lot sizing (Xft variables) to determine the pieces demand
and thus the decisions relative to the cutting of raw material (yjt

e

variables). It allows for the possibility of storing pieces (IPept
variables).

• Saw cycles capacity constraints (6): these constraints guarantee
that no more than Ct saw cycles are used in each period t.

• Minimum number of saw cycles constraints (7): these constraints
impose a lower bound to the number of cycles necessary to cut the
yjt

e plates of thickness e according to the cutting pattern j in period t
taking into account the cutting machine maximum load (cape).

• Variable domain constraints (8)–(10): these constraints determine
the domains of the variables. It is usual that the lot size decisions Xft
are defined as continuous variables.

It is important to highlight that, in general, when stating lot sizing
constraints it is assumed that the safety stock levels are implicit in the
demand. The safety stock level constraints (3) and (4) differ from this
standard practice because the imposition of safety stock levels is
smaller in the first (T − 1) periods, thus allowing more freedom to
allocate the initial inventory to meet demand in any of these periods.
The total number of constraints present in the ILSCSP model is given
by (FT F T F PTE T JTE+ ( − 1) + + + + ) and the total number of
variables is given by ( JTE FT PTE2 + 2 + ).

4.2. Simulation of the factory production planning process

The coupling of the lot sizing and the cutting stock decisions in the
ILSCSP model are achieved by imposing constraints (5). If these
constraints are removed, the model decomposes into two independent
models that can be used to simulate the usual factory practice. The
remaining constraints will be used to define the Lot sizing problem and
the Cutting Stock problems that are solved sequentially in practice.
Still, to be realistic, the resulting models have to take into account some
elements of each other. In what follows, we will describe the models
that will be used to simulate the practice in Factory L.

4.2.1. Model for the Capacitated Lot Sizing Problem for furniture
production (CLSP)

The mathematical model (11)–(16) is used to simulate the lot sizing
decisions in the context of furniture production. It determines the lot
sizes for the products (furniture) as well as the inventory levels in each
period of the planning horizon aiming to minimize the total cost of
production and inventory of the products. It uses the same indices,
parameters and variables as the ILSCSP model.

The CLSP model:

∑ ∑Z c X h IMin = ( + )
f

F

t

T

f ft f ft
=1 =1 (11)

Subject to:
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⎜⎜

⎞
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t

T

ft
=1 (15)

X I f F t T, ∈ = 1,…, ; = 1,…,ft ft + (16)

• Objective function (11): the optimization criterion is the minimiza-
tion of total costs considering production (cf) and inventory costs
(hf).

• Saw capacity constraints (13): to obtain a realistic decision, an
estimate of the cutting machine capacity is considered. This
constraint is stated considering that the pieces can be cut from an
imaginary single plate with enough area to cut all the necessary
pieces. Then the approximated total number of plates necessary to
produce X( )ft products is obtained by dividing the total area used for
this imaginary plate divided by the real plate area:
⎛
⎝⎜

⎞
⎠⎟∑ ∑f

F
e
E l w q X

L W=1 =1
( · )

( · )
p
e

p
e

pf
e ft

. The parameter cap = ⌊ ⌋e S
oe allows the trans-

formation of the used capacity into number of saw cycles. In this
way, the definition of the furniture lot sizes takes into account an
approximation of the total number of saw cycles necessary to cut all
the pieces.

• The constraints (12), (14), (15), (16) have the same purpose as the
constraints (2), (3), (4), and (8) in the ILSCSP model, respectively.

4.2.2. Model for the multi-period Cutting Stock Problem for a
furniture factory (CSP)

The cutting stock model (CSP) described by (17)–(22) uses a
feasible solution of the lot sizing model (CLSP) (X͠ft) to compute the
pieces demand. The CSP model then determines the number of plates
to be cut and the associated cutting patterns to meet the pieces demand
aiming to minimize the total cost of plates and pieces inventory. It uses
the same indices, parameters and variables as the ILSCSP model.

The CSP model

∑ ∑ ∑ ∑ ∑ ∑Z co y h IPMin = +
e

E

j

J

t
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e
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e

e
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p
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e
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e

=1 =1 =1 =1 =1 =1 (17)
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(18)
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∑ ∑ z C t T≤ = 1,…,
e

E

j

J

jt
e

t
=1 =1 (19)

z
y

cap
j J t T e E≥ = 1,…, ; = 1,…, ; = 1,…,jt

e jt
e

e (20)

 z y t T j J e E∈ , ∈ = 1,…, ; = 1,…, ; = 1,…,jt
e

jt
e

+ + (21)

IP p P t T e E∈ = 1,…, ; = 1,…, ; = 1,…,pt
e

+ (22)

• Objective function (17): minimize the total cost considering the
plates cost and the inventory cost of pieces.

• Meeting pieces demand constraints (18): these constraints guaran-
tee that, in each period, the pieces demand ( q X∑ ͠

f
F

pf
e

ft=1 ) is met by

balancing the number of pieces produced in period t ( a y∑ j
J

pj
e

jt
e

=1 , ),
the pieces stored in the previous period (IPp t

e
, −1), and the unused

pieces that are stored in period t (IPpt
e) for later use.

• The constraints (19), (20), (21), (22) have the same purpose as the
constraints (6), (7), (9) and (10) in the ILSCSP model, respectively.

The problem (17)–(22) extends, by considering saw cycle con-
straints and two dimensions, the multiperiod cutting stock problems
that have been considered in the literature, for example, in Poldi and
Arenales [24].

5. Solution method

Instances of the CLSP model can be solved easily by the available
solvers. However, the instances of the ILSCSP and CSP models can not
be solved easily due to the high number variables yejt (possible cutting
patterns) and their integral nature. To get round these difficulties, a
column-generation method based on Gilmore and Gomory [9,10] is
applied to a relaxed linear model that is obtained by substituting the
constraint y ∈jt

e
+ by y ∈jt

e
+.

We will describe the column generation procedure considering the
ILSCSP. An equivalent procedure is applied to the CSP. The Restricted
Master Problem (RMP) for the ILSCSP is defined taking only a subset
of (T P E* * ) cutting patterns in the sub-matrix associated to the
variables yjt

e. The remaining J T P E( − * * ) cutting patterns (and the
associated variables yjt

e) are removed from the problem and will be
generated as necessary. All the columns related to the other variables
are included in the RMP, except the variables zjt

e which are created as
the associated variables yjt

e are generated.
The current RMP is solved and the dual variables πet associated to

constraints (5) are recovered. For each thickness e and period t the
pricing sub-problem (23) and (24) is solved to identify if there are
cutting patterns (Aej) that can improve on the current RMP solution.
To simplify the notation, the index t is omitted in the dual variables
πet:

Z π A= maxSUB
e

j
e

(23)

As. t. is a two−dimensional cutting patternj
e

(24)

The columns that satisfy the criterion determined by the reduced
cost (25) are included in the RMP and the new RMP is solved. This
iterative process is repeated until no more new columns that satisfy this
criterion are generated:

c co Z= − < 0,jt
e e

SUB (25)

When the generated columns no longer price out, a reduced version
of the model (1)–(10) is built considering a subset of cutting patterns.
Only the yejt and the zjt

evariables associated to the initial cutting
patterns and the cutting patterns generated for the RMP are included
in constraints (5)–(7). This reduced mixed integer model is then solved
using a commercial optimization software package to obtain a feasible

mixed integer solution for the integrated problem.
Several aspects should be considered in the generation of cutting

patterns [40]. The majority of cutting machines observed in the
furniture factories impose that only orthogonal guillotine cuts can be
made. A cut is of orthogonal guillotine type if, when applied to a
rectangle, it produces two other rectangles. Another important con-
sideration is the number of times the plate must be rotated in 90° in
order to cut all the pieces. This is called the number of stages. If, at the
end of the final stage, all the items have been obtained, the cutting
pattern is exact, otherwise it is said to be non-exact. The trimming in a
non-exact cutting pattern is usually done in a secondary cutting
machine and therefore it is not counted as an additional stage [19].
An important class of orthogonal guillotine cutting pattern with high
productivity of the cutting machine is the n-group cutting pattern. An
n-group cutting pattern is formed by n parts of 1-group patterns. A 1-
group pattern is a two-stage cutting pattern formed by a set of strips
that can be simultaneously cut in the second stage [11].

A special case of the 1-group cutting pattern is the maximal
homogeneous cutting pattern, i.e. a cutting pattern that contains only
one type of piece, the maximum possible number. The maximal
homogeneous cutting pattern j associated to piece p of thickness e
can be represented by the column vector A a( ) = (0,…, ,…,0)j

e t
pp
e ,

⎢
⎣⎢

⎥
⎦⎥
⎢
⎣⎢

⎥
⎦⎥a =pp

e L
l

W
wp

e
p
e . The set of P maximal homogeneous cutting patterns is

used to initialize the RMP and guarantees an initial solution that attend
the pieces demand.

Other methods can be used to obtain feasible two-dimensional
cutting patterns in the pricing sub-problem (23) and (24) (e.g.
[10,40]). Regarding the context of furniture production, there are
some papers in the literature that consider the stand alone cutting
stock problem and propose different approaches to generate orthogo-
nal guillotine two-dimensional cutting patterns [26,40,41,19]. In
particular, Rangel and Figueiredo [26] analyze the cutting patterns
used in Factory L and present a heuristic procedure to generate cutting
patterns based on n-group patterns that simulates the ones used in the
factory practice. A comparison of the heuristic solution with the
solution given by the factory indicates that the proposed heuristic
can generate cutting patterns similar to the ones used in the factory
with equal or less waste. Besides the homogenous cutting patterns used
to initialize the RMP, in this paper we considered only 2-group cutting
patterns. Fig. 2 shows an example of a 1-group and of a 2-group cutting
patterns, the latter was generated and used in Factory L.

6. Computational study

The objective of the computational study described in this section is
to analyze the behavior of the proposed model. The three mathematical
models (ILSCSP, CLSP, and CSP) and the column-generation algorithm
(described in Sections 4 and 5 respectively) were written in the syntax
of the Mosel modeling language and the associated optimization
problems were solved using the solver X−PRESSMP [7]. The runs were
executed on a machine with 8.0 GB of RAM and an Intel(R) Core(TM)
i-7 chip at 3 GHZ.

For the sake of comparison to the integrated model ILSCSP, and
following the company's decision making process, first the CLSP is
solved and its solution is used to determine the pieces demand. Then
the multi-period cutting stock problem CSP is solved. The maximum
execution time for solving the integrated model (ILSCSP) was set to
3600 s. The same amount of time was given for solving the separated
models (CLSP + CSP), being 60 s for the CLSP model and 3540 s for
the CSPmodel. The time given for solving each pricing sub-problem (in
models ILSCSP and CSP) was 60 s. In order to evaluate the impact of
the capacity constraint on the lot-sizing decisions, we also considered a
fourth model built removing the capacity constraint (13) from the
CLSP model, denoted by LSP. The computational study is divided in
two parts. The results presented in Section 6.2 consider the instances
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generated with the data set described in Section 6.1. The results
presented in Section 6.3 consider new instances generated by varying
the costs in the objective function.

6.1. Data set

In the data set we consider that one period of time is equivalent to
one week and, for each instance, we considered a planning horizon of 4
weeks (1 month). Fifteen instances were generated based on data
collected at Factory L and from the furniture market considering the
months of March (instances 1–5), August (instances 6–10) and
November (instances 11–15). These months represent, low, medium
and high demand respectively according to the seasonality of the
sector. The main characteristics of the real data are described below.
More details of the real data instances can be found in Vanzela [35].

• Problem size: F=8 products; T=4 periods (weeks); P=72 pieces
grouped into e=4 thickness (oe=9 mm, 15 mm, 18 mm, 25 mm for
e = 1,…,4 respectively).

• Table 1 shows the production costs c( )f for each product (the plates
costs are not included).

• The inventory costs for products (hf) shown in Table 1 are obtained
based on the return rate considering the value cf applied on the
financial market.

• Initial inventory of products I( )f 0 : 60% of total demand of product f.

• Percentage of minimum inventory levels (ts): 60% of the demand for
a given period.

• Plates dimension L W( × ): (2750 mm × 1850 mm).
• Plates Costs (coe): the costs were determined according to market

prices as 45.79, 65.63, 36.37, and 97.17 for e = 1,…,4 respectively.

• Pieces Costs (cpep): computed as
⎛
⎝⎜

⎞
⎠⎟cp co= ·p

e l w
L W

e·
·

p
e

p
e

. This cost is also

used to compute the inventory costs of pieces hp
e
.

• Inventory costs of pieces (hp
e
): based on the return rate considering

the value cpep applied on the financial market.

• Initial inventory of pieces IP( )p
e
0 : zero.

• Saw height (S): 105 mm.

• Estimated cutting capacity for a given period (saw cycles) C( )t : In
order to calculate C( )t we observed that the velocity of the saw is on
average 8.5 min per cycle. Considering that each week has 5 working
days, and that a single day has 8-h shift, we get that the saw capacity
in each period t is C = 340t saw cycles.

• Capacity adjustment (tx): 0.85.

• Demands for product (Dft) are shown in Table 2. For the sake of
simplicity we only show the first instance for each month. Observe
that for each month we have 4 periods representing the 4 weeks.

• Product structure: Table A1 (Appendix) show the number of pieces
of 15 mm that compose each product.

6.2. Computational results – Part I

In this section, the computational results obtained with the
mathematical models described in Section 4 are presented. Basically,
three models or combination of models, are analyzed: the first one, LSP
+CSP, is typically used in the industry and solves sequentially the non
capacitated lot sizing problem followed by the cutting stock problem;
the second one, CLSP+CSP, requires an estimation of the capacity and
also simulate the industry decision process by solving sequentially the
capacitated lot sizing problem followed by the cutting stock problem;
the third one, the ILSCSP, models the proposal of taking an integrated
decision.

6.2.1. Lot sizing results
We begin by analyzing the cost associated with the solution

obtained by each model considering only the lot sizing costs (objective
function (11)). As the production costs are constant over the periods
and the demand must be met, there is no reason to compare the
production cost related to the integrated decision (ILSCSP) and the lot
sizing (LSP and CLSP) decisions, because they will be the same. The
difference appears in the Inventory Costs related to the products which
are shown in Table 3 with the best results marked in bold. It can be
seen that the LSP model obtains better results than the CLSP and
ILSCSP for all but two instances, instances 1 and 4, for which the value
are the same for all models. These results were expected since the LSP
has only to meet the demand and satisfy the safety stock. On the other
hand, the models that consider capacity constraint (the CLSP+CSP and
the ILSCSP) are forced to keep in stock a greater number of final
products in order to meet the demand without exceeding the capacity
of the cutting machine. Note that the ILSCSP model gives the second
best results (in 12 out of 15 instances when compared only to the CLSP
+CSP), which shows that the integrated approach has a better overview

Fig. 2. Examples of 1-group and 2-groups cutting patterns.

Table 1
Production and inventory costs of products.

Product Production cost (cf) Inventory cost (hf)

(1) MC 42.00 0.21
(2) DT 75.00 0.39
(3) W1 175.00 0.84
(4) W2 152.00 0.70
(5) W3 113.00 0.57
(6) W4 188.00 0.85
(7) W5 141.00 0.70
(8) W6 175.00 0.84

M. Vanzela et al. Computers & Operations Research 79 (2017) 148–160

154



of the available capacity then the estimation given in CLSP.

6.2.2. Cutting stock results
The following considers the results obtained with the LSP+CSP,

CLSP+CSP and ILSCSP models for the costs regarding to the multi-
period cutting stock problem. Some factors can influence the solution
in each model. The possibility of storing pieces and the characteristics
of each instance can affect the solutions of the models. To analyze this
influence, Table 4 shows the raw material costs and the total inventory
costs of pieces (over all the four periods) obtained for each model, with
the best results marked in bold. The models CLSP+CSP and ILSCSP
resulted in better solutions than the model LSP+CSP. Due to the
capacity constraints of the models CLSP+CSP and ILSCSP, some lots of

products were brought forward which allowed better combinations of
pieces and consequently the generation of more efficient cutting
patterns without bringing forward the cut of too many pieces. On the
other hand, the model LSP+CSP brought forward the cut of some
pieces in order to generate efficient cutting patterns, this resulted in an
increase in the pieces inventory costs (for all but one instance).
Moreover, the total number of plates cut for the LSP+CSP instances
is higher than the total number of plates necessary for the instances of
the other two models. See the raw material costs in Table 4, which are
higher for all but two instances.

Table 5 presents the costs from the cutting stock problem (objective
function (17)). As a consequence of the results shown in Table 4, in
general, the CLSP+CSP and ILSCSP models perform better than the
LSP+CSP model. Observe that these results are contrary to the results
regarding the lot sizing costs, the CLSP+CSP and the ILSCSP models
together gave better results for 13 out of the 15 instances.

6.2.3. Lot sizing and cutting stock results
Table 6 shows the total cost values for each instance of the ILSCSP,

LSP+CSP, and CLSP+CSP models (objective function (1) or (11) plus
(17)). These results show that there is a reduction in the total cost for
almost all the instances (13 out of 15) when considering the capacity
constraint in the production planning (the solutions to the ILSCSP and
CLSP+CSP models). This improvement is mainly due to the estimation
given to the capacity constraint, which generates a planning of products
that can reduce the costs of the cutting stock problem. The reduction of
the cutting cost is due to the earlier production of some pieces that will
soon be used to produce some products and therefore results in better
solutions to the cutting stock problem as seen in the previous tables.

Comparing the results obtained by CLSP+CSP and ILSCSP we can
see that the integrated approach does not always provide the best
solution. This allows us to conclude that, for these instances, a good
estimation of the cutting machine capacity in the lot sizing level can be
as effective as the integrated approach. We have not found this kind of
behavior for the scenarios described in the literature. Since the three
solution approaches are heuristic methods, the column generation
procedure is halted after a pre-defined amount of time and an
optimization package is used to find a feasible integer solution, it is
acceptable to have this kind of results. The results presented in Section
6.3 allow a better understanding of the behavior of these solution
approaches and the impact of the costs in the associated decisions.

Table 2
Weekly demand for the first instances of March (low demand), August (medium demand)
and November (high demand).

March (low demand)

Instance 1

Product Periods SumF

1 2 3 4

(1) MC 40 40 40 40 160
(2) DT 120 120
(3) W1 80 80 160
(4) W2 70 70
(5) W3 25 25 50
(6) W4 115 115 230
(7) W5 160 160
(8) W6 170 170 340
SumT 325 550 305 110 1290
% Prod 25.19 42.64 23.64 8.53 100.00

August (medium demand)

Instance 6

Product Periods SumF

1 2 3 4

(1) MC 60 40 100 200
(2) DT 85 100 185
(3) W1 190 190
(4) W2 66 66
(5) W3 33 33 66
(6) W4 100 150 250
(7) W5 50 50 100
(8) W6 200 240 440
SumT 343 375 206 573 1497
%Prod 22.91 25.05 13.76 38.28 100.00

November (high demand)

Instance 11

Product Periods SumF

1 2 3 4

(1) MC 310 310
(2) DT 70 50 50 170
(3) W1 50 100 100 250
(4) W2 105 105
(5) W3 0
(6) W4 200 100 120 420
(7) W5 45 100 145
(8) W6 100 200 120 100 520
SumT 265 555 470 630 1920
% Prod 13.80 28.91 24.48 32.81 100.00

Table 3
Inventory costs of final products.

Inventory costs ($)

Inst LSP CLSP ILSCSP

1 1566.37 1566.37 1566.37
2 2004.52 2140.62 2149.98
3 1452.28 1585.05 1576.41
4 1982.80 1982.80 1982.80
5 1575.74 1613.73 1595.43

6 1724.16 1967.78 1909.06
7 1698.61 1802.89 1754.22
8 1548.27 1909.61 1825.00
9 1765.04 1867.91 1824.83
10 1541.89 1745.22 1656.07

11 2104.12 2693.19 2649.07
12 2315.23 3075.60 2911.92
13 2057.67 2700.09 2611.55
14 1836.48 2544.23 2542.85
15 2088.09 3035.82 2901.50
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6.3. Computational results – Part II

In this section, two further tests were performed in order to
evaluate the impact of the costs in the proposed approaches. The first
one involves variations in the inventory costs of pieces and the second
analysis considers variations in the costs of plates and in the inventory
costs of final products.

6.3.1. Varying the inventory costs of pieces
The costs associated with the inventory of pieces in the 15 instances

used in the tests described in Section 6.2 were based on the return rate
considering the value of the pieces costs applied on the financial
market. However, it might be important to increase these costs by
considering the effort necessary to manage these pieces in stock. In
what follows, we study the behavior of the solutions approaches when
the inventory costs of a piece (hp

e) is increased by a factor of 10, 50 and
100.

Table 7 shows the total inventory costs of pieces for each instance,
considering the three different variations ( h10 × p

e, h50 × p
e and

h100 × p
e) for each model. In this analysis it is possible to see the

increase in the inventory costs of pieces whereas the parameter values
increase, but this increase is much smaller for the integrated approach
ILSCSP. Analyzing the quantity of pieces in stock, we observed that,
when the factor 100 is considered, this quantity is on average up to
67.7% and 78.6% reduced considering CLSP+CSP and ILSCSP models,
respectively, when compared with the LSP+CSP model. The large
difference in the quantity of pieces in stock for the instances of the
ILSCSPmodel is due to its feature that takes into account the inventory
costs of pieces simultaneously with the other decisions costs. As the
inventory costs of pieces increase there is a tendency to increase the
inventory of final products in order to obtain a better overall solution.
Hence, by anticipating the final products it is possible to obtain good
combinations of items and cutting patterns which allows the reduction
of the total costs of plates without the need to anticipate pieces
production and thus reducing the total inventory costs of pieces. The
other two models do not have this feature, and an attempt to minimize
the inventory costs of final products is done when taking the lot sizing
decision. Afterwards, on the multi-period cutting stock decision, there
is a tendency to anticipate pieces in order to have better combinations
on producing the cutting patterns. Obviously this reduces the costs of
plates, but increases the inventory costs of pieces.

Table 8 shows the difference (in percentage) of the total costs of the
CLSP+CSP and ILSCSP models compared with the LSP+CSP model
considering the 3 variations of the inventory costs of pieces. The values

Table 4
Raw-material cost and inventory costs of pieces.

Inst Raw-material cost ($) Inventory cost of pieces ($)

LSP+CSP CLSP+CSP ILSCSP LSP+CSP CLSP+CSP ILSCSP

1 242,613.00 242,547.00 241,574.85 30.13 37.91 35.87
2 243,058.00 244,596.00 241,875.01 253.84 155.70 104.63
3 242,378.00 235,621.00 245,466.79 275.50 165.81 106.50
4 231,037.00 231,635.00 229,935.41 96.26 72.38 95.30
5 238,667.00 240,109.00 237,688.51 102.12 99.42 89.68

6 268,618.00 265,030.00 265,385.11 327.61 107.74 121.53
7 279,239.00 272,860.00 279,524.04 181.92 176.24 143.54
8 279,295.00 275,829.00 279,258.73 546.17 205.08 231.65
9 267,463.00 268,495.00 258,873.88 178.88 140.79 109.60
10 267,740.00 269,953.00 267,174.90 333.75 155.26 201.82

11 342,065.00 363,572.00 362,031.59 862.00 425.31 335.63
12 351,825.00 339,963.00 341,956.82 1161.06 317.52 382.19
13 360,878.00 354,469.00 359,316.39 924.16 343.73 407.19
14 363,107.00 361,155.00 369,011.13 1112.07 277.33 265.03
15 341,006.00 360,464.00 360,932.69 1409.60 328.78 427.15

Table 5
Cutting stock costs.

Cutting stock cost ($)

Ins LSP+CSP CLSP+CSP ILSCSP

1 242,643.13 242,584.91 241,610.72
2 243,311.84 244,751.70 241,979.65
3 242,653.50 235,786.81 245,573.28
4 231,133.26 231,707.38 230,030.71
5 238,769.12 240,208.42 237,778.19

6 268,945.61 265,137.74 265,506.65
7 279,420.92 273,036.24 279,667.58
8 279,841.17 276,034.08 279,490.38
9 267,641.88 268,635.79 258,983.48
10 268,073.75 270,108.26 267,376.72

11 342,927.00 363,997.31 362,367.22
12 352,986.06 340,280.52 342,339.01
13 361,802.16 354,812.73 359,723.58
14 364,219.07 361,432.33 369,276.16
15 342,415.60 360,792.78 361,359.84

Table 6
Total costs.

Total costs ($)

Ins LSP+CSP CLSP+CSP ILSCSP

1 430,779.50 430,721.28 429,747.09
2 430,626.36 432,202.31 429,439.62
3 429,415.78 422,681.85 432,459.70
4 418,426.05 419,000.17 417,323.51
5 425,654.86 427,132.15 424,683.62

6 481,890.77 478,326.52 478,636.71
7 494,440.54 488,160.14 494,742.79
8 492,610.44 489,164.69 492,536.38
9 480,627.92 481,724.71 472,029.31
10 476,799.04 479,036.88 476,216.19

11 620,916.11 642,575.50 640,901.29
12 631,186.29 619,241.12 621,135.93
13 639,744.83 633,397.82 638,220.13
14 641,940.55 639,861.57 647,704.01
15 620,388.69 639,713.60 640,146.34
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associated to the LSP+CSP model represents 100% of the total costs
and for the other approaches the values correspond to the percentage
of gains (positive values) or losses (negative values), when compared to
the respective LSP+CSP values. The results shows that as the inventory
costs of pieces increase, the gains for both models also increase,
specially for instances with high demand (November). Moreover, the
gains obtained by the ILSCSP model is substantially higher than the
gains obtained by the CLSP+CSP model. Therefore, it is possible to
affirm that the integrated approach can handle more effectively the

Table 7
Varying inventory costs of pieces.

Costs of pieces inventory

Ins LSP+CSP CLSP+CSP ILSCSP

h10 × p
e h50 × p

e h100 × p
e h10 × p

e h50 × p
e h100 × p

e h10 × p
e h50 × p

e h100 × p
e

1 267.45 1207.43 1637.34 267.45 1362.56 1495.09 409.87 987.17 1928.10
2 2547.96 12,148.83 21,629.35 684.88 2434.61 4994.72 366.09 1530.16 2417.88
3 2260.74 8948.94 17,895.32 905.12 2826.90 2791.12 577.20 1214.25 2159.45
4 286.57 681.69 1336.66 445.67 1193.77 1237.82 270.95 1133.66 1385.97
5 1093.02 3 403.05 6588.78 1073.98 2098.28 4393.24 699.43 2069.49 3886.38

6 3250.66 14,593.79 28,107.57 648.45 3569.12 2644.91 632.10 1760.64 3824.92
7 2601.82 8 708.72 12,197.20 876.98 2172.70 8568.81 705.61 2915.34 5794.96
8 4978.39 25,153.90 49,648.37 1342.31 6714.42 8407.02 974.47 5526.55 3727.37
9 1470.46 7 776.54 13,647.60 1102.00 1898.36 2413.66 646.27 1354.78 2612.71
10 2937.28 14,282.85 27,209.89 1149.77 3369.38 7885.44 1238.17 2965.76 3501.05

11 8663.20 41,625.07 79,602.22 2668.31 11,744.94 24,407.14 1205.94 3547.81 7259.96
12 10,190.08 50,319.76 99,253.49 1729.19 5452.17 4906.95 1082.46 4748.83 6696.40
13 9449.54 43,085.95 83,831.88 2135.35 6179.99 4906.95 1186.53 4020.59 4727.31
14 10,657.36 52,944.56 91,395.27 3085.81 7392.32 8153.27 1476.92 6060.84 9056.85
15 12,829.72 65,980.41 136,410.00 2540.14 11,685.74 25,530.96 1723.17 188.79 7150.06

Table 8
Total costs difference.

Difference in total cost

Ins LSP+CSP CLSP+CSP ILSCSP

h10 × p
e h50 × p

e h100 × p
e h10 × p

e h50 × p
e h100 × p

e h10 × p
e h50 × p

e h100 × p
e

1 100 100 100 0.000 0.372 −0.492 −2.434 1.809 0.361
2 100 100 100 0.099 1.299 3.140 0.953 2.143 4.004
3 100 100 100 0.507 2.729 4.941 −1.247 4.825 2.916
4 100 100 100 0.793 −0.148 0.073 −0.886 1.255 0.273
5 100 100 100 −0.085 −0.353 −0.979 −0.216 −0.256 −2.285

6 100 100 100 0.767 2.142 5.278 0.969 2.297 5.603
7 100 100 100 1.060 1.601 0.559 −2.078 −1.269 −0.694
8 100 100 100 1.302 3.554 7.883 −0.190 3.632 8.321
9 100 100 100 −0.296 0.964 1.983 1.045 0.904 1.335
10 100 100 100 0.244 1.853 3.466 0.621 1.945 6.204

11 100 100 100 −1.564 1.652 5.234 −0.694 2.733 7.143
12 100 100 100 −1.638 5.333 12.111 −2.282 2.753 8.995
13 100 100 100 0.613 4.078 12.603 0.331 4.476 9.825
14 100 100 100 2.797 6.762 10.656 0.747 8.281 7.878
15 100 100 100 −1.368 5.505 14.195 −1.624 6.526 15.579

Table 9
Classes.

Classes coe hf

1 L L
2 L H
3 H L
4 H H

Table 10
Total costs: Improvements.

Month Class LSP+CSP CLSP+CSP ILSCSP

March 1 100 0.6 −0.05
2 100 −0.22 −0.58
3 100 0.72 0.03
4 100 −0.03 −0.53

August 1 100 2.69 3.75
2 100 2.76 2.63
3 100 2.33 3.62
4 100 2.46 3.52

November 1 100 2.65 29.4
2 100 3.3 29.07
3 100 1.35 28.56
4 100 1.62 28.79
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decisions when costs for managing the inventory of pieces are taken
into account.

6.3.2. Varying the costs of plates and the inventory costs of final
products

Based on the practical data, described in Section 6.1, we vary the
costs of plate (coe) and inventory costs of final products (hf) in order to
estimate the impact of these variations in the objective function of the

proposed approaches. The changes in the costs are between 10% and
30% compared with the original value. The new sets of costs are
generated in the intervals cost cost cost cost[ − × 0.3, − × 0.1] for low
costs (L) and cost cost cost cost[ + × 0.1, + × 0.3] for high costs (H). The
parameter cost refers to the two analyzed costs (coe and hf). The
inventory costs of pieces (hp

e ) are fixed to the values of the second
variation considered in Section 6.3.1 (i.e. 50 times the original costs).
The possible combinations for low (L) costs and high (H) costs form 4

Table A1
Product structure – thickness 15 mm.

Product structure – thickness 15 mm

p lp wp (1) MC (2) DT (3) W1 (4) W2 (5) W3 (6) W4 (7) W5 (8) W6

1 290 80 2
2 385 140 16
3 405 145 4
4 416 140 8
5 433 145 18 12 2 18 18 24
6 450 164 8
7 459 145 6 12
8 470 430 2
9 470 355 2
10 494 60 2 5 3
11 495 198 3 6
12 500 396 2
13 515 60 2
14 525 440 5 3 4 5
15 527 425 2
16 530 60 6 6 3 3 6
17 530 90 2 2 4
18 530 530 2 2 2
19 530 110 2
20 530 527 2
21 530 410 5
22 535 530 2 2
23 574 60 1
24 600 100 2
25 610 142 4 6 4
26 610 530 2 2 2 2
27 610 565 2
28 610 100 1
29 615 485 1
30 632 445 6 6 6
31 646 145 6 1 6 6
32 665 415 4
33 680 198 6 6 6 6
34 701 145 9 9
35 710 248 2
36 726 480 1
37 726 60 2
38 728 480 1
39 736 198 9 9
40 760 60 6
41 760 450 2
42 770 522 3
43 780 420 4
44 820 480 1
45 1090 770 3
46 1095 440 5 3 4 5
47 1100 60 2 4 3 3 6
48 1100 530 2 2 2
49 1100 535 4 2
50 1100 90 2
51 1100 480 2
52 1100 527 5
53 1100 407 5
54 1120 410 4
55 1470 565 6
56 1775 388 2
57 1840 450 2
58 1930 565 6
59 2300 565 6 6
60 2100 565 6
61 2440 565 6
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classes of instances that are presented in Table 9.
Considering the data sets from Section 6.1 we took the first instance

for each month (March, August and November) which represent
instances with Low, Medium and High demand, respectively. Observe
that these are exactly the three instances for which the demands are
presented in Table 2. Based on each one of these 3 instances we
randomly generated five new instances varying the costs according to
the interval previously described and considering 4 classes from
Table 9. Therefore, a total of 3 (practical instances) × 5 (random
instances) × 4 (classes)=60 new instances were generated.

Table 10 shows, for each class, the average difference (in percen-
tage) of the total costs to the CLSP+CSP and ILSCSP models when
compared with the LSP+CSP model. Considering the month with low
demand, the three models are almost equivalent. However, when the
level of demand increase (August and November), the integrated
approach provides better results for all the classes and the gains are
even greater for the instances with high demands reaching a gain of
29.4% compared to the LSP+CSP model. So, it is possible to conclude
that the integrated approach can handle more effectively the decisions
in high demand sceneries, i.e., when the capacity utilization is more
intensive. Considering the four different classes which represent
different costs scenarios, it is possible to see that for the majority of
the cases the impact in the gains is slightly reduced as the costs of
plates increase (classes 3 and 4). It is not possible to draw a conclusion
about the variation of the inventory costs of final products.

7. Conclusions

A mathematical model was proposed and implemented to analyze
the main decisions of the production process of small scale furniture
factories. The integrated model (ILSCSP) was proposed to capture the
interdependencies of the lot sizing and the cutting stock decisions and
thus promote a new approach to the decision making process. To
simulate the modus operandi of Factory L, the ILSCSP model was
decomposed in two models: a Lot sizing model (capacitated-CLSP and
non capacitated-LSP) and a multi-period cutting stock model (CSP).
The tests to validate the models were based on the product list of
Factory L and on parameters taken from the market. A column
generation technique was used to solve the Restricted Master
Problem related to the ILSCSP and CSP models. Good overall results
were obtained when comparing the ILSCSP solutions to the solutions of
the approach of sequentially solving the non capacitated model LSP
+CSP. Compared to the capacitated model CLSP+CSP, the results of
the integrated model ILSCSP were competitive with the advantage that
it is not necessary to estimate the used capacity, which is a difficult task
in practice.

Further computational tests were executed in order to evaluated the
impact of the different costs in the objective function for each
approach. At first, three variations in the inventory costs of pieces
were considered by taking into account the effort necessary to handle
and administrate the pieces in stock. Then a variation in the costs of
plates and in the inventory costs of final products are studied. The
results showed that, in general, the integrated approach is better,
mainly when the inventory costs of pieces are high and/or the demands
are high. The variations on the costs of plates and inventory costs of
final products do not have a strong impact on the differences among the
three models.

We conclude from the computational study that the solution
obtained can be put into practice, the models can support the main
decisions taken and can bring improvements to the factory's produc-
tion planning decisions.
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Appendix A. Products structure

See Table A1.
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