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RESUMO 

 

O presente trabalho teve como objetivo realizar um levantamento detalhado das características 

bio-ópticas nos reservatórios de Barra Bonita (BB) e Nova Avanhandava (Nav) com o intuito 

de avaliar o desempenho de uma única abordagem voltada para a estimativa das propriedades 

ópticas inerentes (POIs), assim como, a concentração de totais sólidos suspensos (TSS). A 

investigação foi realizada utilizando dados coletados no campo entre 2014 e 2016, incluindo, 

as POIs, componentes opticamente significativos (COSs) e reflectância de sensoriamento 

remoto (𝑅𝑟𝑠). Os dados apresentados dos COSs confirmaram que BB é um ambiente mais 

túrbido que Nav por apresentar maior produção fitoplanctônica em função do recebimento de 

altas cargas de nutrientes provenientes da bacia de drenagem. Por outro lado, Nav é um 

ambiente mais transparente e com maior influência de material inorgânico, o que favorece o 

surgimento de macrófitas submersas. A concentração de clorofila-a (Chl-a) em BB alcançou 

máximo de 797.8 µg l-1 em outubro/2014, enquanto Nav apresentou máximo de 38.6 µg l-1 em 

maio/2016. A variabilidade nos COS esteve altamente vinculada a frequência de chuvas, sendo 

que no ano de 2014, ocorreu um evento extremo de seca alterando as características 

biogeoquímicas dos ambientes. BB reagiu de forma mais abrupta que Nav por apresentar um 

sistema de operação do tipo acumulação e por estar mais próxima das regiões potencialmente 

poluidoras, diferente de Nav que apresenta um sistema fio-d’água em que não há acumulação 

e sim fluxo constante da água. Além disso, no âmbito óptico, a absorção em Nav apresentou 

maior influência do particulado não-algal (NAP) enquanto que em BB, a absorção foi dominada 

por fitoplâncton. Com base nesses resultados pode-se concluir que os dois ambientes 

apresentam não só diferenças na qualidade da água, mas também nas propriedades ópticas, o 

que leva a afirmação de que um modelo único baseado nos dois ambientes pode não ter um 

bom resultado quando se pretende utilizar uma abordagem empírica. Um algoritmo quase-

analítico (QAA) parametrizado para as condições de Nav (QAAOMR) apresentou resultados 

significativos com erros (erro médio percentual absoluto – MAPE) inferiores a 17% para o 

coeficiente de absorção total (𝑎𝑡), 19% para o coeficiente de absorção orgânico detrital (𝑎𝐶𝐷𝑀) 

e 47% para o coeficiente de absorção do fitoplâncton (𝑎𝜙). O respectivo modelo foi utilizado 

para verificar seu desempenho em um ambiente eutrofizado como BB e a versão parametrizada 

por Watanabe et al. (2016) e denominada QAABBHR foi aplicada aos dados de Nav. Como 

resultado, observamos que as duas versões foram adequadas para estimar 𝑎𝑡 com erros 

inferiores a 40%, no entanto, existe ainda a necessidade de melhorar as etapas para estimativa 

de 𝑎𝐶𝐷𝑀 e 𝑎𝜙. No caso de se aplicar um modelo empírico de única abordagem para estimar 

concentração de TSS para ambos os reservatórios, observamos que essa abordagem não 

apresentou resultados satisfatórios, portanto, modelos específicos baseados na banda do 

vermelho do MODIS foram utilizados para mapear TSS em cada um dos reservatórios. Pode-

se concluir então, que o conhecimento acerca das propriedades ópticas da água se mostrou 

determinante para a modelagem bio-óptica, principalmente no que diz respeito aos ambientes 

altamente contrastantes como BB e Nav. 

 

Palavras-chave: modelagem bio-óptica, águas interiores, sensoriamento remoto da água, 

sistema de reservatórios em cascata 

 

 

  



ABSTRACT 

 

The objective of the present work was to perform a detailed survey of the bio-optical 

characteristics of the reservoirs of Barra Bonita (BB) and Nova Avanhandava (Nav) in order to 

evaluate the performance of a single approach aimed at estimating the inherent optical 

properties (IOPs), as well as the concentration of total suspended solids (TSS). The research 

was carried out using data collected in the field between 2014 and 2016, including the IOPs, 

optically significant components (OSCs) and remote sensing reflectance (𝑅𝑟𝑠). The data 

presented from the OSCs confirmed that BB is more turbid than Nav because it presents higher 

phytoplankton production due to the input of high nutrient loads from the drainage basin. On 

the other hand, Nav is more transparent with greater influence of inorganic matter, which favors 

the appearance of submerged macrophytes. The concentration of chlorophyll-a (Chl-a) in BB 

reached a maximum of 797.8 μg l-1 in October/2014, while Nav presented a maximum of 38.6 

μg l-1 in May/2016. The variability in the COS was highly related to the frequency of rainfall, 

in the year 2014, an extreme drought event occurred, altering the biogeochemical 

characteristics. BB reacted more abruptly than Nav because it presented an accumulation type 

operation system and because it is closer to the potentially polluting region. Nav presents a 

water system in which there is no accumulation but constant flow of water. In addition, in the 

optical context, the absorption in Nav presented greater influence of the non-algal particulate 

(NAP) while in BB, the absorption was dominated by phytoplankton. Based on these results, it 

can be concluded that the two environments present not only differences in water quality but 

also in optical properties, which leads to the assertion that a single model based on the two 

environments may not have a good result when it is intended to use empirical approach. A 

quasi-analytical algorithm (QAA) parameterized for Nav conditions (QAAOMR) presented 

significant results with errors (mean absolute percentage error - MAPE) lower than 17% for the 

total absorption coefficient (𝑎𝑡), 19% for the carbon detrital matter absorption coefficient 

(𝑎𝐶𝐷𝑀) and 47% for the absorption coefficient of phytoplankton (𝑎𝜙). The respective model 

was used to verify its performance in a eutrophic environment such as BB and the version 

parameterized by Watanabe et al. (2016) and named QAABBHR was applied to the Nav data. 

Thus, we note that the two versions were suitable for estimating 𝑎𝑡 with errors (MAPE) less 

than 40%, however, improvements must be carried out for estimating 𝑎𝐶𝐷𝑀 and 𝑎𝜙. In the case 

of applying a single empirical model to estimate TSS concentration for both reservoirs, we 

observed that it did not present satisfactory results, so specific models based on the MODIS red 

band were used to map TSS in each of the reservoirs. It can be concluded, therefore, that 

knowledge about the optical properties of water has proved to be determinant for the bio-optical 

modeling, especially with respect to highly contrasting environments such as BB and Nav. 

 

Keywords: bio-optical modeling, inland waters, remote sensing of water, reservoirs in cascade 

system 
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CHAPTER 1: INTRODUCTION 

 

1.1 Background 

 

The reservoirs of the Tietê River placed in the State of São Paulo, are exposed by a 

series of pollution sources such as sugar cane plantation, pastures and urban centers from which 

a large amount of pollutants reaches the aquatic system. On the one hand, the construction of 

these reservoirs supports the agriculture and industrial development of the region; on the other 

hand, it generates a series of negative impacts including intensive deforestation, eutrophication 

due to high loads of nutrients and suspended sediment from various activities, sedimentation 

and contamination of water bodies (BARBOSA et al. 1999). 

According to Fracácio et al. (2002), all the reservoirs of the Tietê River were classified 

as eutrophic for the parameter chlorophyll-a (Chl-a); for total phosphorus (TP), the reservoirs 

of Barra Bonita (BB), Bariri (B) and Ibitinga (Ib) were considered mesotrophic; and the 

Promissão (Pr) and Nova Avanhandava (Nav), oligotrophic. Differences in the mass of water 

composition between BB e Nav were reported and the first reservoir was attested to be more 

polluted than Nav. BB also has the highest concentration of suspended solids, thus higher 

turbidity when compared to Nav (CAVENAGHI et al. 2003). These results clearly show the 

existence of a trophic gradient between the cascade reservoirs. 

Although some studies have shown that the cascade reservoirs have a trophic and 

spectral gradient (WACHHOLZ et al., 2009; PEREIRA FILHO et al. 2009), just recently 

studies have investigated the cascade system effects on optical properties (ALCÂNTARA et 

al., 2016, RODRIGUES et al., 2016a). In terms of water resource management, the traditional 

methods for water monitoring are time consuming, expensive and demands in situ collection. 

Besides, these techniques present low spatial and temporal representativeness, therefore, the 

optical properties of the in-water constituents (Chl-a, non-algal-particle – NAP, total suspended 

sediment – TSS, colored dissolved organic matter – CDOM) and here known as optical 

significant components (OSCs), can be used in bio-optical models in order to estimate the 

concentrations of the OSCs and support the water resource management considering large areas 

and short time mapping. 
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1.2 Motivation 

 

Environments such as reservoirs designed in cascade system cause water quality 

modifications from the upstream to downstream reducing the turbidity and increasing the 

transparency of water (BARBOSA et al. 1999). The longitudinal variability is not the only 

factor influencing the water quality dynamic, but the watershed controls several mechanisms 

of reservoirs functioning. Watersheds subjected to extensive use by human activities can 

produce high loads of nutrients, suspended matter or even toxic substances to the reservoir 

(JORGENSEN et al., 2012). 

Built to attend single or more specific purpose, the reservoirs have multiple uses and 

therefore, demands for complex strategies of management. The desired phases for management 

systems include the integration of geographic information system and remote sensing in order 

to provide a rapid or a large-scale comprehension of reservoirs (TUNDISI and MATSUMURA-

TUNDISI, 2011). Remote sensing is also important for offering spatial and temporal views of 

water quality surface parameters, which is limited from in situ collections. Its applicability 

becomes useful when the water degradation is caused by OSC, such as the green algae pigments 

as Chl-a, TSS, CDOM and NAP, thus producing detectable effects by optical remote sensing 

instruments (GIARDINO et al., 2010). 

The spectral region where these components can be detected is limited to a narrow range 

of optical wavelengths, in general, restricted between 400 to 850 nm (DEKKER, 1993). In 

inland waters, NAP and CDOM absorb at shorter wavelengths showing an exponential decay 

toward longer wavelengths, while Chl-a presents absorption peaks in the blue and red 

wavelengths (ROESLER et al., 1989; BRICAUD et al., 1981). However, in waters with low 

phytoplankton concentration the absorption peak at the blue region is not detected (WU et al., 

2011), nevertheless, significant contributions of Chl-a lead to the enhancement of the 

absorption peak at ~675 nm allowing its detection on the remote sensing reflectance (𝑅𝑟𝑠) signal 

in very productive inland waters (DOXARAN et al., 2006).  

Waters dominated by sediment, especially NAP and pure water showed satisfactory 

results with the empirical relationships 𝑅𝑟𝑠(850)/𝑅𝑟𝑠(550) and 𝑅𝑟𝑠(850)/𝑅𝑟𝑠(650) for TSS 

retrieval in Gironde estuary (DOXARAN et al., 2006). In waters comprised by mineral 

suspended sediment (MSS), the red-to-green ratio showed to be applicable, however, with 

increasing influence of phytoplankton and CDOM this relationship was found to break down, 

assuming the limited potential of the model (BINDING et al., 2003). In the case of CDOM 

absorption estimation, D’Sa and Miller (2003) showed that the ratio between two visible bands 



 

 

Rodrigues, T.W.P. 

21 

𝑅𝑟𝑠(510)/𝑅𝑟𝑠(555) was suitable for the turbid waters of Mississippi River, while Doxaran et 

al. (2006) found the ratio 𝑅𝑟𝑠(400)/𝑅𝑟𝑠(700) more appropriate for Tamar estuary. For Chl-a 

retrieval, Dall’Olmo et al. (2003, 2005) showed that a three-band model based on NIR-Red 

wavelengths produce more accurate values in turbid waters, however, they also noticed that 

both Chl-a fluorescence and Chl-a mass-specific absorption coefficient (𝑎𝐶ℎ𝑙𝑎
∗ ) variability can 

introduce more uncertainties in the estimative. 

In other words, the knowledge about the optical water properties can improve the 

formulation of models for OSC concentration retrieval, however, algorithms based on empirical 

assumptions often fail when applied to other study sites (RITCHIE et al., 2003). Besides, these 

models are also limited for a specific range of OSC concentration. Kumar et al. (2016) for 

example, found a simple correlation between MODIS 𝑅𝑟𝑠(645 𝑛𝑚) and TSS concentration in 

Chilika Lagoon, India. Their model showed to be limited to the range between 6.5 and 200 mg 

l-1, with increasing error in very low TSS (< 6.54 mg l-1). Ogashawara et al. (2013) evaluated 

the influence of Chl-a absorption on the performance of several empirical algorithms using data 

from environments with very low and very high cyanobacteria. As result, they verified a 

decrease of model’s sensitivity in high phycocyanin concentration environments. Chen et al. 

(2015) studied a wide range of TSS (58 – 577.2 mg l-1) in estuary and coastal waters using an 

improved model based on the log-ratio (𝑅𝑟𝑠(𝑁𝐼𝑅)/𝑅𝑟𝑠(𝑅𝑒𝑑)), however, they had to consider 

a constraint based on TSS concentration below and above 31 mg l-1. 

In general, the empirical methods work well for turbid inland waters, however, in 

oligotrophic environments the performance decrease considerably using the same band 

combination. Gons et al. (2008) for example, showed that a red-to-NIR band Ch-a algorithm 

proved to be applicable for eutrophic to hypereutrophic waters, however the accuracy dropped 

considerably for oligotrophic waters. They also reported that remote sensing of Chl-a is limited 

in low concentration range and not the contrary. The alternative for low concentrations would 

be to use the blue-to-green band ratio (GONS and AUER, 2004; GONS et al., 2008).  

Aiming to address the empirical issue, semi-analytical approaches use the IOP and 

apparent optical properties (AOP) to model the reflectance and vice versa. These properties are 

then used in analytical methods to retrieve the water constituents. The main limitation regards 

the insufficient knowledge about the IOPs used in the equations (MOREL and GORDON, 1980; 

DEKKER, 1993). The example of a more robust model is the quasi-analytical algorithm (QAA) 

developed to derive the absorption and backscattering coefficients in open ocean and coastal 

waters (LEE et al., 2002). After that, several initiatives were carried out aiming to fit this model 
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to productive inland waters (LE et al., 2009a; YANG et al., 2013, MISHRA et al., 2014; 

WATANABE et al., 2016a). A version based on CDOM dominated waters was also developed 

(OGASHAWARA et al., 2016), however, a model adapted to inorganic matter dominated water 

was not addresses yet. A semi-analytical algorithm using the QAA was successfully applied for 

retrieving the water clarity based on new theoretical model to interpret the Secchi disk depth, 

𝑍𝑆𝐷 (LEE et al., 2015). For validation, the authors used data covering oceanic, coastal and 

inland waters (lake) and as result they got an average absolute difference of ~18%, highlighting 

the accomplishment of a model using a wide range of data. 

As previously mentioned, the comprehension about the bio-optical properties of 

different environments helps to indicate the suitable approach for water quality parameters 

estimation. Many efforts have shown the success of empirical approaches in deriving the water 

optical properties in very turbid inland waters, however, when data from two widely trophic 

state (oligo to eutrophic) reservoirs is supposed to be mixed, we expect the models to perform 

poorly, indicating the limitation of a single approach in retrieving the OSCs. Up to now, 

incipient initiatives showed the influence of cascade system in the optical properties, which 

means that a lot of efforts still need to be done. 

 

1.3 Hypothesis 

 

In a cascading arrangement where the water flows with different composition through 

the system, the bio-optical modeling can be challenging. As we learned from the literature such 

systems range from hyper-to-oligotrophic, from organic-to-inorganic dominated waters, and 

consequently the development of an algorithm to map the water optical properties needs to deal 

with such contrast. Moreover, the literature showed that empirical models are constrained by 

the local optical properties and the range of OSC concentration, while semi-analytical 

approaches tend to fail where the phytoplankton is not the dominant component and where 

some empirical steps are calibrated using synthetic data. Thus, our hypothesis bases on the fact 

that due to the organic and inorganic nature of both BB and Nav reservoirs, the empirical 

approach won’t be able to map the OSC accurately using a single model, however, recalibrating 

the empirical steps using in situ data, the quasi-analytical algorithm will increase the retrieval 

of water optical properties and therefore will be able to map operationally the water quality 

from remotely sensed images in a cascade system. 
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1.4 Objectives 

 

According to the thesis hypothesis, we aimed to investigate the water optical properties 

of both BB and Nav in order to evaluate the performance of a single model built for retrieving 

the inherent optical properties as well as total suspended sediment concentration of both 

reservoirs. For this, specific objectives were designed: 

 

- Characterize the absorption properties in both BB and Nav reservoirs; 

- Re-parameterize the QAA algorithm based on OLCI/Sentinel-3 bands using in situ data 

from Nav; validate the algorithm using an independent dataset collected from the same 

area in a different season; 

- Assess the performance of a single QAA version (QAABBHR from Watanabe et al. 2016 

and QAAOMR proposed here) highlighting the improvements and fragilities from each 

version supposing to choose a single approach for mapping the absorption properties in 

the entire cascade; 

- Assess the performance of empirical models for retrieving TSS concentration in both 

BB and Nav using single or separate models. 

 

1.5 Outline of the Thesis 

 

This thesis is organized in 7 chapters. Chapter 1 introduces the theme, highlighting the 

problem of the research followed by the questions we intend to answer and the objectives we 

expect to achieve. Chapter 2 describes the study areas focusing on their physical and 

environmental characteristics; description of the method designed to sampling definition and 

the field trips. Chapter 3 describes the IOPs of both reservoirs and their relationships with 

optical water parameters. In Chapter 4, a parametrization of QAAOMR was carried out using 

data from Nav and validate it with an independent dataset collected in a different season. 

Chapter 5 compares and evaluates the performance of both QAAOMR and QAABBHR in retrieving 

the IOPs using data from BB and Nav, respectively. In Chapter 6 empirical models were 

formulated aiming to retrieve TSS in both reservoirs. Lastly, Chapter 7 pointed out the main 

findings of the research and it makes some recommendations for future works. 
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CHAPTER 2: STUDY AREA AND FIELD CAMPAIGNS 

 

2.1 General characteristics 

 

The reservoirs of Barra Bonita (BB) and Nova Avanhandava (Nav) (Figure 2.1) are 

situated in the middle and lower portion of the Tietê River, São Paulo State, respectively. BB 

(22°31′10″S, 48°32′3″W) is a storage system and began its operation in 1963 flooding an area 

of 310 km2, with a dam length of 480 m, 90.3 days of residence time, being formed from the 

damming of Tietê and Piracicaba Rivers. The regional climate transits between tropical and 

subtropical, and the annual seasons are not well marked. According to the Koppen 

classification, the climate is mesothermal type - CWA, with a dry winter and a hot summer 

(PRADO, 2004). Pastures and sugar cane monoculture predominantly comprised the land 

cover. 
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Figure 2.1. Graphic representation of the study area emphasizing (a) Brazil’s territory, (b) Tietê 

River located at São Paulo State and the location of the reservoirs from upstream to 

downstream: Barra Bonita, Bariri, Ibitinga, Promissão, Nova Avanhandava and Três Irmãos, 

(c) sampling location of Nav and (d) BB. 

 

 

On the other hand, Nav (21°7′1″S, 50°12′6″W) is a run-of-river reservoir and was 

created in 1982, flooding an area of 210 km² (at its maximum quota), with a dam length of 

2,038 m and mean residence time of the water around 46 days (TORLONI, et al., 1993). The 

reservoir is part of a region whose influence of Continental Tropical and Polar Antarctic air 

masses are marked. The first mass is hot and dry and occurs mainly in the summer (24 and 30° 
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C), while the second is cold and damp, and, despite being-active all year, its occurrence is more 

intense in winter, causing a decrease of temperature (22 to 14° C) (CBH-BT, 1999).  

BB reservoir is an ecosystem characterized as polymictic and eutrophic, with high loads 

of nutrients, whose contribution leads to the development of blooms of cyanobacteria during 

the summer, and Bacillariophyceae during the winter (DELLAMANO-OLIVEIRA et al. 2007). 

The Piracicaba and Tietê Rivers, which along their courses are subject to the carrying of organic 

and inorganic origin waste, arising from agricultural, urban and industrial activities, affecting 

water quality. Nav is an oligo-to-mesotrophic reservoir with the upper layer of the water column 

well oxygenated and pH ranging from slightly acid to alkaline (6.47 – 8.2), conductivity 

relatively high (83 – 150 µS cm-1) and low concentrations of nutrients (Total N: 0.05 – 0.23 µg 

l-1 and Total P: 18.02 – 32.33 µg l-1) (RODGHER et al. 2005; SMITH et al. 2014). The high 

transparency of the water often leads to the growth of submerged macrophytes (e.g. Egeria sp. 

– Elodea) (SMITH et al. 2014), although, during sample collections we avoided those areas. 

The catchment basin surrounding the reservoir receives input from non-point source of 

pollution such as sugar cane and citric plantation (orange and lemon) and cattle breeding. 

There is evidence that the downstream reservoirs of Tietê River have improved water 

quality to those further upstream providing an enhancement of chemical constitution of water 

limiting the development of floating vegetation representative of a eutrophic environment 

(BARBOSA et al., 1999; CAVENAGHI et al. 2003). The cascade system generates significant 

modifications along the river changing aspects such as heterogeneity, connectivity and the 

coarse / fine particulate organic material. Moreover, this type of system influences the water 

quality, the composition and structure of phytoplankton community, and increases the 

eutrophication process in the upstream reservoirs (BARBOSA et al., 1999). 

 

2.2 Strategy for sampling design 

 

Based on the sampling design, a random stratified sampling method was used to 

determine the location for collecting water and optical data in BB and Nav (RODRIGUES et 

al., 2016b). Therefore, statistical and computational procedures were established aiming to 

provide parameters that subsidize the sampling design definition (Figure 2.2). For this purpose, 

the Operational Land Imager (OLI)/Landsat-8 imagery referring to an annual cycle was 

acquired at the USGS – U.S. Geological Survey website <http://earthexplorer.usgs.gov/> and 

the criterion of less cloud cover and absence of glint effect, visually detected, was applied.  
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The images hosted at the USGS website are geometrically corrected and available for 

users in the orthorectified level (L1T) in which the reference data are terrain control points and 

altitude based on digital elevation model (DEM), such as the SRTM (Shuttle Radar Topography 

Mission) (USGS, 2014). This procedure assures the overlapping between images with 

geometric error below one pixel providing the high matching considering different periods. The 

methodological approach is displayed in Figure 2.2. 

 

Figure 2.2. Flowchart showing the methodological scheme for sampling stations definition. 

𝜌𝑇𝑂𝐴 represents the value of reflectance at the top of atmosphere (TOA), SD stands for the 

standard deviation, NDWI is the Normalized Difference Water Index, and PCA is the Principal 

Component Analysis. The box 1 refers to the multispectral images; box 2 stands for the 

reservoir’s delimitation and box 3, stratified sampling. 

 

 

A set of images available for a year was radiometrically calibrated. In this process, the 

digital numbers (DN) of each pixel are rescaled for radiance or reflectance at the top of the 

atmosphere (TOA), 𝜌𝑇𝑂𝐴, using gain and offset parameters provided by the metadata of the 

image (USGS, 2013). This procedure removes the effects caused by the difference of 
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illumination geometry (COLLETT et al., 1998). Studies carried out in aquatic systems showed 

that TOA products yielded similar or better results from those atmospherically corrected data 

(OLMANSON et al., 2011, KUTSER, 2012).  

In view of the hydrological dynamics and other anthropic or natural interventions that 

the reservoirs undergo over time, it is important to consider the variations in the chemical and 

biological characteristics of the water body, with the input of nutrients from agricultural 

activities around the reservoir, and still insertion of organic and inorganic substances carried 

longitudinally along the entire cascade system. Therefore, two statistical metrics were 

considered to analyze the variations: mean and standard deviation (SD). After the radiometric 

correction process, a set of images referring to one year (2013 - 2014), each consisting of 6 

spectral bands (bands 2 to 7), were submitted to the calculation of the mean and subsequent 

standard deviation. Bands corresponding to the same wavelength were compressed and then the 

mean and standard deviation for the studied months were calculated, with each pixel of the final 

image having the mean value of spectral 𝜌𝑇𝑂𝐴, as well as standard deviation.  

For delimitation of the boundary of each reservoir a set of processes were established, 

such as the selection of a reference image, application of the NDWI, slice, conversion raster-

vector e finally, the creation of the mask. The image of reference was based on the season with 

low rainfall. In this case, the image from July/2013 was chosen. It is worth mentioning that Nav 

does not present a notable variation in water level due to its operational system, on the contrary, 

BB varies seasonally. Aiming to separate water from other targets, NDWI from McFeeters 

(1996) was applied as follows: 

 

𝑁𝐷𝑊𝐼 =
𝐺𝑟𝑒𝑛𝑛 − 𝑁𝐼𝑅

𝐺𝑟𝑒𝑒𝑛 + 𝑁𝐼𝑅
 (2.1) 

 

where Green and NIR are the bands 3 and 5 from OLI/Landsat-8, respectively. This ratio aims 

to maximize the water reflectance in the visible spectral region and minimize it in the infrared.  

There are modifications of this index, such as the MNDWI proposed by Xu (2006) who 

used a ratio between the green and middle infrared (MIR) bands aiming to enhanced the features 

of water in regions which the contamination by other targets are evident like noises related to 

built-up land, soil and vegetation overestimating the water targets. However, we kept the 

Equation 2.1, since the method employed here predicts the use of a buffer in order to avoid the 

borders with other targets but water. The separation of water from the other targets was obtained 

by slicing between values representative of each target. Thus, pixels with values assigned with 
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water were allocated in a class while the others in another class, resulting in two classes: water 

and non-water.  

For stratified sampling, the SD images were transformed in Principal Component 

Analysis (PCA) in a Geographic Information System (GIS) environment and then sliced 

according to intervals empirically defined. The selected image for this step was based on the 

component with higher variability from the set of 6 SD bands. The slice step allowed the 

creation of stratus for further sampling points definition. A buffer with 70 m was created for 

each reservoir to prevent the edges formed by land. Using the tool Hawth’s Tools developed by 

Hawthorne Beyer (http://www.spatialecology.com/) and compatible to a GIS environment, the 

random stratified sampling was possible to be carried out. Initially, more than a required number 

of samples were created in order to remove the non-spatialized stations. The minimal distance 

of 1 km between samples was established to prevent clusters. As result, 20 samples were 

acquired for each field campaign except for the third campaign in BB that included 4 samples 

(totalizing 24 samples) and in Nav 20 samples in different locations were added for the first and 

second field trips and 19 for the third field trip. 

 

2.3 Field campaigns 

 

The water quality parameters, as well as their spatial distribution are seasonal 

dependent, therefore, we considered at least two periods of the year for water and optical data 

collection. The water samples were collected in six field campaigns (Figure 1). For Nav, the 

field trips occurred during austral autumn (Nav1: 28 April – 2 May/2014 and Nav2: 23 – 26 

September/2014) and austral spring (Nav3: 9 and 14 May/2016). For BB, the field trips were 

carried out in austral autumn (BB1: 5 – 9 May/2014) and austral spring (BB2: 13 – 16 

October/2014 and BB3: 13 – 15 September/2015). Both seasons are known for intermediate 

precipitation amounts between summer (wet period) and winter (dry period). Data collections 

were avoided in the summer due to high rainfall rates making difficult to obtain cloud free 

satellite images. 

As depicted in Figure 2.3, the rainfall data in BB and Nav showed distinct values. In 

Nav, for example, the month of January and February from 2011 to 2016 showed the highest 

averages values of 197.24 and 196.92 mm, respectively. BB, in turn, presented 222.59 and 

209.16 mm in January and February, respectively. These values were expected because they 

occurred in the wet period (summer). The year of 2014 showed the lowest values for the 

respective months presenting 130.75 and 141.81 mm in Nav and 168.51 and 146.24 mm in BB, 
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respectively. The lowest average values were observed in July and August corresponding to the 

dry period (winter). Nav showed in July and August averages of 42.51 and 12.79 mm, 

respectively, whilst BB presented averages of 72.85 and 46.29 mm. In 2014, the lowest rainfall 

in Nav were observed in June (24.00 mm) and August (6.80 mm) while in BB, the lowest ones 

were seen in July (40.26 mm) and August (38.83 mm). The months chosen for the field works 

varied below and above the mean measures (2011 – 2016), but in the austral summer of 

2013/2014, the values were below the average and this happened due to an extreme event of 

drought classified as exceptionally dry (COELHO et al., 2015). The authors also described the 

2014/2015 summer as atypical and dry, however, in lower magnitude as the 2013/2014 summer. 

The months of April/May of 2014 represented the period of the first data collection in 

Nav and the rainfall data showed that in both months the values (98.41 and 69.00 mm, 

respectively) were below the average between 2011 and 2016 (99.67 and 95.05 mm). The 

month of September/2014 related to the second field collection presented value (141.40 mm) 

above the average (86.14 mm) and the same happened to the third field trip (May/2016) which 

showed a value of 197.49 mm above the average (95.05 mm). 

 

Figure 2.3. Rainfall data from the period between 2011 to 2016 (boxplots) highlighting the 

years of 2014, 2015 and 2016 for (a) Nav and (b) BB. Nav1 (28 April – 2 May/2014), Nav2 (23 

– 26 September/2014) and Nav3 (9 and 14 May/2016). 

 

Source: NASA/GIOVANNI (https://giovanni.gsfc.nasa.gov/giovanni/). 

 

The first field trip of BB carried out in May/2014 presented a value of 56.31 mm, below 

the average of 98.54 mm. The second field trip that occurred in October/2014, also exhibited a 

value (56.19 mm) below the average (164.14 mm). On the other hand, the third field trip 

(September/2015) displayed a value (192.08 mm) above the average (101.35 mm). The rainfall 

variability and the special event of dry in the austral summer (2013/2014) implied in severe 
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impacts in water availability for public consumption, hydropower generation and agriculture 

(COELHO et al., 2015).  

Data of water level also showed the impact of the dry summer in 2014. A slight 

variability between 2011 to 2016 was observed in Nav (Figure 2.4), with an average interval of 

357.60 ± 0.30 to 357.77 ± 0.32 m from January to December. The year of 2014 displayed the 

lowest water level except in January that showed a value of 357.56 m. The water level fluctuated 

between 0.13 m in 2011 to 0.69 m in 2015, in 2014 the amplitude was 0.50 m. Nav is a run-of-

river reservoir, therefore, the water level variation with low amplitude is expected (PERBICHE-

NEVES et al., 2013). 

 

Figure 2.4. Water level data from the period between 2011 to 2016 (boxplots) highlighting the 

years of 2014, 2015 and 2016 for (a) Nav and (b) BB. Different axis y was used due to distinct 

magnitudes. Nav1 (28 April – 2 May/2014), Nav2 (23 – 26 September/2014) and Nav3 (9 and 

14 May/2016). 

 

Source: National Water Agency – ANA (http://sar.ana.gov.br/MedicaoSIN) 

 

The water level in BB (Figure 2.4b) varied from an average of 447.85 ± 1.21 m in 

December and 451.10 ± 0.51 m in June. The year of 2014 was also the one with water level 

excepted for the months of January and February that was lower in 2015. The amplitude ranged 

between 2.11 m in 2013 to 9.84 m in 2015. 2014 presented an amplitude of 3.85 along the year. 

The storage or accumulation reservoir of BB generates a higher variation in water level than 

the run-of-river system (PERBICHE-NEVES et al., 2013). 

The water flow (Figure 2.5) also showed to vary as a function of the dry event in 2014, 

showing the lowest values in almost the entire year, except for January of 2015. Regarding the 

magnitude, Nav and BB presented significant differences, the variability in Nav, for instance, 

ranged from 232.09 m3/s in October to 683.34 m3/s in December, while in BB, the range was 
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between 113.00 m3/s in October and 361.50 m3/s in December. The water flow was 

considerably reduced in BB aiming to keep the water retained in the system during the dry 

events, on the other hand, in Nav, the regulation of water flow, theoretically, is not necessary 

due to the absence of storage area, so the water flows naturally according to the river regime 

(EGRÉ and MILEWSKI, 2002). In addition, the regulation of Nav showed to be influenced by 

BB because of the variation in phase observed at Figure 2.5, highlighting the co-oscillation 

between them. 

 

Figure 2.5. Water flow data from the period between 2011 to 2016 (boxplots) highlighting the 

years of 2014, 2015 and 2016 for (a) Nav and (b) BB. Nav1 (28 April – 2 May/2014), Nav2 (23 

– 26 September/2014) and Nav3 (9 and 14 May/2016). 

 

Source: National Water Agency – ANA (http://sar.ana.gov.br/MedicaoSIN) 

 

2.4 Field data acquisition 

 

For this study both water quality and optical data were acquired for each sampling 

station. The amount of water collected for BB and Nav was established according to the total 

particulate matter capable to be filter without saturate it. Therefore, a total of 5L of water was 

collected for both reservoirs, however, for each TSS and Chl-a concentrations 250 – 500 mL 

were filtered considering one filter/replica in BB and 750 – 1000 mL were used for Nav. The 

water samples were stored in polyethylene containers and refrigerated for laboratory analysis. 

Water transparency was measured by a Secchi disk (30 cm diameter), turbidity by a portable 

turbidimeter, model Hanna HI 93414, and dissolved oxygen by a portable meter, model Hanna 

HI 9146-04. 

The in situ spectroradiometric measurements are very important for bio-optical 

characterization and information extraction from remote sensing data, as they act as a bridge 
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between optical measurements in laboratory and measures taken at the orbital or airborne level. 

This kind of measure permits the elimination of some undesirable effects such as atmospheric 

influence and the scale effect. Thus, radiometric measurements were carried out through 

RAMSES-ARC (radiance sensors) and RAMSES-ACC (irradiance sensors) 

spectroradiometers. The RAMSES instruments provide simultaneous measurements of 

upwelling (𝐸𝑢) and downwelling (𝐸𝑑) irradiance and upwelling radiance (𝐿𝑢) of the water 

column as well as measurements of downwelling irradiance incident onto the water surface 

(𝐸𝑑(0+)), incident sky radiance (𝐿𝑠𝑘𝑦) and total upwelling radiance (𝐿𝑡) above the surface of the 

water. 

The determination of the total particulate absorption coefficient (ap = NAP + 

phytoplankton) was accomplished by the use of an integrating sphere module present in the 

double-beam Shimadzu UV-2600 UV-Vis spectrophotometer, with spectral sampling from 280 

nm to 800 nm and spectral sampling of 1 nm. The pure water absorption coefficient is a constant 

obtained by Pope and Fry (1997). 
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CHAPTER 3: ABSORPTION PROPERTIES OF TWO OPTICALLY DIFFERENT 

RESERVOIRS SITUATED ALONG THE CASCADE SYSTEM OF TIETÊ RIVER 

 

3.1 Introduction 

 

Optical properties of water are the basis of watercolor retrieval algorithms. Variations 

of these properties can change the model parameters, optimal spectral bands and the accuracy 

of retrieval algorithms. In order to improve the performance of bio-optical models (semi-

analytical approaches), a better understanding about the variability in the absorption (a, units 

in m-1) and backscattering (bb, units in m-1) coefficients is crucial. These coefficients influence 

the magnitude and the spectral distribution of the water-leaving reflectance. 

The a(λ) denotes the contribution of all components present in the aquatic system and 

is commonly represented into four additive elements, including the pure water (𝑎𝑤), NAP 

(𝑎𝑁𝐴𝑃), CDOM (𝑎𝐶𝐷𝑂𝑀) and phytoplankton (𝑎𝜙), all dependent on wavelength (BABIN et al., 

2003; BINDING et al., 2008). In case of pure water, the absorption starts to increase from green 

to near-infrared (NIR) wavelengths (SMITH and BAKER, 1981). CDOM can remove the blue 

light in the first layer of the water and exhibit an exponential decrease with increasing 

wavelength; however, the shape is not equal for all waters (DEKKER, 1993). In order to 

describe the spectral CDOM absorption, Bricaud et al. (1981) came up with the following 

model: 

 

𝑎𝐶𝐷𝑂𝑀(𝜆) = 𝑎𝐶𝐷𝑂𝑀(𝜆0)𝑒−𝑆𝐶𝐷𝑂𝑀(𝜆−𝜆0) (3.1) 

 

where 𝜆0 is a reference wavelength, 𝑎𝐶𝐷𝑂𝑀(𝜆0) is the absorption estimate at a reference 

wavelength, and 𝑆𝐶𝐷𝑂𝑀 is the spectral slope of the 𝑎𝐶𝐷𝑂𝑀(𝜆). The former provides insights 

about the characteristics of CDOM in terms of chemistry, source and diagenesis (HELMS et 

al., 2008) and is also a proxy for CDOM composition such as the ratio of fulvic to humic acids 

and molecular weight (SHANMUGAM et al., 2011). Besides, it is strongly dependent on the 

wavelength interval chosen for analysis (ROESLER et al., 1989; LOISELLE et al., 2009). The 

NAP also presents an exponential decrease from short to longer wavelengths and is represented 

by the spectral slope, 𝑆𝑁𝐴𝑃, which is related to the fraction of organic and inorganic matter 

(BABIN et al., 2003). Meanwhile, phytoplankton presents two distinct absorption features at 

443 and 675 nm. Its composition is clearly defined by the water quality and its abundance is 

essentially determined by the underwater light and nutrient loading (DEKKER, 1993). 
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The characterization of IOP in ocean and coastal waters have been massively studied in 

the last four decades, therefore, the comprehension about the relationship between in-water 

constituents and optical properties are well known (MOREL and MARITORENA, 2001; 

BABIN et al., 2003). In open ocean, for example, the influence of terrigenous matter is 

negligible and is assumed that only phytoplankton domain the optical properties as well as the 

pure water (MOREL and BRICAUD, 1986). In contrast, the inland waters are considered 

complex environments due to the increased number of color-producing agents and the high 

variability in their concentrations, limiting the use of empirical oceanic algorithms for Chl-a 

retrieval, for example (BUKATA, 2005). More robust models such as the semi-analytical and 

analytical approaches require the knowledge about the mass-specific inherent optical properties 

(SIOPs), like those used by Lee et al. (2002) with the QAA and the Garver-Siegel-Maritorena 

algorithm (GARVER and SIEGEL, 1997; MARITORENA et al., 2002). The SIOPs are 

retrieved by normalizing the absorption coefficient of a certain OSC and the respective 

concentration. The mass-specific phytoplankton absorption (𝑎𝜙
∗ ), for example, is related to 

phytoplankton cell size, accessory pigments and package effect (BRICAUD et al., 1995; 

BABIN et al., 2003).  

Registers of the (S)IOPs in inland waters are available for specific regions around the 

world such as in Babin et al. (2003) who studied the coastal waters around Europe; Binding et 

al. (2008) produced a data set of absorption coefficients in Lake Erie; Perkins et al. (2009) 

documented the spectral features, magnitudes and variability of the IOPs in Finger Lakes of 

New York; Le et al. (2009b) investigated the variations of absorption and total specific 

absorption coefficient of phytoplankton in Lake Taihu, China; Campbell et al. (2011) described 

the SIOPs of three sub-tropical and tropical waters reservoirs in Australia; Wu et al. (2011) 

estimated the absorption and backscattering coefficients in Poyang Lake, China and analyzed 

their relations to the main water constituents; Matthews and Bernard (2013) presented the 

absorption properties of phytoplankton, CDOM and NAP for three small optically-diverse 

South African inland waters; Ylöstalo et al. (2014) characterized variations of different 

absorption components between different lake types and seasons in various lakes in the boreal 

region, in turn, Riddick et al. (2015) showed the spatial variability of absorption coefficients 

over a biogeochemical gradient in Lake Balaton, Hungary. 

Many efforts have been done from the last decade regarding the studies of (S)IOPs in 

inland waters, however, much more is expected to be done in order to cover a variety of 

environments and provide subsides to understand how these properties influence the 
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parameterization of bio-optical models aiming to assist the remote-sensed-based monitoring of 

water quality. Environments such as reservoirs designed in a cascade system, for example, 

causes limnological modifications from the upstream to downstream reducing the turbidity and 

increasing water clarity (BARBOSA et al., 1999). The (S)IOPs can be somehow modulated by 

biogeochemical filtration from the first to the last reservoirs. The current study aims to 

characterize two optically different reservoirs situated along the cascade system of Tietê River, 

whose influence are dictated by the watershed dynamic, in order to improve the knowledge 

about bio-optical properties of a system covering two distinct trophic states (oligo to 

hypereutrophic) and to raise the main sources of spatial variability in the IOPs. 

 

3.2 Data and Methods 

 

For this study, data from all the field trips were used. The campaigns of BB were named 

as BB1, BB2 and BB3 standing for the sequence of field campaigns realization. For Nav, the 

campaigns were identified as Nav1, Nav2 and Nav3. The number of samples used for this 

chapter is displayed in Table 3.1. 

 

3.2.1 Water quality parameters 

 

To determine the TSS concentration we applied the method described by APHA (1998). 

The water volume was filtered on the same day of collection through pre-ashed and pre-weighed 

Whatmam fiberglass GF/F filter with a nominal porosity of 0.7 μm and then stored at the 

refrigerator until analysis. The filters were dried in 100° C oven for 12h, and then weighted in 

an analytical balance. To retrieve the inorganic suspended sediment (ISS), the filter dried and 

weighed in the last step was subjected to a muffle furnace for 75 min at 550° C and weighted 

again. As result, we determined the TSS, ISS and to estimate the organic suspended sediment 

(OSS), the last weighted filter was subtracted to the original filter weight after first drying. 

The analysis to determine the Chl-a concentration was based on Golterman et al. (1978). 

The specified volume of water was filtered under low vacuum pressure through a Whatman 

fiberglass GF/F filter with a porosity of 0.7 μm, and then frozen for laboratory analysis for no 

longer than 1 week. The chlorophyll was extracted by maceration in 90% acetone, then stored 

in 20 mL tubes and centrifuged. Afterward, one sample was placed in 1 cm quartz cuvette and 

to represent the reference a volume of acetone was placed in another cuvette. The readings were 

made in a spectrophotometer at 663 nm indicating the maximum absorption of chlorophyll in 
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acetone and at 750 nm characterizing the absorption by chlorophyll and pheophytin. After this 

reading, 0.1N hydrochloric acid was added to the sample in order to remove magnesium from 

the chlorophyll and convert it into pheophytin and another reading was taken. 

 

3.2.2 Inherent optical properties 

 

To estimate the CDOM absorption coefficient, 𝑎𝐶𝐷𝑂𝑀(𝜆), a volume of water was 

filtered through a fiberglass Whatman GF/F with porosity of 0.7 μm, and then re-filtered under 

low vacuum pressure using a nylon membrane filter with porosity of 0.2 μm. The readings were 

performed using Shimadzu UV-2600 UV-VIS spectrophotometer (SHIMADZU, Japan) in 

absorbance mode, and the samples were placed in 10 cm quartz cuvettes. For each set of 

measurements, we performed a reference reading containing Milli-Q water, and for each read 

sample (𝑂𝐷𝑠𝑎𝑚𝑝𝑙𝑒), the reference absorbance value was subtracted (𝑂𝐷𝑟𝑒𝑓). The measured 

optical densities (𝑂𝐷𝑠𝑎𝑚𝑝𝑙𝑒) were converted to absorption coefficient by multiplying by 2.303 

and dividing by the path length (l = 0.1 m for a 10 cm cuvette). Therefore, the 𝑎𝐶𝐷𝑂𝑀(𝜆) was 

estimated following the equation (TILSTONE et al., 2002): 

 

𝑎𝐶𝐷𝑂𝑀(𝜆) = 2.303
𝑂𝐷𝑠𝑎𝑚𝑝𝑙𝑒

𝑙
= 2.303

𝑂𝐷𝑠𝑎𝑚𝑝𝑙𝑒

0.1
     (𝑚−1) (3.2) 

 

The 𝑎𝐶𝐷𝑂𝑀(𝜆) follows an exponential function decreasing from the visible to longer 

wavelengths. The data adopted to fit to the nonlinear regression ranged from 350 and 500 nm 

(BABIN et al., 2003). Twardowski et al. (2004) highlighted the main issues related to the 

spectral variability found in the results of many studies and attribute to the spectral range used 

in the adjustment. The 𝑆𝐶𝐷𝑂𝑀 can be used to understand the composition of CDOM (GREEN 

and BLOUGH, 1994, TWARDOWSKI et al., 2004). Absorption measures may contain errors 

related to the scattering of small particles or colloids that can cross the filters, leading some 

researchers to use equations to correct these effects (BRICAUD et al., 1981, GREEN and 

BLOUGH, 1994, BABIN et al., 2003). In order to turn the results comparable, the procedure 

described by Babin et al. (2003) were adopted in this study. 

For particulate absorption coefficients, water samples were filtered at low vacuum 

pressure using a 47 mm diameter fiberglass Whatman GF/F filter. The filters were wrapped in 

aluminum foil and frozen until laboratory analysis. A white filter wetted with ultrapure water 

was used as reference and the filter containing the particulate was placed on the integrating 
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sphere module presented in the double-beam Shimadzu UV-2600 UV-VIS spectrophotometer 

(SHIMADZU, Japan) with spectral sampling ranging from 280 – 800 nm, to measure their 

optical density (OD). The T-R (Transmittance-Reflectance) method described by Tassan and 

Ferrari (1995, 1998) was employed to derive the total particulate absorption coefficient (𝑎𝑝). 

The particulate filter was submitted to depigmentation by oxidation in 10% sodium 

hypochlorite (NaClO), ensuring free phytoplankton influence to obtain 𝑎𝑁𝐴𝑃. The 𝑎𝜙 was 

retrieved by subtracting the 𝑎𝑁𝐴𝑃 from the 𝑎𝑝. 

 

𝑎𝜙(𝜆) = 𝑎𝑝(𝜆) − 𝑎𝑁𝐴𝑃(𝜆) (3.3) 

 

The 𝑎𝜙
∗ (𝜆) was obtained by normalizing the absorption due to phytoplankton by the 

Chl-a concentration. Babin et al. (2003) highlight that 𝑎𝜙 includes absorption related to all 

pigments, incorporating phaeopigment associated with other particles other than living 

phytoplankton. The 𝑎𝑁𝐴𝑃 can be adjusted by Roesler et al. (1989): 

 

𝑎𝑁𝐴𝑃(𝜆) = 𝑎𝑁𝐴𝑃(𝜆0)𝑒−𝑆(𝜆−𝜆0) (3.4) 

 

The fit of the model was carried out between 350 and 800 nm, excluding the interval 

between 400 – 480 and 620 – 710 nm related to the absorption of some type of pigment interval 

that may have remained after depigmentation (BABIN et al., 2003). 

 

3.3 Results 

 

3.3.1 General characteristics of water quality parameters and optical properties 

 

The water quality parameters as well as the optical properties were all analyzed in terms 

of field trips (Table 3.1). Thus, the average turbidity between BB1 and BB2 was statistically 

different (p-value < 0.05) and the same happened between BB2 and BB3. On the other hand, 

data from BB1 and BB3 were not statistically different (p-value > 0.05). The same result was 

also observed for Chl-a and TSS concentrations. The increase of Chl-a concentration in October 

of 2014 was due to the drought effect leading to flow reduction and longer retention time 

(WATANABE et al., 2016b). High values of Chl-a for BB revealed the eutrophication status 

of the water, mainly in the winter (LUZIA, 2004). In Nav, the average turbidity from Nav1 and 
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Nav2 was not considered statistically different (p-value > 0.05), however, the average Chl-a 

concentration from all three field trips was statistically different. The average TSS from Nav1 

and Nav2 was not different, but this was not true when data from Nav2 was compared to Nav3 

and Nav1 with Nav3. Assessing both reservoirs, we clearly observe that BB is more turbid due 

to high contribution of phytoplankton mainly in the BB2 that achieved a Chl-a value of 797.80 

μg l-1 close to the dam. On the contrary, Nav presented low concentrations of Chl-a, where the 

average did not exceed 9.0 μg l-1 for Nav1 and Nav2 but reached 26.4 μg l-1 in Nav3, where the 

samples were concentrated at the upstream region of the reservoir. The variation of water 

quality parameters was strictly related to rainfall condition as well as the location of each 

reservoir in the cascade system. The analysis of individual reservoirs cannot provide the 

necessary information about the water quality dynamic, because this kind of structure cause 

discontinuity in the physical and biological features (BARBOSA et al., 1999). 

 

Table 3.1. Descriptive statistics of water quality and optical parameters. The notations Min-

Max, Aver, SD, CV and n stand for minimum-maximum, average, standard deviation, 

coefficient of determination and number of samples. Blank spaces represent lack of data. 

  Nav1 Nav2 Nav3 BB1 BB2 BB3 

Chl-a 

(μg l-1) 

Min–Max 2.5–12.6 4.5–20.5 15.8–38.6 17.8–279.9 263.2 – 797.8 62.8–245.7 

Aver ± SD 6.2±2.5 9.0±4.1 26.4±6.7 120.4±68.5 428.7±154.5 127.1±51.3 

CV (%) 40.0 45.5 25.3 56.9 36 40.4 

n 20 19 10 20 20 24 

TSS 

(mg l-1) 

Min–Max 0.1–2.6 0.5–2.8 1.9–5.3 3.6–16.3 10.8–44.0 1.6–8.4 

Aver ± SD 1.0±0.6 1.0±0.6 3.1±1.0 7.2±3.9 22.0±7.0 5.6±1.8 

CV (%) 61.7 56.2 32.4 44.1 32.1 32.0 

n 17 19 10 20 20 24 

OSS 

(mg l-1) 

Min–Max - - - 2.8–14.7 10.2–30.4 - 

Aver ± SD - - - 6.1±2.6 18.2±3.5 - 

CV (%) - - - 41.9 19.3 - 

n - - - 20 19 - 

Turbidity 

(NTU) 

Min–Max 1.0–2.5 1.0–2.6 - 1.7–12.5 11.6–33.2 3.1–6.8 

Aver ± SD 1.7±0.4 1.7±0.4 - 5.8±2.4 18.6±5.3 4.2±0.8 

CV (%) 25.4 22.9 - 45.8 28.3 20.3 

n 20 19 - 20 20 24 

SDD 

(m) 

Min–Max 2.3–4.8 2.5–4.7 1.9–3.8 0.8–2.3 0.4–0.8 1.0–1.6 

Aver ± SD 3.2±0.6 3.4±0.6 3.0±0.6 1.5±0.4 0.6±0.1 1.3±0.2 

CV (%) 20.0 17.6 21.0 28.2 17.2 16.6 

n 20 19 18 20 20 24 

Depth 

(m) 

Min–Max 5.3–30.0 - 7.4–32.9 10.0–30.0 8.0–18.5 9.6–26.0 

Aver ± SD 18.0±8.3 - 22.9–6.8 15.4±4.1 13.0±2.7 16.3±3.7 

CV (%) 46.2 - 29.8 26.5 21.0 22.5 

n 20 - 18 19 20 24 

𝒂𝝓(𝟒𝟒𝟑) 

(m-1) 

Min–Max 0.1–0.4 0.1–0.4 0.1–0.6 0.3–2.4 - - 

Aver ± SD 0.2±0.1 0.2±0.1 0.3±0.1 1.1±0.6 - - 

CV (%) 39.1 40.8 43.5 52.1 - - 

n 20 20 19 20 - - 

Min–Max 0.1–0.5 0.1–0.7  0.4–0.8 0.3–0.8 - - 
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𝒂𝑵𝑨𝑷(𝟒𝟒𝟑) 

(m-1) 

Aver ± SD 0.3±0.1 0.3±0.1 0.6±0.1 0.5±0.1 - - 

CV (%) 25.8 52.0 19.6 25.4 - - 

n 20 20 19 20 - - 

𝒂𝑪𝑫𝑶𝑴(𝟒𝟒𝟑) 

(m-1) 

Min–Max 0.2–0.3 0.2–0.5 0.06–0.09 0.6–1.1 - - 

Aver ± SD 0.3±0.0 0.3±0.1 0.08±0.01 0.7±0.1 - - 

CV (%) 8.5 17.0 8.9 14.2 - - 

n 20 19 19 20 - - 

 

Water quality properties such as TSS and Chl-a as well as the IOPs at 443 nm were 

plotted against each other aiming to provide the main constitution of both reservoirs. No 

significant linear relationship (p-value > 0.05) was observed between TSS and Chl-a (Figure 

3.1a) for Nav considering a log scale (Nav1: R = 0.44; Nav2: R = -0.18; Nav3: R = 0.42), which 

means that Nav is not dominated by phytoplankton. However, for BB, there is a significant 

relationship for all three field trips (BB1: R = 0.75, p-value < 0.001; BB2: R = 0.60, p-value < 

0.05; BB3: R = 0.74, p-value < 0.001) showing that phytoplankton was the main contributor of 

TSS. 𝑎𝜙(443) and Chl-a concentration (Figure 3.1b) did not show significant relationship (p-

value > 0.05) for Nav1 (R = 0.42) and Nav2 (R = -0.22) on the other hand, for Nav3, we 

observed a strong linear relationship (R = 0.81, p-value < 0.05). For BB, the correlation was 

statistically significant for both BB1 (R = 0.92, p-value < 0.001) and BB2 (R = 0.52, p-value < 

0.05). As reported by Le et al. (2015), the strong correlation between 𝑎𝜙(443) and Chl-a is 

associated with high loads of nutrients in the aquatic system increasing phytoplankton 

production. According to Luzia (2004), the limiting nutrient that controls the growth of aquatic 

plants in majority of fresh waters is the inorganic form of phosphorus.  

Considering the relationship between 𝑎𝑁𝐴𝑃(443) and TSS (Figure 3.1c) for Nav, it was 

difficult to notice any relationship (Nav1: R = 0.27; Nav2: R = -0.11; Nav3: R = 0.33, p-value 

> 0.05). For BB, the non-correlation was also observed for both field trips (BB1: R = -0.05; 

BB2: R = -0.37, p-value > 0.05). Now considering the relationship between 𝑎𝐶𝐷𝑂𝑀(443) and 

Chl-a (Figure 3.1d) for Nav, again, no correlation was observed in any of the three campaigns 

(Nav1: R = 0.14; Nav2: R = 0.15; Nav3: R = 0.17, p-value > 0.05), while for BB1 the 

relationship was significant (R = 0.77, p-value < 0.001) and weak for BB2 (R = 0.25, p-value 

> 0.05). Regarding the relationship between 𝑎𝐶𝐷𝑂𝑀(443) and TSS (Figure 3.1e), Nav did not 

show any statistical correlation (Nav1: R = -0.06; Nav2: R = -0.18; Nav3: R = 0.14, p-value > 

0.05) whilst BB1 showed to be moderately (R = 0.53, p-value < 0.05) and weakly correlated 

for BB2 (R = 0.19, p-value > 0.05). The non-correlation combined with the low Chl-a in Nav 

can indicate that TSS and CDOM were possibly originated from land-based sources and not 

from phytoplankton degradation. 
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Figure 3.1. Relationship between water quality and optical parameters considering data from 

all field campaigns. (a) TSS versus Chl-a, (b) 𝑎𝜙(443) versus Chl-a, (c) 𝑎𝑁𝐴𝑃(443) versus 

TSS, (d) 𝑎𝐶𝐷𝑂𝑀(443) versus TSS and (e) 𝑎𝐶𝐷𝑂𝑀(443) versus Chl-a. 

 

 

3.3.2 Absorption coefficient budget 

 

The relative contribution of phytoplankton, CDOM and NAP relative to the total 

absorption without the water fraction (𝑎𝑡−𝑤) can be seen in Figure 3.2. The wavelengths chosen 

for analysis (443, 560 and 665 nm) characterize the light interaction with dissolved organic 

matter and particulate matter (BABIN et al., 2003; LE et al., 2013). The ternary plots show the 

contribution and representativeness of certain OSC in the water and can be used to assist the 

estimation of these components using proper algorithms (MISHRA et al., 2014; RIDDICK et 

al., 2015). Figure 3.2(a) shows that at 443 nm, Nav1 was dominated by 𝑎𝑁𝐴𝑃 with 43.24 ± 6.52 

%, Nav2 by 𝑎𝐶𝐷𝑂𝑀 with 37.89 ± 9.22 %, Nav3 by 𝑎𝑁𝐴𝑃 62.17 ± 9.39 %. At 560 nm (Figure 

3.2b), Nav1, Nav2 and Nav3 were all dominated by 𝑎𝑁𝐴𝑃 with 48.57 ± 7.42 %, 46.87 ± 10.11 

% and 72.14 ± 13.70 %, respectively. At 665 nm (Figure 3.2c), all three field trips were 

dominated by 𝑎𝜙 (Nav1: 55.00 ± 8.95 %, Nav2: 39.72 ± 12.06 % and Nav3: 65.16 ± 12.39 %). 

As expected, the most dominant OSC in the absorption budget considering both field 

trips and wavelengths in BB was the phytoplankton. At 443 nm (Figure 3.2a), BB 1 and BB 2 
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were dominated by 𝑎𝜙 with a percentage of 45.72 ± 12.71 % and 72.38 ± 9.36 %. At 560 nm 

(Figure 3.2b), the 𝑎𝜙 of BB 1 and BB 2 presented a percentage of 41.98 ± 13.43 % and 63.33 

± 13.75 %, respectively while at 665 nm (Figure 3.2c), the contribution was over 80% (BB 1 = 

85.38 ± 6.80 % and BB 2: 87.90 ± 6.38 %). 

 

Figure 3.2. Ternary plot depicting the absorption coefficient budget of both Nav and BB 

reservoirs at three wavelengths: (a) 443 nm, (b) 560 nm and (c) 665 nm. 

 

 

3.3.3 CDOM absorption 

 

The 𝑎𝐶𝐷𝑂𝑀 spectra approached to zero close to 700 nm and showed an exponential 

decrease pattern from shorter to higher wavelengths (BRICAUD et al., 1981) with values at 

443 nm ranging between 0.06 to 0.45 m-1 in Nav and between 0.62 to 2.34 m-1 in BB (Figure 

3.3). The magnitude differs from one reservoir to another as well as from one season to another. 

Values from BB are like those found by Matthews and Bernard (2013), who stated an interval 

between 0.63 to 4.13 m-1 in three South African reservoirs. Wu et al. (2011) found values 

ranging between 0.33 to 1.01 m-1 in Poyang Lake, China, considered a suspended inorganic 

matter dominated water with low Chl-a concentration (1.47 – 24.65 μg l-1) while Campbell et 

al. (2011) reported an interval of 0.36 and 1.59 m-1 in three Australian reservoirs. Zhang et al. 

(2007) observed in Lake Taihu values ranging between 0.27 to 2.36 m-1. Binding et al. (2008) 

reported values at 440 nm ranging between 0.08 to 0.75 m-1 in Lake Erie (Canada/USA) that 

was close to that found in Nav. The mean value for the spectral slope of CDOM (𝑆𝐶𝐷𝑂𝑀) was 

0.018 nm-1 for BB1 and 0.016 nm-1 for BB2, whilst for Nav1 the mean 𝑆𝐶𝐷𝑂𝑀 was 0.020 nm-1 

and 0.018 nm-1 for Nav2 and Nav3. Riddick et al. (2015) also found a mean 𝑆𝐶𝐷𝑂𝑀 of 0.018 

nm-1 in Kis-Balaton (wetland system) and 0.020 nm-1 in the Lake Balaton (freshwater lake in 

central Europe). On the other hand, Babin et al. (2003) reported a narrow range around 0.0176 
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nm-1 in coastal waters around Europe. The authors highlighted that diverse protocols to retrieve 

𝑆𝐶𝐷𝑂𝑀 can make it difficult to compare values from different regions. 

 

Figure 3.3. Variability of 𝑎𝐶𝐷𝑂𝑀 by field trip. (a) Nav1, (b) Nav2, (c) Nav3, (d) BB1, (e) BB2 

and (f) the average value of 𝑎𝐶𝐷𝑂𝑀(𝜆) for each field trip. Different y axes were applied for Nav 

and BB due to magnitude discrepancies. 

 

 

3.3.4 Phytoplankton absorption 

 

Figure 3.4 depicts the 𝑎𝜙 spectra between 400 to 700 nm. The magnitude and shape are 

different when we compare both reservoirs and this can be due to the diversity of trophic states 

and phytoplankton assemblages (MATTHEWS and BERNARD, 2013). The peaks at the blue 

and red regions are consistent with the typical diagnostic features of phytoplankton absorption 

(WU et al., 2011). At 440 nm, accessory pigments and Chl-a contribute with high absorption, 

while at 675 nm, Chl-a plus phaeophytin are primarily responsible for high absorption 

(SATHYENDRANATH et al., 1987; LE et al., 2009b). Other pigments such as carotenoids 

absorb from 460 to 490 nm, however, this feature is not prominent in Nav neither BB.  

The absolute intervals of absorption at 443 nm are 0.05 – 0.57 m-1 for Nav and 0.27 – 

10.34 m-1 for BB. Roesler et al. (1989) found values at 400 nm between 0.03 to 0.58 m-1 in 

inland marine waters in the USA, which was very close to that found in Nav. High values were 

reported in many turbid inland waters with characteristics close to that presented in BB (WU et 
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al., 2011, MATTHEWS and BERNARD, 2013, MISHRA et al., 2014). 𝑎𝜙 at 443 nm exhibited 

an increased trend from the first to the second field campaigns, and the same happened for Nav 

considering the first to the third field trips.  

Mean 𝑎𝜙(620) ranged from 0.33 to 1.47 m-1 in BB and 0.04 to 0.10 m-1 in Nav. Chl-a 

concentration showed a strong relationship with 𝑎𝜙(620) and BB1 (R² = 0.80, p < 0.001, not 

presented here) but no correlation was found with BB2 (R² = 0.11, p > 0.05) as well as with 

Nav considering all three field trips (p > 0.05). The pigment phycocyanin, when present, can 

be detected through the 𝑎𝜙 spectrum especially at 620 nm. This pigment is a marker for 

cyanobacteria in eutrophic inland waters (SIMIS et al., 2005). Figure 3.1(b) showed the non-

relationship between 𝑎𝜙(443) and Chl-a in Nav, suggesting that Chl-a was not the only 

pigment affecting 𝑎𝜙, but other accessory pigments, such as carotenoid (WU et al., 2011). 

 

Figure 3.4. Variability of 𝑎𝜙 by field trip. (a) Nav1, (b) Nav2, (c) Nav3, (d) BB1, (e) BB2 and 

(f) the average value of 𝑎𝜙(𝜆) for each field trip. Different y axes were applied for Nav and BB 

due to magnitude discrepancies. 

 

3.3.5 NAP absorption 

 

The spectral shape of 𝑎𝑁𝐴𝑃 (Figure 3.5) is quite similar of 𝑎𝐶𝐷𝑂𝑀 with an exponential 

decrease from 400 to 700 nm. Visually, the seasonal pattern between field campaigns and 

reservoirs did not show remarkable changes as reported previously. Taking into account the 

data from Nav, we observed that at 443 nm the values varied from 0.13 to 0.82 m-1 with averages 

varying from 0.33 m-1 in Nav1, 0.27 m-1 in Nav2 and 0.61 m-1 in Nav3, showing that 𝑎𝑁𝐴𝑃(443) 
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increased in Nav3. Sample 5 from Nav2 stood out from the dataset because of the presence of 

sand dredging activity in that region leading to sediment resuspension. Meanwhile, BB showed 

a range of 0.23 to 1.67 m-1 with averages varying from 0.45 m-1 in BB1 and 0.47 m-1 in BB2. 

Samples 17 to 20 placed at Tietê River and confluence of Tietê and Piracicaba Rivers presented 

the highest values for 𝑎𝑁𝐴𝑃(443). These regions receive high loads of sediment from the 

metropolitan region of São Paulo. The mean slope (𝑆𝑁𝐴𝑃) of BB1 and BB2 was 0.007 and 0.008 

nm-1, respectively, ranging between 0.006 to 0.01 nm-1 while for Nav the mean values were 

0.009, 0.006 and 0.007 nm-1, respectively, ranging between 0.003 to 0.011 nm-1. 

 

Figure 3.5. Variability of 𝑎𝑁𝐴𝑃(𝜆) in all field trips (a) Nav1, (b) Nav2, (c) Nav3, (d) BB1, (e) 

BB2 and (f) the average value of 𝑎𝑁𝐴𝑃(𝜆) for each field trip. 

 

 

3.3.6 Particle absorption  

 

The Figure 3.6 displays the spectral behavior of 𝑎𝑝 from 400 to 700 nm. It shows the 

contribution of phytoplankton and non-algal particle. Besides the magnitude, the shapes of 𝑎𝑝 

from BB and Nav are clearly different, showing a smooth feature between 400 to 450 nm in 

Nav and a marked feature in BB. These are due to the high contribution of NAP and CDOM at 

this wavelength range, as also supported by Figure 3.1. On the contrary, BB was highly affected 

by photosynthetic pigments at the blue and red regions. The pattern from Nav was also observed 

by Meler et al. (2016) in Gulf of Gdánsk during winter and in river mouths, Baltic Sea during 
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all seasons except summer. Wu et al. (2011) did not observe any feature at the blue and red 

regions due to high loads of inorganic sediment, which masked the phytoplankton contribution 

along the spectra. 

 

Figure 3.6. Variability of 𝑎𝑝(𝜆) in all field trips.  (a) Nav1, (b) Nav2, (c) Nav3, (d) BB1, (e) 

BB2 and (f) the average value of 𝑎𝑝(𝜆) for each field trip. Different y axles were applied for 

Nav and BB due to magnitude discrepancies. 

 

 

3.4. Discussion 

 

As reported in many studies, BB as the first reservoir of the cascade system receives 

high loads of sediments coming from the metropolitan region of São Paulo and also from the 

Piracicaba River basin therefore, it acts as a great accumulator of nutrients (BARBOSA et al., 

1999, LUZIA, 2004, SMITH et al., 2014). The following reservoirs, on the other hand, start to 

receive less nutrients decreasing the trophic state of these water bodies, such as Nav. The 

implication of different sources of contaminant of the reservoirs characterizes the in-water 

constituents. In case of BB, the ternary plot (Figure 3.2) showed that phytoplankton was the 

constituent that dominated the water content in the visible spectrum and therefore, the water 

optical properties. At 443 nm, the phytoplankton contribution ranged between 20.71 to 87.14%. 

On the other hand, Nav was dominated by both NAP and CDOM considering all three field 

trips. Nav1 was dominated by NAP (25.87 – 52.25%), Nav2 by CDOM (19.90 – 58.88%) and 

Nav3 also by NAP (44.85 – 76.76%). Riddick et al. (2015) showed a phytoplankton variation 
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of 20 to 70% in Lake Balaton, whilst in coastal and sea waters, the contributions of NAP and 

CDOM, respectively, were dominant (BABIN et al., 2003; NAIK et al., 2013). A particularity 

was highlighted by Ylostalo et al. (2014) who found high CDOM contribution in Borel lakes 

(48 – 99% at 442 nm), which most of these lakes present low productivity and high organic 

matter coming from the catchment basin. In Brazil, Ogashawara et al. (2016) also reported the 

dominance of CDOM in the 𝑎𝑡−𝑤 at 443 nm in both Funil and Itumbiara reservoirs. CDOM can 

be originated by autochthones or allochthones sources and in sea waters this OSC co-varies 

with phytoplankton biomass (BRICAUD et al., 1981), on the other hand, in inland waters the 

organic matter is mainly regulated by terrigenous inputs (Kirk 1994). These findings showed 

that inland waters present high variability in terms of optical properties and this can be reflected 

in bio-optical modeling. 

The dominance of phytoplankton in BB can be due to high loads of nutrients mainly 

phosphorus that increases the primary production (here represented by Chl-a as phytoplankton 

biomass proxy). Inputs of phosphorus in the water is result of industry, domestic and agriculture 

activities, including sediment liberation (CALIJURI et al., 2002). High loads of this nutrient 

were reported in BB during summer (LUZIA, 2004, SMITH et al., 2014). It was observed that 

Chl-a was highly correlated (0.60 < R < 0.75) with TSS in all three BB field trips, assuming 

that the sediment produced in the aquatic system was represented mainly by phytoplankton. 

Zhang et al. (2009a) showed the influence of seasonal and temporal cycle into Chl-a 

concentration. They observed a significant positive correlation with TSS during spring, summer 

and autumn and related this to the frequent algal blooms in Lake Taihu, China. Algal blooms 

were also observed during BB2 campaign and the presence of cyanobacteria was also noticed 

(Figure 3.4e). Sotero-Santos et al. (2006) pointed relevant conditions to grant cyanobacteria to 

bloom almost year-round in BB and they were: water column stability, low N:P ratio, moderate 

to high nutrient levels, mild or no winds and low turbulence.  

On the contrary, Nav showed the dominance of NAP in the absorption budget 

corroborated to the non-correlation between Chl-a and TSS (Figure 3.1a). Reservoirs work as 

an effective trap for phosphorus and the concentration can decline from 80 to 90% during the 

transition of water through a reservoir (STRASKRABA, 1994). This finding was described by 

Luzia (2004), who registered a decrease of 93% of phosphorus from BB to Três Irmãos, the last 

reservoir of the cascade system of Tietê River. Thus, the reduction of the limiting nutrient lead 

also to reduction of primary production in downstream reservoirs such as Nav, which presented 

very low Chl-a concentration. However, studying the upstream portion of Nav in Tietê River 
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to be exact, Cicerelli (2013) found the presence of phycocyanin (7.12 ± 10.05 µg l-1) and high 

Chl-a concentration (47.54 ± 34.21 µg l-1) in the summer with maximum Chl-a of 150.96 µg l-

1. The author attributed this outcome to the combination of high temperature, rainfall and low 

wind speeds leading to the increase of turbidity, decrease of dissolved oxygen possibly related 

to the decomposition of organic matter. This means that rainfall provide optimal meteorological 

conditions for bloom formation during summer and many sources of nutrients can induce the 

algal blooms such as animal waste, agriculture and fertilizer runoff from the watershed (AHN 

et al., 2002; ANDERSON et al., 2002). 

The IOPs as well as the OSCs parameters showed seasonal and local variability 

considering both BB and Nav reservoirs. A decrease of organic matter from BB to Nav was 

reflected in 𝑎𝐶𝐷𝑂𝑀(443) values and the correlation between 𝑎𝐶𝐷𝑂𝑀(443) and Chl-a in BB1 

(Figure 3.1d) suggest that the source of CDOM was originated from the decomposition of algal 

and aquatic vegetation within the reservoir. The low correlation observed in BB2 even with 

high concentrations of Chl-a can be explained by the delay between algal bloom and Chl-a 

degradation that starts to occur after the spring bloom promoting the increase of CDOM 

absorption. This situation was reported by Sasaki et al. (2005), who studied Funka Bay in Japan 

and observed a time lag between the beginning of increasing both CDOM absorption and Chl-

a concentration relationship. Zhang et al. (2009c) observed that phytoplankton can be an 

important CDOM producer in eutrophic waters and its degradation can release nutrients in a 

very rapid way being remineralized as nutrient input to the next phytoplankton bloom.  

Differently, Nav did not show any correlation between both variables, strongly 

suggesting the allochthonous source of CDOM. The average 𝑎𝐶𝐷𝑂𝑀(443) in BB ranging 

between 0.62 to 2.34 m-1 was coherent with values from turbid inland waters such as Lake 

Taihu, very known about its high productivity. Meanwhile, Nav showed values comparable to 

those from Lake Erie (𝑎𝐶𝐷𝑂𝑀(440) ranging from 0.08 to 0.75), also with low Chl-a 

concentration and no correlation between 𝑎𝐶𝐷𝑂𝑀(440) and Chl-a. In addition, the 𝑆𝐶𝐷𝑂𝑀 from 

both reservoirs agreed with those mentioned in the literature for coastal and inland waters. Nav 

showed a variation of 0.016 to 0.023 nm-1 with a mean of 0.019 nm-1 whilst BB ranged between 

0.014 to 0.019 nm-1 with a mean of 0.018 nm-1. High 𝑆𝐶𝐷𝑂𝑀 values (0.011 – 0.025 nm-1) were 

reported by Babin et al. (2003), who studied a variety of European waters, and Binding et al. 

(2008), who verified a range between 0.013 to 0.020 nm-1 in Lake Erie. 𝑆𝐶𝐷𝑂𝑀 can be an 

indicative of CDOM molecular weight and low 𝑆𝐶𝐷𝑂𝑀 implies high molecular weight and less-
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altered CDOM, on the other hand, steeper slopes is related to low molecular weight and high 

degraded CDOM (TWARDOWSKI et al., 2004; BELZILE and GUO, 2006). 

As previously described, the average 𝑎𝜙(𝜆) performed for BB and Nav showed distinct 

features along the spectrum with high differences in magnitudes. The average 𝑎𝜙(𝜆) 

normalized by 𝑎𝜙(443) showed distinctions between data from both reservoirs (Figure 3.7a). 

As we can see at wavelengths toward the ultraviolet region, Nav3 stood out from the others 

indicating an increasing trend of absorption at this spectral region. We can see at Figure 3.6c 

that some curves presented an exponential trend at shorter wavelengths, masking the diagnostic 

feature of phytoplankton pigment at 443 nm. Binding et al. (2008) reported a portion of the 

particulate absorption that cannot be assigned to phytoplankton pigments, mineral sediments, 

or organic detritus but can be attributed to particle-bound dissolved organic matter. The authors 

also highlighted that this fraction can be retained during filtration and incorporated into 

phytoplankton absorption signal giving this exponential shape, besides, they affirmed that this 

situation is more predominant in mineral dominated waters even with moderate concentrations 

of dissolved organic matter. The shape of Nav3, BB1 and BB2 was quite similar from 450 to 

700 nm and a feature between 550 to 650 nm was also enhanced in all three spectra being 

characteristic of phycobilipigments (phycocyanin) (MATTHEWS and BERNARD, 2013). 

 

Figure 3.7. (a) Variation of 𝑎𝜙(𝜆)/𝑎𝜙(443) ratio as a function of wavelength considering the 

average values of BB and Nav and the mass-specific absorption of phytoplankton, 𝑎𝜙
∗ (𝜆), for 

all field campaigns (b) Nav1, (c) Nav2, (d) Nav3, (e) BB1 and (f) BB2. 
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According to Bricaud et al. (1995) the 𝑎𝜙
∗ (𝜆) values tend to decrease with increasing 

Chl-a concentrations probably due to package effect, which can be observed at Figure 3.7 (b-f) 

with Nav1 and Nav2 presenting a higher 𝑎𝜙
∗ (𝜆) values for axis y in relation to Nav3, BB1 and 

BB2. The 𝑎𝜙
∗ (443) and 𝑎𝜙

∗ (675) are absorption features of Chl-a and the accessory pigment. 

The average of 𝑎𝜙
∗ (675) values for Nav1, Nav2 and Nav3 were 0.018, 0.003 and 0.009 m2 mg-

1, respectively whilst for BB1 and BB2, the values were 0.004 and 0.007 m2 mg-1. Matthews 

and Bernard (2013) highlighted that the mean value of 𝑎𝜙
∗ (443) is affected by the trophic state 

of the water decreasing from oligotrophic to hypertrophic classes. In this case, the mean 

𝑎𝜙
∗ (443) values related to Nav1, Nav 2 and Nav3 were 0.032, 0.035 and 0.015 m2 mg-1 and for 

BB1 and BB2 were 0.007 and 0.011 m2 mg-1, which agreed with the previous authors. 

Nav produced an average 𝑆𝑁𝐴𝑃 of 0.007 ± 0.002 nm-1 and BB of 0.008 ± 0.001 nm-1, 

which is close to the ones found in other reservoirs (0.0095 ± 0.0004 nm-1, 0.0103 ± 0.0013 nm-

1 and 0.0098 ± 0.0011 nm-1 [MATTHEWS and BERNARD, 2013] and the ranges 0.008 – 

0.0088, 0.0123 – 0.0153 and 0.0086 – 0.0089 [CAMPBELL et al., 2011]) or Lake Erie (0.0077 

– 0.017 nm-1 [BINDING et al., 2008]) and lakes in boreal region (0.0075 – 0.0128 nm-1 

[YLOSTALO et al., 2014]) but below the values reported by Riddick et al. (2015) who found 

an average of 0.015 ± 0.004 nm-1 in Lake Balaton. Values from ocean were also higher than the 

ones found in Nav and BB (0.0094 ± 0.0018 nm-1 [BRICAUD et al., 2010] and 0.011 ± 0.0025 

nm-1 [BRICAUD et al., 1998]) or even coastal waters (0.0123 ± 0.0013 nm-1 [BABIN et al., 

2003]). This variability can be related to proportion of mineral and organic fraction that was 

suggested by Babin et al. (2003) after observe that a low 𝑆𝑁𝐴𝑃 (average 0.0117 nm-1) was 

assigned to waters with mineral particles whilst high 𝑆𝑁𝐴𝑃 (average 0.0128 nm-1) was linked to 

organic matter dominated water. However, Riddick et al. (2015) found the opposite relationship 

as well as Binding et al. (2008) and Ylostalo et al. (2014) who did not found any trend between 

𝑆𝑁𝐴𝑃 and organic content of TSS. According to Figure 3.8a, we can observe the small variability 

between Nav and BB slopes not showing a wide range of particle types, however, following the 

logic from Babin et al. (2003), BB depicted the highest values in comparison with Nav 

suggesting the organic matter dominating composition. To test this hypothesis and regarding 

the availability of OSS data from BB, Figure 3.8b depicted an increase trend between organic 

matter and 𝑆𝑁𝐴𝑃, agreeing with Babin et al. (2003). 
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Figure 3.8. (a) Variation of 𝑎𝑁𝐴𝑃(𝜆)/𝑎𝑁𝐴𝑃(443) ratio as a function of wavelength considering 

the averages values of BB and Nav and (b) the relationship between 𝑆𝑁𝐴𝑃 and OSS (mg l-1) 

from BB. 

 

 

3.5 Conclusion 

 

The OSCs collected between 2014 to 2016 showed considerable changes between BB 

and Nav, and according to the relationship between TSS and Chl-a we could have the first 

insight about the main component of both systems. BB was considered phytoplankton 

dominated water while Nav was inorganic matter dominated water. Which means that the water 

along the cascade tends to have low primary production. The same happened with the IOPs, 

with decreasing trend in absorption coefficient from BB to Nav, also reflecting the improvement 

of trophic state. 

𝑎𝜙(443) was correlated to Chl-a in BB1, BB2 and in Nav3, which means that 

environmental conditions changed the water quality in Nav3. The main cause of this was 

attributed to meteorological forcing during the periods of collection and according to Figure 

2.3, a drought condition was installed from 2013 to 2015, leading to the limitation of rainfall 

rate. After that, in 2016, the rainfall conditions were recovered increasing the availability of 

nutrients and consequently, the increase of primary production. A feature between 550 to 650 

nm was also enhanced in BB1, BB2 and Nav3 spectra being characteristic of phycobilipigments 

(phycocyanin). 

𝑎𝐶𝐷𝑂𝑀(443) was correlated to Chl-a in BB1 showing that most of CDOM was 

originated from the decomposition of phytoplankton, differently from Nav that did not show 

any correlation between both variables, indicating an allochthonous source of CDOM. BB 
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presented 𝑎𝜙(443) values in accordance with productive inland waters, nonetheless, Nav 

showed values included in the same range reported for inland marine waters, illustrating the 

optical variability between both reservoirs. The 𝑎𝜙
∗  from Nav and BB corroborated with the 

assumption that at 443 nm the trophic state of the water decrease from oligotrophic to 

hypereutrophic.  

The 𝑎𝑁𝐴𝑃(𝜆) did not show seasonal pattern between field campaigns and reservoirs and 

the 𝑆𝑁𝐴𝑃 depicted low variability between BB and Nav with a slight increase at BB data. The 

increase trend found with the relationship of 𝑆𝑁𝐴𝑃 and OSS highlighted the domain of organic 

matter in BB as suggested by Babin et al. (2003). The 𝑎𝑝(𝜆) enhanced the previous findings 

about both reservoirs, that is, BB was highly influenced by phytoplankton pigments along the 

visible spectrum while Nav showed only the feature at 675 nm represented by Chl-a absorption 

and high contribution of NAP at the blue region. The implication of different biogeochemical 

and optical properties in two reservoirs on the same river can make it difficult to use a single 

model in order to estimate the OSCs. For that reason, new approaches based on analytical 

models should be useful for retrieving the optical water quality.  
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CHAPTER 4: RETRIEVAL OF INHERENT OPTICAL PROPERTIES FROM 

OLIGO-TO-MESOTROPHIC INLAND WATER USING THE QUASI-ANALYTICAL 

ALGORITHM 

 

4.1 Introduction 

 

Inland waters, represented by rivers, lakes and reservoirs, play a key role in hydrological 

cycle providing different habitats and ecosystem services (BRÖNMARK and HANSSON, 

2002). As many other ecosystems, inland waters have increasingly been under anthropogenic 

or developmental pressure from industry, agriculture and urban activities increasing nutrient 

loading and other organic and inorganic pollution (PALMER et al., 2015). Infusion of nutrients 

(N and P) from the land via runoff often leads to eutrophication increasing the primary 

production of phytoplankton and macrophytes (PAERL et al., 2011). In oligo-to-mesotrophic 

reservoirs, the submersed species of macrophytes, which are usually rooted, occupy the edges 

and often the slow-moving zones of rivers. They are dependent on the sediments and light 

availability for their optimal growth (WELCH AND LINDELL, 1992). The clarity of the water 

is affected by turbidity generated from sediments or other suspended particles, algae and the 

natural color of the water. Frequent spatio-temporal monitoring of the physical, chemical and 

biological processes is of great importance to lake and reservoir management, however, the 

Tietê reservoirs, as well as many other Brazilian water bodies, are being affected by 

anthropogenic activities such as agriculture and expansion of urban centers. They are still being 

managed using traditional methods of in situ data collection with spatio-temporal limitation. 

The monitoring follows specific goals by selecting strategic locations. Therefore, accurate 

remote sensing models and techniques can be a powerful tool to complement conventional 

approaches in reservoirs monitoring (PALMER et al., 2015). 

Yacobi et al. (2011), Odermatt et al. (2012) and Palmer et al. (2015) highlighted the 

main scientific contributions and challenges regarding the study of complex waters using 

remote sensing. The variability within this type of water, in terms of concentrations as well as 

the SIOP of Chl-a, TSS and CDOM can be difficult to separate. On the other hand, in open 

ocean, the concentrations of NAP and CDOM are directly correlated with phytoplankton. This 

means that in certain wavelengths, such as at the blue and green, it is possible to retrieve Chl-a 

concentration in open ocean but is not appropriate for inland waters, because CDOM and NAP 

have strong overlapping absorption particularly in the blue spectral region. To address this 

issue, many efforts have been made to understand the bio-optical properties of inland waters in 

order to retrieve the OSCs by using an inversion model based on empirical and analytical 
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approaches (MOREL, 1980; CARDER et al., 1999). In general, the inversion models first 

derive the IOPs using in situ measured AOP and then retrieve the OSC concentration 

(SHANMUGAM et al., 2010). 

The empirical approach do not use the IOPs to retrieve water quality parameters, but a 

statistical relationship between an AOP, such as the remote sensing reflectance (𝑅𝑟𝑠) or the 

irradiance reflectance (𝑅), and a known OSC (GOULD et al., 2001; SATHYENDRANATH et 

al., 2001; RITCHIE et al., 2003). The method is often time and site limited and according to 

Ogashawara (2015), it does not relate to any physical principle. The semi-analytical and quasi-

analytical (QAA) algorithms are based on radiative transfer theory and often include some 

empirical steps (CARDER et al., 1999; DEKKER et al., 2002; BRANDO et al., 2012; 

ODERMATT et al., 2012). Semi-analytical algorithm estimates the total absorption coefficient, 

𝑎𝑡(𝜆), by the sum of the absorption coefficient of phytoplankton, 𝑎𝜙, absorption coefficient of 

CDOM, 𝑎𝐶𝐷𝑂𝑀, and absorption coefficient of NAP, 𝑎𝑁𝐴𝑃, while QAA estimates 𝑎𝑡 just using 

𝑅𝑟𝑠. The semi-analytical model also estimates the backscattering coefficient, 𝑏𝑏(𝜆), by 

summing the backscattering of each in-water constituent except for CDOM while the QAA 

retrieves 𝑏𝑏(𝜆) according to Gordon and Morel (1983). 

The original QAA by Lee et al. (2002) was initially developed to retrieve absorption 

and backscattering properties in open ocean and coastal waters and later re-parametrized for 

turbid inland waters (LE et al., 2009a; YANG et al., 2013; MISHRA et al., 2014). The model 

follows several steps mixing empirical and analytical approaches (Table 4.1) to derive the IOPs 

using radiative transfer equations, considering the reference wavelength (𝜆0) at 555 nm (LEE 

et al., 2002). At this wavelength, the contribution of total suspended matter is very high in turbid 

eutrophic waters which requires 𝜆0 to be shifted to longer wavelengths such as 710 nm (LE et 

al., 2009a), 754 nm (YANG et al., 2013) and 708 nm (MISHRA et al., 2013; MISHRA et al., 

2014). Lee et al. (2002) also showed the performance of QAA using 640 nm as reference 

wavelength and noticed considerable improvement in high-absorption environments with 

𝑎𝑡(440) higher than 0.3 m-1, however, Le et al. (2009a) emphasized the importance of more 

validation to improve the performance of this approach. In mesotrophic inland waters, Yacobi 

et al. (2011) highlighted that at wavelengths longer than 600 nm, aw increases over other OSCs, 

which means that at shorter wavelengths the contribution of other OSC but water is dominant 

decreasing the performance of QAA in this type of water. 

The performance of QAAs in inland waters have been tested by various researchers; 

however, the sites considered were all highly turbid and eutrophic inland waters. For instance, 
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Le et al. (2009a) studied the turbid Taihu Lake with Chl-a concentration ranging between 3.07 

– 299.60 µg l-1, while Yang et al. (2013) studied three turbid Asian lakes with Chl-a varying 

between 9,790 – 153,920 µg l-1 and Mishra et al. (2014) explored the performance of QAA in 

aquaculture ponds dominated by cyanobacteria with Chl-a ranging between 960 – 1,380 mg m-

3 and 𝑎𝜙 accounting for 54% of 𝑎𝑡(443). The main modification carried out by these studies 

besides shifting 𝜆0 to the near-infrared (NIR), was in the estimation of the spectral slope of 

particle backscattering (𝜂). These findings opened a new frontier of QAA application based on 

re-parameterizations for inland waters, however, still, there is a lack of research related to oligo-

to-mesotrophic environments with Chl-a ranging between low to moderate and 𝑎𝑡 not being 

dominated by phytoplankton but CDOM and NAP. 

In order to understand the bio-optical properties of a non-productive tropical reservoir, 

this work aimed to re-parametrize and validate the QAA based on the band architecture of OLCI 

(Ocean and Land Colour Instrument) sensor onboard Sentinel-3 (launched in February 16, 

2016). The specific objectives were: i) to identify a 𝜆0 where 𝑎𝑤 is dominant; ii) to parameterize 

the empirical steps used in 𝑎𝑡 derivation, such as the 𝑎𝑡(𝜆0) and 𝜂; iii) to calibrate 𝜁 and 𝜉 

associated with 𝑎𝜙 and 𝑎𝐶𝐷𝑂𝑀, respectively, and iv) to replace the original steps associated with 

𝑎𝜙 estimation for oligo-to-mesotrophic waters and propose an alternative method in order to 

avoid negative predictions. 

 

4.2 Data and methods 

 

From all samples collected in the field, a total of 51 were used in this study for 

calibration (Nav 1: 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20), validation (Nav 

2: 1, 2, 3, 4, 5, 6, 10, 12, 13, 15, 16, 18, 19, 20) and temporal comparison (Nav 3: 1, 2, 3, 4, 5, 

6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19) (see Figure 2.1 for sampling stations location). 

 

4.2.1 Water quality parameters 

 

Water samples were collected just below the air-water interface and then filtered on the 

same day of collection under vacuum pressure through a pre-ashed and pre-weighed Whatman 

fiberglass GF/F filter with a porosity of 0.7 μm, and then frozen (-25°C) for further TSS 

laboratory analysis. Chl-a was extracted with 90% acetone solution and analyzed 

spectrophotometrically (GOLTERMAN et al., 1978). The TSS concentration was determined 

by applying the method described by APHA (1998), in which the filters were dried in the oven 
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at 100° C for 12h, and then weighed using an analytical scale. To retrieve the ISS, the dried was 

subjected to a muffle furnace for 75 min at 550° C and weighed again. At the end, the TSS and 

inorganic fraction were determined and to estimate the OSS the last weighted filter was 

subtracted from the original filter weight after first drying. 

 

4.2.2 In-Situ Radiometric Data 

 

The 𝑅𝑟𝑠 spectra were estimated from radiometric measurements taken between 10 a.m. 

to 2 p.m. This procedure was carried out in order to maintain consistent acquisition geometry 

based on the time window of light availability (MOBLEY, 1999). At each sample station, below 

and above water readings were acquired using hyperspectral radiometers RAMSES TriOS® 

(TriOS, Germany) operating in the spectral range between 400 and 900 nm. The radiance sensor 

was equipped with a 7º field-of-view and the irradiance sensor with a cosine collector. Before 

being used, the radiometric quantities such as the total upwelling radiance 

(𝐿𝑡(𝜆); W m−2sr−1nm−1), incident sky radiance (𝐿𝑠(𝜆); W m−2sr−1nm−1) and downwelling 

irradiance incident onto the water surface (𝐸𝑑(𝜆); W m−2nm−1) were subjected to a linear 

interpolation to transform the original spectral resolution of ~ 3.3 nm to 1 nm. This procedure 

was designed to homogenize RAMSES measurements between the sensors, since they have 

different wavelength values.  

The sampling rate was around 15 s per sample resulting in 16 readings at each sampling 

location. From these measurements, a median value was retrieved to represent the spectrum of 

that location. The acquisition geometry followed the protocol described by Mueller (2000) and 

Mobley (1999). Care was taken to avoid the effects of specular reflectance and boat shading 

the instruments were positioned on a steel frame and the 𝐿𝑡 sensor was set with a viewing angle 

of 40º from nadir and an azimuth of 135º (oriented from the sun), and the 𝐿𝑠 sensor was set with 

the same angles, 40º from zenith and 135º azimuth. 𝑅𝑟𝑠(sr−1) spectra were calculated from the 

radiometric profiles in accordance with Mobley (1999): 

 

𝑅𝑟𝑠(𝜆) =
𝐿𝑡(𝜆) − 𝜌𝐿𝑠(𝜆)

𝐸𝑑(𝜆)
 (4.1) 

 

where 𝜌 is the proportionality factor that considers the wind speed and sky radiance distribution. 

𝜌 was chosen as 0.028 since the average wind speed did not exceed 5 m s-1 during data 

collection and the geometry of acquisition was kept the same as Mobley (1999). 
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In situ 𝑅𝑟𝑠 is the main input data for QAA to retrieve OSC concentration. However, for 

broader applicability of a model, it is necessary to match the hyperspectral data with satellite 

data by using the spectral response functions of the sensor of choice. In this study, Ocean and 

Land Colour Instrument (OLCI - Sentinel-3 satellite) bands spectral response functions was 

convolved with in situ 𝑅𝑟𝑠 data to derive the band-weighted reflectance data (GORDON, 1995): 

 

𝑅𝑟𝑠
𝑂𝐿𝐶𝐼(𝜆𝑘) =

∫ 𝑆(𝜆)𝑅𝑟𝑠(𝜆)
𝜆𝑗

𝜆𝑖

∫ 𝑆(𝜆)
𝜆𝑗

𝜆𝑖

 (4.2) 

 

where 𝑅𝑟𝑠
𝑂𝐿𝐶𝐼 is the in situ 𝑅𝑟𝑠 matching the band width of OLCI sensor in Sentinel-3A satellite; 

𝜆𝑖 and 𝜆𝑗 are the lower and upper limit of the band 𝜆𝑘. S(λ) is the spectral response function of 

the ith spectral band of OLCI (PELLOQUIN and NIEKE, 2012). 

 

4.2.3 In Situ Inherent Optical Properties 

 

Water samples were filtered through a 0.7 μm porosity GF/F fiberglass that was stored 

flat under freezing condition. The determination of the total particulate (algal and non-algal) 

absorption (𝑎𝑝) was performed by an integrating sphere module presented in the double-beam 

Shimadzu UV-2600 UV-Vis spectrophotometer (SHIMADZU, Japan), with spectral sampling 

from 280 nm to 800 nm. A white filter, wetted with ultrapure water was used as reference. The 

filter containing the particulate was positioned in the integrating sphere to measure their optical 

density (OD). The T-R (Transmittance-Reflectance) filter-pad technique presented by Tassan 

and Ferrari (1995, 2002) was employed to obtain 𝑎𝑝. To acquire the phytoplankton (𝑎𝜙) and 

detritus (𝑎𝑑) absorption coefficients, the filter underwent pigmentation bleaching with 10% 

sodium hypochlorite (NaClO), ensuring that the samples do not contain any pigment 

interference. Using empirical relationships described by Tassan and Ferrari (1995, 2002), the 

respective coefficients were determined, and 𝑎𝜙 was obtained by the difference between the 

OD of the total particulate and detritus fractions. 

To estimate the CDOM absorption coefficient (𝑎𝐶𝐷𝑂𝑀), water samples were filtered 

through a fiberglass Whatman GF/F with 0.7 μm pores, and then re-filtered under low vacuum 

pressure using a Whatman nylon membrane filter with 0.2 μm pores. The readings were 

performed using the absorbance mode, and the samples were placed in a 10 cm quartz cuvette. 

For each set of measurements, a reference reading was performed containing Milli-Q water, 
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and for each read sample (ODsample), the reference absorbance value (ODreference) was subtracted. 

The ODsample was converted to absorption coefficient according to the equation (3.2): 

A baseline correction was performed by subtracting the average value between 700 and 

750 nm from all the spectrum values (BABIN et al., 2003). This procedure was used because 

CDOM absorption is negligible at this range and the temperature and salinity have a slight 

effect on water absorption (GREEN and BLOUGH, 1994). Due to the similarities in the 

absorption spectrum and the difficulty in separating 𝑎𝐶𝐷𝑂𝑀 and 𝑎𝑑 fractions from their total 

absorption coefficient, many studies have treated both components as a single measure, such as 

the 𝑎𝐶𝐷𝑀 comprised of the sum of 𝑎𝐶𝐷𝑂𝑀 and 𝑎𝑑 (LEE et al., 1994; SHANMUGAM et al., 

2011; ZHU et al., 2011). The spectral slope of 𝑎𝐶𝐷𝑀 (𝑆𝐶𝐷𝑀) is a constant obtained by the 

exponential fit within the 400 – 700 nm wavelength range (MISHRA et al., 2014). 

 

4.2.4 QAA General Context 

 

Following the first step from QAA, 𝑎𝑡(𝜆) was retrieved based on several parameters 

described in Table 4.1. The success in determining 𝑎𝑡(𝜆) is of great importance in estimations 

of 𝑏𝑏(𝜆) and the OSC absorption coefficients (CDM and phytoplankton). The partitioning of 

𝑎𝑡(𝜆) into 𝑎𝐶𝐷𝑀(𝜆) followed the same flow proposed by Lee et al. (2002), however, to derive 

𝑎𝜙(𝜆) an alternative step (see section “Re-parametrization of QAA to derive 𝑎𝜙”) was needed, 

to avoid negative values due to low 𝑎𝜙(𝜆) signal in Nav. 

Three existing models were used to test their performances using Nav’s dataset 

convoluted to OLCI bands: the models proposed by Lee et al. (2009, 2014) referred to as 

QAALv5 and QAALv6 for versions 5 (𝜆0 = 560 nm) and 6 (𝜆0 = 665 nm) available at the 

International Ocean Colour Coordinating Group (IOCCG) website (URL: 

http://www.ioccg.org/groups/software.html). The third model was based on Mishra et al. (2014) 

referred to as QAAM14 (𝜆0 = 709 nm). The performance of the new re-parametrized model 

developed in this study (QAAOMR), was also compared with the three existing models.  

 

Table 4.1. QAA steps comparing the version 5 from Lee et al. (2002) and the QAAOMR proposed 

in this study. 

QAALv5 QAAOMR 

𝑟𝑟𝑠(λ) = 𝑅𝑟𝑠(λ)/(0.52 + 1.7𝑅𝑟𝑠(λ)) 

𝑢(𝜆) =
−0.0895 + √(𝑔0)2 + 4𝑔1 ∗ 𝑟𝑟𝑠(λ)

2 ∗ 𝑔1

; 𝑔0 = 0.089, 𝑔1 = 0.125 
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𝜒 = log (
𝑟𝑟𝑠(443) + 𝑟𝑟𝑠(490)

𝑟𝑟𝑠(𝜆0) + 5
(𝑟𝑟𝑠(667))2

𝑟𝑟𝑠(490)

) 

𝑎𝑡(𝜆0) = 𝑎𝑤(𝜆0) + 10−1.146−1.366𝜒−0.469𝜒2
 

where 𝜆0 = 550;  555; 560 

𝜒 = log (
𝑟𝑟𝑠(443) + 𝑟𝑟𝑠(665)

𝑟𝑟𝑠(𝜆0) + 5
(𝑟𝑟𝑠(681))2

𝑟𝑟𝑠(443)

) 

𝑎𝑡(𝜆0) = 𝑎𝑤(𝜆0) + 10−1.148+2.814𝜒−5.813𝜒2
 

where 𝜆0 = 709 

𝜂 = 2 × (1 − 1.2 × exp (−0.9 ×
𝑟𝑟𝑠443

𝑟𝑟𝑠(𝜆0)
)) 𝜂 = 2 × (1 − 1.2 × exp (−0.9 ×

𝑟𝑟𝑠665

𝑟𝑟𝑠754
)) 

𝜁 = 0.74 + (
0.2

0.8 + 𝑟𝑟𝑠443 𝑟𝑟𝑠𝜆0⁄
) 𝜁 = 0.5 + (

0.2

0.8 + 𝑟𝑟𝑠443 𝑟𝑟𝑠𝜆0⁄
) 

𝜉 = exp[𝑆 × (443 − 412)] 

𝑆𝐶𝐷𝑀 = 0.015 + (
0.002

0.6 + (𝑟𝑟𝑠443 𝑟𝑟𝑠𝜆0⁄ )
) 

𝜉 = exp[𝑆 × (443 − 412)] 

𝑆𝐶𝐷𝑀 = 0.0095 + (
0.002

0.6 + (𝑟𝑟𝑠490 𝑟𝑟𝑠𝜆0⁄ )
) 

𝑎𝐶𝐷𝑀(443)

=
[𝑎𝑡(412) − 𝜁𝑎𝑡(443)] − [𝑎𝑤(412) − 𝜁𝑎𝑤(443)]

𝜉 − 𝜁
 

𝑎𝐶𝐷𝑀(443)

=
[𝑎𝑡(412) − 𝜁𝑎𝑡(443)] − [𝑎𝑤(412) − 𝜁𝑎𝑤(412)]

𝜉 − 𝜁
 

𝑎𝐶𝐷𝑀(𝜆) = 𝑎𝐶𝐷𝑀(443)𝑒−𝑆𝐶𝐷𝑀(𝜆−443) 𝑎𝐶𝐷𝑀(𝜆) = 𝑎𝐶𝐷𝑀(443)𝑒−𝑆𝐶𝐷𝑀(𝜆−443) 

— 

𝑎𝜙(443)

=
[𝜉𝑎𝑡(443) − 𝑎𝑡(412)] − [𝜉𝑎𝑤(412) − 𝑎𝑤(412)]

𝜉 − 𝜁
 

𝑎𝜙(𝜆) = 𝑎𝑡(𝜆) − 𝑎𝐶𝐷𝑀(𝜆) − 𝑎𝑤(𝜆) 

𝑎𝜙(λ) = 𝑎𝑝ℎ(443) × 𝑎𝜙
+(𝜆) 

where 𝑎𝜙
+(𝜆) = 𝑎𝜙(λ)

∫ 𝑎𝑥(𝜆)𝑑𝜆

𝜆𝑚𝑎𝑥−𝜆𝑚𝑖𝑛
⁄  

 

4.2.5 Re-parametrization /Validation and Accuracy Assessment 

 

The three QAA versions described in the previous section were tested using Nav’s 

dataset. For this step, water samples collected in the first field trip were analyzed in laboratory 

by filter-pad technique to retrieve 𝑎𝑡, 𝑎𝐶𝐷𝑀 and 𝑎𝜙 including 𝑎𝑤(𝜆) from Pope and Fry (1997) 

combined to obtain 𝑎𝑡(𝜆). The re-parametrization steps in QAAOMR primarily involved 

modifying the intermediary steps such as computation of 𝜒, 𝑎𝑡(𝜆0) and 𝜂 for 𝑎𝑡 estimation (see 

Table 4.1). After that, the decomposition of 𝑎𝑡 into 𝑎𝐶𝐷𝑀 and 𝑎𝜙 was also evaluated by 

comparing with in situ measures. In order to validate the newly parametrized model related to 

oligo-to-mesotrophic waters, the samples collected in the second field trip were used. 

The statistical indicators used for validation were the total root mean square difference 

(RMSD), bias, the mean absolute percentage error (MAPE) and to provide a broader statistical 

overview of the error, the normalized bias (B*), normalized standard deviation (σ*), linear 

correlation (R) and normalized unbiased RMSD (uRMSD*) were also applied. The term 

normalized stands for all statistical metrics divided by the standard deviation of the reference 

and here named as 𝜎𝑚𝑒𝑎𝑠, while the term unbiased, emphasize that the measure removes any 

information about the potential bias. σ* and R represent the magnitude of data dispersion and 
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shape patterns. To obtain the ideal situation, magnitude and shape may consider that σ* = R = 

1, which leads to the minimum uRMSD*. 

A different perspective about the contribution of the error was achieved using the Taylor 

and Target graphics (TAYLOR, 2001; JOLLIFF et al., 2009). In the polar coordinate diagram 

(Taylor graphic), the radial (along-axis) distance from the origin is related to 𝜎∗ and the angular 

position corresponds to R. The distance between the reference and the modeled points are 

proportional to uRMSD*. The observation is the reference point, which is indicated by the polar 

coordinates (1.0, 1.0) when we consider that the metrics are normalized. The target diagram 

considers the Cartesian plane (uRMSD*, B*) where uRMSD* > 0 means that the model standard 

deviation is larger than the reference, whilst uRMSD* < 0 indicates the contrary. B* >0 signifies 

positive bias while B* < 0 negative. The quantities may be normalized to remove the units. The 

Taylor graphic can be displayed in 90° or as presented here in 180° covering negative 

correlations. Values of 𝜎∗ higher than 2.0 were not depicted while B* and uRMSD* higher than 

3 and/or less than -3 were also disregarded in the Target diagrams. This condition was used to 

avoid presenting huge error models. 

The error indices are defined according to Equations (4.3) to (4.8): 

 

𝑅𝑀𝑆𝐷 = √
1

𝑛
∑(𝑥𝑒𝑠𝑡,𝑖 − 𝑥𝑚𝑒𝑎𝑠,𝑖)

2
𝑛

𝑖=1

 (4.3) 

𝑀𝐴𝑃𝐸 =
100%

𝑛
∑ |

𝑥𝑒𝑠𝑡,𝑖 − 𝑥𝑚𝑒𝑎𝑠,𝑖

𝑥𝑚𝑒𝑎𝑠,𝑖
|

𝑛

𝑖=1

 (4.4) 

𝐵∗ = (
𝑥̅𝑒𝑠𝑡 − 𝑥̅𝑚𝑒𝑎𝑠

𝜎𝑚𝑒𝑎𝑠
) (4.5) 

𝜎∗ =
𝜎𝑒𝑠𝑡

𝜎𝑚𝑒𝑎𝑠
 (4.6) 

𝑅 =

1
𝑛

∑ (𝑥𝑒𝑠𝑡,𝑖 − 𝑥̅𝑒𝑠𝑡)(𝑥𝑚𝑒𝑎𝑠,𝑖 − 𝑥̅𝑚𝑒𝑎𝑠)𝑛
𝑖=1

𝜎𝑚𝑒𝑎𝑠𝜎𝑒𝑠𝑡
 (4.7) 

𝑢𝑅𝑀𝑆𝐷∗ = 𝑠𝑖𝑔𝑛(𝜎𝑒𝑠𝑡 − 𝜎𝑚𝑒𝑎𝑠)√1 + 𝜎∗2 − 2𝜎∗𝑅 (4.8) 

 

where n is the number of samples, 𝑥𝑒𝑠𝑡,𝑖 and 𝑥𝑚𝑒𝑎𝑠,𝑖 are represent the estimated and measured 

values, respectively. 𝑥̅𝑒𝑠𝑡 and 𝑥̅𝑚𝑒𝑎𝑠 represent the average of estimated and measured values, 

respectively. 𝜎𝑚𝑒𝑎𝑠 and 𝜎𝑒𝑠𝑡 are the standard deviation of the measured and the estimated 

values, respectively.  
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4.3 Results and Discussion 

 

4.3.1 Biogeochemical characterization 

 

Samples collected during the first field trip showed very low concentrations of Chl-a 

(average of 5.95 µg l-1) and TSS (average of 0.63 mg l-1) and average Secchi Disk Depth of 

3.22 m (Table 4.2). The OSC concentration in the samples collected during the second field trip 

showed a modest increase with Chl-a (average of 7.94 µg l-1) and TSS (average of 1.58 mg l-1) 

and average Secchi Disk Depth of 3.14 m. In situ collected 𝑎𝑡(443) represented non-productive 

waters with values ranging between 0.72 – 1.52 m-1 from the first field trip and 0.58 – 1.45 m-

1
 from the second field trip. Lee et al. (2002) recommended their open ocean version of QAA 

to be applied for datasets where 𝑎𝑡(443) is less than 0.3 m-1 and in NAV the 𝑎𝑡(443) was 

higher than this threshold, therefore a poor performance was expected from the native QAA 

approach. 

 

Table 4.2. Descriptive statistic of the water quality variables used for calibration and validation. 

SD: standard deviation, CV: coefficient of variation and n is the number of samples. 

 Average SD Minimum Maximum CV (%) n 

Nav1: April – May 2014 

𝑎𝑡(443) (m-1) 1.18 0.16 0.72 1.52 13.56 18 

𝑎𝜙(443) (m-1) 0.31 0.08 0.19 0.50 25.81 18 

𝑎𝜙(560) (m-1) 0.08 0.03 0.04 0.14 37.50 18 

𝑎𝜙(665) (m-1) 0.15 0.04 0.09 0.24 26.67 18 

𝑎𝑁𝐴𝑃(443) (m-1) 0.62 0.11 0.25 0.76 17.74 18 

𝑎𝐶𝐷𝑀(443) (m-1) 0.87 0.12 0.51 1.02 13.79 18 

       

TSS (mg l-1) 0.63 0.54 0.10 2.15 85.71 15 

Chl-a (µg l-1) 5.95 2.11 2.46 10.65 35.46 18 

Chl-a : TSS 

(µg/mg) 
12.27 15.97 2.47 68.26 130.14 15 

Depth (m) 17.81 8.64 5.30 30.00 48.51 18 

Secchi Depth (m) 3.22 0.62 2.29 4.80 19.25 18 

Turbidity (NTU) 1.60 0.41 1.01 2.47 25.35 18 

       

Nav2: September 2014 

𝑎𝑡(443) (m-1) 0.88 0.20 0.58 1.45 22.73 14 

𝑎𝜙(443) (m-1) 0.27 0.09 0.10 0.43 33.33 14 

𝑎𝜙(560) (m-1) 0.04 0.03 0.01 0.12 75.00 14 

𝑎𝜙(665) (m-1) 0.09 0.03 0.02 0.16 33.33 14 

𝑎𝑁𝐴𝑃(443) (m-1) 0.28 0.15 0.13 0.75 53.57 14 

𝑎𝐶𝐷𝑀(443) (m-1) 0.60 0.16 0.43 1.04 26.67 14 

       

TSS (mg l-1) 1.58 2.37 0.50 10.00 150.00 14 
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Chl-a (µg l-1) 7.94 3.45 3.41 16.38 43.45 14 

Chl-a : TSS 

(µg/mg) 
9.15 4.75 0.34 18.57 51.95 14 

Depth (m) 21.56 5.27 12.00 28.00 24.44 14 

Secchi Depth (m) 3.14 0.86 0.90 4.65 27.39 14 

Turbidity (NTU) 2.44 2.46 1.01 11.17 100.97 14 

       

Nav3: May 2016 

𝑎𝑡(443) (m-1) 0.99 0.18 0.65 1.37 17.84 19 

𝑎𝜙(443) (m-1) 0.30 0.13 0.11 0.57 43.47 19 

𝑎𝜙(560) (m-1) 0.06 0.05 0.00 0.15 76.24 19 

𝑎𝜙(665) (m-1) 0.15 0.06 0.09 0.26 38.57 19 

𝑎𝑁𝐴𝑃(443) (m-1) 0.61 0.12 0.38 0.82 19.65 19 

𝑎𝐶𝐷𝑀(443) (m-1) 0.68 0.12 0.45 0.91 17.68 19 

       

TSS (mg l-1) 3.08 1.00 1.87 5.30 32.35 10 

Chl-a (µg l-1) 26.36 6.66 38.59 15.84 25.28 10 

Chl-a : TSS 

(µg/mg) 
8.93 2.07 4.64 12.21 23.14 10 

Depth (m)      - 

Secchi Depth (m) 2.97 0.63 1.91 3.80 21.03 19 

Turbidity (NTU)      - 

 

The low turbidity caused by the low Chl-a and TSS concentrations provided more 

transparency to the water column and hence high Secchi Depth measures. The water 

transparency is negatively correlated with rainfall and according to Table 4.2 the Secchi Depth 

range changed from 2.29 – 4.80 m during the beginning of the dry season to 0.90 – 4.65 m at 

the end of the dry season (RIBEIRO FILHO et al., 2011). Smith et al. (2014) highlighted that 

the high concentrations of suspended matter during rainy season in Nav can be attributed to the 

runoff effect. Slight differences in limnological parameters from one field trip to another was 

observed and as stated by Smith et al. (2014), factors such as water level fluctuation and 

seasonality are of great importance for the changes in geochemical dynamics of the reservoir. 

The relationship (not shown here) between Chl-a and TSS concentrations during the first (R2 = 

0.12, p > 0.05, n = 18) and second (R2 = 0.07, p > 0.05, n = 14) field campaigns indicated the 

non-productive property of Nav, which was mostly dominated by inorganic matter. 

 

4.3.2 Bio-optical characterization 

 

The reciprocal of remote sensing reflectance (𝑅𝑟𝑠
−1, Figure 4.1) is considered a proxy for 

absorption (GORDON et al., 1975) by corresponding OSCs in the water body. The main 

features in the 𝑅𝑟𝑠  spectra acquired during both field trips were related to dissolved and 

particulate matter absorption at shorter wavelengths. At longer wavelengths such as at ~560 nm 
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the low magnitude was due to the weak absorption by pigments and scattering from 

phytoplankton cells (ROESLER et al., 1989; GITELSON, 1992; CHENG et al., 2013). Strong 

absorption from 600 nm onwards followed a shape similar to 𝑎𝑤 (red line) inferring that beyond 

600 nm the contribution of others OSCs was minor in both datasets. In addition, the red 

absorption features were also related to Chl-a at 675 nm (GITELSON, 1992). 

 

Figure 4.1. Reciprocal remote sensing reflectance (𝑅𝑟𝑠
−1) data from the (a) first, (b) second and 

(c) third field trips. Pure water absorption (𝑎𝑤) (red line) is shown for reference. 

 

 

The blue spectral region in Nav’s dataset did not present any prominent feature of 

absorption related to phytoplankton pigments, on the contrary, it remained flat up to 560 nm. 

The same pattern was also noticed in another oligo-to-mesotrophic reservoir in Brazil 

(OGASHAWARA et al., 2014). This feature was documented by Doxaran et al. (2002) who 

reported the increase of 𝑅𝑟𝑠 between 550 and 850 nm with increasing TSS concentration. 

 

4.3.3 OSC relative contribution 

 

The relative contribution of phytoplankton, CDOM and detritus absorption to the total 

absorption budget without the water fraction (𝑎𝑡−𝑤) can be visualized in Figure 4.2. The 

wavelengths chosen for analysis (443, 560 and 665 nm) characterize the light interaction with 
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particulate and dissolved organic matter (LE et al., 2013; ZHANG et al., 2009b; LOOS, 2010). 

According to the ternary plots, the first set of field data were dominated by 𝑎𝑑, mainly in the 

blue (443 nm) and green (560 nm) wavelengths with 52.05 ± 6.37 % and 56.78 ± 8.80 % 

respectively. 𝑎𝜙 dominated in the red (655 nm) wavelength with 59.87 ± 8.34 % contribution 

towards 𝑎𝑡−𝑤. The contribution of the OSCs was a little more balanced in the second field 

dataset. At 443 nm, the 𝑎𝐶𝐷𝑂𝑀 contributed with 37.22 ± 9.18 % while at 560 nm, the 𝑎𝑑 

accounted for 47.13 ± 10.44 % and 𝑎𝜙 for 40.17 ± 12.38 % at 665 nm. At 443 nm, the samples 

from the second fieldtrip were spread within the central zone of the ternary plot indicating that 

all three absorption coefficients co-varied somehow. 

 

Figure 4.2. Ternary plots displaying the relative contribution of CDOM, phytoplankton and 

detritus to the total absorption at different wavelengths, (a) 443 nm, (b) 560 nm, (c) 665 nm and 

(d) the relative contribution of water, particulate and CDOM to absorption at 709 nm. 
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As expected, the ternary plot showed the predominance of 𝑎𝜙 at 665 nm to (𝑎𝑡−𝑤) from 

both datasets with a slight dominance in the first field dataset. 𝑎𝑑 dominated the absorption at 

560 nm and at 443 nm the absorption was mainly governed by 𝑎𝑑 in the first and 𝑎𝐶𝐷𝑂𝑀 in the 

second dataset. Since the QAA approach combines the absorption by CDOM and detritus, it 

can be considered that IOPs data in Nav were dominated by 𝑎𝐶𝐷𝑀 in the blue-green region and 

𝑎𝜙 had a moderate contribution in the red region. The QAALv5 was developed using case-1 

waters where 𝑎𝑡 at 440 nm was less than 0.3 m-1, while QAAM14, was developed using data 

from very turbid productive waters, where the average 𝑎𝑡(443) was 19.9 m-1 and 13.5 m-1, in 

July and April, respectively. According to Qin et al. (2007), the accuracy of QAA for ocean 

waters generally degrades rapidly with increasing CDOM and non-algal particle (NAP) 

concentrations. Li et al. (2016) used QAA with 𝜆0 shifted to longer wavelengths and found that 

if the average contribution of 𝑎𝐶𝐷𝑂𝑀(443) dominates the absorption budget, then QAA can 

achieve better result in turbid inland waters, however, the higher contribution of 𝑎𝑝(443) leads 

to the poorer prediction results. The datasets used in previous QAAs did not fit the bio-optical 

properties of the current dataset with 𝑎𝑡(443) ranging between 0.72 – 1.52 m-1, which called 

for a re-parametrization. 

 

4.3.4 Performance of existing QAA 

 

The first step was to test the performance of the existing QAAs: QAALv5, QAALv6, and 

QAAM14. We noticed that shifting the wavelength from 560 to 708 nm, the 𝑎𝑡(𝜆) retrieval 

improved (Figure 4.3). QAALv5 and QAALv6 consistently underestimated 𝑎𝑡 at all wavelength, 

while QAAM14 showed some improvement, particularly at longer wavelengths. The 

underestimation can be attributed to the inefficiency of the model at 𝜆0 (560 and 665 nm, 

respectively) and also due to the contribution of other OSCs such as suspended matter to the 

absorption budget. The ternary plot (Figure 4.2d) showed that 𝑎𝑤 contributed approximately 

with 87 % to the absorption budget at 709 nm, which means that 𝑎𝐶𝐷𝑂𝑀, 𝑎𝑑 and 𝑎𝜙 together 

contributed with 13 % to 𝑎𝑡. QAAM14 showed more consistency when compared with measured 

𝑎𝑡; however, since it was developed for a highly productive environment, the coefficients and 

band combinations were not suitable to describe the particularities of non-productive waters 

such as Nav. Therefore, the re-parametrization of the model was needed and initially based on 

QAAM14 using 709 nm as 𝜆0 and then followed the steps proposed by QAALv5.  
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Figure 4.3. Relationship between estimated and measured 𝑎𝑡(𝜆) using existing QAAs: (a) 

QAALv5, (b) QAALv6 and (c) QAAM14. The colored circles represents the band centers of OLCI 

sensor. 

 

 

4.3.5 Re-parametrization of QAA to derive 𝑎𝑡 

 

As discussed in previous sections (Figure 4.3), 𝜆0 plays a critical role in 𝑎𝑡 retrieval and 

bands in NIR region should be considered for 𝜆0 selection even in an oligo-to-mesotrophic 

environment with very low Chl-a and TSS concentrations. In Nav, both OSCs did not co-vary 

among themselves which is different from case-1 waters and that could be the reason why 

QAALv5 or QAALv6 did not perform satisfactorily. The set of steps described by Lee et al. (2002) 

to derive 𝑎𝑡 is comprised of empirical, semi-analytical and analytical approaches and was also 

modified to parametrize the current model. The absorption at 709 nm, 𝑎𝑡(709), was chosen as 

𝜆0 to derive 𝜒 in the empirical model which combines four bands associated with the OSCs 

contribution. To parametrize this variable, the relationship between 𝑎𝑡−𝑤(709) and OLCI 

bands was verified and the best combination was chosen based on the coefficient of 

determination (R²) using bands at 443, 665 and 681 nm (R² = 0.52, p < 0.001) (Equation 4.9). 

 

𝜒 = log10 (
𝑟𝑟𝑠443 + 𝑟𝑟𝑠665

𝑟𝑟𝑠(𝜆0) + (0.05 ×
𝑟𝑟𝑠6812

𝑟𝑟𝑠443 )
) (4.9) 

 

The band combination used to derive 𝜒 was same as Mishra et al. (2014). The band at 

443 nm was used to highlight the contribution of CDOM and despite being the spectral region 

of Chl-a absorption as well (GITELSON, 1992). According to Mishra et al. (2014) these bands 

reflects differential contribution of OSCs typically present in inland waters to the total 

absorption budget, and therefore, the band combinations used in QAAM14 worked well for Nav. 
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The estimation of 𝑎𝑡 is analytically related to 𝑏𝑏(𝜆). Considering that 𝑏𝑏(𝜆) is the sum of 𝑏𝑏𝑤 

and 𝑏𝑏𝑝 and the value of 𝑏𝑏𝑤 is already known, the spectral dependency of 𝑏𝑏𝑝(𝜆) is widely 

expressed as Smith and Baker (1981) and Sathyendranath et al. (2001): 

 

𝑏𝑏𝑝(𝜆) = 𝑏𝑏𝑝(𝜆0) (
𝜆0

𝜆
)

𝜂

 (4.10) 

𝑏𝑏(𝜆) = 𝑏𝑏𝑝(𝜆) + 𝑏𝑏𝑤(𝜆) (4.11) 

 

where 𝑏𝑏𝑤(𝜆) is the pure water backscattering coefficient from Smith and Baker (1981), 

𝑏𝑏𝑝(𝜆0) is the particulate backscattering coefficient at the reference wavelength and can be 

estimated using Lee et al. (2002), 𝜂 is the spectral power factor for particulate backscattering 

coefficient and can be empirically retrieved using 𝑟𝑟𝑠 band ratio sensitive to phytoplankton and 

CDOM absorption (CARDER et al., 1999). To model 𝜂, Lee et al. (2002) used an empirical 

band ratio between 440 and 550 nm, while Yang et al. (2013) used a semi-analytical model 

based on bands 750 and 780 nm from MERIS. The former authors observed that shifting the 𝜆0 

to longer wavelengths is not enough to produce accurate IOPs, but improving 𝜂 retrieval is also 

significant. Thus, the calibration of 𝜂 was performed by comparing in situ 𝑎𝑡 with derived 𝑎𝑡. 

Several band combinations were tested and the best result was achieved with the ratio of 665 

over 754 nm as shown below: 

 

𝜂 = 2 × (1 − 1.2 × exp (−0.9 ×
𝑟𝑟𝑠665

𝑟𝑟𝑠754
)) (4.12) 

 

The values of 𝜂 typically ranged from 0 to 2.2 and the higher values are associated 

mainly with oligotrophic waters (SATHYENDRANATH et al., 2001, LEE et al., 2002, 

ZAWADA et al., 2007). 𝜂 ranged from 1.24 to 2.17 in Nav. Gordon and Morel (1983) 

concluded that 𝜂 is higher when the backscattering is due to small particles and/or water. After 

𝑏𝑏 retrieval, the derivation of 𝑎𝑡 followed the equation that relates the ratio of 𝑏𝑏 to the sum of 

absorption and backscattering coefficients (𝑢) as defined in Gordon et al. (1988) and expressed 

as: 

 

𝑎𝑡(𝜆) =
[1 − 𝑢(𝜆)]𝑏𝑏(𝜆)

𝑢(𝜆)
 (4.13) 



 

 

Rodrigues, T.W.P. 

68 

After re-parametrization, the estimation accuracy of 𝑎𝑡 improved significantly with a 

MAPE = 16.35% and RMSD = 0.15 m-1 (Figure 4.4a). The errors were considerably lower 

compared to existing QAAs such as QAALv5 (MAPE = 58.05% and RMSD = 0.51 m-1), QAALv6 

(MAPE = 35.59% and RMSD = 0.35 m-1), and QAAM14 (MAPE = 30.98% and RMSD = 0.31 

m-1). The improvement was not consistent across all OLCI bands, particularly at 620 nm, which 

exhibited the second highest error among all tested versions (Table 4.3). However, this may not 

be a problem for oligo-to-mesotrophic waters where phycocyanin concentration is negligible. 

This could be an issue for waters dominated by cyanobacteria such as highly productive inland 

lakes and ponds. 

 

Figure 4.4. Scatter plot between measured and estimated (a) 𝑎𝑡(𝜆), (b) 𝑎𝐶𝐷𝑀(𝜆) and (c) 𝑎𝜙(𝜆) 

at OLCI spectral bands. 

 

 

Table 4.3. Comparative band-specific errors related to the re-parametrization of 𝑎𝑡(𝜆) based on 

MAPE (%) and RSMD (m-1) metrics. 

 QAALv5 QAALv6 QAAM14 QAAOMR 

Bands 

(nm) 

RMSD 

(m-1) 

MAPE 

(%) 

RMSD 

(m-1) 

MAPE 

(%) 

RMSD 

(m-1) 

MAPE 

(%) 

RMSD 

(m-1) 

MAPE 

(%) 

412 1.21 75.88 1.01 63.01 0.93 56.21 0.35 19.74 

443 0.87 72.52 0.71 57.55 0.64 49.64 0.23 16.02 

490 0.47 65.93 0.35 46.66 0.32 41.04 0.14 16.78 

510 0.37 62.96 0.26 41.76 0.24 38.12 0.13 19.02 

560 0.22 56.39 0.14 31.83 0.15 32.99 0.12 24.33 

620 0.23 43.32 0.08 13.35 0.13 20.92 0.17 29.05 

665 0.34 48.56 0.16 21.48 0.13 15.30 0.09 11.17 

681 0.38 50.26 0.19 24.31 0.14 15.55 0.07 8.29 

709 0.46 46.63 0.21 20.39 0.09 9.04 0.03 2.70 

Average 0.51 58.05 0.35 35.59 0.31 30.98 0.15 16.35 

 

The Taylor diagram was used to understand how good model simulations were 

compared to observations. As shown in Figure 4.5a, the distance between the red data symbol 
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(reference) on the x-axis and each colored model symbol represents the uRMSD*. For the four 

models, the R was very different, ranging between 0.09 (QAAM14) to 0.63 (QAALv5). Among 

all tested models at 443 nm, QAALv5 produced the lowest 𝜎∗ (0.26) which means that 𝑎𝑡(443) 

derived using the model was far from the reference (1.00 – 0.26 = 0.74 units), and highest R 

(0.63) in comparison with the reference. As stated in Jolliff et al. (2009), for an R value of 0.63, 

the minimum uRMSD* should occur where 𝜎∗ = 0.63, however, if the goal is to move R and 𝜎∗ 

closer to an ideal value of 1.0, then uRMSD* is not a suitable validation metric. If we want to 

reduce the variability of both measured and estimated values, then 𝜎∗ < 1.0, thus, QAALv5 

presented the best performance, however, if we intend to bring the model patterns to the ideal 

value of the reference, then QAAOMR presented the best combination of R and 𝜎∗ (R = 0.54, 𝜎∗ 

= 0.96) as compared to the reference. In order to support the choice of the model, the target 

function was also used. At 443 nm (Figure 4.5b), QAAOMR was the only model which showed 

the lowest B* (-1.07) and all of them underestimated the variance of 𝑎𝑡(443). QAALv5 retrieved 

the highest B* (-5.43) emphasizing the bad performance of this model when compared to 

QAAOMR. The other models did not appear because they presented B* out of the range bounded 

by the interval of -3 and 3. Models positioned at the positive side of uRMSD* means that 𝜎𝑒𝑠𝑡 >

𝜎𝑚𝑒𝑎𝑠.  

At 560 nm (Figure 4.5c), QAALv5 was the only model that produced R > 0.50 and 𝜎∗ = 

0.14, therefore the uRMSD* was minimum relative to other studied models, however, B* 

achieved again the highest value (-4.47) showing the underestimation pattern of this approach 

in retrieving 𝑎𝑡(560). Both QAALv6 and QAAM14 also underestimated 𝑎𝑡(560). QAAOMR 

produced high value for 𝜎∗ (2.12) and low value for R (0.03) showing the high variability 

between measured and estimated values, however, B* was the lowest (0.84) compared to other 

models (Figure 4.5d). Models not displayed in the Target graphic presented values outside the 

established range. Figure 4.5e showed that QAAOMR was the only model that retrieved at least 

one error metric close to the reference (𝜎∗ = 1.34) at 665 nm. According to Figure 4.5f, QAAOMR 

overestimated 𝑎𝑡(665) while QAAM14 (B* = -1,32) showed underestimation as well as QAALv5 

(B* = -7.10) and QAALv6 (B* = -3.18). Overall, the error analysis showed a significant 

improvement by the newly re-parametrized model mainly in the shorter and longer wavelengths 

(Table 4.3). The Taylor diagrams showed that the variability of 𝑎𝑡(𝜆) estimated by the QAALv5 

showed a closer variation of the reference data, however, the underestimation was reasonably 

high becoming unviable its use for 𝑎𝑡(𝜆) retrieval. 

 



 

 

Rodrigues, T.W.P. 

70 

Figure 4.5. Taylor diagrams for 𝑎𝑡(𝜆) at (a) 443 nm, (c) 560 nm, (e) 665 nm. Target diagrams 

for 𝑎𝑡(𝜆) at (b) 443 nm, (d) 560 nm and (f) 665 nm. Color symbols indicate the following: 

QAALv5 (grey dot), QAALv6 (yellow dot), QAAM14 (blue dot) and the QAAOMR (green dot), 

reference observation (red dot). The black circle in the Target diagrams (M0) corresponds to a 

normalized total RMSD of 1.0, so all points between this circle and the origin are positively 

correlated. 

 

 

4.3.6 Re-parametrization of QAA to derive 𝑎𝐶𝐷𝑀 

 

The re-parametrization involved improvements to derive CDM spectral slope (𝑆𝐶𝐷𝑀) 

and the parameters 𝜉 and 𝜁. 𝜁 is related to Chl-a concentration or pigment absorption at a 

specific wavelength, but according to Lee et al. (2002), due to the lack of absolute 

measurements, 𝜁 was empirically estimated using a blue-to-green band ratio of 𝑟𝑟𝑠(440)/

𝑟𝑟𝑠(555) and successfully applied in case-1 waters (GORDON and MOREL, 1983, LEE et al. 
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1998). However, at this spectral region, the organic and inorganic suspended matters also affect 

the absorption budget (DOERFFER, 1994, CARDER et al., 1999). Yang et al. (2013) used 

another approach to estimate 𝑎𝜙(443) independently of 𝜉 and 𝜁 with an assumption that the 

applicability of these empirical estimations was unclear for turbid waters. On the contrary, 

Mishra et al. (2014) maintained the original band ratio, but the coefficients used in 𝜁estimation 

were changed. A new band ratio was proposed in this study by taking into account the local 

information and as recommended by Lee et al. (2002), this procedure is needed to improve the 

split-up of pigment and CDOM absorption fractions. After recalibration, the suitable band ratio 

between 443 and 709 nm (𝑟𝑟𝑠(443)/𝑟𝑟𝑠(709)) was applied to Nav dataset. Besides, the offset 

coefficient was also recalibrated by testing values ranging between 0.5 – 0.74 and followed the 

form: 

 

𝜁 = 0.5 + (
0.2

0.8 + 𝑟𝑟𝑠443 𝑟𝑟𝑠𝜆0⁄
) (4.14) 

 

𝜉 approximated using a ratio, 𝑎𝐶𝐷𝑀(410)/𝑎𝐶𝐷𝑀(440), and 𝑆𝐶𝐷𝑀 is associated with the 

water composition such as pigment, dissolved organic and detritus (CARDER et., 1989, 

CARDER et al., 1991, SHANMUGAM et al., 2011). In the Nav dataset, the spectral slope 

varied from 0.010 to 0.012 nm-1, therefore, the original offset value from Mishra et al. (2014) 

was replaced with 0.0095 after a simple optimization using the in situ range. The new 

calibration for 𝜉 is give below: 

 

𝑆𝐶𝐷𝑀 = 0.0095 + (
0.002

0.6 + (𝑟𝑟𝑠490 𝑟𝑟𝑠𝜆0⁄ )
) (4.15) 

𝜉 = exp[𝑆 × (443 − 412)] (4.16) 

 

The remaining steps proposed by Mishra et al. (2014) were used to derive 𝑎𝐶𝐷𝑀 in the 

current model (Figure 4.4b). The average errors showed great improvement mainly at shorter 

wavelengths when compared to the previous versions (Table 4.4). The agreement between 

measured and estimated values showed an average MAPE of 18.87 % and the bands at 681 and 

709 nm had the highest errors, 24.18 and 30.66 % respectively. Mishra et al. (2014) observed a 

similar trend of high error at longer wavelengths starting from 560 nm and highlighted that the 

magnitude of 𝑎𝐶𝐷𝑀 at this region is small and therefore does not affect the overall performance 

to a large extent. Besides, the main spectral region associated to 𝑎𝐶𝐷𝑂𝑀 is situated in the blue 
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region. For instance, at 440 nm, 𝑎𝐶𝐷𝑂𝑀 is considered a proxy of its concentration and used in 

remote sensing inversion (LEE and HU, 2006, ZHU et al., 2011). 𝑎𝐶𝐷𝑀 using QAAOMR 

produced the least error at blue wavelengths, specifically at 443 nm.  

 

Table 4.4. Comparative band-specific errors related to the re-parameterization of 𝑎𝐶𝐷𝑀(𝜆) 

based on MAPE (%) and RSMD (m-1) metrics. 

 QAALv5 QAALv6 QAAM14 QAAOMR 

Bands 

(nm) 

RMSD 

(m-1) 

MAPE 

(%) 

RMSD 

(m-1) 

MAPE 

(%) 

RMSD 

(m-1) 

MAPE 

(%) 

RMSD 

(m-1) 

MAPE 

(%) 

412 1.03 81.35 0.96 75.81 0.93 72.88 0.21 12.76 

443 0.74 83.90 0.69 79.13 0.67 76.61 0.13 12.99 

490 0.47 87.77 0.45 84.14 0.44 82.22 0.08 14.68 

510 0.38 89.06 0.37 85.81 0.36 84.09 0.07 15.57 

560 0.22 91.53 0.21 89.02 0.21 87.70 0.04 17.98 

620 0.13 94.28 0.12 92.61 0.12 91.74 0.03 19.92 

665 0.10 96.48 0.10 95.45 0.10 94.89 0.03 21.04 

681 0.10 97.15 0.09 96.31 0.09 95.86 0.03 24.18 

709 0.08 97.89 0.08 97.27 0.08 96.93 0.03 30.66 

Average 0.36 91.05 0.34 88.39 0.33 86.99 0.07 18.87 

 

Figure 4.6a, showed that both QAALv5 and QAALv6 presented low 𝜎∗ (0.21 and 0.31, 

respectively) and R very close to these values (0.28 and 0.34, respectively) which means that 

uRMSD* was minimum in those models. On the other hand, QAAOMR showed a 𝜎∗ = 1.16 and 

R = 0.54, which is closer to the reference value when compared to other models. The difference 

from all the models can be distinguished in the Target diagram (Figure 4.6b), and QAAOMR is 

the only model displayed with B* = -0.12, depicting the underestimation of 𝑎𝐶𝐷𝑀(443), while 

the other models presented B* between -6.28 and-5.73. The green data symbol is close to the 

black circle indicating a uRMSD* close to 1. Figure 4.6c, showed again the good performance 

of QAAOMR in retrieving 𝑎𝐶𝐷𝑀(560). Overall the result was just like the previous one but now 

the parametrized model presented a B* = 0.59, highlighting the overestimation pattern (Figure 

4.6d). At 665 nm, the QAAOMR again showed better combination of 𝜎∗, R and B* (Figure 4.6e, 

f). Information about the bias contributes to the sense of scale or magnitude to the model skill 

assessment process, therefore, is not suitable to use only Taylor diagram to evaluate the 

performance of a model. 
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Figure 4.6. Taylor diagrams for 𝑎𝐶𝐷𝑀(𝜆) at (a) 443 nm, (c) 560 nm, (e) 665 nm. Target diagrams 

for 𝑎𝐶𝐷𝑀(𝜆) at (b) 443 nm, (d) 560 nm and (f) 665 nm. Symbols indicate the following: QAALv5 

(grey dot), QAALv6 (yellow dot), QAAM14 (blue dot) and the QAAOMR (green dot), reference 

observation (red dot). The black circle in the Target diagrams (M0) corresponds to a normalized 

total RMSD of 1.0. 

 

 

4.3.7 Re-parametrization of QAA to derive 𝑎𝜙 

 

In 𝑎𝜙 estimation (Table 4.5), QAALv5 and QAALv6 produced very high errors, mainly in 

long wavelengths and retrieved negative values, on the other hand, QAAM14 provided positive 

values but the errors were too high. To overcome these bad performances, a combined model 

based on Roesler et al. (1989) and Lee et al. (2010) was carried out. Ogashawara et al. (2016) 

first applied the approach using both references; however, our proposal did not use factors C1 

and C2 employed to compute CDOM influence in the water column neither the band 
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combination used to derive 𝑎𝜙(𝜆0). 𝑎𝜙(443) was calculated according to Lee et al. (2010) as a 

function of 𝜉 and 𝜉, the parameters also used in 𝑎𝐶𝐷𝑀(𝜆0). The combination of wavelengths was 

slightly changed from the original as presented in Equation 4.17. 

 

𝑎𝜙(443) =
[𝜉𝑎𝑡(443) − 𝑎𝑡(412)] − [𝜉𝑎𝑤(412) − 𝑎𝑤(412)]

𝜉 − 𝜁
 (4.17) 

 

𝑎𝜙(λ) was then calculated by multiplying 𝑎𝜙(443) by the normalized spectral 

absorption, 𝑎𝜙
+(𝜆), described by Roesler et al. (1989) and presented in Eq. 4.18. The 𝑎𝜙

+(𝜆) 

component aim to reproduce the spectral shape for 𝑎𝜙(λ). In order to find the suitable spectrum 

of 𝑎𝜙
+(𝜆), the calibrated dataset was used in Equations 4.19 and 4.20. 

 

𝑎𝜙(λ) = 𝑎𝜙(443) × 𝑎𝜙
+(𝜆) (4.18) 

𝑎𝜙
+(𝜆) =

𝑎𝜙(λ)𝑖

𝑎𝜙𝑖
 (4.19) 

𝑎𝜙𝑖 =
∫ 𝑎𝜙 (𝜆)𝑖𝑑𝜆

𝜆𝑚𝑎𝑥 − 𝜆𝑚𝑖𝑛
 (4.20) 

 

where, 𝑎𝜙(𝜆)𝑖 is the spectral absorption of phytoplankton, 𝑎𝜙𝑖 is spectrally averaged absorption 

coefficient of phytoplankton (350 – 800 nm), 𝜆𝑚𝑎𝑥 and 𝜆𝑚𝑖𝑛 are the maximum and minimum 

wavelengths. The numerator component of Eq. 4.21 was derived based on the area under the 

curve notion (AUC) and then divided by the spectral difference (𝜆𝑚𝑎𝑥 − 𝜆𝑚𝑖𝑛). Then, the in 

situ 𝑎𝜙(λ)𝑖 was divided by the latter component. A representative spectrum from Eq. 4.20 was 

chosen by statistic metrics (average, standard deviation, minimum, maximum and median) and 

for Nav’s dataset, the minimum spectrum was suitable to represent the 𝑎𝜙
+(𝜆). The Eq. 4.18 is 

used in order to remove the effect of concentration and permits the estimation of variance due 

uniquely to spectral shape (ROESLER et al., 1989). 

As result (Figure 4.4c, Table 4.5), the agreement between measured and estimated 

𝑎𝜙(λ) from the re-parametrized model produced the lowest average values of MAPE = 46.80 

% and RMSD = 0.10 m-1. The band specific contribution showed that other models performed 

slightly better in the blue regions compared to QAAOMR. For instance, QAALv6 produced the 

least errors in 412 and 443 nm; similarly, QAAM14 had a MAPE of 42.84% at 681nm. However, 

QAAOMR showed consistent low errors across all OLCI bands without a spike in errors in a 
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specific band unlike other QAAs. In addition, QAAOMR produced the least errors at 620, 665 

and 709 nm with MAPE ranging between 45.56 – 53.29 %. 

 

Table 4.5. Comparative band-specific errors related to the re-parametrization of 𝑎𝜙(𝜆) based 

on MAPE (%) and RSMD (m-1) metrics. 

 QAALv5 QAALv6 QAAM14 QAAOMR. 

Bands 

(nm) 

RMSD 

(m-1) 

MAPE 

(%) 

RMSD 

(m-1) 

MAPE 

(%) 

RMSD 

(m-1) 

MAPE 

(%) 

RMSD 

(m-1) 

MAPE 

(%) 

412 0.19 53.69 0.11 21.31 0.14 33.80 0.19 44.39 

443 0.15 40.10 0.10 25.20 0.17 45.24 0.18 42.67 

490 0.04 24.02 0.14 92.11 0.22 130.02 0.10 47.57 

510 0.04 34.77 0.16 150.98 0.22 184.86 0.08 47.97 

560 0.03 42.49 0.16 238.37 0.18 229.39 0.05 47.28 

620 0.11 100.73 0.33 402.82 0.19 173.98 0.06 45.56 

665 0.25 157.52 0.37 264.71 0.11 56.92 0.09 46.47 

681 0.29 167.75 0.38 241.91 0.10 42.84 0.10 46.04 

709 0.38 870.85 0.69 1858.15 0.04 63.91 0.04 53.29 

Average 0.16 165.77 0.27 366.17 0.15 106.77 0.10 46.80 

 

As depicted in Figure 4.7a both QAALv5 and QAALv6 showed low variability regarding 

the reference dataset at 443 nm, while QAAM14 and QAAOMR presented high σ* (1.55 and 1.60, 

respectively). Figure 4.7b, showed that QAAM14 overestimated 𝑎𝜙 and also produced high 

uRMSD* (1.92) followed by QAAOMR (2.13). To produce the best match between measured 

and estimated values requires a combination of low uRMSD* and B*, thus at 443 nm QAALv6 

provided the best fit for 𝑎𝜙 followed by QAALv5 and QAAOMR. At 560 nm, QAALv5 and 

QAAOMR presented the lowest σ* (0.14 and 0.76, respectively) while the R was 0.40 and -0.31, 

respectively (Figure 4.7c). Again, only QAALv5 and QAAOMR produced low uRMSD* and B*, 

but the first one was slightly better than the latter one (Figure 4.7d). Even producing the lowest 

variability between reference and modeled data, QAALv6 overestimated the variance of 

𝑎𝜙(665) becoming not a good approach. On the other hand, QAAOMR, presented the lowest B* 

(-0.246) showing to be the best approach from all the ones evaluated (Figure 4.7e, f). As 

mentioned in the previous section, the band specific errors varied widely between models.  

The modifications improved 𝑎𝜙(λ) retrieval for an average error (MAPE) of ~47%. The 

difficulty in retrieving 𝑎𝜙(λ) was probably due to the very low Chl-a concentration combined 

with the dominance of 𝑎𝑑 in the blue and green regions followed by 𝑎𝐶𝐷𝑂𝑀 dominating 𝑎𝑡 at 

412 nm. Lee et al. (2010) also highlighted the great effort to estimate 𝑎𝜙(λ) in complex waters. 

The authors, observed that uncertainties associated to 𝑎𝐶𝐷𝑀(λ) is smaller than that of 𝑎𝜙(λ) 

and therefore methods other than simple algebraic inversions are required to improve the quality 
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of 𝑎𝜙(λ) derivation. Besides, refinements are expected when parametrizations regarding 

𝑎𝑡(λ0), 𝜂, 𝜁 and 𝜉 for several regions are carried out. 

 

Figure 4.7. Taylor diagrams for 𝑎𝜙(𝜆) at (a) 443 nm, (c) 560 nm, (e) 665 nm. Target diagrams 

also for 𝑎𝜙(𝜆) at (b) 443 nm, (d) 560 nm and (f) 665 nm. Symbols indicate the following: 

QAALv5 (grey dot), QAALv6 (yellow dot), QAAM14 (blue dot) and the QAAOMR (green dot), 

reference observation (red dot). 

 

 

4.3.8 Model Validation 

 

An independent dataset (n = 14) collected in September 2014 (Nav 2, see Figure 2.1 for 

sample location) were used to verify the performance of QAAOMR by comparing in situ and 

derived measurements at OLCI spectral bands. The results related to backscattering were not 
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assessed due to lack of data availability. The shorter wavelengths were highly affected by 

inorganic and dissolved matter (Figure 4.2). Intermediary steps, such as the tuning of 𝜒 and 𝜂 

were also relevant to achieve the best fit for 𝑎𝑡. Lee et al. (2010) suggested that in order to get 

error free 𝑎𝑡, efforts must be taken to minimize the estimation error for 𝑎𝑡(𝜆0) and 𝜂.  

 

Figure 4.8. Validation result showing the scatter plot between measured and estimated (a) 

𝑎𝑡(𝜆), (b) 𝑎𝐶𝐷𝑀(𝜆), (c) 𝑎𝜙(𝜆) and the comparison of spectral shape of average measured and 

estimated (d) 𝑎𝑡(𝜆), (e) 𝑎𝐶𝐷𝑀(𝜆) and (f) 𝑎𝜙(𝜆). 

 

 

The uncertainty based on average MAPE was above 50% for 𝑎𝑡 between 490 – 620 nm 

and the lowest errors were seen at 709 nm (0.45 – 9.62%, n = 14), 681 nm (1.67 – 27.17%, n = 

14), 665 nm (4.38 – 43.13%, n = 14) and 412 nm (4.70 – 73.62%, n = 14). Three specific 

sampling stations (P9, P13 and P19) were responsible for the increase in error above 50% and 

after the removal of these samples, the average MAPE decreased below 50% at all OLCI 

wavelengths. These samples presented the lowest 𝑎𝑡 values from all dataset considering all 

wavelengths suggesting that QAAOMR was not able to retrieve 𝑎𝑡 in such magnitudes. However, 

those samples were preserved to generate graphics in Figure 4.8. The 𝑎𝐶𝐷𝑀 validation (Figure 

4.8c and d) showed a good fit mainly in longer wavelengths. The average MAPE was 52.15% 

and the highest error was seen at 490 nm (79.89%), 443 nm (78.30%), 412 nm (66.21%) and 

560 nm (58.89%). However, when the same three-outlier stations data were eliminated, the 
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average MAPE decreased to 45.11%. The accuracy of 𝑎𝐶𝐷𝑀(𝜆) and 𝑎𝜙(𝜆) is associated with 

the uncertainties in 𝑎𝑡(𝜆) and the parameters 𝜁 and 𝜉 (Lee et al. 2010). The reference 

𝑎𝐶𝐷𝑀(443) was overestimated, possibly due to the mismatch between in situ and measured 𝜁 

and 𝜉. The estimation of 𝑎𝜙 followed a hybrid method different from the native QAA in order 

to avoid negative prediction and maintain the shape, which can be difficult to achieve in waters 

with very low Chl-a concentrations.  

Although 𝑎𝜙 prediction at some sampling locations were dispersed (Figure 4.8e), the 

majority of them were centered on the 1:1 line and the average estimated spectrum matched 

well with the in situ measurements. This step was dependent on the uncertainties associated 

with 𝑎𝑡(𝜆) and 𝜁 and 𝜉 parameters. High MAPE values (average 74.65%) were observed from 

412 to 681 nm and the highest errors were associated at longer wavelengths, mainly at 520, 620 

and 665 nm. At least four stations (P2, P9, P13 and P19) contributed to this increased error. 

After excluding those samples, the average error decreased to 53.17%. It is worth mentioning 

that in situ 𝑎𝜙(709) returned negative values using the protocol described in the Section “Data 

and Methods”, for that reason, we disregarded data from this wavelength.  

Overall, the QAAOMR improved the estimative of IOPs for Nav but the challenge 

remains focused on 𝑎𝜙 retrieval. Ogashawara et al. (2016) also found low accuracy studying 

Itumbiara reservoir (CDOM rich water) located in west center of Brazil, in the regions of 400 

– 500 nm and 500 – 600 nm for 𝑎𝑡. For 𝑎𝐶𝐷𝑀, the uncertainties decreased but the errors were 

associated to the intervals from 500 – 600 nm and 600 – 750 nm whereas for 𝑎𝜙 the challenge 

was to improve accuracy between 400 – 500 nm and 500 – 600 nm. These results imply that 

different optical water quality environments can react differently with different QAA versions, 

however, the efforts accomplished up to now showed improvements in retrieving IOPs in oligo-

to-mesotrophic water bodies. The authors also highlighted the need of additional tuning and 

validation exercises using broad geographic regions in order to increase IOP prediction. 

 

4.3.9 Linking IOPs variability to physical and meteorological variation 

 

In situ 𝑅𝑟𝑠(𝜆) data corresponding to the third field trip was used to retrieve the IOPs 

based on QAAOMR. 𝑎𝑡(443) data retrieved from QAAOMR regarding the first, second and third 

field trips were averaged and then plotted on rainfall, runoff, water level and discharge graphics 

(Figure 4.9). Total rainfall during the months of April/2014, September/2014 and May/2016 

were 60.33 mm, 169.95 mm and 197.49 mm, respectively (Figure 4.9a). There was a growing 
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trend from October/2013 to August/2016 and according to Coelho et al. (2015), the State of 

São Paulo experienced in 2014 and early 2015 a dramatic decline in rainfall rate with the 

interval of Dec/2013 – Mar/2014 as the one of the driest summer of the 1961-2015 record. The 

drought conditions affected the water availability for agriculture, hydropower generation and 

public use during the austral summer (December – March). Extreme events such as droughts 

can affect the water supply and because of that, public strategies are needed to avoid water 

quality decrease (KHAN et al., 2015). Besides, Cairo et al. (2016) reported the influence of the 

atypical dry year of 2014 in water quality. They noticed that Ibitinga reservoir, also displayed 

along the Tietê river cascade system, worked as an accumulator of organic matter due to the 

decrease of precipitation rate and increase of retention time. The water quality composition is 

highly affected by the rainy and dry seasons and the rising of nutrient loads as well as the 

worsening of water transparency can be due to allochthonous sources that are maximized during 

the rainy season as result of surface Runoff (SOARES and MOZETO, 2006; CUNHA et al., 

2016). Regarding the 𝑎𝑡(443) values, we can notice the growing trend from the first to the third 

field trips as result of rainy conditions that increased from April to September of 2014 and then 

in May/2016. 

The runoff (Figure 4.9b) corroborated to the rainfall data, which means that in 

April/2014, the external contribution due to land water toward the reservoir was lower 

compared to September/2014 and May/2016. Nonpoint pollutants attributable to agricultural 

activities can be carried across the land surface by runoff and reach the reservoir, increasing the 

loads of nutrients leading to water quality degradation (RITTER and SHIRMOHAMMADI, 

2000). As displayed in Table 4.1, the water quality parameters got worse from the first to the 

second field trip, showing high concentrations of TSS and Chl-a and decrease of water visibility 

due to increased turbidity. Smith et al. (2014) and Rodgher et al. (2005) found an increase of 

total phosphorus, nitrite and suspended materials during rainy season from upstream to 

downstream in Tietê River. The increase of nitrite and total phosphorus was related to soil 

fertilization. Numerous studies have reported similar phenomena of increased nutrient load 

caused by stream inputs and surface runoff (VAROL et al., 2012; PERBICHE-NEVES et al., 

2011; HENRY et al., 1999). As in the rainfall graphic, 𝑎𝑡(443) also increased with increasing 

runoff emphasizing the growing trend from 2014 to 2016. This means that, inputs from the 

watershed contribute to the increase of absorbing components, such as dissolved and particulate 

matter. 
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Figure 4.9. Graphic depicting the (a) rainfall, (b) runoff, (c) water level and (d) discharge 

variability along the period between October 2013 and August 2016. The green diamonds 

represent 𝑎𝑡(443) retrieved based on QAAOMR from the three field trips carried out in Nav 

during April/2014, September/2014 and May/2016. Rainfall data was acquired in NASA’s 

GIOVANNI database based on TRMM data with 0.25° of spatial resolution 

(http://giovanni.sci.gsfc.nasa.gov/giovanni/). Runoff data was also acquired through NASA’s 

GIOVANNI database. Water level as well as discharge were downloaded from the Water 

National Agency of Brazil through the website (http://sar.ana.gov.br/). 

 

 

Regarding the water level of Nav reservoir (Figure 4.9c), the annual average in 2014 

was 357.18 ± 0.15 m followed by 357.56 ± 0.23 m in 2015 and from January to August of 2016 

the average was 357.70 ± 0.20 m showing low variability but a growing trend from 2014 to 

2016. The low water level variance is because Nav is a run-of-river reservoir and therefore, 

there is no water storage. In addition, this kind of operation system presents short water 

retention time (WRT) and the shape is in general simpler and shallower (PERBICHE-NEVES 

and NOGUEIRA, 2013). The maximum water discharge (Figure 4.9d) occurred in January, 

March and June of 2016 and was in accordance with the rainfall pattern. Along the years of 
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2014 and 2015, the discharge virtually remained stagnant showing signs of recovery in 2016 as 

presented by the trend line. This was probably related to the extreme events of droughts in those 

two specific years. The discharge is indirectly related to WRT, which means that high discharge 

demands short WRT and according to Soares et al. (2008), this feature affected the longitudinal 

stratification period in a reservoir in Southern Brazil, while Straskraba and Tundisi (1999) 

discussed the impact of WRT on the vertical stability of reservoirs. Jones and Elliott (2007) 

observed a high phytoplankton biomass and longer algal blooms by increasing the WRT. 

 

4.3.10 Factors influencing optical changes in the reservoir 

 

Land use and land cover (LULC) can affect the water quality composition by supplying 

particulate and dissolved matter leading to the modification of optical properties. Land uses 

such as urban land cover and agriculture can be associated with suspended solids (MOURI et 

al., 2011; CUNHA et al., 2016). In São Paulo State, erosion processes contribute with soil loss 

in watersheds dominated by agriculture carrying to water sediments and terrestrial matter 

(MERTEN and MINELLA, 2013). Le et al. (2015) found that both land uses (urban + 

agriculture) play an important role in light attenuation in the estuaries as result of absorption by 

phytoplankton. The intensification of primary production can be motivated by the input of 

nutrients such as phosphorus increasing the 𝑎𝜙(443). Areas covered by forests can improve 

water quality by reducing the erosion processes and sediment inputs (CUNHA et al., 2016).  

In Tietê River, the most significant sources of pollution come from the metropolitan and 

industrial region of São Paulo. However, the water quality improves from the upstream 

reservoirs to the downstream due to auto-depuration and sedimentation of suspended matter 

increasing the dissolved oxygen and water clarity (BARBOSA et al., 1999). The LULC in Nav 

is basically composed by agriculture, especially sugarcane and pasture whereas other classes 

such as riparian forests are absent around the reservoir (PETESSE and PETRERE, 2012). These 

results are in accordance with Figure 4.2, showing that detritus and CDOM control IOPs from 

Nav at 443 nm. These imply that both OSCs are dominant in the reservoir and can be linked to 

watershed activities. The region is also comprised by high content of sand and low levels of 

ultisol (EMBRAPA, 1999). 

According to Figures 4.10a and 4.10d, when 𝑎𝑡(443) is analyzed based on overall 

dataset the correlation with TSS and Chl-a was very high (r = 0.80 and r = 0.79, p < 0.001, 

respectively). However, when 𝑎𝑡(443) is based on individual campaigns, the correlation with 

TSS drops and only data from Nav 2 showed to be statistically significant (r = 0.54, p < 0.05) 
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whereas the correlation between 𝑎𝑡(443) and Chl-a was nonsignificant (p > 0.05) considering 

campaigns individually. The 𝑎𝐶𝐷𝑀(443) overall dataset (Figure 4.10b, e) presented a 

correlation of 0.66 (p < 0.001) with both TSS and Chl-a, on the other hand, the individual 

campaigns did not present any statistical correlation between 𝑎𝐶𝐷𝑀(443), TSS and Chl-a. 

Regarding the overall data, the correlation between TSS and Chl-a (Figure 4.10c) was 0.88 (p 

< 0.001) although, from all campaigns only Nav 2 and Nav 3 were statistically significant (r = 

0.62 and 0.80, respectively, p < 0.05). The relationship between 𝑎𝜙(443) and Chl-a (Figure 

4.10f) was weak but significant (r = 0.51, p < 0.001). 

 

Figure 4.10. Relationship between optical properties and water quality parameters: (a) 𝑎𝑡(443) 

versus TSS; (b) 𝑎𝐶𝐷𝑀(443) versus TSS; (c) 𝑎𝜙(443) versus TSS; (d) 𝑎𝑡(443) versus Chl-a; 

(e) 𝑎𝐶𝐷𝑀(443) versus Chl-a and (f) 𝑎𝜙(443) versus Chl-a. 

 

 

The results revealed that the poor correlation between TSS and Chl-a in Nav 1 (r = 0.35, 

p > 0.05) indicates that Chl-a was not the only parameter controlling the water optical properties 

thus assuming a typical case 2 water (MOREL and PRIEUR, 1977). Besides, the weak or 

noncorrelation allied with the low Chl-a concentration suggested the both TSS and CDOM 

were mainly originated from allochthonous sources or even sediment resuspension but not from 

the degradation product of phytoplankton. Wu et al. (2011) who studied an inorganic matter 

dominated lake (Poyang, China) found the same observation. The low agreement between 

𝑎𝜙(443) and Chl-a corroborated with previous results and together with 𝑅𝑟𝑠
−1(𝜆), presented in 
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Figure 2, we can notice the inexistence of a pronounced absorption valley at 443 nm, that is 

typical of phytoplankton dominated waters (YANG et al., 2013, MISHRA et al., 2014). 

 

4.3.11 Implications of QAAOMR for water resource management 

 

Nowadays, water quality monitoring along the set of reservoirs of Tietê River has been 

carried out using traditional techniques with high cost and low temporal and spatial variability. 

The implication of this can be followed by the lack of information about the sources of water 

contamination and possibility to perform cross analysis with other variables such as LULC data. 

Understanding the water constitution, we can also understand how to proceed in decision 

making avoiding high cost of in situ data collection granting accurate information. 

Up to now, the QAA is available with high accuracy for ocean and coastal waters (LEE 

et al., 2002, ZHU et al., 2011, ORGANELLI et al., 2016) and was evaluated for inland waters 

(LE et al., 2009a, LI et al., 2016). Improvements were carried out in order to adequate QAA for 

very turbid and productive waters (MISHRA et al., 2013, 2014, WATANABE et al., 2016a). 

However, in inland waters with low Chl-a and TSS concentrations, such as Nav, few works 

showed improvements but still high uncertainties (LI et al., 2016, OGASHAWARA et al., 

2016). Our findings based upon in situ observations revealed that the enhancement of QAA 

could estimate the IOPs with high accuracy showing the potential of this approach in back up 

the water resource management in Tietê River with extension to other oligo-to-mesotrophic 

environments.  

 

4.4 Conclusion 

 

Despite the significant effort in retrieving the IOPs by QAA algorithm for open ocean, 

coastal and very productive waters, applications focused on non-productive inland waters and 

inorganic matter dominated remains a challenge. In this study, three well-known QAAs were 

applied and their performance was compared in an oligo-to-mesotrophic reservoir in Southeast 

of Brazil. The QAALv5, QAALv6 and QAAM14 were developed to retrieve IOPs in open ocean, 

coastal water and very productive inland waters, respectively. These models did not show a 

good agreement between estimated and measured 𝑎𝑡(𝜆), 𝑎𝐶𝐷𝑀(𝜆) and 𝑎𝜙(𝜆) and the main issue 

behind this failure was first addressed to the reference wavelength selection, which is 

responsible to highlight just the contribution of water in the total absorption budget.  
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The bad performance of previous QAAs motivated us to modify the existent code 

shifting the reference wavelength to 709 nm (available in both MSI/Sentinel-2 and 

OLCI/Sentinel-3) and then re-parametrize the 𝑎𝑡(𝜆0) and 𝜂 in order to retrieve 𝑎𝑡(𝜆) and 𝑏𝑏(𝜆). 

This step was of paramount relevance even considered by Lee et al. (2002) as a second order 

of importance, because all the further steps depend on 𝑎𝑡(𝜆) to estimate 𝑎𝐶𝐷𝑀(𝜆), and 𝑎𝜙(𝜆). 

Besides, the properties 𝜁 and 𝜉 also considered of second order of importance, showed to be 

significant for retrieving 𝑎𝐶𝐷𝑀(𝜆0), and 𝑎𝜙(𝜆0). Specifically, the changes ran through 

modification of band combination (443, 665, 709, 681 nm) designed to retrieve 𝜒 and further 

the estimation of new coefficients for 𝑎𝑡(𝜆0) retrieval. Also assigned as necessary, the 

definition of 𝜂 based on bands 665 and 754 nm increased the accuracy of 𝑎𝑡(𝜆) measure.  

The main obstacle found on previous QAAs was related to 𝑎𝜙(𝜆) retrieval based on 

simple subtraction between 𝑎𝑡(𝜆) and 𝑎𝐶𝐷𝑀(𝜆), however, the errors was very high surpassing 

100% of uncertainties considering specific wavelengths. Therefore, we came up with a new 

approach recently suggested by Ogashawara et al. (2016) but with relevant modifications 

aiming to derive 𝑎𝜙(443) based on Lee et al. (2010) and the normalized 𝑎𝜙
+(𝜆) discussed by 

Roesler et al. (1989). As result, we achieved great improvement with uncertainties below 50% 

(412 – 681 nm). Using an independent dataset, a validation exercise was carried out, and 

QAAOMR showed to be robust in retrieving the IOPs, and even assuring the necessity of use 

data from broader geographic regions, the model comes to give a better solution for waters 

characterized as oligo-to-mesotrophic and dominated by inorganic matter. 

In order to understand the IOPs variability in Nav, a discussion based on physical and 

meteorological data was presented. Data of LULC can be the key of trophic state definition and 

the source of suspended matter as well as CDOM may be associated to agriculture activities. 

The allochthonous components integrate the aquatic system through rainfall and surface runoff. 

The low contribution of Chl-a in suspended matter was related to the weak relationship between 

Chl-a and TSS and between 𝑎𝜙(443) and Chl-a. Validation using different locations is 

encouraged in order to assess the feasibility of the new parametrized coefficients. In general, 

the model brought a new perspective to water quality monitoring based on oligo-to-mesotrophic 

environments such as in tropical reservoirs and also, the scale-up of QAAOMR to OLCI sensor 

is the next step in retrieving the IOPs once this sensor provides strategic and useful bands related 

to remote sensing of water supporting the water resource management. 
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CHAPTER 5: EVALUATION OF QAAOMR AND QAABBHR PERFORMANCES IN 

DERIVING THE IOPS IN BOTH BB AND NAV RESERVOIRS 

 

5.1 Introduction 

 

The reservoirs of Tietê River set in a cascade system present trophic states ranging from 

oligo to hypereutrophic, which means that a single method for water resource monitoring using 

remote sensing technique will demand for a robust approach. The QAA for example, is a 

valuable method for retrieving the IOP and further applied in semi-analytical approaches for 

estimating the water quality (MOREL and GORDON, 1980), however, studies revealed that 

empirical calibration steps are required for different locations (LEE et al., 2002; LE et al., 

2009a; YANG et al., 2013; MISHRA et al., 2014, LI et al., 2016, WATANABE et al., 2016a, 

OGASHAWARA et al., 2016). Li et al. (2016), for instance, applied the QAAv5 from Lee et al. 

(2009) and compared to a modified version of the same approach in various highly turbid waters 

in China, and they observed the necessary of an optimized algorithm to derive the IOPs in 

extremely turbid waters. 

The limitation of QAAv5 in retrieving the absorption coefficients in turbid inland waters 

was described by Yang et al. (2013). They listed three limiting issues, such as: the estimation 

of the total absorption coefficient at a reference wavelength, 𝑎(𝜆0), based on synthetic data. 

Secondly, the spectral power for particle backscattering coefficient, 𝜂, was calibrated 

considering the data from open oceans or coastal waters. The last issue regards the use of 

synthetic data for estimating the phytoplankton absorption. Those steps, were listed by Lee et 

al. (2002) as second order of importance because they have a narrow range of variation and 

small influence on the output, however, the authors also mentioned that even classified as 

second order of importance, they affect the final product and therefore, improvements must be 

carried out considering regional and seasonal information, or using better algorithms (LEE et 

al., 2010). 

Le et al. (2009a) for example, changed the reference wavelength to 710 nm in the highly 

turbid water of Taihu Lake and to 780 nm during summer where the water showed to be 

extremely turbid due to the increase of phytoplankton concentration. Besides, they also changed 

the band ratio used in 𝜂 retrieval. Yang et al. (2013) shifted the 𝜆0 to longer wavelengths (753 

nm), replace the empirical model for estimating 𝜂 for a semi-analytical approach and developed 

a novel way to retrieve 𝑎𝜙 at 443 nm. Mishra et al. (2014) changed the 𝜆0 to 708 nm and 

included the band at 620 nm into the empirical step for 𝑎(𝜆0) retrieval. This procedure was due 
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to the presence of cyanobacteria in the study area. Watanabe et al. (2016) also included the band 

at 620 nm due to the same reason as previous study. They changed the band combination for ζ 

retrieval using the ratio 𝑎𝜙(665)/𝑎𝜙(709) and altered the 𝑎𝐶𝐷𝑂𝑀 slope based on in situ data. 

The non-modification of the 𝑎𝐶𝐷𝑂𝑀 slope was pointed out as the main cause for the failure of 

the QAA (LEE et al., 2002) in breaking down the 𝑎(𝜆) into CDOM and phytoplankton 

absorption coefficients in Australian coastal waters (QIN et al., 2007). Ogashawara et al. (2016) 

re-parameterized the QAA for inland waters dominated by CDOM. For this, they used 𝜆0(560) 

instead of 709 nm and kept the exponent values from Lee et al. (2009) to estimate 𝑎(𝜆0). A 

factor to attest the influence of CDOM was computed to derive 𝑎(𝜆) and a drastic modification 

was carried out in 𝑎𝜙(𝜆), by mixing both approaches from Lee et al. (2010) and Roesler et al. 

(1989). 

In this manner, improvements in empirical steps are highly recommended for different 

types of water, however in terms of operational system for water management in a cascade 

system, where the bio-optical properties vary from upstream to downstream, multiple 

approaches can be time consuming and unfeasible. Therefore, aiming to assess the performance 

of a single QAA version to assist the water quality management in Tietê River, the versions 

from Watanabe et al. (2016a) parameterized to BB and the QAAOMR parametrized to Nav were 

used and then evaluated to highlight the improvements and fragility from each version 

supposing to choose a single approach for future use considering the entire cascade system. 

 

5.2 Data and Methods 

 

For this purpose, the dataset from the first and second field trips of BB were applied 

summing 40 samples while for Nav, data from the three field campaigns were used totalizing 

51 samples. The QAA versions from Watanabe et al. (2016a) and the one presented in Chapter 

4 were evaluated. In situ measures of the IOPs and here represented by the absorption 

coefficients of phytoplankton, 𝑎𝜙, NAP, 𝑎𝑁𝐴𝑃, and CDOM, 𝑎𝐶𝐷𝑂𝑀 were compared to the 

estimated values retrieved by the specific QAA version. The combination of 𝑎𝐶𝐷𝑂𝑀 and 𝑎𝑁𝐴𝑃 

produced the 𝑎𝐶𝐷𝑀, one of the QAA products. To obtain the in situ absorption coefficient of 

particulate, 𝑎𝑝, and the respective organic (𝑎𝜙) and inorganic fraction (𝑎𝑁𝐴𝑃), methods from 

Tassan and Ferrari (1995, 2002) were applied, while for 𝑎𝐶𝐷𝑂𝑀, the method from Tilstone et al. 

(2002) was used. 

The in situ 𝑅𝑟𝑠 data were estimated following the procedure suggested by Mobley 
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(1999). For this, hyperspectral measures were acquired from the use of the RAMSES TriOS® 

(TriOS, Germany). The in situ 𝑅𝑟𝑠 were then convolved to the spectral response functions of 

the Ocean and Land Colour Instrument (OLCI/Sentinel-3 satellite) spectral response 

(PELLOQUIN and NIEKE, 2012) to derive the band-weighted reflectance data (GORDON, 

1995). The simulated 𝑅𝑟𝑠 from Nav were then used in the QAAABBHR and the ones from BB 

were used for QAAOMR. The steps from each version can be found in Table 5.1. 

 

Table 5.1 QAA steps comparing the QAABBHR from Watanabe et al. (2016a) and the QAAOMR 

proposed in the last chapter. 

QAABBHR QAAOMR 

𝑟𝑟𝑠(λ) = 𝑅𝑟𝑠(λ)/(0.52 + 1.7𝑅𝑟𝑠(λ)) 

𝑢(𝜆) =
−0.0895 + √(𝑔0)2 + 4𝑔1 ∗ 𝑟𝑟𝑠(λ)

2 ∗ 𝑔1

; 𝑔0 = 0.089, 𝑔1 = 0.125 

𝜒 = log (
𝑟𝑟𝑠(443) + 𝑟𝑟𝑠(665)

𝑟𝑟𝑠(𝜆0) + 5
(𝑟𝑟𝑠(620))2

𝑟𝑟𝑠(443)

) 

𝑎𝑡(𝜆0) = 𝑎𝑤(𝜆0) + 10−0.7702+0.0999𝜒+0.0566𝜒2
 

where 𝜆0 = 709 

𝜒 = log (
𝑟𝑟𝑠(443) + 𝑟𝑟𝑠(665)

𝑟𝑟𝑠(𝜆0) + 5
(𝑟𝑟𝑠(681))2

𝑟𝑟𝑠(443)

) 

𝑎𝑡(𝜆0) = 𝑎𝑤(𝜆0) + 10−1.148+2.814𝜒−5.813𝜒2
 

where 𝜆0 = 709 

𝜂 = 2 × (1 − 1.2 × exp (−0.9 ×
𝑟𝑟𝑠443

𝑟𝑟𝑠(555)
)) 𝜂 = 2 × (1 − 1.2 × exp (−0.9 ×

𝑟𝑟𝑠665

𝑟𝑟𝑠754
)) 

𝜁 = 0.3 + (
0.2

0.8 + 𝑟𝑟𝑠665 𝑟𝑟𝑠𝜆0⁄
)

∗

 𝜁 = 0.5 + (
0.2

0.8 + 𝑟𝑟𝑠443 𝑟𝑟𝑠𝜆0⁄
) 

𝜉 = exp[𝑆 × (443 − 411)] 

𝑆𝐶𝐷𝑀 = 0.014 + (
0.002

0.6 + (𝑟𝑟𝑠443 𝑟𝑟𝑠𝜆0⁄ )
) 

𝜉 = exp[𝑆 × (443 − 412)] 

𝑆𝐶𝐷𝑀 = 0.0095 + (
0.002

0.6 + (𝑟𝑟𝑠490 𝑟𝑟𝑠𝜆0⁄ )
) 

𝑎𝐶𝐷𝑀(443)

=
[𝑎𝑡(412) − 𝜁𝑎𝑡(443)] − [𝑎𝑤(412) − 𝜁𝑎𝑤(443)]

𝜉 − 𝜁
 

𝑎𝐶𝐷𝑀(443)

=
[𝑎𝑡(412) − 𝜁𝑎𝑡(443)] − [𝑎𝑤(412) − 𝜁𝑎𝑤(412)]

𝜉 − 𝜁
 

𝑎𝐶𝐷𝑀(𝜆) = 𝑎𝐶𝐷𝑀(443)𝑒−𝑆𝐶𝐷𝑀(𝜆−443) 𝑎𝐶𝐷𝑀(𝜆) = 𝑎𝐶𝐷𝑀(443)𝑒−𝑆𝐶𝐷𝑀(𝜆−443) 

— 

𝑎𝜙(443)

=
[𝜉𝑎𝑡(443) − 𝑎𝑡(412)] − [𝜉𝑎𝑤(412) − 𝑎𝑤(412)]

𝜉 − 𝜁
 

𝑎𝜙(𝜆) = 𝑎𝑡(𝜆) − 𝑎𝐶𝐷𝑀(𝜆) − 𝑎𝑤(𝜆) 

𝑎𝜙(λ) = 𝑎𝑝ℎ(443) × 𝑎𝜙
+(𝜆) 

where 𝑎𝜙
+(𝜆) = 𝑎𝜙(λ)

∫ 𝑎𝑥(𝜆)𝑑𝜆

𝜆𝑚𝑎𝑥−𝜆𝑚𝑖𝑛
⁄  

* the original 𝜁 related the ratio between 𝑎𝜙(412) and 𝑎𝜙(443), however, QAABBHR used the relation between 

𝑎𝜙(665) and 𝑎𝜙(709) 

 

The statistical indicators used for validation were the total root mean square difference 

(RMSD), the mean absolute percentage error (MAPE) and the bias, represented by the 

equations 4.4, 4.5 and 5.1, respectively. 
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𝑏𝑖𝑎𝑠 =
1

𝑛
∑(𝑥𝑒𝑠𝑡,𝑖 − 𝑥𝑚𝑒𝑎𝑠,𝑖)

𝑛

𝑖=1

 (5.1) 

 

where n is the number of samples, 𝑥𝑒𝑠𝑡,𝑖 and 𝑥𝑚𝑒𝑎𝑠,𝑖 represent the estimated and measured 

values, respectively. 

 

5.3 Results and Discussion 

 

The results are organized in two sections, first presenting the outcomes from QAABBHR 

applied to Nav’s dataset and then QAAOMR used in BB’s dataset. 

 

5.3.1 Use of QAABBHR in Nav’s dataset 

 

This application showed that QAABBHR performed well for 𝑎𝑡(𝜆) retrieval (Figure 5.1a) 

with average MAPE of 23.02% (Table 5.1), below the one found by Watanabe et al. (2016a) 

for parametrization of the current model registering an average of 28.27% using BB dataset. 

The algorithm exhibited limitation in estimating 𝑎𝑡(𝜆) at 412 and 560 nm in Nav, whilst the 

best result was observed at 665, 681 and 709 nm, with uncertainties ranging between 5.36 and 

13.50%. For QAABBHR parametrization, the authors found that the best result was observed at 

681 nm, that is associated with Chl-a fluorescence, and here the best result was achieved at 709 

nm (MAPE = 5.36%), differently from Watanabe’s result, who found the worst fit at this 

wavelength. Is worth pointing out that 709 nm was chosen as the reference wavelength for 

QAABBHR due to the dominance of pure water in the absorption budget at this wavelength, so 

the interference of other OSCs than pure water is supposed to be minimal. On the other hand, 

the worst performance at shorter wavelengths might be related also to the in-water constituents, 

that is, in Nav, at 412 and 443 nm the influence of phytoplankton is almost inexistent when 

compared to NAP and CDOM absorption. In general, the model underestimated 𝑎𝑡(𝜆) with 

average of -0.05. 
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Figure 5.1. Scatter plots in log-scale between measured and estimated 𝑎𝑡(𝜆), 𝑎𝐶𝐷𝑀(𝜆) and 

𝑎𝜙(𝜆) at OLCI spectral bands. 

 

 

A decline of the result of QAABBHR for 𝑎𝐶𝐷𝑀(𝜆) was observed for Nav (Figure 5.1b) 

with average MAPE of 59.40% (Table 5.1). Watanabe et al. (2016a) found an average of 

47.41% and the best result was observed at the red spectral region when they considered the 

normalized root mean square error (NRMSE) as uncertainty, however, considering the MAPE, 

the red region presented the worst result while at shorter wavelengths, the MAPE was lower. 

In Nav’s dataset, the result followed the same trend with MAPE above 50% in the green to NIR 

wavelengths (58.52 – 86.41%). Mishra et al. (2014) observed a similar trend of high error at 

longer wavelengths starting from 560 nm and emphasized that the magnitude of 𝑎𝐶𝐷𝑀 at this 

region is small and therefore does not affect the overall performance to a large extent. In 

addition, is worth noting that the main spectral region associated to 𝑎𝐶𝐷𝑂𝑀 is placed in the blue 

region (443 nm as a proxy for CDOM concentration) (Lee and Hu 2006). Thus, the error related 

to this wavelength was 34.13%, with bias of -0.24 m-1 showing inclination for underestimation 

and the RMSD of 0.43 m-1 was below the average in situ 𝑎𝐶𝐷𝑀(443) of 0.72 m-1. 

 

Table 5.2. Comparative band-specific errors related to the IOPs retrieved by QAABBHR based 

on MAPE (%), RSMD (m-1) and bias (m-1) metrics. 

 𝒂𝒕(𝝀) 𝒂𝑪𝑫𝑴(𝝀) 𝒂𝝓(𝝀) 

Bands 

(nm) 

RMSD 

(m-1) 

MAPE 

(%) 

bias 

(m-1) 

RMSD 

(m-1) 

MAPE 

(%) 

bias 

(m-1) 

RMSD 

(m-1) 

MAPE 

(%) 

bias 

(m-1) 

412 0.59 33.91 -0.46 0.43 30.71 -0.25 0.24 61.85 -0.21 

443 0.39 27.54 -0.25 0.33 34.13 -0.24 0.12 38.42 -0.01 

490 0.21 27.44 -0.03 0.25 43.90 -0.21 0.21 197.69 0.18 

510 0.17 27.86 0.00 0.22 48.33 -0.19 0.22 341.67 0.19 

560 0.14 33.91 0.05 0.15 58.52 -0.13 0.21 608.97 0.18 

620 0.16 28.16 0.12 0.10 70.35 -0.09 0.24 538.90 0.21 

665 0.11 13.50 0.06 0.09 79.46 -0.08 0.17 156.39 0.14 

681 0.09 9.54 0.03 0.09 82.74 -0.08 0.13 102.34 0.10 

709 0.05 5.36 0.04 0.08 86.41 -0.07 0.11 555.91 0.10 
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Average 0.21 23.02 -0.05 0.19 59.40 -0.15 0.18 254.83 0.10 

 

The 𝑎𝜙(𝜆) retrieval for non-productive inland waters are still a challenge since now few 

initiatives has been developed to address this issue. Recently, Ogashawara et a. (2016) re-

parameterized a QAA for CDOM dominated waters and improved the errors of 𝑎𝜙(𝜆) for 

reasonable levels (NRMSE = 25.90% for Funil reservoir and 29.76% for Itumbiara reservoir). 

Their approach used an algorithm built to return the spectral features of phytoplankton (Lee et 

al. 2010) and they also introduced a factor to correct the effect of CDOM in the water column. 

On the other hand, QAABBHR used the same approach of Lee et al. (2002) who estimated 𝑎𝜙(𝜆) 

from the subtraction of 𝑎𝑡(𝜆), 𝑎𝐶𝐷𝑀(𝜆) and 𝑎𝑤(𝜆) and as result they found an average MAPE 

of 78.08%, highlighting the limitation of the algorithm in retrieving 𝑎𝜙(𝜆) in BB, however, this 

outcome was better than the previous versions of QAA related to ocean and productive inland 

waters (LE et al., 2009a, YANG et al., 2013, MISHRA et al., 2014). The QAABBHR retrieved 

the lowest error for 𝑎𝜙 at 443 and 412 nm, with MAPE of 38.42% and 61.85% respectively, as 

also observed by Watanabe et al. (2016) who found a MAPE of 32.8% for 443 nm. The success 

of 𝑎𝜙(𝜆) depends on the estimation of 𝑎𝑡(𝜆) and 𝑎𝐶𝐷𝑀(𝜆), so in the case of Nav, the low result 

for 𝑎𝐶𝐷𝑀(𝜆) above 50% of average error led to the increase of 𝑎𝜙 error. Another issue that 

might be addressed is the shape of 𝑎𝜙 (Figure 5.2), which is not matching with the in situ data 

acquired in laboratory. 

 

Figure 5.2. Spectral shape acquired through (a) QAABBHR and (b) Nav in situ 𝑎𝜙 acquired from 

laboratory analysis. The continuous red line stands for the average spectral 𝑎𝜙 from Nav in situ 

data. 
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5.4.2 Use of QAAOMR in BB’s dataset 

 

Now, analyzing the QAAOMR applied to BB dataset we also observed a good matching 

between retrieved 𝑎𝑡(𝜆) and in situ measurements (Figure 5.3a). The average MAPE was 

38.04% and the higher errors were between 443 to 560 nm (41.34 – 47.25%, Table 5.2). For 

QAAOMR re-parametrization, the average error was 16.35% using Nav’s dataset, thus we can 

see that there was a decline in the 𝑎𝑡(𝜆) performance using data from BB. On the other hand, 

an improvement was observed at 620 nm showing the second lowest error (30.18%) whilst the 

opposite was described in QAAOMR parametrization, since at this wavelength the error was 

considered the highest one with 29.05%. The error at 709 nm retrieved the lowest error 

(28.80%) and the average bias showed an underestimation trend (-0.14 m-1). 

 

Figure 5.3. Scatter plots in log-scale between measured and estimated 𝑎𝑡(𝜆), 𝑎𝐶𝐷𝑀(𝜆) and 

𝑎𝜙(𝜆) at OLCI spectral bands. 

 
 

The 𝑎𝐶𝐷𝑀(𝜆) retrieval was not satisfactory since the error was above 50% reaching 

156.18% at 560 nm, meaning that QAAOMR was not able to retrieve this IOP accurately. This 

step demanded for huge modifications in both QAAOMR and QAABBHR models, mainly 

regarding the band combinations used in empirical steps such as the calibration of 𝜁 and the 

slope of CDM (𝑆𝐶𝐷𝑀). The first parameter is associated to Chl-a concentration or pigment 

absorption at a specific wavelength and in QAAOMR the band combination was set at the ratio 

of 443 and 709 nm while QAABBHR used the band combination ratio between 665 and 709 nm. 

The nature of both types of waters is totally divergent, BB is phytoplankton matter dominated 

while Nav is inorganic matter dominated with low Chl-a concentration, therefore, the 

calibration of this step is mandatory in order to fit the model to the water characteristics. The 

𝑆𝐶𝐷𝑀 describes the composition of pigment, dissolved organic matter and detritus (CARDER 



 

 

Rodrigues, T.W.P. 

92 

et al., 1989, SHANMUGAM et al., 2011) so it is also changeable and must be taken into 

consideration during 𝑎𝐶𝐷𝑀(𝜆) retrieval. 

 

Table 5.3. Comparative band-specific errors related to the IOPs retrieved by QAAOMR based on 

MAPE (%), RSMD (m-1) and bias (m-1) metrics. 

 𝒂𝒕(𝝀) 𝒂𝑪𝑫𝑴(𝝀) 𝒂𝝓(𝝀) 

Bands 

(nm) 

RMSD 

(m-1) 

MAPE 

(%) 

bias 

(m-1) 

RMSD 

(m-1) 

MAPE 

(%) 

bias 

(m-1) 

RMSD 

(m-1) 

MAPE 

(%) 

bias 

(m-1) 

412 2.48 37.08 -0.06 2.18 98.44 1.87 2.48 119.87 1.26 

443 4.69 41.34 0.11 3.25 114.47 1.40 4.51 107.81 0.87 

490 1.26 47.25 0.45 1.02 137.73 0.88 1.24 142.38 0.54 

510 0.95 45.86 0.32 0.83 143.54 0.70 0.80 103.37 0.10 

560 0.49 41.43 0.07 0.49 156.18 0.39 0.48 120.56 0.17 

620 0.63 30.18 -0.02 0.26 147.58 0.16 0.68 88.69 0.07 

665 1.07 31.91 -0.64 0.20 124.52 0.05 1.24 113.17 0.68 

681 1.41 38.53 -1.07 0.19 110.45 0.01 1.32 100.83 0.57 

709 0.52 28.80 -0.39 0.18 96.93 -0.02 0.26 112.81 0.06 

Average 1.50 38.04 -0.14 0.96 125.54 0.61 1.45 112.17 0.48 

 

For 𝑎𝜙(𝜆) retrieval, a new approach was required to estimate this variable in non-

productive waters and the base of the model was established by both references Roesler et al. 

(1989) and Lee et al. (2010), also used by Ogashawara et al. (2016), however with considerable 

differences. The combination from both references was adopted in order to preserve the 𝑎𝜙 

shape messed up in the previous QAA versions. As result, the average MAPE found in the 

original QAAOMR was 46.80% with errors below 50% except for 709 nm. When the model was 

applied to BB dataset the average error was 112.17% (Figure 5.3c, Table 5.2) and even with 

this magnitude of error, the shape of 𝑎𝜙 (Figure 5.4) was preserved and retrieved only positive 

values, differently of previous versions. In general, the model was overestimated (bias = 0.48 

m-1). The most useful bands used for Chl-a and phycocyanin concentration estimation (665 and 

709 nm) presented errors of 113.17 and 112.81%, respectively, indicating the limitation of this 

step in retrieving accurately the 𝑎𝜙(𝜆). 
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Figure 5.4. Spectral shape acquired through (a) QAAOMR and (b) in situ 𝑎𝜙 from BB acquired 

from laboratory analysis. The continuous red line stands for the average spectral 𝑎𝜙 from BB 

in situ data. 

 
 

5.4. Conclusion 

 

The results showed that 𝑎𝑡(𝜆) retrieval was not the limiter step in the QAA approaches, 

returning values with errors (MAPE) below 40%. On the contrary, the following stages 

demanded for specific adjustments regarding the different water types. In case of Nav, the use 

of QAABBHR was successful for 𝑎𝐶𝐷𝑀(𝜆) at wavelengths between 412 to 560 nm (MAPE < 

50%) and at 443 nm the MAPE was 34.13% highlighting the good performance of the model 

for this specific dataset and considering that at this wavelength we can also estimate the 

dissolved organic carbon (DOC) concentration. However, the model was not able for deriving 

𝑎𝜙(𝜆) specially at 560, 620 and 709 nm with errors exceeding 500%. In addition, another issue 

was related to the inefficiency in modeling the 𝑎𝜙 shape reflecting the limitation of the model.  

In case of BB, the QAAOMR increased the error for modeling 𝑎𝐶𝐷𝑀(𝜆) reaching 100% 

in all wavelengths except for 412 and 709 nm (MAPE < 100%), this contretemps was attributed 

to the need of empirical step calibration, such as the adjustment of both 𝜁 and 𝑆𝐶𝐷𝑀 according 

to the water type. As expected, the QAAOMR showed high errors (MAPE > 100%, except for 

620 nm that presented and error below 100%) for 𝑎𝜙(𝜆) retrieval, however, the model could 

preserve the shape of in situ data, achieving the main objective of Roesler et al. (1989). Overall, 

both QAA versions could retrieve 𝑎𝑡(𝜆) considering different types of water than the ones used 

for original parametrization with a slight advantage of QAABBHR. Therefore, we can assume 

that a single model can be suitable to estimate at least 𝑎𝑡(𝜆) considering different trophic state 

waters. On the contrary, more efforts must be carried out for improving the 𝑎𝐶𝐷𝑀(𝜆) and 𝑎𝜙(𝜆) 
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estimation in order to reduce the errors below 50% considering, for example, the waters from 

the reservoirs of the cascade system of Tietê River that presents waters ranging from oligo-to-

hypereutrophic environments. 
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CHAPTER 6: LONG-TERM MONITORING OF TOTAL SUSPENDED MATTER IN 

TROPICAL RESERVOIRS WITHIN A CASCADE SYSTEM WITH WIDELY 

DIFFERING OPTICAL PROPERTIES 

 

6.1 Introduction 

 

Total suspended matter (TSM) consisting of both organic and inorganic matter is one 

of the most important indicators of water quality in inland waters. TSM induced turbidity has a 

deleterious effect on light propagation through the water column affecting the primary 

production (SHEN et al., 2010), besides, it plays a crucial role in the transportation of nutrients 

and contaminants by adsorption (WU et al., 2013). The degradation of inland waters has been 

widely discussed by the scientific community and is considered a public order issue 

(PANIGRAHI et al., 2009). The monitoring of the water quality via usual field techniques 

demands efforts and high cost, besides a holistic panorama is difficult to achieve by applying 

common field techniques (SONG et al., 2012). Satellite images have been used in water quality 

monitoring since 1978 with the availability of data from Coastal Zone Color Scanner (CZCS) 

on board of NIMBUS 7 designed to provide ocean color data (EVANS and GORDON, 1994). 

Since then, many studies (MOORE et al., 1999; MILLER and MCKEE, 2004; SHEN et al., 

2010; TARRANT et al., 2010; MISHRA and MISHRA, 2010; WANG et al., 2012; SHI et al., 

2015; KUMAR et al., 2016) have been conducted in order to retrieve TSM concentration using 

the next generation ocean color sensors such as Sea-Viewing Wide Field-of-View Sensor 

(SeaWiFS) and the Moderate Resolution Imaging Spectroradiometer (MODIS) from the 

National Aeronautics and Space Administration (NASA) and the Medium Resolution Imaging 

Spectrometer (MERIS) from the European Space Agency (ESA). 

The high temporal and spectral resolution of MODIS (TERRA and AQUA) sensor has 

enabled the scientific community to develop numerous models over the years to retrieve TSM 

concentrations. Miller and McKee (2004) demonstrated the utility of MODIS Terra band 1 (645 

nm) surface reflectance data for estimating TSM concentration and studying the transport of 

materials in coastal environments. Wang et al. (2012) also found a robust linear relationship 

between MODIS band 1 and TSM concentration (R2 = 0.95, RMSE = 0.51 mg l-1) in Bohai Sea 

of China and highlighted the strong performance of this model for monitoring the transport of 

materials in small water bodies. Shi et al. (2015) obtained a reasonable correlation using an 

exponential calibration function between MODIS Aqua band 1 and TSM (R2 = 0.70, RMSE = 

14.3 mg l-1) for Lake Taihu (China), which is a turbid environment (TSM ranging from 15.8 to 

218.6 mg l-1). Kumar et al. (2016) re-parametrized three variants of Miller and McKee (2004) 
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model using MODIS 250 m data and accurately retrieved TSM concentration between the range 

of 6.5 to 200 mg l-1 for the Asia’s largest brackish water estuary, Chilika Lagoon. On the 

contrary, Tarrant et al. (2010) found a weak relationship (R2 = 0.28) between MODIS band 1 

and TSM in several southwestern United States (US) lakes (TSM ranging between 0.30 – 20.0 

mg l-1) and included band 2 (858 nm) which significantly enhanced the model performance (R2 

= 0.82 and RMSE = 1.67 mg l-1). Wu et al. (2013) applied this band combination to estimate 

TSM concentration in Poyang Lake, China, and their model explained 76% of TSM variance.  

Other empirical and semi-empirical models such as band ratios have also provided 

suitable estimates of TSM. Tang et al. (2013) found that Rrs(560)/Rrs(490) presented a good 

relationship for low TSM (R2 = 0.74) concentrations (< 3.0 mg l-1) and Rrs(681)/Rrs(560) worked 

well for high TSM values (R2 = 0.80). Han et al. (2006) developed a model using bands at 550 

nm and 670 nm for Yangtze River estuary where phytoplankton and yellow substances were 

the main factors that control the water reflectance. These wavelengths are sensitive to 

suspended sediment and their combination may reduce the effect of the chlorophyll (Chl-a). 

Zhang et al. (2010) also developed a model that exploited these two spectral regions and they 

emphasized that the green and red bands are sensitive to TSM variations in waters with a wide 

range of turbidity regime. 

As previously mentioned, MODIS data is widely used to estimate TSM concentrations 

in inland waters with different limnological and environmental conditions, thus some aspects 

are already consolidated. The TSM spectral behavior is noticeable in the visible to near-infrared 

(NIR) wavelengths showing a strong correlation in the red wavelength (MILLER and MCKEE, 

2004; HAN et al., 2006; CUI et al., 2013; KUMAR et al., 2016). An increase in TSM 

concentration shifts the reflectance peak towards longer wavelength in the visible spectrum 

(HAN et al., 2006). Odermatt et al. (2012) also observed that the reflectance peak position is 

affected by the TSM concentration and the band at 555 nm is appropriate to retrieve 

concentrations below 30 mg l-1 (ELEVELD et al., 2008) and the band at 670 nm is more suitable 

for higher concentrations (HAN et al., 2006). 

In addition to the empirical models (MILLER and MCKEE, 2004, HAN et al., 2006), 

TSM can also be retrieved using semi-analytical or semi-empirical models that relate the 

inherent optical properties (IOPs) and the water constituents, combined with some empirical 

steps (DEKKER et al., 2001; DOXARAN et al., 2002; CARDER et al., 2004; ZHANG et al., 

2010). To estimate the TSM concentration in Frisian lakes, Netherlands, Dekker et al. (2001) 

used analytical optical modelling based on in situ IOPs and satellite images. They highlighted 
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the limitation of the model to estimate TSM > 40 mg l-1 due to saturation of the reflectance. 

Doxaran et al. (2002) developed an experimental method for determining TSM concentration 

in highly turbid waters (ranging between 35 – 2,000 mg l-1) in Gironde estuary, France. They 

found an accuracy of ± 35% for concentrations up to 2000 mg l-1. Nechad et al. (2010) calibrated 

and validated a generic algorithm for TSM retrieval in turbid waters, which was developed to 

be applied to any ocean color sensor such as MODIS, MERIS and SeaWiFS. The relative error 

for calibration was less than 30% in the spectral range 670 – 750 nm and for validation; the 

error was less than 40%. The semi-analytical models may show a performance advantage over 

empirical models, however, they need many in situ measurements, such as absorption (a) and 

backscattering (bb) coefficients, remote sensing reflectance (Rrs), TSM, Chl-a, CDOM and so 

forth, which makes the practical application difficult (WANG et al., 2012). On the other hand, 

empirical models do not need IOPs thus could be readily applicable and operational.  

Current monitoring and water quality management protocol in Nova Avanhandava 

(Nav) and Barra Bonita (BB) reservoirs situated in Southeast of Brazil, is primarily based on in 

situ collections, which can be very expensive and time consuming. It leads to a scarcity of dense 

temporal water quality data necessary to track the trend in water quality for effective 

management actions. Both reservoirs belong to the cascade system of Tietê River consisting of 

six reservoirs. In addition, due to the long extension of Tietê River that crosses the State of São 

Paulo from East to West (1.150 km) under many different land use and land cover (LULC) 

settings, it is extremely challenging to monitor the water quality from these reservoirs via 

traditional methods. Therefore, the use of remote sensing based approach is of topmost 

importance allowing frequent spatio-temporal monitoring with very low cost. According to 

Smith et al. (2014), the water quality is highly affected by this cascade setting leading to intense 

eutrophication in the first reservoir (BB) followed by a gradual change in trophic status from 

meso-oligotrophic waters.  

Several studies have shown that many empirical and semi-empirical models perform 

satisfactorily in a single or few similar turbid water environments, however, their performance 

drops significantly when data from different reservoirs in a cascade system ranging from oligo-

to-eutrophic environments are used together. Most of them tend to overestimate at low 

concentration. For that reason, this study was aimed at assessing the performance of different 

well-established models designed to retrieve a wide-range of TSM concentration. The 

performance of these models was compared to two separate model calibrated to monitor the 

spatio-temporal variability of TSM in two oligo-to-eutrophic tropical reservoirs, Nav and BB, 



 

 

Rodrigues, T.W.P. 

98 

situated in the cascade system of São Paulo State, Brazil. In addition, the environmental forcing 

affecting the water quality in these reservoirs was examined based on the performance of these 

models. The long-term spatio-temporal monitoring of these reservoirs has not been done before, 

which is a novel aspect of this study. The continued degradation of water quality in Brazilian 

reservoirs has been a cause for concern, and this study lays the foundation for a regular 

monitoring protocol which can be used to decode the environmental forcing at play. 

 

6.2 Data and Methods 

 

6.2.1 Field data 

 

The field trips occurred in two periods of the year, one coinciding with the beginning of 

the dry season (Nav1: April 28 – May 2 and BB1: May 5 – 9, 2104) and the other corresponding 

to the end of the dry season (Nav2: September 23 – 26 and BB2: October 13 – 16, 2014). A 

total of 63 in situ TSM samples and radiometric measurements were collected from both Nav 

and BB reservoirs, of which 50 samples were used for calibration and 13 for validation (see 

Figure 2.1 for sampling stations). These 13 samples were selected as validation dataset because 

matched with MODIS Terra images overpass. Water samples were collected just below the air-

water interface and to determine TSM concentration using the method described by APHA 

(1998). Water samples were filtered on the same day of collection through pre-ashed and pre-

weighed Whatmam fiberglass GF/F filter with a nominal porosity of 0.7 μm and then stored at 

low temperature in the refrigerator (-25°C) until analysis. The filters were dried in the oven at 

100° C for 12 h, and then weighed using an analytical balance. The Chl-a was extracted with 

90% acetone solution and analyzed spectrophotometrically (GOLTERMAN et al., 1978). 

 

6.2.2 Remote sensing reflectance (𝑅𝑟𝑠) 

 

Rrs spectra were estimated from radiometric measurements taken between 10 am to 2 

pm local time. This procedure was carried out in order to maintain a consistent acquisition 

geometry based on the time window of light availability (MOBLEY, 1999). At each sample 

station, below and above water radiometric data were acquired using RAMSES TriOS® (TriOS, 

Germany) hyperspectral radiometers operating in the spectral range between 400 – 900 nm. The 

radiance sensor was equipped with a 7º field-of-view and the irradiance sensor is equipped with 

a cosine collector. The two radiance sensors positioned above water surface measured the total 
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upwelling radiance (𝐿𝑡(𝜆); W m−2nm−1sr−1) i.e., the upward radiance from the water surface 

and the incident sky radiance (𝐿𝑠(𝜆); W m−2nm−1sr−1) i.e., the incoming light from the sky 

(Figure 6.1a). The irradiance sensor measured the downwelling irradiance 

(𝐸𝑑(𝜆);  W m−2nm−1) i.e., the incident light onto the water surface. The single radiance sensor 

positioned inside the cage measured the upwelling radiance (𝐿𝑢(𝜆); W m−2nm−1sr−1), while 

the irradiance sensors measured the upwelling irradiance (𝐸𝑢(𝜆); W m−2nm−1) and the 

downwelling irradiance (𝐸𝑑(𝜆); W m−2nm−1). The instruments above water surface were 

positioned on a steel frame and the 𝐿𝑡 sensor was set with a viewing angle of 40º from nadir 

and an azimuth of 135º (oriented from the sun), and the 𝐿𝑠 sensor was set with the same angles, 

40º from zenith and 1350 azimuth (Figure 6.1). 

 

Figure 6.1. Schematic diagram showing the (a) viewing angle (𝜃𝑣) of the sensors to avoid 

specular scattering (Mobley, 1999) (b) Geometry of the sensor relative to the sun used for 

radiometric measurements, represented by zenith (𝜃𝑠), azimuthal (𝜙) and nadir (𝑛̂) angles, (c) 

sensors collecting total upwelling radiance 𝐿𝑡(𝜆), the incident sky radiance 𝐿𝑠(𝜆) and the 

downwelling irradiance 𝐸𝑑(𝜆), (d) sensors collecting upwelling radiance 𝐿𝑢(𝜆), upwelling 

irradiance 𝐸𝑢(𝜆) and the downwelling irradiance 𝐸𝑑(𝜆). 

 

 

All radiometric quantities were linearly interpolated to transform the original spectral 

resolution of ~ 3.3 nm to 1 nm. This procedure was designed to homogenize RAMSES 



 

 

Rodrigues, T.W.P. 

100 

measurements between the sensors with different bandwidths and band centers. This technique 

does not affect the shape or magnitude of the spectral curves (FAN, 2014). The acquisition 

geometry follows the protocol described by Mueller (2000) and Mobley (1999) and aimed at 

meeting requirements to avoid the effects of radiance and specular boat shading. The in situ 

remote sensing reflectance (𝑅𝑟𝑠(𝜆)𝑓𝑖𝑒𝑙𝑑) (sr-1) was calculated from the radiometric profiles 

according to Mobley (1999), Equation 4.1. 

𝑅𝑟𝑠 is the input data for models to retrieve the OSCs concentration, however, it is 

necessary to match the hyperspectral data with those from satellite data by simulating the 

satellite sensor’s bands using the spectral response function S(λ) of the ith spectral band 

(GORDON, 1995; BARNES et al., 1998). In our study, MODIS Terra 250m and 500m bands 

were simulated according to equation 4.2. 

 

6.2.3 Inherent Optical Properties (IOPs) 

 

Water samples were filtered through a 0.7 μm porosity GF/F fiberglass filter that was 

stored flat under freezing condition. The determination of the total particulate (algal and non-

algal) absorption coefficient (𝑎𝑝) was acquired by using an integrating sphere module presented 

in the double-beam Shimadzu UV-2600 UV-Vis spectrophotometer (Shimadzu, Japan), with 

spectral sampling from 280 nm to 800 nm. A white filter wetted with ultrapure water was used 

as reference. The filter containing the particulate was positioned in the integrating sphere to 

measure the optical density (OD). The T-R (Transmittance-Reflectance) method presented by 

Tassan and Ferrari (1995, 1998) was employed to obtain 𝑎𝑝. To acquire the phytoplankton (𝑎𝜙) 

and non-algal particle (𝑎𝑁𝐴𝑃) absorption coefficients, the filter underwent depigmentation by 

oxidation in 10% sodium hypochlorite (NaClO), ensuring that the sample does not contain any 

pigment interference. Using empirical relationships described by Tassan and Ferrari (1995, 

1998) the respective coefficients were determined, and to retrieve 𝑎𝜙, the OD of the total 

particulate was subtracted by the non-algal particle (NAP) fraction.  

To estimate the colored dissolved organic matter (CDOM) absorption coefficient 

(𝑎𝐶𝐷𝑂𝑀), water samples were filtered through a fiberglass Whatman GF/F with 0.7 μm pores, 

and then re-filtered under low vacuum pressure using a Whatman nylon membrane filter with 

0.2 μm pores. The readings were acquired using the absorbance mode and the samples were 

placed in 10 cm quartz cuvettes. For each set of measurements, a reference reading containing 

Milli-Q water was performed, and for each sample (DOsample), the reference absorbance value 
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was subtracted (DOreference). The measured optical densities (DOsample) were converted to 

absorption coefficient multiplying by 2.303 and dividing by the path length (l = 0.1 m for a 10 

cm cuvette). Hence, the 𝑎𝐶𝐷𝑂𝑀(𝜆) (𝑚−1) was calculated according to equation 3.2. 

 

6.2.4 Satellite Data and Processing 

 

MODIS sensor on board Terra platform (MODIS/Terra) has been providing images 

since 1999. The orbit is near polar Sun-synchronous and it crosses the equator every 10:30 am 

local solar time. In addition, in 2002 another platform, MODIS sensor Aqua (MODIS/Aqua) 

was launched providing afternoon images (1:30 pm equator crossing time) (BARNES et al., 

2003). Both satellites offer data in 36 spectral bands ranging from 0.4 µm to14.4 µm with a 

spatial resolution of 250 m (1 – 2 bands), 500 m (3 – 7 bands) and 1 km (8 – 36 bands) 

(BARNES et al., 1998). MODIS land surface reflectance products (250 m MOD09GQ and 500 

m MOD09GA from Terra) are daily Level 1B product, geo-located and corrected for 

atmospheric gases and aerosols providing surface reflectance (SR) (VERMOTE and 

KOTCHENOVA, 2008; DOXARAN et al., 2009; VERMOTE et al., 2011). In particular, 

MODIS band 1 (640 – 670 nm) has been widely employed to map the TSM concentration in 

inland and coastal waters (e.g., MILLER and MCKEE, 2004, ZHANG et al., 2010, CUI et al., 

2013, PARK and LATRUBESSE, 2014, KUMAR et al., 2016). 

Both Terra and Aqua products are set to Sinusoidal projection and HDF-EOS format, 

thus a re-projection process was established to convert into geographical coordinate system 

(Datum: WGS 84) using SeaWiFS Data Analysis System – SeaDAS 7.2. The images from 

MODIS/Terra were acquired instead of MODIS/Aqua because of the lack of coincident in situ 

data for Aqua (U.S. Geological Survey; http://earthexplorer.usgs.gov/). The daily SR products 

(MOD09) were simulated based on the SRF, previously mentioned and used in the model 

calibration. This process was employed because the MODIS/Terra images acquired during field 

data collection were covered by clouds making it impossible build matchups between in situ 

and satellite data. However, the validation process was carried out using MOD09 SR data. This 

product corresponds to the water surface reflectance (R) and can be converted to water surface 

remote sensing reflectance (𝑅𝑟𝑠𝑠𝑎𝑡
) dividing it by π (WANG et al., 2015).  

In order to increase the possibilities of using more spectral bands (MOD09GA) with a 

better spatial resolution (MOD09GQ), a downscaling method was implemented to resample the 

500 m MODIS SR to 250 m MODIS SR (CHEN et al., 2015). Thereby, a resampling using 
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bilinear interpolation was applied as described in Srichandan et al (2015) and the correlation 

between 500 m and 250 m MODIS SR bands was verified. The downscaling process was carried 

out in SeaDAS. Land and clouds were masked out using band 2 as proposed by Miller & McKee 

(2004) with an empirical threshold algorithm. 

 

6.2.5 Bio-optical model calibration and validation 

 

The simulated bands from MODIS/Terra (𝑅𝑟𝑠𝑠𝑖𝑚
) were applied as input to the empirical 

models used to estimate the TSM concentration (Table 6.1). Samples collected in the field were 

compared with the 𝑅𝑟𝑠𝑠𝑎𝑡
 from MODIS/Terra images of the same day and after visual 

examination, five valid daily images were used. Numerous existing models broadly developed 

for inland and coastal waters were employed in this research to analyze their performance in 

the oligo-to-mesotrophic cascade reservoirs. 

 

Table 6.1. TSM empirical models: model fit, TSM concentration range (mg l-1), and geographic 

location. 

Author (s) Bands (nm) Model Fit 
TSM range 

(mg l-1) 
Location 

Miller and McKee 

(2004) 
645 Linear 0 – 60 

Lake Pontchartrain, 

USA 

Hu et al. (2004) 645-859 Exponential 2– 11 Tampa Bay, USA 

Liu et al. (2006) (645 − 859) (645 + 859)⁄  Linear 23.4 – 61.2 
Middle Changjiang 

River, China 

Sipelgas et al. (2006) 645 Linear 3 – 10 Pakri Bay, Finland 

Kutser et al. (2007) 645 Linear 2 – 8 

Muuga and 

Silanamae Port, 

Estonia 

Chen et al. (2009) 859 645⁄  Polynomial 1.29 – 208 
Apalachicola Bay, 

USA 

Bi et al. (2011) 645 555⁄  Exponential  
Southern Bohai 

Strait, China 

Doxaran et al. (2009) 859/645 Exponential 77 – 2182 
Gironde Estuary, 

France 

Jiang et al. (2009) 859 Logarithmic 0 – 170 Taihu Lake, China 

Tarrant et al. (2010) 645-859 Linear 0.3 – 20  USA Lakes 

Wang et al. (2010) 859/645 Linear 1 – 64  
Apalachicola Bay, 

USA 

Petus et al. (2010) 645 Polynomial 0.3 – 145.6 
Bay of Biscay, 

France 

Zhao et al. (2011) 645 Exponential 0 – 87.8 
Mobile Bay Estuary, 

Alabama 

Chen et al. (2011a) 
859/645 Polynomial 1.3 – 208 

Apalachicola Bay, 

USA 

Chen et al. (2011b)  
859/645 Linear 1.3 – 208 

Apalachicola Bay, 

USA 
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Ondrusek et al. 

(2012) 
645 

3rd order 

Polynomial 
4.5 – 14.9 

Chesapeake Bay, 

USA 

Wang et al. (2012) 645 Linear 0.2 – 12 Bohai Sea, China 

Cui et al. (2013) 645 Exponential 0 – 141.9 Poyang Lake, China 

Villar et al. (2013) 859 645⁄  Power 25 – 622 Madeira River, Brazil 

Wu et al. (2013) 645-859 Exponential 0 – 173.3 Poyang Lake, China 

Fan et al. (2014) 650 420⁄  Linear 7.1 – 64.8 Patuxent River, USA 

Feng et al. (2014) 
645 Exponential < 50 Yangtze Estuary, 

China 859 645⁄  Exponential > 50 

Chen et al. (2015) 859 645⁄  Polynomial 5.8 – 577.2 
Estuary and Coast of 

China 

Shi et al. (2015) 645 Exponential 1.7 – 343.9 Taihu Lake, China 

Kumar et al. (2016) 645 Polynomial 6.5 - 200 Chilika Lagoon, India 

Breunig et al. 

(2016)* 
645 Exponential 

Annual mean 

7.56 (US), 

733 (MS), 

4.48 (LS). 

Passo Real Reservoir, 

Brazil 

* UP: upper stream, MS: middle stream and LS: lower stream. 

 

These models were chosen due to their simplicity and the wide use in different 

environments. Variants of the respective models based on linear, exponential, power, quadratic 

and logarithmic fits were performed during calibration with least-squares technique. The best 

relationship between the models and the TSM data collected in the field was validated. Outliers 

were initially analyzed based on boxplots and then removed from the original Nav dataset 

(below 0.10 and above 1.45 mg l-1) to avoid incorrect analysis. Data from each study site were 

then calibrated (𝑛𝐵𝐵 = 30 and 𝑛𝑁𝐴𝑉 = 20 samples) with the 𝑅𝑟𝑠𝑠𝑖𝑚
 measures and validated 

(𝑛𝐵𝐵 = 8 and 𝑛𝑁𝐴𝑉 = 5) separately using the 𝑅𝑟𝑠𝑠𝑎𝑡
 values. A mixed dataset was also 

calibrated (n = 50) and validated (n = 13) in order to assess the performance of a single model 

to represent the TSM variability in the two widely different study sites.  

The evaluation of the re-parameterized TSM algorithms was carried out using statistical 

indicators such as root mean square error (RMSE), mean bias error (MBE), normalized root 

mean square error (NRMSE) and the coefficient of determination (R²). The indices are therefore 

defined according to Equations (4.4), (5.1) and (6.1) respectively: 

 

𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

∆𝑥𝑚𝑒𝑎𝑠
× 100 (6.1) 

 

where 𝑥𝑚𝑒𝑎𝑠,𝑖 is related to the estimated and measured values. 

 

6.3 Results 
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6.3.1 Long-term spatio-temporal monitoring 

 

The long-term analysis of both reservoirs was carried out for 16 years (2000 – 2015) for 

the months of May and October, representing the beginning and end of the dry season. At least 

four TSM maps were generated each month using the MODIS 8-day composite images, and for 

each year two composite images were chosen to represent the months of May and October. 

Images collected in the same week and with no radiometric problem over the study sites were 

the criteria to choose the images. A total of 128 images were used and 32 images were chosen 

to represent the spatial-temporal variability of TSM at the study sites. The MODIS/Terra 8-day 

products correspond to Level 3 data and contain the best possible observation during the eight 

days, including the absence of clouds or cloud shadows and aerosol loading (available in 

https://lpdaac.usgs.gov/). Five locations for Nav and eight locations for BB were extracted from 

each of the 16 TSM maps for developing the boxplot representing the spatial variability. The 

selected locations were representative of each part of the reservoirs and additional care was 

taken to avoid spurious values such as null pixels. 

 

6.3.2 Water quality characterization 

 

The distribution of TSM concentration (Figure 6.2) in both reservoirs was highly 

discrepant due to the water quality differences between them. A significant majority (46.7%; n 

= 30) of the samples collected from BB had TSM values ranging from 16 to 26 mg l-1, whereas, 

most of the samples from Nav (38.46%; n = 26) presented TSM values ranging from 0.6 to 1.0 

mg l-1. 

 

Figure 6.2. Cumulative percentage of TSM concentration and the respective frequency of the 

calibration dataset from BB (a) and Nav (b) reservoirs. 
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Based on the in situ data collected in the field (Table 6.2), the average Chl-a value in 

BB were much higher in October 413.20 mg m-3 than in May 133.96 mg m-3 compared to NAV 

where the average Chl-a did not exceed 7 mg m-3 in either seasons. In addition, Nav exhibited 

very low TSM values with an average of approximately 1 mg l-1 compared to BB where it 

showed significant seasonal variability with mean TSM of 7.40 mg l-1in May and 21.91 mg l-1 

in October. 

 

Table 6.2. Descriptive statistics of environmental dataset in both reservoirs. 

  
Nav1 (Apr/May) 

(n = 17) 
Nav2 (Sep)  

(n = 14) 
BB1 (May) 

(n = 19) 
BB2 (Oct) 

(n = 19) 

Chl-a 

(mg g-3) 

Min - Max 2.46 - 12.56 4.51 - 9.42 51.33 - 293.24 263.20 - 797.80 

Mean 6.48 6.94 133.96 413.20 

SD 2.52 1.59 62.65 138.01 

TSM 

(mg l-1) 

Min - Max 0.10 - 2.60 0.50 - 1.20 3.80 – 16.30 10.80 – 44.00 

Mean 1.01 0.81 7.40 21.91 

SD 0.62 0.20 3.15 7.04 

Chl-a:TSM 

(μg/mg) 

Min - Max 2.47 - 68.26 4.75 - 18.57 10.27 - 28.81 12.93 - 34.99 

Mean 11.49 9.18 18.84 19.56 

SD 15.63 3.66 6.18 5.65 

Depth 

(m) 

Min - Max 5.30 - 29.60 - 10.00 - 30.00 8.00 - 18.5 

Mean 16.37 - 15.33 12.96 

SD 7.96 - 4.18 2.80 

Secchi Disk 

(m) 

Min - Max 2.29 - 4.80 2.45 - 4.65 0.80 - 2.30 0.37 - 0.78 

Mean 3.13 3.35 1.47 0.56 

SD 0.66 0.56 0.42 0.09 

Wind speed 

(m s-1) 

Min - Max 2.00 - 6.40 0 - 5.60 0.80 - 4.90 0 - 5.00 

Mean 3.65 2.91 1.91 1.46 

SD 1.31 2.15 1.03 1.52 

 

Overall, BB exhibited the characteristics of a eutrophic-hypereutrophic environment 

and Nav of an oligo-to-mesotrophic environment (RODGHER et al., 2005; DELLAMANO-

OLIVEIRA et al., 2007). The TSM and Chl-a values showed a decreasing trend from BB to 

Nav and the concentration magnitude was affected by the rainfall rate (Figure 2.3) which 

remained low during the beginning of the dry season and increased near the end of the dry 

season. The Ch-a:TSM ratio exhibited low values in Nav compared to BB indicating the 

dominance of suspended matter in Nav and dominance of phytoplankton in BB.  

The Chl-a showed a strong linear relationship (Figure 6.3) with TSM in BB (R2 = 0.77, 

p < 0.05, n = 38) and poorly correlated in Nav (R2 = 0.10, p > 0.05, n = 31). It indicated that 

the TSM in BB is mostly algal turbidity and organic in nature, whereas, mostly inorganic in 

Nav. In Nav, due to the low suspended sediment, the water was more transparent reaching a 

maximum Secchi depth of 4.80 m and a minimum of 2.29 m during the first field campaign. A 

maximum Secchi depth of 2.30 m was observed during first field campaign in BB and a 
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minimum of 0.40 m during second field campaign. Overall, the biogeochemical data presented 

in Table 2 and Figure 4 signifies the extreme variability observed between the two reservoirs, 

which makes the MODIS based TSM empirical model calibration a unique and challenging 

task. 

 

Figure 6.3. Relationship between TSM (mg l-1) and Chl-a (mg m-3) in (a) BB and (b) Nav. 

 

 

6.3.3 Bio-optical properties description 

 

The IOPs provide information about the contribution and dominance of certain OSC in 

the water and can also assist in the estimation of these components using proper algorithms 

(MISHRA et al., 2014; RIDDICK et al., 2015). As expected, the most dominant OSC in BB 

was found to be phytoplankton with an average contribution of 68.19 %, 66.76 %, and 79.85 % 

at 443, 555, and 645 nm, respectively (Figure 6.4). In Nav, the dominance of one single OSC 

was not observed, and at 443 nm the CDOM dominated the total absorption coefficient except 

the water component (𝑎𝑡−𝑤) with 37.36 % followed by NAP with 46.78 % at 555 nm and 39.65 

% at 645 nm. 
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Figure 6.4. Ternary graphs depicting the absorption budget at three wavelengths in the visible 

region (a) blue – 443 nm, (b) green – 555 nm and (c) red – 645 nm. 

 

 

At 443 nm, the Nav samples were spread within the central zone of the ternary plot 

indicating that all three absorption coefficients co-varied somehow. The predominance of 𝑎𝜙 

in BB reservoirs at 645 nm was expected and is considered as a typical diagnostic feature of 

phytoplankton, however, unlike BB, the feature at the blue region was not detected in Nav, 

possibly due to the low concentration of this OSC and the predominance of another component 

such as CDOM (Figure 6.4a). Wu et al. (2011) reported a similar observation in the data from 

Poyang Lake, China, which showed an absorption peak at 675 nm, but did not show any sign 

of absorption between 430 – 450 nm. They attributed this to the low concentration of 

phytoplankton. Doxaran et al. (2006) also noticed the same pattern in Tamar estuary, UK. These 

ternary graphics reiterated the fact that both study sites are optically different and the data from 

BB were tightly clustered with low variability while Nav data were highly scattered indicating 

a complex interplay of contribution of OSCs to the total absorption budget. 

𝑅𝑟𝑠(𝜆)𝑓𝑖𝑒𝑙𝑑 spectra at various TSM concentrations between 0.5 mg l-1 to 32.8 mg l-1 

were analyzed with respect to the MODIS/Terra SR for bands at 469, 555 and 645 nm (Figure 

6.5). The spectra with 0.5, 1.2 and 2.6 mg l-1 (dashed lines) represent the data from Nav and the 

rest represent BB (solid lines). The shape and magnitude changed drastically with increasing 

TSM concentration. The three spectra from Nav assumed a flatter feature along the blue region 

with the presence of a peak between 500 – 600 nm highlighting the influence of inorganic matter 

(NOVO et al., 1991). The same result was also described in Nascimento (2010) studying the 

Itumbiara Reservoir, Brazil, showing the dominance of detritus (60%) and Chl-a (40%) in the 

total absorption budget. The spectra represented by the 5.0 mg l-1 concentration, also showed a 

flatter pattern along the blue to green wavelengths and a peak between 500 – 600 nm, however, 

new features raised in the red region depicting the presence of 𝑎𝜙 approximately at 675 nm; 
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and a 𝑅𝑟𝑠(𝜆)𝑓𝑖𝑒𝑙𝑑 peak between 700 – 725 nm, also highlighting the presence of Chl-a. The 

magnitude of the 𝑅𝑟𝑠(𝜆)𝑓𝑖𝑒𝑙𝑑 spectra showed a systematic increase with TSM concentration 

and at concentrations higher than 10.78 mg l-1, the spectra showed signs of algal turbidity in 

terms of phytoplankton interaction such as the absorption maxima at 675 nm and minima at 

708 nm (MISHRA and MISHRA, 2012). At high concentration, i.e., at 32.8 mg l-1, it also 

showed a cyanobacteria signature with a characteristic absorption feature at 620 nm and a 

reflectance peak at 650 nm (MISHRA et al., 2009; MISHRA et al., 2013). Spectral features 

were absent over 750 nm in Nav indicating that the backscattering from other OSC was not 

present. On the other hand, in BB is very clear that light was backscattered by other OSCs. 

 

Figure 6.5. 𝑅𝑟𝑠(𝜆)𝑓𝑖𝑒𝑙𝑑 spectra representing different TSM concentrations overlapped with 

MODIS Terra spectral response function for bands at (A) 469 nm, (B) 555 nm and (D) 645 nm. 

 

 

The feature at 645 nm corresponding to MODIS band 1 described different behavior for 

Nav and BB. As illustrated in Figure 6.4(c), in Nav, detritus contributed with ~40% to the total 

absorption budget, while in BB, phytoplankton contributed with ~80% justifying the 

appearance of a shoulder in approximately 645 nm followed by a reflectance peak at 650 nm. 

 

6.3.4 Downscaling MODIS image procedure 

 

MODIS MOD09GA 500 m data from bands 3 to 7 (center bands at: 469, 555, 1240, 

1640 and 2130 nm, respectively) were resampled to 250 m based on MOD09GQ product in 
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order to increase the spatial resolution of bands 3 – 7 used in the calibration process. The 

bilinear interpolation method was applied aiming to divide the 500 m pixel into four 250 m 

pixels. Relationship between the downscaled MODIS 500 m data and the original MODIS 500 

m was verified in order to assure that after resampling procedure, the pixels still represent the 

spectral characteristic of the respective bands. A strong correlation (R² = 0.96. p-value < 0.05) 

was observed between downscaled MODIS 500 m (band 3) and the original MODIS 500 m 

(band 3) related to May, 2014 associated to the first field dataset (Figure 6.6). The same result 

was also observed for band 3 related to October, 2014 corresponding to the second field dataset 

(R² = 0.83, p-value < 0.05).  

 

Figure 6.6. Correlation between the original 500 m MODIS B3 and the downscaled 250 m 

MODIS B3 for (a) May and (b) October, 2014. 

 

 

6.3.5 TSM algorithm calibration and validation 

 

The algorithms based on single band and band ratio were analyzed using the band 1 

from MODIS/Terra 250 m product and bands 3 and 4 rescaled to 250 m after resampling 

procedure. Besides the wide and easy applicability of the empirical models, some studies 

(KONG et al., 2015a, b) have shown better results from these models at low TSM 

concentrations compared to semi-analytical models. Miller and McKee (2004) single band 

model based solely on BB data (Table 6.3) achieved a strong exponential correlation (R² = 0.83, 

p < 0.005, n = 30) followed by the power (R² = 0.82, p < 0.0001, n = 30), quadratic (R² = 0.78, 

p < 0.0001, n = 30) and linear (R² = 0.75, p < 0.0001, n = 30) fits. Similar calibration for Nav 

was statistically significant (p < 0.05), however, the model based on Miller and McKee had a 
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poor performance when compared with BB. Both linear and quadratic models for Nav, 

displayed similar determinant coefficients presenting R² = 0.51 and R² = 0.52, respectively.  

 

Table 6.3. Calibration results of the models using the single and two band indexes. Models with 

R² below 0.50 were not displayed here. 

Study 

Site 
Model Model Fit R2 s.e.* p-value** n 

BB 

reservoir 
B1 

[TSM] = 1.763 exp(261.95𝐵1) 0.83 0.30 <0.005 

30 
[TSM] = 68056 𝐵1 ^ 1.735 0.82 0.31 <0.0001 

[TSM] = 264559 𝐵1 2 - 423.54𝐵1 + 2.3818 0.78 4.76 <0.0001 

[TSM] = 3445.6 𝐵1 - 10.196 0.75 4.93 <0.0001 

Nav 

reservoir 
B1 

[TSM] = 60.199 𝐵1 + 0.4396 0.51 0.17 0.0004 
20 

[TSM] = 1952.8 𝐵1 2 + 31.708 𝐵1 + 0.5285 0.52 0.17 0.002 

Mixed 

Data 
B1/B3 

Log10[TSM] = -4.4239 𝐵1/𝐵3 2 + 11.176 𝐵1/
𝐵3 - 5.9308 

0.76 2.04 <0.0001 

50 
Log10[TSM] = 1.9701ln(𝐵1/𝐵3) + 0.5732 0.69 2.29 <0.0001 

Log10[TSM] = 1.8876 𝐵1/𝐵3 - 1.3814 0.64 2.46 <0.0001 

* Standard error, **A significance level of 5% 

 

Studies have shown a good correlation between TSM and single band models based on 

wavelengths ranging from red to NIR in different environments (MILLER and MCKEE, 2004; 

SIPELGAS et al., 2006; KUTSER et al., 2007; RODRÍGUEZ-GUZMÁN and GILBES-

SANTAELLA, 2009; PETUS et al., 2010; ZHANG et al., 2010; ONDRUSEK et al., 2012; 

PARK and LATRUBESSE, 2014; KUMAR et al., 2016). The potential of these wavelengths 

in retrieving TSM can be explained by the bio-optical properties of the water. In turbid inland 

waters with low phytoplankton concentration, the absorption coefficient tends to decrease with 

increasing wavelength getting close to zero at the red and NIR regions whilst the backscattering 

coefficient of suspended sediment increases in those regions (DOXARAN et al., 2006, CUI et 

al., 2013). However, according to Figure 6.4, it is clear that BB is highly affected by 

phytoplankton absorption in the red wavelength and Nav is dominated by particulate and water 

itself. A significant quadratic correlation between the band ratio 𝑅𝑟𝑠𝑠𝑖𝑚
(645)/𝑅𝑟𝑠𝑠𝑖𝑚

(469) and 

in situ TSM in log scale (R² = 0.76, p < 0.0001) was obtained using the mixed dataset from Nav 

and BB (n = 50), followed by the logarithmic (R² = 0.69, p < 0.0001) and linear (R² = 0.64, p < 

0.0001) models. Previous studies have shown a good relationship between log transformed 

water quality data (TSM and Chl-a) and Rrs for productive waters such as those on Florida's 

northwest coast (WANG et al., 2010; CHEN et al., 2011). Olmanson et al. (2013) highlighted 

that the water quality data could behave normally or near normal when they are log transformed, 

agreeing with assumptions of regression. Fan (2014) who retrieved TSM concentration using 

in situ hyperspectral data also achieved a good relationship using a linear model based on the 
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spectral ratio of 650/420 in Patuxent River, tributary of Chesapeake Bay, USA. It is noteworthy 

that a statistically significant relationship does not always result in small errors, thus all the 

models and their respective variations were validated. 

To validate the calibrated models, 𝑅𝑟𝑠𝑠𝑎𝑡
 extracted from MODIS images were used. 

Among all the tested models, the approach using two calibration equations, one for each 

reservoir retrieved the lowest error instead of applying a single model to the mixed data. The 

model based on exponential fit of band 1 showed a RMSE = 3.66 mg l-1 and a NRMSE = 

31.54% for BB, and for Nav, both linear and quadratic models had very similar results with a 

slight improvement of the linear fit (RMSE = 0.37 mg l-1 and NRMSE = 29.43%) over the 

quadratic fit (RMSE = 0.37 mg l-1 and NRMSE = 29.48%). The model related to the mixed data 

presented the highest RMSE with the linear fit (RMSE = 64.70 mg l-1 and NRMSE = 401.89%) 

and the lowest error with the logarithm equation (RMSE = 5.48 mg l-1 and NRMSE = 34.04%) 

but even so, overestimating the TSM values for Nav. The NMRSE was also high compared to 

the approach using different models for each study site. For that reason, the exponential model 

based on band 1 was used to map BB and the linear equation also based on band 1 was used to 

map Nav. 

The predicted TSM from BB was, in general, underestimated (bias = -1.98 mg l-1) but 

the residuals did not present any trend. According to Dogliotti et al. (2015), high errors at 645 

nm are associated with phytoplankton absorption considering productive environments with 

Chl-a > 30 mg m-3. Thus, the underestimation might be related to the phytoplankton absorption, 

which is masking the reflectance and therefore the model’s performance. TSM predicted from 

Nav was overestimated (bias = 0.14 mg l-1) and no clear trend in residual was observed. This 

overestimation can be explained by the increment of combined effect of both water and 

phytoplankton absorption in the red spectral region. Cui et al. (2013) also draw attention to the 

fact that shallow waters and submerged vegetation might be the reason of this overestimation. 

Nav is affected by submerged vegetation mainly at the edges of the reservoir and Rotta et al. 

(2016) studied the effect of radiation availability on development and growth of this type of 

vegetation in a tributary of Nav reservoir. The predicted TSM produced by the mixed data 

overestimated the low concentrations but did not present any trend. These results emphasize 

the poor performance of one single model to describe the TSM variability in two widely 

different environments in terms of limnology and optical properties. On the other hand, the 

separate approach showed to be suitable to map the TSM variability.  
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This type of poor performance by a single model was not found by Chen et al. (2015), 

who used a quadratic log-ratio model based on red and NIR MODIS-250 m bands to study a 

wide range of TSM concentration (5.8 – 577.2 mg l-1) in China’s estuaries and coastal waters. 

After validation, they found a RMSE = 37.9 mg l-1 for TSM > 31 mg l-1 and a RMSE = 3.25 

mg l-1 for TSM ≤ 31 mg l-1, however, when applied to the data from Nav and BB (mixed data), 

the RMSE was 18.60 mg l-1 showing the site-specific limitation of this model in retrieving TSM 

in an environment different from the one used to calibrate the original model. Han et al. (2016) 

also worked with a wide-range TSM concentration (0.15 – 2,626 mg l-1) from clear to very 

turbid waters around the world but used a semi-analytical (SAA) way to retrieve this parameter 

with a RMSE > 1.8 mg l-1. The authors make it clear that splitting the data into clear to medium 

turbid and highly turbid waters, increases the accuracy of TSM retrieval. Thus, they created 

TSM-range dependent algorithms considering concentrations lower and higher than 100 mg l-1 

and then introduced a weighting function aiming to avoid artificial spatial pattern in TSM 

distribution. The SAA algorithm when applied to the low TSM range produced a RMSE of 

11.07 mg l-1 for Nav and BB data, which is high considering the range found in both reservoirs. 

Factors such as optical properties and water composition shown to be greatly responsible for 

the inefficiency of a single model built to map a range between very low (values predominantly 

lower than 1.00 mg l-1) to moderate TSM concentration (< 44.00 mg l-1) such as in Nav and BB, 

respectively. 

Binding et al. (2010) highlighted that the choice of the model and suitable band depends 

on the optical characteristic of the water and the range of TSM concentration. According to 

Figure 6.4, inorganic matter and CDOM basically control the optical characteristics of the water 

in Nav. Presence of CDOM and phytoplankton affects the visible bands (wavelengths shorter 

than 550 nm), constraining the use of a band with shorter wavelength for determining TSM 

concentration in optically complex waters (BINDING et al., 2010). Binding et al. (2005) 

showed that high mineral suspended solid (MSS) concentration increases the reflectance in 

longer wavelengths and the minimal influence of CDOM in this region suggest the use of red 

channel to map MSS. These findings support the fact that at 645 nm, the model based on Nav’s 

dataset, performed better than other models. On the other hand, in BB, TSM is primarily 

phytoplankton dominated, which means that 𝑅𝑟𝑠 will be low in the visible spectral region due 

to high absorption by pigments. This increase in chl-a concentration (> 100 µg l-1) can affect 

the TSM reflectance between 400 and 700 nm, and the chl-a behavior starts to overshadow the 

TSM reflectance characteristics (SVÁB et al., 2005). Song et al. (2014) showed a high 
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correlation coefficient between TSM and reflectance at approximately 700 nm in turbid water 

dominated by algal and non-algal particles, insinuating that for productive inland waters, the 

best approach may be to use the longer wavelengths. However, for BB the band 1 based non-

linear model achieved the best performance compared to both linear and non-linear fits using 

the band at 859 nm. 

The nature of the water composition can be explained by the LULC of the watershed, 

which is responsible for the inputs of OSCs affecting the optical properties. LULC such as 

urban and agriculture can act as a source for nutrients enrichment in water systems. High loads 

of nutrients can lead to the increase of primary production and consequently the increase of 

𝑎𝜙(443). Particle matter content can also influence 𝑎𝑁𝐴𝑃(443) (LE et al., 2015). Bernardes et 

al. (2004) found that high values of delta thirteen carbon (𝛿13𝐶) in the ultrafiltered dissolved 

organic matter were correlated to areas covered with pasture in the Ji-Paraná Basin, Amazon, 

which means that the replacement of primary forests by pastures for cattle feeding has changed 

the composition of the riverine organic matter. Further discussion about this topic can be found 

in the following sections.  

 

6.3.6 TSM spatio-temporal variability 

 

Images from May (beginning of the dry season) and October (end of the dry season) for 

the period from 2000 to 2015 were chosen to analyze the spatio-temporal variability of TSM 

using the most accurate model for each reservoir. The models based on visible wavelengths 

proved to be more applicable for moderate ranges of TSM instead of band ratio, which showed 

to be more correlated to environments dominated by MSS (DOXARAN et al., 2002, BINDING 

et al., 2003). Song et al. (2014) observed a high correlation between band ratios and TSM for 

turbid productive waters at the Chl-a absorption bands in the lake Taihu, China. Such band 

ratios (e.g., MODIS B1/B3) were not able to retrieve TSM accurately in these reservoirs with 

widely varying optical properties. The pattern of TSM distribution across both seasons was 

consistent with previous studies (CAVENAGHI et al., 2003; PANHOTA and BIANCHINI Jr., 

2003; ZANATA, 2005). The spatio-temporal distribution of TSM in Nav showed very low 

concentrations in the entire reservoir in May with majority of the pixels ranging between 0 – 

1.2 mg l-1 (Figure 6.7). In October, the TSM concentration increased slightly but 

homogeneously in the entire reservoir with most of the pixels concentrated between 0.6 – 2.6 

mg l-1. In BB, TSM ranged from 5.01 to 10 mg l-1 in May and 35 to 50 mg l-1 in October. In 

general, BB is much more turbid than Nav (Figure 6.8). 
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Figure 6.7. Spatio-temporal distribution of TSM over the main body of Nav based on MODIS 

8-day composite images for months of May and October from 2000 to 2015. 
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Figure 6.8. Spatio-temporal distribution of TSM over the main body of BB based on MODIS 

8-day composite images for the months of May and October from 2000 to 2015. The blank 

region represent the locations where the model extrapolated the TSM values over 150 m l-1. 

 

 

Factors such as geomorphology, LULC setting, location, wind, river flow, climatic 

conditions and topography tend to impact the range and variability of TSM in a reservoir 

(WANG et al., 2010). Therefore, the high TSM in October compared to May in both reservoirs 

is probably because of the high rainfall induced runoff from the upland watersheds that 

transports sediment and other materials into the reservoirs. The spatial distribution of TSM in 

Nav showed a homogeneous dispersion along the reservoir and can be related to the type of 

operation of the dam, which is a run-of-river, and the shape of this reservoir that is elongated 
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and continuous. These features lead to low variation of the water level, high frequency and 

behaving as a semi-lotic environment with intermediate fluvial characteristics (PERBICHE-

NEVES et al., 2011; PERBICHE-NEVES and NOGUEIRA, 2013). On the other hand, TSM in 

BB varied spatially showing high values around the island that is connected to the Araquá River 

(see Figure 2.1 for location) in May mainly because of contributions from anthropogenic 

sources such as sugarcane plantations. In addition, this region is very susceptible to the 

proliferation of floating macrophytes and as stated in Cavenaghi et al. (2003), the presence of 

these floating vegetation was related to the sedimentation process located in the reservoir`s edge 

and coming from the confluents. Overall, higher values of TSM were found in October and the 

water coming from the Tietê River contributed less than Piracicaba River.   

The overestimation found in BB map can be associated to the limitation of the model to 

represent concentrations over 50 mg l-1. Cui et al. (2013) also noticed a saturation problem using 

the red band from MODIS/Terra indicating that the exponential model may introduce high 

errors when applied in very turbid waters. Wu et al. (2013) faced the same problem using non-

linear models based on red band from MODIS/Terra and to overcome this issue, they used a 

NIR based linear model, but after validation, the accuracy was very low (correlation of 0.54). 

Feng et al. (2014) highlighted the same concern of saturation for high TSM concentrations when 

applying blue and red bands based models and they came up with a model based on two 

equations: one for TSM < 50 mg l-1 (using the red band from MODIS) and other for TSM > 

150 mg l-1 (using the band ratio between NIR over red), both using the exponential fit. Low 

concentrations of TSM can be problematic for mapping. Kumar et al. (2016) found that in 

Chilika Lake, the MODIS-based model was not suitable for retrieving TSM concentrations 

below 6.54 mg l-1. Han et al. (2016) tested Nechad et al. (2010) model using their wide-range 

TSM and noticed that values lower than 1.2 mg l-1 were overestimated. Therefore, it can be 

concluded that all MODIS based TSM algorithms tested in this study are somewhat site or 

region specific. A truly scalable TSM algorithm that fits all water bodies is not available. That 

explains why there are so many variations of semi-empirical TSM models in the literature. 

Many of them applied in this study proved that they are in fact not highly scalable across broad 

geographic regions and turbidity regimes. 

Another issue that also affects the model performance is related to the quality of the 

image, especially with regards to atmospheric correction. Wang et al. (2015) improved the 

signal of 𝑅𝑟𝑠 by subtracting the average response from SWIR bands (centered in 1640 and 2130 

nm) in order to offset the deficiency in the original atmospheric correction of MOD09 product. 
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This approach was used in Lake Taihu, China, which is very turbid and productive system, 

however, the performance of this approach was not satisfactory to less turbid systems such as 

Nav and BB. Therefore, the correction proposed by Wang et al. (2015) produced negative 

values after subtraction by SWIR bands and was not included in this paper. 

The TSM variability in different sectors of the reservoirs can be seen in Figure 6.9. In 

Nav, samples picked at five different locations along the reservoir showed a homogeneous 

behavior from 2000 to 2015 in May. In October, the magnitude of TSM increased, however, 

none of the sectors stood out from the rest, highlighting the homogenous distribution in Nav.  
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Figure 6.9. TSM variability during the (a) beginning of the dry season and (b) end of the dry 

season in Nav; (c) beginning of the dry season and (d) end of the dry season in BB at different 

locations along the reservoir. SBS: Santa Barbara Stream, BR: Bonito River, PR: Piracicaba 

River, TR: Tietê River, TZ1: Tranzition Zone 1, TZ2: Transition Zone 2. (e) TSM (mg l-1) 

concentration from field campaigns carried out in Tietê River (Barra Bonita – BB, Bariri – B, 

Ibitinga – I, Promissão – P, Nova Avanhandava – Nav) except for Três Irmãos (TI) reservoir in 

2000 (CAVENAGHI et al., 2003) (solid lines); including all reservoirs along the Tietê River 

during the years 2001 and 2002 (ZANATA, 2005) (dotted lines) and in the lower Tietê basin 

during 2008 and 2009 (dashed lines) (SANTOS, 2010). 

 

 

Overall, the MODIS/Terra based maps showed the seasonal influence in TSM 

concentration. The rainy season contributes to the entry of autochthonous matter from the 

watershed increasing the concentration of particulate matter. In situ TSM data based on 
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different studies carried out in Tietê River basin in different dates are presented to support the 

analysis (Figure 6.9e). TSM tend to increase during October and the opposite was observed for 

April and May. The same trend was found in other studies for the site (BARBOSA et al., 1999, 

CAVENAGHI et al., 2003) and the gradient of TSM decreases from the upstream to 

downstream reservoirs, becoming less pronounced in the low basin reservoirs, Promissão, Nav 

and Três Irmãos. As highlighted by Rodgher et al. (2005), the suspended matter originated from 

Tietê and Piracicaba Rivers in the rainy season is very high when compared to that of the dry 

season. The turbidity composed by inorganic fraction diminished significantly in BB, however, 

this change is less noticeable in the downstream reservoirs (BARBOSA et al., 1999). 

 

6.3.7 Factors affecting optical changes in the reservoirs 

 

The poor accuracy of the mixed model can be attributed to the differences in the water 

quality composition of both sites. BB is phytoplankton dominated while Nav is inorganic matter 

dominated with contribution of CDOM at 443 nm. Although the same river is the source for 

both reservoirs, the LULC compositions of the watershed are different and as stated by Sandes 

(1990), it is necessary to consider the input of pollutants by diffuse and punctual sources in each 

reservoir. The BB watershed is covered by urban centers, bare soil, agriculture fields, and 

shrubland also represented by planted crops. Nav is occupied in general by agriculture with low 

influence of urban centers. Urban and agriculture activities contribute with the fluctuations of 

inorganic nutrients levels changing the primary producers (TONG and CHEN, 2002; 

ROBINSON et al., 2014). Ahearn et al. (2005) found a good correlation between agriculture 

and nitrate-N loading as well as Coulter et al. (2004) who also observed agriculture as a greater 

source of nutrients when compared with urban land uses that yielded high suspended sediment 

concentrations. Tu (2011; 2013) and Zhao et al. (2015) pointed out that agriculture can be a 

source of pollution in less-urbanized watersheds, however, the contrary is true when agriculture 

is interleaved in a highly-urbanized watershed. This is because in highly urbanized areas the 

pollution coming from agriculture is negligible and often masked by urban sources. Li et al. 

(2008) studying the Han River, China, observed that both urban and agriculture areas have 

dominant control on TSM concentration. Besides, the authors also noticed that vegetated 

coverage was related to water temperature, nitrogen and the high vegetation cover presented 

low turbidity, suspended particulate matter, nutrients and total dissolved solids. The Tietê River 

catchment basin is highly affected by anthropogenic activities that are considered a pollution 

source. As stated by Petesse et al. (2014), the catchment portion in the upstream of the BB 
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reservoir is densely populated with twenty-six million people (90.5% of the total Tietê River 

basin population). A similar study by Im et al. (2015) revealed that wastewater coming from 

the city was the major source of water quality deterioration on Cheung Ek Lake, Thailand. 

Busse et al. (2006) also concluded that algal biomass increases with urbanization and during 

summer, chlorophyll concentrations were correlated to light and nutrient levels. Activities such 

as industry and agriculture are also highly active in this region mainly related to sugarcane 

plantation. Barra Bonita municipality has a biomass power plant which produces vinasse as 

residue and further used as fertilizer for sugarcane plantations. This byproduct of the sugarcane 

industry is composed by nutrients (potassium calcium, nitrogenous, sulfur and magnesium) and 

is absorbed by plants and also drained through the soil reaching the aquatic system (PRADO, 

2004).  

Agriculture is also predominant around Nav sub-basin; however, the water quality is 

better than that of BB (BARBOSA et al., 1999) suggesting that other factors, in addition to 

agriculture, could be more important for the poor water quality in BB. Tietê and Piracicaba 

rivers are susceptible to domestic and industrial contamination due to the proximity to urban 

centers along its course. Carvalho et al. (2005) highlighted that the occurrence of floating 

vegetation in BB is due to high turbidity and, on the other hand, submerged vegetation is 

frequent in low turbidity environments such as Nav. According to Cavenaghi et al. (2003), the 

phosphate values are higher in BB reservoir (average value of 170 µg l-1 in 2001 and 2002) than 

those further downstream such as Nav (25.42 µg l-1). A similar decreasing pattern is also 

observed for suspended solids, turbidity and electrical conductivity. As discussed here, the 

LULC have a direct effect on the water quality increasing the eutrophication process in 

manmade water bodies and ultimately changing in optical water quality. Different water 

composition and a wide TSM range can induce systematic error in red and NIR based TSM 

models.  

 

6.4 Conclusion 

 

Optical and water quality in situ data were collected from two widely different 

reservoirs, eutrophic Barra Bonita and oligo-mesotrophic Nova Avanhandava, along Tietê 

River’s cascade reservoir system. The data were used to calibrate a TSM algorithm for the 

MODIS/Terra satellite surface reflectance products. Several empirical TSM models were tested 

for the reservoirs (TSM range: 0–44 mg l-1) using simulated remote sensing reflectance (𝑅𝑟𝑠𝑠𝑖𝑚
) 
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for calibration and remote sensing reflectance of the satellite (𝑅𝑟𝑠𝑠𝑎𝑡
) for validation. 

Considering the variability of TSM values at both sites, the site-specific models had a good fit 

and represented the spatial pattern of this optically significant component well. The source and 

nature of water quality parameters were crucial to understand the limitations of a single 

empirical model in characterize optically different environments. Besides, the bio-optical 

models showed to be constrained by the watershed composition.  

BB reservoir receives sediment contribution from two rivers: Tietê and Piracicaba and 

during the beginning of the dry season, it was noticed that high values of TSM is associated 

with the flow from Tietê River. This high sediment load creates a favorable condition for 

emergent macrophytes that float downstream toward the dam. On the other hand, TSM spatial 

distribution in Nav was very homogeneous along the whole reservoir and besides, the variability 

during the water collections was not outstanding; mainly due to the type of operation of that 

reservoir, that is run-of-river.  

The spatial analysis results from this study corroborate with other studies regarding the 

improvement of water quality from upstream to downstream in a cascade system, showing the 

difference in water composition for both sites. The TSM from BB showed a strong relationship 

with phytoplankton and the TSM from Nav was influenced by inorganic matter. Use of a single 

model to resolve the TSM of different origins was not possible and site-specific approach 

worked best to resolve the spatial variability of TSM in these reservoirs. The monitoring of the 

water quality in a cascade system such as this using an accurate single model is very challenging 

because of the wide variability of water quality and optical properties along the same river 

across a varying LULC gradient. Understanding of the environmental forcing that affect each 

reservoir’s water quality could be the key to designing a robust monitoring approach. 
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CHAPTER 7: CONCLUSION AND FUTURE RECOMMENDATIONS 

 

7.1 Conclusion 

 

The results achieved in this thesis confirmed the hypothesis that organic and inorganic 

dominated waters such as BB and Nav, respectively, decrease the performance of a single 

empirical model to estimate TSS; however, after recalibrating the empirical steps of QAA, the 

performance of the model increased and could estimate 𝑎𝑡 accurately, considering both 

reservoirs. 

The OSCs collected between 2014 to 2016 showed considerable changes between BB 

and Nav. The first one was more turbid and phytoplankton dominated, while Nav was less 

productive and presented more clear water. The OSC concentration varied in magnitude 

according to the field trips showing high dependence of rainfall condition. The year of 2014 

showed atypical rainfall condition leading to modifications in water quality mainly in BB which 

is a storage system, therefore accumulates water during the dry season. The average Chl-a 

concentration increased from 120.4 µg l-1 in May/2014 to 428.7 µg l-1 in October/2014. 

However, in Nav the Chl-a concentration did not vary showing averages of 6.2 µg l-1 and 9.0 

µg l-1 in April-May/2014 and September/2014, respectively. This was probably related to the 

operation system, in this case, a run-of-river reservoir, so the water flows continuously not 

storing for dry periods. A third data collection was carried out in Nav (May/2016) but the lowest 

rainfall rate in the previous months, even less than 2014, led to the increase of primary 

production and consequently the increase of the average Chl-a concentration (26.4 µg l-1). The 

same pattern happened for TSS, also affecting the water transparency. 

This water quality scenario echoed to the optical properties. Nav, for example, showed 

high variance in the absorption at 443 nm with 𝑎𝑁𝐴𝑃 in Nav1 and CDOM, 𝑎𝐶𝐷𝑂𝑀 in Nav2. The 

Nav3 was dominated by 𝑎𝑁𝐴𝑃. At 560 nm, 𝑎𝑁𝐴𝑃 varied with other components but was 

dominant at all field trips and at 665 nm the phytoplankton (𝑎𝜙) was dominant, except for Nav2 

that varied with other components. As expected BB was fully dominated by phytoplankton with 

percentages reaching 87% in BB2 at 665 nm, however at 443 and 560 nm its dominance was 

below 50% for BB1, highlighting the interference of other components. The implication of 

these findings to the bio-optical modeling is important, because we now understand that Nav is 

highly affected by NAP and CDOM at the blue and green regions rather than phytoplankton. 
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BB, on the other hand, was dominated by 𝑎𝜙 at 665 nm, not varying with other components, so 

this wavelength must be recommended for Chl-a estimation.  

The IOPs showed to be useful for water characterization, and they are used in several 

semi-analytical models, therefore the use of remote sensing approaches seems to be valuable 

for water quality monitoring. Nav is categorized as inland water, however, is not productive 

which is different from the previous waters used in QAA parametrization. All these versions 

failed leading to the definition of new steps for QAA and here named as QAAOMR. The main 

issue behind this failure was first addressed to the reference wavelength selection, which is 

responsible to highlight just the contribution of water in the total absorption budget. The 

obstacle found on previous QAAs was related to 𝑎𝜙(𝜆) retrieval based on simple subtraction 

between 𝑎𝑡(𝜆) and 𝑎𝐶𝐷𝑀(𝜆), however, the errors was very high surpassing 100% of uncertainties 

considering specific wavelengths. Therefore, we came up with a new approach recently 

suggested by Ogashawara et al. (2016) but with relevant modifications aiming to derive 𝑎𝜙 

(443) based on Lee et al. (2010) and the normalized 𝑎𝜙
+(𝜆) discussed by Roesler et al. (1989). 

A great improvement was achieved with uncertainties below 50% (412 – 681 nm). An 

independent dataset was used for validation and the QAAOMR showed to be robust in retrieving 

the IOPs, and even assuring the necessity of use data from broader geographic regions, the 

model comes to give a better solution for waters characterized as oligo-to-mesotrophic and 

dominated by inorganic matter. 

As previously described, both reservoirs are optically different, however, for water 

management purposes is very important to use a single approach to retrieve optical water 

properties covering the whole cascade system. The QAA from Watanabe et al. (2016), 

QAABBHR, was parametrized using data from BB and the results was very satisfactory, however 

it showed limitations in retrieving 𝑎𝜙(𝜆), therefore, we evaluated the performance of each QAA 

in retrieving 𝑎𝑡(𝜆), 𝑎𝐶𝐷𝑀(𝜆) and 𝑎𝜙(𝜆) pointing out the main issues surrounding their 

estimative. Both QAA versions (QAABBHR and QAAOMR) could retrieve 𝑎𝑡(𝜆) considering 

different types of water with a slight advantage of QAABBHR. Therefore, a single model can be 

suitable to estimate at least 𝑎𝑡(𝜆), considering different trophic state waters. On the contrary, 

more efforts must be carried out for improving the 𝑎𝐶𝐷𝑀(𝜆) and 𝑎𝜙(𝜆) estimation aiming to 

reduce the errors below 50%. 

Regarding the performance of an empirical model for TSM retrieval considering the 

data from both reservoirs, several empirical models were tested considering the TSM range of 

0 and 44 mg l-1 using simulated remote sensing reflectance (𝑅𝑟𝑠𝑠𝑖𝑚
) for calibration and remote 
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sensing reflectance of the satellite (𝑅𝑟𝑠𝑠𝑎𝑡
) for validation. However, none of those models could 

cover the range of the study sites. For very low concentration, the single model tended to 

overestimate sediment concentration and the use of the linear adjustment based on the red band 

could improve the result significantly. On the other hand, the moderate concentration was 

successfully retrieved using the exponential fit of red band. The main issue concerning the use 

of single model was related to the bio-optical properties from both reservoirs. As previously 

mentioned, the sediment composition of BB is primarily composed by phytoplankton whilst 

Nav is inorganic dominated water. These properties limit the use of a single approach aiming 

to cover very low to moderate TSM concentrations. To address this issue, semi-analytical 

approaches could be a potential way to model wide range of sediment concentration and it will 

be considered for future works. 

 

7.2 Future Recommendations 

 

The current results showed great improvements in remote sensing of inland waters 

researches, although this was just the start of a series of issues that need to be addressed. 

Understanding the bio-optical diversity of individual environments such as the reservoirs of the 

Tietê River is very important, however, when we consider the entire cascade the bio-optical 

modeling approach quite changes. So, for future works it is worth to include as many data as 

possible from all the elements of the cascade to turn the study area more representative. 

Besides, it is also relevant to analyze not only the longitudinal modifications along the 

system but also the relationship between the anthropogenic activities, such as agriculture, 

industries and urban centers, that surround the reservoirs and they are part of the watershed 

dynamic. Few works have relating the impact of the LULC on the IOPs, but they already know 

that the watershed is the source of OSC, that affects the optical properties of inland waters. 

In terms of OSC retrieval in wide range of concentrations, empirical models have shown 

their limitation in cover both low and high concentrations, so the development of semi-

analytical approaches based not only on radiance or reflectance, but also the IOPs may be a 

good way out for this situation. In the case of Tietê River, split the cascade according to the 

trophic state can possibly be a first step for water monitoring. The reservoirs from the Low 

basin present a better water quality than those upstream in the Middle basin, therefore they can 

be merged and worked initially together. 

The QAAOMR showed great enhancements for IOPs retrieval and it showed to be the 

only one, which, up to now, was parameterized in inland water with limited primary production 
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and dominated by inorganic matter. However, the estimation of 𝑎𝜙(𝜆) still needs attention. For 

future works, data of absorption, scattering and backscattering coefficients collected in the field 

by robust instruments such as the ac-s and the ECO-BB9 from WETLabs, needs to be included 

in the process of validation and tuning of empirical steps of QAA. 
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