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Resumo

Detectores óticos de caracteres, ou Optical Character Recognition (OCR) 
é o nome dado à técnologia de traduzir dados de imagens em arquivo de 
texto. O objetivo desse projeto é usar aprendizagem profunda, também 
conhecido por aprendizado hierárquico ou Deep Learning para o desenvol-
vimento de uma aplicação com a habilidade de detectar áreas candidatas, 
segmentar esses espaços dan imagem e gerar o texto contido na figura. 
Desde 2006, Deep Learning emergiu como uma nova área em aprendiz-
agem de máquina. Em tempos recentes, as técnicas desenvolvidas em 
pesquisas com Deep Learning têm influenciado e expandido escopo, in-
cluindo aspectos chaves nas área de inteligência artificial e aprendizagem 
de máquina. Um profundo estudo foi conduzido com a intenção de desen-
volver um sistema OCR usando apenas arquiteturas de Deep Learning. A  
evolução dessas técnicas, alguns trabalhos passados e como esses tra-
balhos influenciaram o desenvolvimento dessa estrutura são explicados 
nesse texto. Essa tese demonstra com resultados como um classificador 
de caracteres foi desenvolvido. Em seguida é explicado como uma rede 
neural pode ser desenvolvida para ser usada como um detector de objetos 
e como ele pode ser transformado em um detector de texto. Logo após 
é demonstrado como duas técnicas diferentes de Deep Learning podem 
ser combinadas e usadas na tarefa de transformar segmentos de imagens 
em uma sequência de caracteres. Finalmente é demonstrado como o de-
tector de texto e o sistema transformador de imagem em texto podem ser 
combinados para se desenvolver um sistema OCR completo que detecta 
regiões de texto nas imagens e o que está escrito nessa região. Esse 
estudo demonstra que a idéia de usar apenas estruturas de Deep Learning 
podem ter performance melhores do técnicas baseadas em outras áreas 
da computação como por exemplo o processamento de imagens. Para 
detecção de texto foi alcançado mais de 70% de precisão quando uma



arquitetura mais complexa foi usada, por volta de 69% de traduções de
imagens para texto corretas e por volta de 50% na tarefa ponta-à-ponta
de detectar as áreas de texto e traduzi-las em sequência de caracteres.

Palavras-Chave: Aprendizado Profundo, Redes Neurais Convolucion-
ais, Redes Neurais Recorrentes, OCR



Abstract

Optical Character Recognition (OCR) is the name given to the techno-
logy used to translate image data into a text file. The objective of this
project is to use Deep Learning techniques to develop a software with the
ability to segment images, detecting candidate characters and generating
text that is in the picture. Since 2006, Deep Learning or hierarchical learn-
ing, emerged as a new machine learning area. Over recent years, the
techniques developed from deep learning research have influenced and
expanded scope, including key aspects of artificial intelligence and ma-
chine learning. A thorough study was carried out in order to develop an
OCR system using only Deep Learning architectures. It is explained the
evolution of these techniques, some past works and how they influenced
this framework’s development. In this thesis it is demonstrated with results
how a single character classifier was developed. Then it is explained how
a neural network can be developed to be an object detector and how to
transform this object detector into a text detector. After that it shows how
a set of two Deep Learning techniques can be combined and used in the
task of transforming a cropped region of an image in a string of characters.
Finally, it demonstrates how the text detector and the Image-to-Text sys-
tems were combined in order to develop a full end-to-end OCR system that
detects the regions of a given image containing text and what is written in
this region. It shows the idea of using only Deep Learning structures can
outperform other techniques based on other areas like image processing.
In text detection it reached over 70% of precision when a more complex
architecture was used, around 69% of correct translation of image-to-text
areas and around 50% on end-to-end task of detecting areas and translat-
ing them into text.

Keywords: Deep Learning, Convolutional Neural Network, Recurrent, 
Neural Network, OCR
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1 Introduction

The purpose of this work is to create a survey about general text detec-
tion and word recognition techniques, so when these tasks are combined,
they create a robust framework for text extraction from images, allowing
the computer to read information.

The OCR (Optical Character Recognition) technology is used around
the world to solve several problems that are very easy for humans but take
a long time or need a lot of people working to finalize a job, such as passport
data reading and car plate detectors in order to automatic generate fines.
In the listed cases, the reading window is very specific and there is not
a lot of variation on size, font and format of the characters. Technically
speaking, it tends to be easier to develop the software necessary to read
the text in these contexts.

Traditional OCR frameworks usually work very well for pure text im-
ages, like printed version or photo of black-and-white documents.1 This is
because there is not a lot of “pollution” in this kind of image, such as huge
variation of colors, other objects in the scene or inclination and translation
of the words. This extra information can compromise the final result of de-
tecting text only, adding some characters that do not belong to the scene
or even not detecting some words because it is color or border mixed.

A robust OCR system is very useful on several tasks. For example,
autonomous cars need a high performance framework to detect anomalies
on the road (ex: to read the speed change on an area or to detect plaques
on the highway). Other interesting application is real-time translation of
printed books.

To accomplish a relevant result on the described tasks, several tech-
niques used on computer vision and artificial intelligence are necessary.
Currently, there is a specific field on Machine Learning which has been

1https://www.abbyy.com
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achieving very good results on both jobs: the Deep Learning. It consists
on several techniques that allows the computer to learn different tasks like
the brain does.

Deep learning is amachine learning branch based on a set of algorithms
which attempt to model high-level abstractions for data processing using
multiple layers, with complex structures composed of several linear and/or
non-linear transformations[Bishop, 2006].

Many OCR systems have serious problems on detecting text on real
scenes like photographs from places or evenmore simple figures like digital
text images from spam. The purpose of this work is to create a survey about
general text detection and word recognition techniques, so when these
tasks are combined, they create a robust framework for text extraction from
images, allowing the computer to read information.

On Chapter 2 it is presented a more specific discussion about Deep
Leaning. It shows some available architectures and describes how each
one of them works.

On Chapter 3 it is explained how some more complex structures can be
assembled from Chapter 2 to solve different types of problems, including
image denoising and object localization.

On Chapter 4 a more specific description of the proposed framework
is available. It defines how each of the techniques reported on Chapter
3 are intended to work and when each one of them is applied. This unit
is divided in two main parts: what was the initial idea and how was the
framework developed using only Deep Learning techniques.

On Chapter 5 it is again divided in two main components: the initial res-
ults on a competition available online using a technique of Deep Learning
and the results on three main tasks proposed by this work.

In the following section, a deep study about Deep Learning is shown
detailing about how the structures are trained and more about their beha-
vior.

5



2 Deep Learning

One branch of Machine Learning which has been developed along last
few years is Deep Learning. The name comes back from middle-2000’s
from Hinton’s paper[Hinton, 2007] but become a really buzz word in 2012
after Google researches advance on image recognition[Le et al., 2012].

The objective of this field is to copy the way the brain learns and execute
tasks, based on several layers of artificial neural network that allows the
computer to be trained to simulate how animals solve problems.

In this Chapter it is firstly explained how this type of network works in
general. After that it explains how Deep Learning is trained and some
details about Gradient Descent and its upgrades. Then it details deeper
how Multilayer Perceptron (MLP), Convolutional Neural Networks (CNN)
and Recurrent Neural Networks (RNN) performs.

2.1 Artificial Neural Network (ANN)

As said before, there are problems which could be solved faster if there
was a way to mimic how human or other animals’ brain solve issues like
image interpretation or transform sounds in useful information. Based on
threshold calculus, McCulloch and Pitts[Mcculloch and Pitts, 1943] created
what is considered the first computational model inspired in the brain to
solve problems. Figure 1 shows its structure and how it basically works.

From this publication, several other studies[Burks andWang, 1957, Far-
ley and Clark, 1954, Rosenblatt, 1958] were published, giving the idea that
in little time it would be possible to solve several types of problems using
neural network based techniques. But in 1969 Minsk and Papert[Minsky
and Papert, 1969] proved two important points for neural networks:

• A basic perceptron[Rosenblatt, 1958] could not process exclusive-or

6
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Figure 1: An example of a simple Perceptron

(XOR) circuit because it involves non-linear functions. This is im-
portant because if this computation could not be done by neural net-
works, it would imply that other problems (non-linear function-based
problems) could not be solved using this technique.

• The process power required to handle the computation for a neural
network to solve bigger problems was huge and there was not a com-
puter with enough power available yet.

These problems lasted until 1975 whenWerbos[Rumelhart et al., 1988]
created the Backpropagation algorithm. Werbos’ approach was good not
only because it could solve the XOR circuit problem but it could train a
bigger neural network much faster. This technique is still used in neural
network training task.

In the 1980’s, John Hopfield presented the first popular model of recur-
rent neural network[Hopfield, 1982] that provided a model for understand-
ing human memory.

In the 1990’s, Yan LeCun showed a new type of neural network archi-
tecture[LeCun et al., 2001] that could successfully recognize handwritten
digits with very good precision. Based on the mammals’ visual cortex, it
used several layers which task was to get as many features as possible

7



from a given image and then this image could be classified in a 0-9 digit.
From 2000, other architectures[Vincent et al., 2010] appear, using dif-

ferent approaches. Csáji [2001] proved the Universal Approximation The-
orem, which says that a neural network can represent any function when
training data represents all the domain and backpropagation algorithm with
Gradient Descent is used. Mathematically speaking, an ANN is a com-
posed function where each neuron of a given layer represents a part of
this composition. So any function represented by the input domain can be
represented when the neural network has enough neurons in its hidden
layer (in the study, it says one layer is enough to represent any transform-
ation) and the training algorithm is executed.

2.2 Training and Optimization

Any artificial neural network usually has two main steps: the training,
when the structure tries to learn the best values for each parameter based
on the training data; and the execution, where after gaining the values, the
network is able to execute the desired task.

Execution part is straightforward: the network receives the input values,
each layer calculates a transformation and in the end it provides the output
based on the middle layer calculation. The trick section is the training: how
exactly should the neural network learn the correct values for each layer?
The most used technique nowadays[Abadi et al., 2015, Chollet, 2015] is
the backpropagation algorithm. It basically works following these steps:

• The network calculates its output based on the training data(Forward
pass);

• In this step the data is labeled, so it is possible to calculate the error;

• Based on the learning rate, this error is multiplied by a factor;
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• The variation rate is calculated on the final layer (gradient) based on
the derivative of its activation function and the value of error;

• This process is made layer by layer until the first hidden layer (back-
propagation of error).

The difference is how the error and the learning rate is calculated. Gradi-
ent Descent is still largely used however new techniques have appeared in
last years. In this section it will be detailed the differences between them
and why ADAM Optimizer[Kingma and Ba, 2014] was chosen in this work.

2.2.1 Gradient Descent

Gradient Descent was the first function used to enhance the parameters
of a neural network inside the backpropagation algorithm. For each epoch,
it evaluates the error based on the available data and then it updates the
parameters based on the error and on the learning rate. Algorithm 1 de-
scribes how the code looks like.
Algorithm 1: Gradient Descent Algorithm
Data: epochs, lossFunction, learningRate, data, parameters
Result: Trained parameters value

1 while training < epochs do
2 paramsEpoch = evaluate(lossFunction, data, parameters)
3 parameters = parameters - learningRate * paramsEpoch
4 training++

This code has two main problems: if ԓԐԣԐ is bigger than memory avail-
able, it will generate an out-of-memory error; the other is because the para-
meters are not update very frequently, so it tends not to converge so quickly
as expected. To solve them both, a stochastic version of the code is used.
The parameters are updated for each instance of ԓԐԣԐ instead of calculated

9



for only each epoch. It is described on Algorithm 2
Algorithm 2: Stochastic Gradient Descent Algorithm
Data: epochs, lossFunction, learningRate, data, parameters
Result: Trained parameters value

1 while training < epochs do
2 ԢԗԤԕԕԛԔ	ԓԐԣԐ
;
3 for example in data do
4 paramsEpoch = evaluate(lossFunction, example,

parameters) parameters = parameters - learningRate *
paramsEpoch

5 training++

This is still not the best solution. It may cause the parameters to con-
verge in a local minimum instead of the global minimum. To solve this last
problemmini batches of data are used: it updates the parameters for a mini
set of ԓԐԣԐ rather than for each instance. It makes the function fluctuates
more, avoiding the situation. Algorithm 3 explains its work.
Algorithm 3: Mini-Batch Stochastic Gradient Descent Algorithm
Data: epochs, lossFunction, learningRate, data, parameters,

batchSize
Result: Trained parameters value

1 while training < epochs do
2 ԢԗԤԕԕԛԔ	ԓԐԣԐ
;
3 for batch in createBatch(data, batchSize) do
4 paramsEpoch = evaluate(lossFunction, batch, parameters)

parameters = parameters - learningRate * paramsEpoch
5 training++

Most available Deep Learning frameworks [Abadi et al., 2015, Chollet,
2015] makes use of Mini-Batch Stochastic Gradient Descent even when it
calls only Stochastic Gradient Descent (SGD).

10



2.2.2 Momentum

In order to improve the velocity of the function convergence, Momentum
(from physics) was adapted to work with Gradient Descent. Imagine there
is a ball falling from a hill, it accumulates momentum every time it goes
down, increasing the speedy. This is the same principle used on this al-
gorithm.

For each interaction, it calculates the error like SGD and then add a
fraction(ᅭ) of the previous interaction of the looping. This value is usually
0.9. Algorithm 4 shows more details
Algorithm 4: Mini-Batch Stochastic Gradient Descent Algorithm with

Momentum
Data: epochs, lossFunction, learningRate, data, parameters,

batchSize
Result: Trained parameters value

1 ԥ֏ � �
2 while training < epochs do
3 ԢԗԤԕԕԛԔ	ԓԐԣԐ
;
4 for batch in createBatch(data, batchSize) do
5 paramsEpoch = evaluate(lossFunction, batch, parameters) +ᅭ  ԥ֏;
6 parameters = parameters - learningRate * paramsEpoch ;
7 ԥ֏ = paramsEpoch;
8 training++

2.2.3 Nesterov Momentum

The inclusion of Momentum showed a decreased of time needed for
training. However, in 1983, Yurii Nesterov figured out a problem with this
method: in some cases, the Momentum value can be very high near the
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global minimum, making the parameters not converge on the ideal place.
Imagine again the ball running in a hill, if it reaches the bottom too fast, it
may go up again and get stuck on another local minimum.

To prevent this problem, he proposed another way to calculate this vari-
ation, making the jump before calculates the new Momentum value. Al-
gorithm 5 shows the differences against Algorithm 4.
Algorithm 5: Mini-Batch Stochastic Gradient Descent Algorithm with

Momentum
Data: epochs, lossFunction, learningRate, data, parameters,

batchSize
Result: Trained parameters value

1 ԥ֏ � �
2 while training < epochs do
3 ԢԗԤԕԕԛԔ	ԓԐԣԐ
;
4 for batch in createBatch(data, batchSize) do
5 paramsEpoch = evaluate(lossFunction, batch, (parameters -ᅭ  ԥ֏) ) + ᅭ  ԥ֏;
6 parameters = parameters - learningRate * paramsEpoch ;
7 ԥ֏ = paramsEpoch;
8 training++

It shows in line 4 the difference. By doing this change on values of
parameters before evaluate, it helps to decrease the Momentum when it
is about to get to a global minimum, avoiding the function to converge to a
local minimum instead.

12



2.2.4 AdaGrad

Until now it is shown how to adapt the Momentum to prevent some types
of problems. It is possible to adapt the learning rate too, speeding up the
convergence.

AdaGrad (Adaptive Gradient) adapts the learning rate to each para-
meter, making the optimization in a hasty manner. It makes bigger changes
for parameters that changes less and smaller jumps for thosewhich changes
more frequently. Algorithm 6 shows more details. It is possible to see the
learning rate is not a value anymore but a list of values, one for each para-
meter.
Algorithm 6: AdaGrad Algorithm
Data: epochs, lossFunction, ᅯ, data, parameters, batchSize,

learningRates
Result: Trained parameters value

1 G = 0;
2 while training < epochs do
3 ԢԗԤԕԕԛԔ	ԓԐԣԐ
;
4 for batch in createBatch(data, batchSize) do
5 paramsEpoch = evaluate(lossFunction, batch, parameters);
6 for i in size(paramsEpoch) do
7 Ӽք � ԟԐԡԐԜԢӺԟԞԒԗք  ԟԐԡԐԜԔԣԔԡԢք;
8 Ӽք � Ӽք  ԓԔԒԐԨ;
9 ԟԐԡԐԜԢӺԟԞԒԗք �	ԛԔԐԡԝԘԝԖԇԐԣԔԢք�ఊ	௴ք։�Ј Ӽ֏֍ռք։ք։ւӴ։
 � ᅯ
;
10 training++
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2.2.5 AdaDelta

AdaGrad performs really well because it adapts the learning rate accord-
ing to the frequency of parameters’ update. However, it is easy to detect
that in a long-term training, the gradient tends to go to 0, not optimizing the
values anymore because of the division of sums of square roots sequen-
tially. This problem is known as the “vanishing gradient”. To solve this
problem AdaDelta performs a slightly different approach, it limits the sum
to the last ԧ interactions (usually ԧ � �, meaning it uses only the last and
the current calculated gradients). The algorithm can be seen in Algorithm
7.
Algorithm 7: AdaDelta Algorithm
Data: epochs, lossFunction, ᅯ, data, parameters, batchSize,

learningRates, decay
Result: Trained parameters value

1 G = 0;
2 while training < epochs do
3 ԢԗԤԕԕԛԔ	ԓԐԣԐ
;
4 for batch in createBatch(data, batchSize) do
5 paramsEpoch = evaluate(lossFunction, batch, parameters);
6 for i in size(paramsEpoch) do
7 Ӽք � ԟԐԡԐԜԢӺԟԞԒԗք  ԟԐԡԐԜԔԣԔԡԢք;
8 Ӽք � Ӽք  ԓԔԒԐԨ;
9 ԟԐԡԐԜԢӺԟԞԒԗք �	ԛԔԐԡԝԘԝԖԇԐԣԔԢք�ఊ	௴ք։�ք֓ Ӽ֏֍ռք։ք։ւӴք
 � ᅯ

10 training++
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2.2.6 ADAM Optimizer

AdaDelta is already a very good optimizer for Deep Learning architec-
tures because it calculates individual learning rates for each parameter,
calculates momentum and prevents decaying to 0 the value of the learning
rate. However, in 2014 Diederik Kingma and Jimmy Ba realized there is
still one thing that could speed up the learning: if the momentum is already
calculated, it could be adapted to each parameter[Kingma and Ba, 2014].

ADAM (Adaptive Moment Estimation) follows these steps: for each
parameter it first calculates its learning rate and then adjusts themomentum.
It makes use of the benefits of AdaDelta and can control the variation rate
by accelerating or delaying the velocity of the changes depending on val-
ues of ᅬφ and ᅬϵ. Algorithm 8 represents its functionalities.
Algorithm 8: ADAM Algorithm
Data: epochs, lossFunction, ᅯ, data, parameters, batchSize,

learningRates, decay, ᅬφ, ᅬϵ
Result: Trained parameters value

1 ԜЈ � �;
2 ԥЈ � �;
3 while training < epochs do
4 ԢԗԤԕԕԛԔ	ԓԐԣԐ
;
5 for batch in createBatch(data, batchSize) do
6 t = training;
7 paramsEpoch = evaluate(lossFunction, batch, parameters);
8 Ԝ֏ � Ԝ֏φ�	�  ᅬφ
;
9 ԥ֏ � ԥ֏φ�	�  ᅬϵ
;
10 paramsEpoch = paramsEpoch -Ԝ֏  ԛԔԐԡԝԘԝԖԇԐԣԔԢ�	అԥ֏ � ᅯ
;
11 training++
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2.3 Deep Learning Structure

All the Deep Learning structures are basically neural networks with sev-
eral layers. What differentiate these architectures from the traditional neural
networks is the way they threat input data.

One characteristic found in several deep learning architectures[Hinton,
2007, LeCun et al., 2001, Vincent et al., 2010] is the internal transformation
of the input data before generating the desired output information. Some
layers work on the creation of several middle-input data based of the input
data. This creation can be based on several types of transformation, such
as image filters or denoising-trying techniques.

2.3.1 Feature Detection

To accomplish a relevant success rate, the brain’s cortex needs to read
and translate the signals (synapses) that comes from the feature-detecting
neurons. Learning procedures like Backpropagation[Rumelhart et al., 1988]
and ADAM optimization[Kingma and Ba, 2014] fits the weights to enhance
the performance on the classification task. However, it needs labeling data
to perform the neural network training.

The problems starts when there is not enough labeled data to perform
this training, so some techniques other than only classification are desired.
Suppose there are some layers of a neural network that are not trained for
classifying data but, instead, it is trained to recognize only features of the
input. It is expected these characteristic detectors will guide the final part
of the network to take the appropriated actions according to the features
detected.

These layers on the neural network are responsible to acquire the max-
imum possible data before the work of the generative layer. It is done by
artificially creating copies of the input data and trying to highlight the most
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relevant information. By doing this, the last layers can perform a more
precise output because important information is easily detected.

2.3.2 Generative Model

The final section of a Deep Learning model is to generate the desired
output according to the input.

It is expected, before this step is computed, the relevant features are
detected, so the output will be relevant to the user. This final step can be
trained in two different ways: using fine-tuning after the feature detector is
trained or it can be trained together with the feature detector.

In some architectures like Deep Belief Networks(DBN)[Hinton, 2007] or
Stacked Denoising Auto-Encoders(SdA)[Vincent et al., 2010] the training
is performed in two steps. Initially the initial layers are induced to learn the
features from the input data in an unsupervised way. Then in the second
step, called fine-tuning, the entire network is trained to create output ac-
cording to the label of each input.

In other architectures like Convolutional Neural Networks (CNN)[LeCun
et al., 2001] the feature detector and the generative output training are
performed together. In this specific neural network architecture, the filters
of the convolutional layers and the generative layer are trained according
to the input data and to the label of the input at once.

2.4 Multi-Layer Perceptron (MLP)

The very first implemented architecture of Deep Learning is the Multi-
Layer Perceptron. It is compounded by several perceptrons that are or-
ganized in multiple layers, allowing the computer to learn abstraction from
an input data. It uses supervised learning and can learn non-linear data
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Figure 2: Example of a Multi-Layer Perceptron Architecture

models. It is considered the first Deep Learning architecture because it
was the first structure to be used with more than two intermediate layers,
which describes a Deep Neural Network architecture.

It is known as universal function approximator[Cybenko, 1989]. Be-
cause of this, it was largely used in initials speech and image recognition
and other artificial intelligence softwares[Wasserman and Schwartz, 1988].

From the beginning of 2000’s, new approaches have been developed
and they have had more success than traditional MLP’s. However, tradi-
tional MLP’s are still often present as a step in Deep Learning approaches.

It is possible to see how an MLP basically works in the Figure 2. The
input is presented to the first layer (left side), all values pass through every
neuron on intermediate layers and then the final values are calculated.
Each neuron is a structure called Perceptron [Minsky and Papert, 1969]
which is usually used as a binary classifier (functions that can decide whether
an input, represented by a vector of numbers, belongs to some specific
class or not) or as a regressor, giving a value as output.

Perceptrons were first described by Rosenblatt (1957) in 1957 and it
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was so exciting by that time it was largely covered by the media.2 It was
wildly used as regressor and classifier until 1969 when Marvin Minsky and
Seymour Papert attacks its problems[Minsky and Papert, 1969]. They
mostly focused on the inability of a single neuron to approximate to a XOR
function (known as a non-linear problem). The fact is with a single layer it
is impossible to get satisfactory close to this type of function.

In order to solve this point Rumelhart et al. [1988] published the back-
propagation algorithm[Rumelhart et al., 1988]. This technique allows mul-
tilayer perceptrons to interactively learn their parameters’ values, granting
the network to get near to a non-linear function.

2.5 Convolutional Neural Network (CNN)

Based on how the animal visual cortex works, the Convolutional Neural
Network (CNN) works on small and overlapped regions that detect light
and specific edge regions of the input data. It is largely used in the image
processing task of detecting a given object or to classify the image. Figure
3 shows all the basic structures of a CNN.

CNN differs from a MLP because of the local connectivity of the input
data from each layer. On a MLP, the perceptron from a given layer receives
data from all the perceptrons from the previous layer. On a CNN, there are
some different ways these connections are made:

• Convolution layers: the core of the CNN. A set of layers (also called
kernels or filters) is responsible to generate a final output, usually a
cube (but it is not uncommon to see 4-D or even higher dimension
outputs). The most important point here is each layer has a small
receptive field but it goes through all the input, generating a unique
transformation on this data for each filter. After the neural network

2http://archives.newyorker.com/?i=1958-12-06#folio=044
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training, each filter activates when it sees some specific type of fea-
ture at some spatial position of the input.

• Pooling layers: right after the work of the convolution layer, the pool-
ing layer is responsible for down-sampling a given region. This is very
interesting on the computation side because it critically reduces the
dimension of the data, reducing the work of the processor. The most
common function used here is the Max-Poolling function, it keeps
only the most significant value of a given region, which has given the
best results in several researches [Nielsen, 2016].

• Classification layers: all CNN work done until now has the function of
facilitating the data classification. After all transformation of a given
input, only the most relevant data is kept for classification. This layer
is usually made of MLP or Support Vector Machines (SVM) that clas-
sifies the remaining data.

Some techniques are added to the CNN to increase the final results.
Listed below are the most common ones:

• Dropout: it literally removes a number neurons from the classification
layer during the training session. It is possible to see this technique
helps to reduce overfitting because for each training session, if neur-
ons of a certain region are dropped, the remaining ones are forced
to learn more information. In addition, it reduces the amount of com-
putation necessary for training, cutting down time for this job.

• Artificial Data Augmentation: depending on the job desired for a CNN,
sometimes there is not enough labeled data available for a neural
network to become useful. Artificial data augmentation uses the data
available and perform variations which, even after the transformation,
it continues to be the same type of data on the label. This technique
also prevents the CNN to overfit during the training.
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Figure 3: Example of a Convolutional Neural Network (CNN)
[LeCun et al., 2001]

yȯ yɞ yɘ yȃ yȁ yɒ
hȯ hɞ hɘ hȃ hȁ hɒ
xȯ xɞ xɘ xȃ xȁ xɒ

Figure 4: A simple Recurrent Neural Network

2.6 Recurrent Neural Network(RNN)

There are some cases the approaches described until here are not enough
to give a good result. For example, it is hard to detect if a given object (Ex:
a bike) appears in a video because theirs architecture works on static in-
put. The problem here is these techniques do not work well on temporal
series, like a video or an audio stream.

The Recurrent Neural Network (RNN) works by transforming the input
in a time series representation where each timestep represents a segment
of the data, solving this kind of problems. The connections between the
neurons form cycles, creating a type of “memory” of what has or has not
been on this neural network. In theory, this network can process long se-
quences of input data[Hochreiter and Schmidhuber, 1997]. Figure 4 shows
how a RNN works.
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2.6.1 Long-Short Term Memory - LSTM

The traditional RNN is very powerful by itself but it may be affected when
it works with numerous steps. Suppose it is needed to work with the clas-
sification of a very long text (a large book for example). The traditional
Recurrent Neural Network may not remember what is written on the begin-
ning and just use the information at the end of this book. For this case, a
slightly different but still powerful approach is necessary.

By 1997 SeppHochreiter introduced the Long-Short TermMemory (LSTM)
[Hochreiter and Schmidhuber, 1997], a new type of RNN cell with gateways
for different situations. Figure 5 describes exactly how the entire neuron
and each gate works.

The first step in the LSTM cell is to decide whether the information will
be thrown away from the cell state or not. This decision is made by a
sigmoid layer called the “forget gate layer”. It looks at ԗ֏φ and ԧ֏, and out-
puts a number between 0 and 1 for each number in the cell state Ӹ֏φ. The
value 1 represents “completely keep this information” while a 0 represents
“completely get rid of this information”.

The next step is to decide what new information will be stored in the
cell state. This is made in two steps. First, a sigmoid layer called the
“input gate layer” decides which values will be updated. Next, a hyperbolic
tangent (tanh) layer creates a vector of new candidate values, Ӹ֏ which
could be added to the state. In the next step, these two will be combined
to create an update to the state.

It is needed to update the old cell state, Ӹ֏φ, into the new cell state Ӹ֏.
The previous steps already decided what to do, providing the necessary
information to do it now. It multiplies the old state by ԕ֏, forgetting the things
decided to be forgotten earlier. Then it is added Ԙ֏  Ӹ֏. These are the new
candidate values, scaled by how much it is decided to update each state
value.

Finally, it is necessary to measure the output. This is based on the cell
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Figure 5: Image description of a LSTM cell

state but will be a filtered version. First, a sigmoid layer decides what parts
of the cell state will be the output value. Then, the cell state is set through
tanh (to push the values between −1 and 1) and multiply it by the output of
the sigmoid gate, so that the neuron only output the parts calculated.

2.6.2 Gated Recurrent Unit - GRU

Another great variant of RNN which makes use of gates to improve per-
formance is the Gated Recurrent Unit (GRU) introduced by Kyunghyun
Cho, Bart vanMerrienboer, Dzmitry Bahdanau and Yoshua Bengio in 2014[Cho
et al., 2014]. The idea is similar to LSTM however it has fewer gates and
works slightly different. While in LSTM there is a gate to control the in-
put, another gate to control what to forget and one last gate controlling the
output, GRU lacks the last one: it just does not filter the output result cal-
culated by the cell and the other two gates. Figure 6 illustrates better this
difference: it is possible to realize there is no gate controlling in the end.
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Figure 6: Image description of a GRU cell. The most significant difference
is the ”output gate”: it lacks in GRU’s

This missing gate is very important in two different aspects:

• Computationally it is more interesting because it is one gate less to
calculate the output and to train, so it is faster than LSTM;

• Some studies [Chung et al., 2014, Józefowicz et al., 2015] suggest
results of LSTM and GRU are identical. In some works with poly-
phonic music modeling and speech signal modeling, GRU outper-
formed LSTM.

In the next section it is discussed how all Deep Learning structures
can be combined in order to achieve relevant results on different Artificial
Intelligence and Computer Graphics Processing tasks.
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3 Applicable Structures and Other Techniques

From now, it will be shown someDeep Learning architectures, one Com-
puter Graphic method to detect blobs which could be very useful and how
they were able to solve several different problems. It is good to say these
architectures, in general, are a combination of different types ofDeep Learn-
ing basic structures, specialized in solving a single type of problem, in order
to solve a bigger problem.

3.1 Maximally Stable Extremal Regions (MSER)

There was a possibility that using only Deep Learning algorithms may
not be enough to accomplish a good result because when this work star-
ted, it was not found any object detector which could solve the problem of
finding text areas. In this case, there is one other technique from Image
Processing area that may be used for helping on improving the results.

Maximally Stable Extremal Regions (MSER) is a blob detector that ex-
tracts from an image a number of co-variant regions, called MSER’s: an
MSER is a stable connected component of some gray-level sets of the im-
age [Matas et al., 2002]. It is possible to see in the Figure 7 how MSER
basically works. From the original paper[Matas et al., 2002], a MSER can
be defined as follows:

Image: Ӿ is a mapping Ӿ  ӹ ୢ ϵ ݂ Ԉ. Extremal regions are well-
defined on images if:

• 1 - Ԉ is totally ordered (total, antisymmetric and transitive binary re-
lations ମ exist);

• 2 - An adjacency relation Ӷ ୢ ӹ  ӹ is defined.
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Region: Ԇ is a contiguous subset of ӹ. (For each ԟ Ԡ ୮ Ԇ there is a
sequence ԟ Ԑφ Ԑϵ �� Ԑ։ Ԡ and ԟӶԐφ ԐքӶԐք�φ Ԑ։ӶԠ.)

(Outer) Region Boundary: ᆉԆ � \Ԡ ୮ ӹ � Ԇ  ૠԟ ୮ Ԇ  ԠӶԟ^, which
means the boundary ᆉԆ of Ԇ is the set of pixels adjacent to at least one
pixel of Ԇ but not belonging to Ԇ.

Extremal Region: Ԇ ୢ ӹ is a region such that either for all ԟ ୮ Ԇ Ԡ ୮ᆉԆ  Ӿ	ԟ
 � Ӿ	Ԡ
 (maximum intensity region) or for all ԟ ୮ Ԇ Ԡ ୮ ᆉԆ Ӿ	ԟ
 � Ӿ	Ԡ
 (minimum intensity region).
Maximally Stable Extremal Region: Let Ԇφ �� Ԇքφ Ԇք ��� be a se-

quence of nested extremal regions (Ԇք ୢ Ԇք�φ). Extremal region Ԇք is
maximally stable if and only if Ԡ	Ԙ
 � ]Ԇք�း � Ԇքး]�]Ԇք] has a local min-
imum at Ԙ. င ୮ Ԉ is a parameter of the method.

Figure 7: Example of MSER blob detection [Matas et al., 2002]

MSER is based on gray-scale images: it detects the variants between
luminosity to detect stable areas and return them as features. This tech-
nique showed very good results on area detection but it does not have a
very good result when it comes to images with blur. It can be a problem
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because photos from real world usually have at least a little blur because
of influences of nature.

It has already been shown the use of MSER combined with Canny
edges detector reaches relevant results on text detection on real world
scenes[Chen et al., 2011]. This technique could potentially be used to im-
prove text detection problem of this OCR.

3.2 Autoencoder + Convolutional Neural Network

The Autoencoder structure is known by its power of denoising media and
capability of working in unsupervised way. As said before, it is basically
a MLP with one hidden layer able to learn how to encode-decode a given
data type. This ability is very important in at least two tasks:

• Denoising data: as this neural network knows the structure of the
data being used, it knows when the structure is modified, included
by noise. For this reason, Denoising Autoencoders[Mao et al., 2016]
are very powerful on the task of removing noise from images;

• Generate artificial data: suppose there is a task of classifying a given
type of data but the data set available for training does not have
enough information to create an accurate classifier. One way to ac-
quire more data is very simple: someone could find more data which
looks like the one given. However, this task can take very long time
until the amount of information needed is available. Another way to
do is to use a Generative Adversarial Networks (GAN)[Goodfellow
et al., 2014] trained with the available data to create artificial but reli-
able new information that can be used in this classifier.

In both cases, the structure of the Autoencoder is changed to work bet-
ter with images: instead of using MLP in a hidden layer, they use stacks of
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CNN to improve the performance of the neural network.

3.3 Convolutional Neural Network + Long-Short TermMemory

The combination of these two Deep Learning architectures has gener-
ated very interesting results in combination of image processing with nat-
ural language processing. It looks like a lot with the way people interpret
images into words.

There are several works using this technique [Karpathy and Li, 2014,
Vinyals et al., 2014] to generate image description and the results are really
impressive. In many cases, the description of a given image is as good as
a human being would predict.

How about, given a description, the computer creates an image based
on those words? This is something that would be unthoughtful until some
years ago, now it is real.

It is already possible by using a combination of two GAN’s[Zhang et al.,
2016]: the first one takes a sentence as input and outputs an image with
primitive shapes and basic colors. The second uses this primitive image
and the original sentence as input and generates a high resolution version
of the image, with the missing details.

3.4 Fully Convolutional Network - FCN

Deep Learning has proven to be a very good classifier for images [LeCun
et al., 2001, Vincent et al., 2010]. However, there are several other tasks
which would be very interesting if could be accomplished by these tech-
niques, including object detection and image segmentation.
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It is possible to reach a very good result using a slight different archi-
tecture of traditional CNN, known as Fully Convolutional Network (FCN).
This network does not use MLP on the top, only convolution layers. Each
blade is responsible for a class or a value for regression, indicating what is
the context of a given region of the picture.

To illustrate it better, Long et al.[Long et al., 2014] shows a very good
example: it receives an image as input and pass it through some layers of
convolutions and pooling. On the top of the network there is a final set of
convolutional layers, each generated blade provides a probability chance
for each pixel to belong to one of known classes. With this information,
it is possible to segment an image in a pixel level, defining a satisfactory
contour for each object that belongs to one of acknowledged category.

Another example is to use this architecture to define the bounding box of
known items in the image. R-FCN[Dai et al., 2016] has convolution layers
on the top which provide information about region of a given object and to
what class it belongs. This type of work could be used for tracking objects
in video.

3.5 YOLO - You Only Look Once

When the proposed framework was first thought, the idea was to use
only Deep Learning techniques but there was a gap in the first task: finding
some approach that reach a relevant result on character/word detection on
real world images.

YOLO (You Only Look Once)[Redmon et al., 2015] was designed to
work with object detection at first. It does not only claim it could detect with
a good precision and a good recall, but it is able to work in real-time.

The speed on making the bounding-box and predictions are possible
because YOLO uses a very traditional approach on the initial and mid-level
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layers: an image as input, followed by sequences of convolutions 3x3 and
max-pooling. The final layer is a smaller convolution (1x1) aimed to make 5
bounding-box prediction for each 13x13 square of the image. It just keeps
the bounding-boxes that achieves a higher score than a given threshold.

After a deep search for studies, it was not found any work using this
network being used for text detection on photographs. In this chapter it is
explained how YOLO works and how it is trained. After that, in Chapter 5
it is shown how this network performed when used as an OCR.

The implementation details can be seen in the following sections.

3.5.1 Loss Function

There is a special loss formula for YOLO network. Equation 1 details all
parts.
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(1)

Where:

• line 1 calculates the error for the center of the prediction (x and y);

• line 2 calculates the error for space from the center (width and height);

• line 3 corrects the confidence score where the detector should show
a relevant object (confidence score is set to 1);

• line 4 corrects the confidence score where the detector should not
show a relevant object (confidence score is set to 0);
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• line 5 is the error function for a wrong object predicted (categorical
cross-entropy);

• objքօ denotes where there should be an object;

• noobjքօ denotes where there should not be an object;

• ᅶվ֊֊֍տ and ᅶ։֊֊սօ are constant values for correction where there is
and there is not an object, respectively.

3.5.2 Non-Maximum Suppression Algorithm

As described before, YOLO can detect a relevant quantity of interesting
areas in an image. Even considering the confidence score to eliminate
some areas that does not contain any pertinent object, there is still one
problem: suppose there is only one item to be detected. It might happen
more than one detection of it by the last layer. How should the program
say what is the correct detection?

Non-Maximum Suppression Algorithm works on this kind of problem. It
looks on every detected boxes around a region and outputs the best guess.
To execute this task, it needs to calculate the Intersection over Union (IoU)
of detected areas and then decides if keep or if eliminates a given area.
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The algorithm 9 describes it details:
Algorithm 9: Non-Maximum Suppression Algorithm
Data: boxes, overlappingThreshold
Result: Relevant Bounding-Boxes According Intersection

1 ԜԐԘԝӷԞԧ �� ԖԔԣԃԔԧԣӷԞԧ	
;
2 while has boxes do
3 while ԐӷԞԧ �� ԖԔԣԃԔԧԣӷԞԧ	
 do
4 if ӾԞԊ	ԜԐԘԝӷԞԧ ԐӷԞԧ
 � ԞԥԔԡԛԐԟԟԘԝԖԉ ԗԡԔԢԗԞԛԓ then
5 Remove aBox from list;

6 ԜԐԘԝӷԞԧ �� ԖԔԣԃԔԧԣӷԞԧ	
;
3.5.3 Training

At first it may not be cleared but the most important item on the loss
function is the confidence score. This value represents whether to show
the bounding box or not. According to [Redmon et al., 2015], when this
value is higher than 0.3 it means this area shows one of the objects that
the network can recognize, otherwise, it is just background. As explained
before, sometimes an item can be recognized by more than one bounding
box, so it is necessary to use the Non-Maximum Suppression algorithm to
set the correct confidence score for each bounding box representation.

Suppose one of the images has only one object to be detected and dur-
ing the training the network says there are two bounding boxes around the
same area. So for this region it must calculate which of them has the best
intersection with the ground truth. The one with the best result receives a
score of 1 in the confidence score and all other losses (area and class) are
calculated. The other just receives a score of 0 and there is no need to
evaluate all other values.

With this information, the neural network learns when it should show or
not more than one bounding box in some regions.
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3.5.4 Output Results of Prediction

Let’s consider a trained version of YOLO is available to detect some
objects. After predicting a given image, it will output a lot of information
and all of it should be interpreted correctly to have the desired result. For
a better explanation, it will be divided in three parts:

• the confidence result: first information to look for each region. If the
confidence score is higher than 0.3, the information is plotted accord-
ing to the following two data;

• the bounding-box result: it defines the region where an object is
placed;

• the class result: defines what object is in the defined region

With all this explanation, the proposed framework is detailed in the next
section.
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4 Proposed Framework

Even with the advances of Artificial Intelligence and Computer Graphics
Processing, it is still very hard to accomplish near 100% of detection and
transcription of image-to-text. For solving this issue, a combination of Deep
Learning techniques was chosen in order to build a new framework with the
capacity of detecting characters in this kind of image.

Deep Learning techniques have shown it is possible to accomplish bet-
ter results on this problem[LeCun et al., 2001, Zheng et al., 2015]. As it
is a relative recent area of research, it is possible the best result is not
accomplished yet.

In this section there is a discussion about the motivation for developing
this framework and then it describes in more detail about how each part of
the framework is expected to work.

4.1 Motivation

Current OCR techniques can not extract 100% of the present text in im-
ages correctly, even when the same text is easily recognized by a person.
With the new techniques of artificial intelligence and computer vision being
developed it is very likely to be possible to increase the accuracy of recog-
nition with respect to those obtained by current software. Deep Learning is
a branch of the machine learning area based on a set of algorithms which
aims to model high-level abstractions of data using multiple processing lay-
ers with complex structures composed of non-linear transformations. Deep
learning is characterized by:

• use of a cascade of many layers of nonlinear processing units for ex-
traction and processing characteristics. Each layer uses the output

35



data of the previous layer processing. The algorithms can be super-
vised (for classification) or unsupervised (for pattern analysis).

• It is based on multiple learning characteristics or levels of data rep-
resentations. Higher level features are made from lower-level char-
acteristics to form a hierarchy of representations.

• learn multiple levels of representations that correspond to different
levels of abstractions: levels form a hierarchy of concepts.

Neural networks are usually quite rapid in their tasks once they are
trained, but the training stage can be quite time-consuming, depending
on the complexity of the network, training data set and the problem being
treated. Any change in the structure of a network requires a new train-
ing, which can take many hours (or even days), using the same machines
with high processing power. Therefore, the network optimization process
must be well planned, since the number of combinations and candidate
architectures which can be tested within the proposed schedule is limited.

4.2 Initial Idea

This Section details how the proposed framework was first thought to
work.

4.2.1 Candidate Areas

The very first step is to find what areas have more chance to contain a
character. In this step, all candidate word areas are isolated to be used in
the next step.
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In this step, two main approaches seen to be the best to accomplish
a good result. The first one is the use of the Maximally Stable Extremal
Regions (MSER) [Matas et al., 2002]. Originally created as a blob detector,
it has been used with some success for detecting regions in images where
apparently there is some text [Chen et al., 2011]. The negative point of this
technique is that it can not differentiate a character from other, but it could
still be very helpful on this task. Figure 8 represents an output from MSER
on some images where there is some text.

Figure 8: Example of text detection in images using MSER

Another apparently robust technique to this job, however still not tested,
is the use of Conditional Random Fields (CRF) developed as Recurrent
Neural Network [Zheng et al., 2015]. In the original format described by
the author, it has been used as an image semantic parser, obtaining very
good results in detecting stuff in images, like bicycles, tables or humans. It
might be possible to do changes in the original code that would allow the
computer to detect characters instead of objects in scene. Figure 9 shows
an example of CRF working on object detection, segmenting them by pixel.
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Figure 9: Semantic parser of image. In the left, the original image. In the
right, bikes and people detect by using this technique

4.2.2 Character Segmentation

Continuing the process of getting text from images, there is a necessity
to find out the bounds that defines each character. It is very important to
find out the regions that defines each letter, so the accuracy tends to be
better.

There are some Deep Learning techniques that appears to have very
good results on that. Again, the Conditional Random Fields as Recurrent
Neural Network[Zheng et al., 2015] appears as a promise not only on de-
fining text candidates areas but in the task of setting the bounds for each
character. The precision on this job is relevant.

Convolutional Neural Networks (CNN) have had impressive results too.
Some studies [Dai et al., 2015, Simonyan and Zisserman, 2014] have shown
that it is possible not only to classify images into classes but semantically
segment images for objects and animals. There is a possibility that an
adaptation or improvement on these techniques could be used to literally
read images directly into computer text, it means it is possible to get a very
large amount of information.
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4.2.3 Character Classification

For each segmented area, there is now the necessity of translating the
image into a literal character. For each segmented area, a Convolutional
Neural Network (CNN) will be trained with the task of classifying a given
image.

It looks like a simple task but the problem is that we may be working
with images from the real world, like a photo from a museum. The input
image can contain a character with noise, rotation, translation and other
common influences over it. The classifier needs to be powerful enough so
this set of variation will not influence in the final translation of this image in
some character

4.2.4 Final Text

The final step consists in organizing all information obtained by the Char-
acter Classification step in a text document. It is literally the translation
of the image in text data, so it can be easily read by a computer. After
having the final text, it will be possible to know how good the framework
worked. The metrics used and recommended by ICDAR 2015 Competi-
tions[Karatzas et al., 2015] are:

• Precision: it calculates how well the techniques detects the text in
the image but punishes the grade for detected text that is not really
a character in some controlled images. It is calculated using this
formula:

ԅԡԔԒԘԢԘԞԝ � ԉ ԡԤԔԅԞԢԘԣԘԥԔԢԉ ԡԤԔԅԞԢԘԣԘԥԔԢ � ӻԐԛԢԔԅԞԢԘԣԘԥԔԢ
• Recall: very similar to the Precision, but it punishes the score for each
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area that is a text but it is not detected by the framework. The final
Recall score is giving by the calculus above:

ԇԔԒԐԛԛ � ԉ ԡԤԔԅԞԢԘԣԘԥԔԢԉ ԡԤԔԅԞԢԘԣԘԥԔԢ � ӻԐԛԢԔԃԔԖԐԣԘԥԔԢ
• Harmonic Mean: this calculates how good a given framework detects
the exact area of the text[Wolf and Jolion, 2006].

The final evaluation of this framework will be against the ICDAR 2015
Competition data set[Karatzas et al., 2015].

4.2.5 Working Example

It is possible to see in the Figure 10 how the framework was intended to
work. It shows on the image the job of this initial proposed framework.

4.3 A Fully Deep Learning Approach

The idea described above is a real possibility of a good working frame-
work but it runs away of the main concept: using only Deep Learning tech-
niques for a full OCR. This is now how it is intended to work

4.3.1 Candidate Areas using YOLO

As described before, YOLO[Redmon et al., 2015] has achieved a very
impressive result on object detection. It looks like a good idea to get the
same model to detect areas with text. Considering not only the precision
(high score on true positives) but recall (a low score on false negatives) and

40



Figure 10: How the framework is intended to work

the speed on the detection, having YOLO working on this task looks like a
very good approach for using Deep Learning on an entire OCR framework.
Figure 11 shows how YOLO works.

4.3.2 Word Prediction

First of all it was considered to predict the words to be split in two: the
first one for segmenting the area into individual character and then another
to recognize what character each piece of image represents. It looks very
hard because there is the necessity of two neural networks that will need:

• First: to be trained on different data sets;
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Figure 11: How YOLO works

• Second: to be executing two different tasks during executing time.

What if it could be done in only one step? The combination of using
CNN with LSTM has been seen very useful on word prediction[Graves and
Schmidhuber, 2008], so it might be time to compare how the combination
of CNN with GRU or some other gated recurrent network will perform.

4.3.3 Connectionist Temporal Classifier - CTC Loss Function

Connectionist Temporal Classifier is a system created by [Graves et al.,
2006] to calculate the error on prediction of sequences of labels from un-
segmented data. In the original work it was applied to improve speech
recognition but it has presented very good results on several other tasks.
CTC is a function to get around when the alignment between the input and
the output are not known.

To illustrate it better, let’s use Figure 12 as example. Both visible images
shows exactly the same text (”OCR”) however there are visible differences
on size, space between characters and thickness. This might be a problem
because a sequence predictor assumes the correct label for each step is in
the right position (Ex: for a 16-step RNN, the correct label for the first image
could be –O-C–R——- and for the second image would be—OC-R———,
where ”-” represents a blank space). In real-world data sets, both images
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would have the exactly same label (OCR————-), it would be very time-
consuming to align every single label to every correct space of the image.

Figure 12: Same words with different characteristics

Formally speaking, the desired behavior is to map ԍ � <ԧφ ԧϵ ��� ԧռ>
to Ԏ � <Ԩφ Ԩϵ ��� Ԩս>, where X is the input sequence, Y is the output array
and ԑ ମ Ԑ. Using traditional supervised learning algorithms to come across
this problem can be tricking because beside other points:

• X and Y can diverge in length;

• The proportion of X and Y length may be different;

• There is no accurate calibration (elements’ correspondence) between
X and Y

CTCalgorithm is align-free, it means it does not need adjustment between
input and output, being a very good solution for this problem. It can use
this distribution either to infer a likely output or to assess the probability of a
given output. The following example explains better how it works: consider
an input which length is 10 and Ԏ � <ԑ Ԑ ԑ Ԩ>. A naive approach is to as-
sign one character for each output step and then collapse every repetition.
Table 1 shows it working.

This method has two problems:
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Table 1: Example of naive approach

x0 x1 x2 x3 x5 x6 x7 x8 x9 Input
b b a a a b b y y Alignment
b a b b Output

Table 2: Example of CTC working on sequence output

t t ᅯ o ᅯ o t h h Merge all repetitions
t ᅯ o ᅯ o t h Remove all ᅯ
t o o t h The output is what remains

• There are some cases which there is no necessity to output any-
thing in a given step. In text recognition, usually there is some space
between the characters;

• It is not possible to produce outputs with repeated characters. For
example, the output <ԣ ԣ Ԟ Ԟ Ԟ Ԟ ԣ ԗ ԗ ԗ> produces “toth” and not
“tooth”.

CTC solves this problem introducing a empty token to list of possible
outputs[Hannun, 2017]. Understand this is not a blank space like “ ”, it
would be like a “null” in programming. For explaining how it works, it will
be called ᅯ. First step is to collapse all repetitions. After that, all �are
removed. The correct output is what persist after this process. Table 2
shows an example.

Consider (X,Y) a pair of input and output, ԉ the number of time steps
of a RNN. The loss function for a given pair (X, Y) is:

ԟ	ԍ]Ԏ 
 � ంբ୮բՃӱՄ
յః֏�φ ԟ֏िԐ֏]ԍी

where ௴բ୮բՃӱՄ represents the marginalization over the set of valid
alignments.
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4.3.4 Working Example

It is possible to see in Figure 13 how the framework is now intended to
work. It shows on an image what algorithm is responsible to do a given job
with the changes related on this sub-section.

Figure 13: The new architecture using YOLO, CNN and GRU. The most
significant differences are: 1 - it is fully based on Deep Learning tech-
niques; 2 - It works in two steps instead of three as thought initially.

This section detailed everything needed to develop the proposed work.
In the following section, the achieved results are shown.
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5 Results

This chapter is divided into two main parts: Section 5.1 explains how the
introductory studies helped to reach relevant results on some tasks and
Section 5.3 demonstrates all the work done to arrive to a relevant result on
text detection in images.

For the purpose of training and test execution, the following hardware
was used:

• Intel(R) Core(TM) i7-2600K CPU @ 3.40GHz

• 32GB RAM DIMM 1333 MHz

• GPU Nvidia Quadro M5000 8GB

5.1 First Results

The amount of work to develop the desired framework is huge. Not only
programming and deciding what techniques apply to each job but the time
spent with the computation and training of the neural network is relevant.
In the assignment of classifying digits after the segmentation, it is currently
taking around 8 hours of training so it is possible to have a relevant result.
The problem here is to define what is a relevant result in this job. Luckily,
to have a better idea how images in real world are and how good was
the results, it was found a competition in the Kaggle website [kag, 2016]
challenging researchers of everywhere in the world to classify characters
in the real world.

This section shows how good was the results of one of the steps that
will be needed in order to create the entire framework. Figure 10 shows the
entire framework working. Figure 15 highlights what step of the framework
is discussed on this section.
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Figure 14: Example of characters used in the competition

5.1.1 Language, Technologies and Frameworks

One relevant part of this work was to search and test some languages
and frameworks that could speed up the development and aggregate good
results. It is important to remember the time it takes to train a Deep Learn-
ing architecture is relevant, so it is vital to use a language that is easy to
learn and it is not so slow to compile and execute the code.

In the first part of this work Python was used with TensorFlow [Abadi
et al., 2015]. This combination was chosen because the available docu-
mentation and the number of available examples are huge, so it would not
take too long to learn how to use and develop the first models. However,
after some tests it was realized it was taking too much time on training.
With the available hardware it was not possible to run the training sessions
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Figure 15: Highlight the part of the framework discussed in this section

over GPU, only on CPU.
In order to get rid of this problem, it was discovered that Theano[Theano

Development Team, 2016] was able to work over the available GPU and
it really sped up the training sessions. However, using this framework is
significantly more complex than TensorFlow[Abadi et al., 2015] so this was
another bottleneck.

The best training session time and low complexity was accomplished
using Keras[Chollet, 2015]. It encapsulates all code from Theano[Theano
Development Team, 2016] and TensorFlow[Abadi et al., 2015] and provides
a friendly interface to create all kinds of Deep Learning architectures using
little and easily reading code.

From November 2016 Nvidia provided a Quaddro M5000 GPU for this
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research. It was a huge speed up on training sessions, decreasing the
same neural networking training time from 17 seconds to 2 seconds. It is
now possible to use TensorFlow over the GPU.

5.1.2 Convolutional Neural Network For The Classification Task

ACNN can be set up depending on what problem is desired to solve. For
example, LeCun et al. [2001] used a very shallow network to classify hand-
written digits while Simonyan and Zisserman [2014] used a much deeper
architecture in the task of object classification.

In fact, most CNN architectures can be considered way deeper than the
first one proposed. Szegedy et al. [2015] for instance has dozens of layers
while He et al. [2015] has more than one hundred.

It will be described how each network performed.

5.1.3 Classical Architecture

The first try was using the classical CNN described in the work to clas-
sify handwritten digits (0-9)[LeCun et al., 2001]. The idea was to adapt
the structure to accept numbers and characters(a-z, A-Z), using the CNN
below:

• Input size: 20x20, black-and-white;

• Convolutional Layer 5x5 with 128 layers, followed Pooling 2x2;

• Convolutional Layer 5x5 with 128 layers, followed Pooling 2x2;

• Multilayer Perceptron Layer with 2048 neurons, Dropout set to 75%
and Rectified Linear Unit (ReLu) as output;
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• Multilayer Perceptron Layer with 2048 neurons, Dropout set to 75%
and Rectified Linear Unit (ReLu) as output;

• Logistic Regression Classifier for 62 classes(A-Z, a-z, 0-9)

Figure 16: Initial Results

Using it as described network, it was possible to have around 39% of
correct predictions (based on website evaluation), placing in 39th from 50
competitors. Figure 16 shows the initial results and Figure 17 shows the
initial classification. This number means the precision of each participant’s
techniques on the validation data set. For starters, it was a very good result,
thought with time and some parameters’ correction it would be possible to
get better results. Unfortunately it did not occur as initially thought, it is
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Figure 17: Initial Classification

possible to see the results did not improve and it took a time studying other
possible implementations.

5.1.4 VGG Architecture + Data Augmentation

One that work very well in the first try was the VGG style [Simonyan and
Zisserman, 2014] network. The architecture is described bellow:

• Input size: 32x32, black-and-white;

• Convolutional Layer 3x3 with 128 layers;

• Convolutional Layer 3x3 with 128 layers, followed Pooling 2x2;

• Convolutional Layer 3x3 with 256 layers;
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• Convolutional Layer 3x3 with 256 layers, followed Pooling 2x2;

• Convolutional Layer 3x3 with 512 layers;

• Convolutional Layer 3x3 with 512 layers;

• Convolutional Layer 3x3 with 512 layers, followed Pooling 2x2;

• Multilayer Perceptron Layer with 4096 neurons, Dropout set to 75%
and Rectified Linear Unit (ReLu) as output;

• Multilayer Perceptron Layer with 4096 neurons, Dropout set to 75%
and Rectified Linear Unit (ReLu) as output;

• Logistic Regression Classifier for 62 classes(A-Z, a-z, 0-9)

In some papers[He et al., 2015, Szegedy et al., 2015] it is related that
in order to improve the result, artificial augmentation of data available for
training helps to avoid overfitting and significantly upgrade the outcome. In
this work, for each training iteration, the following working on training data
set was done:

• random rotation in 30 degrees for any direction;

• random shift for height and width of 15%

• random zoom in and out of 15%

• random shearing of 20%

With the described changes in the network and training data, it was
accomplished over 82% of correct predictions as it is possible to see in
Figure 18, placing this work in 4th of 41 competitors, significantly improving
the results. Figure 19 shows the new position.
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Figure 18: Current Results

5.2 Metrics

In order to understand how good were the results, it is now explained
how each metric is calculated and in what cases it may be applied.

For each formula, the following convention names are used:

• ԅ defines Precision;

• ԇ defines Recall;

• ӹ is the area detected by some method;

• Ӽ is the ground-truth of a given area;

5.2.1 Intersection over Union - IoU

The Intersection over Union (IoU) metric is used in several object de-
tection competitions. As the name says, it calculates how well the relevant
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Figure 19: Current Classification

region was detected by a given technique according to the intersection and
the union of the area. The mathematic definition for one area is:ӾԞԊ � ӹ ો Ӽӹ ૌ Ӽ
5.2.2 DetEval

IoU is a very good metric to define how good was the detection of in-
teresting areas but in ICDAR competitions uses other metrics. Calculation
of DetEval is slightly more complex because it considers not only one-to-
one detection, but one-to-many detection (when a single rectangle detects
more than one area) and many-to-one detection (when several rectangles
detect a single area)

First, from the two sets ӹ and Ӽ of detected rectangles (regions) and
ground truth rectangles, we can construct two recall and precision matricesᅼ and ᅽ of the area overlap where the rows of the matrices correspond to
the ground truth rectangles and the columns correspond to the detected
rectangles. The values of the Ԙ֏փ row and ԙ֏փ column are defined as:ᅽքօ � ԅբճ � ӶԡԔԐ	Ӽք Ӽօ
ӶԡԔԐ	ӹք
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ᅼքօ � ԇբճ � ӶԡԔԐ	Ӽք ӹօ
ӶԡԔԐ	Ӽք
ӶԡԔԐ is rectangle region. The detected region is relevant if:ᅽքօ � ԣ � ��� ᅼքօ � ԣ֍ � ���
This evaluation strategy deals with over-split or over-merge of detection

by supporting one-to-one, one-to-many, and many-to-one matches among
ground-truth objects and detection. Based on this information, the ԅ andԇ in a given image are calculated using the following formulas:

ԅ	Ӽ ӹ ԣ֍ ԣ
 � ௴ք ԂԐԣԒԗե	ӹօ Ӽ ԣ֍ ԣ
]ӹ]
ԇ	Ӽ ӹ ԣ֍ ԣ
 � ௴ք ԂԐԣԒԗը	Ӽք ӹ ԣ֍ ԣ
]Ӽ]

where ԂԐԣԒԗե and ԂԐԣԒԗը are defined as:

ԂԐԣԒԗե � ৗ
� if ӹօ matches a single detected rectangle,� if ӹօ does not match any detected rectangle,ԕ֎վ	Ԛ
 if ӹօ matches several 	Ԛ
 detected rectangles
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ԂԐԣԒԗը � ৗ
� if Ӽք matches a single detected rectangle,� if Ӽք does not match any detected rectangle,ԕ֎վ	Ԛ
 if Ӽք matches several 	Ԛ
 detected rectangles

For the ICDAR competitions, the following convention was used:

• for ԂԐԣԒԗե, ԕ֎վ	Ԛ
 = 1, so it does not penalize over or under seg-
mentation;

• for ԂԐԣԒԗը, ԕ֎վ	Ԛ
 = 0.8.
Finally, the F-Score is calculated as:ԕ � �����  ԅ � ����  ԇ

5.2.3 ICDAR2013

This metric defines the final score on “Born-Digital Images - Task 1: Text
Detection”. It considers the values for IoU and DetEval. According to
Nourbakhsh et al. [2011], this score is calculated in the following equation:ӾӸӹӶԇ���� � ӾԞԊ � ӹԔԣӺԥԐԛ�
5.2.4 editdistance

To define the final result on Word Recognition, ICDAR uses editdistance
metric. According to [Karatzas et al., 2015, 2013], it quantifies how similar
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two strings are. To get this value, it compares how many insertions, de-
letions and substitutions of character are needed to both strings become
equals. ICDAR compares in two ways: case-sensitive where mistakes of
capital letters are considered and case-insensitive where they are not con-
sidered.

For each change necessary in the word, the score is increased by 1.
The final score is the sum of the modifications. It means the best score a
method can achieve is 0.

5.2.5 End-to-End

One metric used to evaluate the word detected in an image is the End-
to-End. According to Karatzas et al. [2015] the following pipeline computes
this score:

• It first calculates the IoU of a detected region. If ӾԞԊ � ��� it considers
a successfully detection;

• For a correct detection it now calculates if the word was written cor-
rectly. If ԔԓԘԣԓԘԢԣԐԝԒԔ � �, the score is considered. If not, the region
is discarded.

5.2.6 Word Spotting

The second metric used to detect and translate image’s regions into text
is the Word Spotting. It follows the same protocol as End-to-End with one
step more: it considers only words provided by a vocabulary.

To understand the difference between both metrics: while End-to-End
is interested in detect and translate all words in an given image, Word Spot-
ting considers only some relevant words highlighted by the competition.
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5.3 Final Implementation Details

All the work done until here was a very good case of study to learn how
Deep Learning structure works. Unfortunately it was not relevant on the
final result of the framework. From now it will be detailed what was done,
how it works and all difficulties found during the implementation

5.3.1 YOLO

To better understand how YOLO works, it was re-implemented using
Keras[Chollet, 2015] with TensorFlow[Abadi et al., 2015] in the backend.
Even considering it is only a object detection task (considering “text” as
object), the implementation is ready to detect and classify more than one
class. It only needs to be trained accordingly.

For the task of text detection, YOLO was trained with data from 3 dif-
ferent data sets showed in Figures 20, 21 and 22.
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Figure 20: Images from Born Digital data set
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Figure 21: Images from COCO-Text data set

Figure 22: Images from Incidental Scene Text data set

5.3.2 Image-to-Word

This network was surprisingly straight-forward to implement. Stacking
two layers of convolutional layers followed by a stack of bi-directional GRU’s

60



or LSTM’s got a relevant result on the translation of images to sequence of
characters. As this implementation worked fine at first and it was very fast
to train and execute, this was the architecture chosen. Figure 25 illustrates
an example of this network.

In this case, images from [Jaderberg et al., 2014b] and [Karatzas et al.,
2015] were used. Examples are shown in Figures 23 and 24.

Figure 23: Images from Born Digital data set
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Figure 24: Images from MJSynth data set
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Figure 25: Example of Network tested for Image-to-Word

Each rectangle of Figure 25 represents:
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• Left rectangle: type of neuron used;

• Right rectangles: size of input and output of layer.

Most implementations seen before uses unidirectional LSTM to do this
kind of work. The aim of this work was to prove GRU could work as good
as the previous RNN cited.

For a better comparison, 2 different architectures were tested to check
what would be better for the final framework:

• Bi-directional LSTM;

• Bi-directional GRU;

For all of them all other structure was kept: gray scale image size of
128x64 followed by two sets of convolutional-maxpooling of 32 layers each.
Adam Optimizer[Kingma and Ba, 2014] was used and loss function based
on Connectionist Temporal Classifier[Graves et al., 2006].

5.4 Framework Results

With all explanation until here, it is time to test on real-world examples.
For the first and second task there is more detailed explanation of each
data set used for training and validation. Best results on both duties were
used to assembly the final framework and execute the last assignment.

5.4.1 Text Localization

All starts on finding what areas of a given picture is text. As said before,
the task of detecting words in real-world images is still an open problem
with no perfect technique or Deep Learning architecture to solve it. Turns
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out it is way more difficult than first thought. Even using a very powerful
neural network like YOLO[Redmon et al., 2015] it shows there is still room
for new systems.

In this work, it was used two versions of this neural network: the Tiny
YOLO, which the author claims it could be used for real time object detec-
tion even in not so powerful devices; and the Full YOLO, a more robust
architecture that still could track items in real time but needs equipment
with a strong GPU.

These are the data sets used for training and validation in this task:

• Born Digital Images (ICDAR 2011 - 2015)[Jaderberg et al., 2014a,c]:
551 images divided in 410 for training and 141 for test. All images
are generated by digital printer;

• Incidental Scene Text (ICDAR 2015 - )[Jaderberg et al., 2014a,c]:
Contains 1500 images in 1024x768 RGB, split in 1000 for training
and 500 for validation. All images are photos from different places.

• COCO-Text[Su, 2016, Veit et al., 2016]: this huge data set provided
by Microsoft has 63686 images available for text challenges: 43686
for training, 10000 for test and 1000 for validation, with no public an-
notation available according to web page.3

Both networks were trained for 120 epochs using COCO-text Training
data set and Incidental Scene Text Training data set. ADAM was chosen
as the optimizer. Figure 26 shows where this method work well and Figure
27 shows examples where there were some problems.

3https://vision.cornell.edu/se3/coco-text-2/
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Figure 26: Images with good detection areas. Left images are the ground
truth and right images are the detection.

Figure 27: Images with bad detection areas. Left images are the ground
truth and right images are the detection. Green squares show the correct
detections, red squares are wrong detections and brown are middle-term
detections
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Table 3: Results on Born Digital Images - ICDAR2013 Metric

Precision Recall H-Mean
Tiny YOLO 56.63 53.89 55.23
Full YOLO 70.56 60.65 65.23

Table 4: Results on Born Digital Images - DetEval Metric

Precision Recall H-Mean
Tiny YOLO 56.63 53.89 55.23
Full YOLO 71.48 61.45 65.23

Tables 3, 4, 5 and 6 show results of each architecture on Born Digital
Images validation data set. FPS(Frames Per Second) was calculated as
the average of 100 executions over the validation data set, with the follow-
ing steps:

• open file from disk

• predict relevant areas with the neural network trained

For the Incidental Scene Text, results are in Table 7. It is visible the
difference between results on both data sets. The main reasons are:

• images on ”Incidental Scene Text” are way more complex than in
”Born Digital Images”. There are many more influences (noise, blur,
inclination and others) in the first data set. The second one is basic-
ally clean text from computer source.

Table 5: Results on Born Digital Images - IoU Metric

Precision Recall H-Mean
Tiny YOLO 41.08 38.03 39.49
Full YOLO 60.96 51.65 55.92
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Table 6: Results on Born Digital Images - Speed in Frames per Second
(FPS)

FPS
Tiny YOLO 42.21
Full YOLO 21.19

Table 7: Results on Incidental Scene Text

Precision Recall H-Mean FPS
Tiny YOLO 14.39 14.54 14.46 30.73
Full YOLO 31.54 22.00 25.92 18.18

• YOLO yields (ԧվր։֏ր֍, Ԩվր։֏ր֍, width, height), where ԧվր։֏ր֍ and Ԩվր։֏ր֍
are the center point of the bounding-box. ”Born Digital Images” re-
quires the output for each instance to be (ԧֈք։, Ԩֈք։, ԧֈռ֓, Ԩֈռ֓),
which define the top-left and right-bottom coordinates of each region
which is a very easy value translation. ”Incidental Scene Text” needs
the result to be (ԧφ, Ԩφ,ԧϵ, Ԩϵ, ԧϯ, Ԩϯ,ԧΚ, ԨΚ) where each tuple (ԧ Ԩ)
defines one corner of a given location. Eventually, these values may
not generate a perfect rectangle, which makes YOLO’s output to loss
at least some points on Intersection over Union (IoU).

• speed: images on ”Incidental Scene Text” are bigger than in ”Born
Digital Images”. They take more time to load.

5.4.2 Word Recognition

Word Recognition is the second and final step of entire framework. As
it is possible to see in this section, this task can be evaluated alone too.
As said before, this task consists basically in a sequence classification,
where the sequence can theoretically have size between 0 and infinity.
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For practical purpose, in this work it was limited to 21 characters in a single
image. Training and evaluation was made in these data sets:

• Born Digital Images (ICDAR 2011 - 2015) - Task 3: Word Recogni-
tion[Jaderberg et al., 2014a,c]: 3564 images of cropped words from
image are used for training and 1439 for validation, on a total of 5003
images;

• Incidental Scene Text (ICDAR 2015 - ) - Task 3: Word Recogni-
tion[Jaderberg et al., 2014a,c]: Contains 6545 images, split in 4468
for training and 2077 for validation.

• MJSynth data set[Jaderberg et al., 2014b]: a huge data set with 9
million images from 90 thousand English words

Themain question in this task is: does GRU perform better than LSTM?
Both are RNN types and LSTM is more used than GRU (maybe because it
is better known). For evaluation, two neural networks, each with one type
of neuron was trained with this configuration set:

• images resized by 100x30 in gray scale;

• two layers of 32 CNN followed by MaxPooling;

• bi-directional RNN with 512 neurons;

• alphabet defined in a-z, A-Z, 0-9 and white space (64 classes);

• CTC loss;

• mini-batch of 32;

• ADAM optimizer;

• train performed in 3 data sets in this sequence:
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Table 8: Results on Incidental Scene Text validation data sets. TED = Total
Edit Distance, CRW = Correct Recognized Words, CI = Case Insensitive,
CS = Case Sensitive

Incidental Scene Text
TED-CI CRW-CI TED-CS CRW-CS

LSTM 623.18 40.20% 767.35 34.28%
GRU 953.45 26.81% 1073.22 23.78%

– trained in MJSynth data set, each epoch using clusters of 12000
images. Each cluster was trained twice for 130 epochs. Exper-
iments showed it was enough to converge the result;

– trained in Born Digital Images data set twice;

– trained in Incidental Scene Text twice;

Tables 8 and 9 shows results on Born Digital Images and Incidental
Scene Text validation data sets respectively. It was initially thought GRU
would have similar performance on character detection, however LSTM
was significantly better. It shows in this particular case, the additional gate
makes difference. Besides the results on, GRU is faster than LSTM: during
training, each epoch took 19s on GRU while in LSTM it took 22s, around
10% of faster.

A problem was found in all data sets: the performance for translating
normal words like “cat”, “COMPUTER” or names was really good. How-
ever, there are few examples for training with numbers and other symbols
like ”$”, ”€” and others not listed here. Even with this problem, results indic-
ate that if a data set with enough words with these listed symbols is used
in training, both neural networks can improve their results.
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Table 9: Results on Born Digital Images validation data sets. TED = Total
Edit Distance, CRW = Correct Recognized Words, CI = Case Insensitive,
CS = Case Sensitive

Born Digital Images
TED-CI CRW-CI TED-CS CRW-CS

LSTM 164.17 69.07% 190.48 67.26%
GRU 250.03 54.13% 269.99 52.95%

5.4.3 End-to-End

Both steps before were largely evaluated for a reason: what combination
would create a single framework for detecting text areas and translating
them into text for a given image?

ICDAR provides two good challenges for evaluation: “End-To-End Text
Detection and Recognition for Born Digital Image” and “End-To-End Text
Detection and Recognition for Incidental Scene Text”. Data sets to be eval-
uated are the same for Text Detection task however here it is necessary to
translate every single piece of detected text into a sequence of characters.

The full working pipeline is described below:

• According to the results, Full-YOLO architecture performed better in
text detection for both data sets. It performs the first stage of this
framework.

• For each detected area, a hybrid architecture using CNN-LSTM trans-
lates each detected in a sequence of characters. If a given region
is translated as “”(empty), “ ”(white space) or a sequence of white
spaces, this region is discarded. Otherwise, this region is considered
and the final text is the output of the second neural network.

According to each web page4,,5 a protocol proposed by [Wang et al.,
2011] is used. It considers a detection as a match if it overlaps a ground

4http://rrc.cvc.uab.es/?ch=4&com=tasks
5 http://rrc.cvc.uab.es/?ch=1&com=tasks

71



Table 10: “Born-Digital Images” Blind Detection Results

Precision Recall H-Mean
End-To-End 0.2435 0.2280 0.2355

Word Spotting 0.2617 0.2519 0.2567

Table 11: “Incidental Scene Text” Blind Detection Results

Precision Recall H-Mean
End-To-End 0.0651 0.0428 0.0516

Word Spotting 0.0672 0.0454 0.0542

truth bounding box by more than 50% (as in [Everingham et al., 2015]) and
the words match, ignoring the case.

Results in this section are separated in two main sections: first it is
shown the performance on blind detection, it means how the framework
performed by itself. The second part is following the rules for task “Strongly
Contextualized” from ICDAREnd-to-End text detection for “Born-Digital Im-
ages” and “Incidental Scene Text”.

Starting from blind detection, results are show on Table 10 for “Born-
Digital Images” and Table 11 for “Incidental Scene Text” Validation data
sets. In the first case results are somewhat good, detecting correctly around
one fourth of total desire areas and then translate these regions in words.
However, it may be considered a very bad result on real word photos get-
ting only 5% of correct detection process. These results make clear there is
a lot of room for improvement in both parts of the framework if it is intended
to work with no help from any type.

The described problems go significantly down when results are com-
bined with auxiliary files from “Strongly Contextualized Results”. To per-
form this task, the following pipeline was used:

• The framework performs its detection using YOLO for relevant areas
and the CNN+LSTM combination to translate this area in word;
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Table 12: “Born-Digital Images” Strongly Contextualized Results

Precision Recall H-Mean
End-To-End 0.4959 0.4645 0.4797

Word Spotting 0.5478 0.5273 0.5373

Table 13: “Incidental Scene Text” Strongly Contextualized Results

Precision Recall H-Mean
End-To-End 0.2136 0.1405 0.1695

Word Spotting 0.2237 0.1511 0.1804

• For each word it is performed a search in the auxiliary files. If the
word is found, then this word is set to this region. If not, the word
of the list with the smaller editdistance described before is set to the
region.

Results are show on Table 12 for “Born-Digital Images” and Table 13 for
“Incidental Scene Text” Validation data sets. It performs two times better
in the first data set and near three times better in the last image set.

These last results complete the first intention of this work: to understand
how a OCR pipeline works.

For summarizing, Table 14 shows the number of instances used on
each task of this work.

Table 14: Data sets used in this work divided in Training Set and Validation
Set

Data Set Training Set Size Validation Test Size
Born-Digital Images - Tasks 1 / 4 410 141
Born-Digital Images - Task 3 3,564 1,439

Incidental Scene Text - Tasks 1 / 4 1,000 500
Incidental Scene Text - Task 3 4,468 2,077

MJsynth 9,000,000 0
COCO-Text 43,686 0
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In the next section, the final considerations are detailed.

6 Final Considerations

This study aimed to create a OCR system for text in several types of
images. It shows it is possible to create a full pipeline to perform this task
but it is still necessary some improvement in order to reach state-of-art
performance. This conclusion highlights the scientific contribution of this
work and some points that would boost the general performance.

6.1 Scientific Relevance

6.1.1 Object Detector as Text Detector

The first relevant point of this study is the proof of using a Deep Learning
architecture for object detection can be trained and used as a text detector
in photographs and other types of images, performing well when YOLO
Redmon et al. [2015] was used. It suggests other architectures Dai et al.
[2016], Zheng et al. [2015] could be re-trained in order to accomplish rel-
evant result on this task.

6.1.2 Debate on Other Research Study

Another innovation was the idea that GRU Cho et al. [2014] could per-
form better on the word recognition task than LSTM Donahue et al. [2014].
Chung et al. Chung et al. [2014] suggested the first type of RNN could
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even outperform the second with the advantage of being faster. However,
this study proof it is not always the case, with a relevant performance dif-
ference. It suggests these architectures could be challenged on other se-
quence tasks like video classification or other list dependent tasks.

6.2 Neural Network Architectures

Both steps on this work showed some good results even using relatively
simple architectures. It has been shown when deeper architectures are
used, results tend to be better.

In this work, YOLO’s architecture was trained only using the Tiny and
Full versions, which are relatively simple. In its original paper Redmon et al.
[2015] got better results using deeper architectures as backend, such as
VGG16[Simonyan and Zisserman, 2014], MobileNet[Howard et al., 2017],
Inception-V3[Szegedy et al., 2015] and ResNet[He et al., 2015].

Another point that should improve results is a scalar pre-training. On
YOLO9000 [Redmon and Farhadi, 2016], the entire neural network is trained
in two different image sizes before training on desired scale. In its report,
it improves significantly the results, showing this technique could be used
in text detection too.

Last point regarding improving YOLO’s detection is how bounding-box
regions are formed. The original implementation detects 	ԧֈք։ Ԩֈք։ ԧֈռ֓ Ԩֈռ֓

(2 points) whilemost of the text detections are based on 	ԧφ Ԩφ ԧϵ Ԩϵ ԧϯ Ԩϯ ԧΚ ԨΚ

(4 points). This can cause more errors when IoU is calculated. Perhaps if
the neural network were developed using this system, these results could
be improved too.

The CNN + RNN architecture for text recognition is shallow too. It has
only two layers of convolutions and uses a relatively small input (100x30).
In order to detect more features, this window could be bigger to enable this
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network to have more layers of transformation and detection. It is not clear
if the second part would perform better if there was more recurrent layers
and more neurons but as said before, deeper networks tend to perform
better than flat ones.

6.3 More Training Data

Deep Learning has shown state-of-art results on several different tasks
but it is not perfect. One of the reasons for this problem is because it is
data hungry, it means it needs a lot of data to understand what it needs to
classify or detect. This point may be affecting the results on both models.

YOLO was trained using COCO-Text and both ICDAR data sets for text
detection which when summed up gives around 45000 images for training.
This quantity is significantly smaller than the original COCO data set, it
claims to have more than 220000 labeled images for training.6 Even using
artificial data augmentation, it may be not enough to reach the best result
of this network.

For the word recognition part, the number of labeled images looks enough
to detect characters (A-Z, a-z) but it does not contain any numbers or other
symbols (0-9, !, ?, * and others) that appears on validation data sets. It may
exist a data set that could solve this problem however it was not found until
this work was finished.

6http://cocodata set.org/
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