Antimicrobial Resistance of *Salmonella* Serotypes Isolated from Slaughter-Age Pigs and Environmental Samples

CELSO JOSÉ BRUNO OLIVEIRA,¹ LUIZ FERNANDO OLIVEIRA SILVA CARVALHO,² SUELI APARECIDA FERNANDES,³ ANA TEREZINHA TAVECHIO,³ CLAUDIO CAMACHO PEREIRA MENEZES,² and FRANCISCO JOSÉ DOMINGUES, JR.²

ABSTRACT

The aim of this study was to determine the antimicrobial resistance patterns of *Salmonella* strains isolated from slaughter-age pigs and environmental samples collected at modern swine raising facilities in Brazil. Seventeen isolates of six serotypes of *Salmonella enterica* subsp. *enterica* were isolated out of 1,026 collected samples: *Salmonella Typhimurium* (1), *Salmonella Agona* (5), *Salmonella Sandiego* (5), *Salmonella Rissen* (1), *Salmonella Senftenberg* (4), and *Salmonella Javiana* (1). Resistance patterns were determined to extended-spectrum penicillin (ampicillin), broad-spectrum cephalosporins (cefotaxime and ceftriaxone), aminoglycosides (streptomycin, neomycin, gentamicin, amikacin, and tobramycin), narrow-spectrum quinolone (nalidixic acid), broad-spectrum quinolone (ciprofloxacin and norfloxacin), tetracycline, trimethoprim, and chloramphenicol. Antimicrobial resistance patterns varied among serotypes, but isolates from a single serotype consistently showed the same resistance profile. All isolates were resistant to tetracycline, streptomycin, and nalidixic acid. One isolate, *Salmonella Rissen*, was also resistant to cefotaxime and tobramycin. All serotypes were susceptible to ceftriaxone, norfloxacin, ciprofloxacin, ampicillin, gentamicin, and chloramphenicol. The high resistance to tetracycline and streptomycin may be linked to their common use as therapeutic drugs on the tested farms. No relation was seen between nalidixic acid and fluoroquinolone resistance.

INTRODUCTION

Non-typhoidal salmonellosis has become an important cause of enteric infections in many countries,¹⁷,²³,³⁰ and several human salmonellosis outbreaks linked to the consumption of contaminated pork have been reported during the last decade.³,²⁰,²²,²⁴,²⁵ Furthermore, antibiotic-resistant strains have emerged worldwide and have led to increasing consumer concern about animal-derived food consumption. Infections caused by resistant strains have shown a higher fatality rate compared to those caused by susceptible organisms.¹⁵

The extensive use of antibiotics on farms for both therapeutic and growth promotion purposes have been considered to be an important trigger for the emergence of antibiotic-resistant pathogens,⁹,¹⁴,³³ and their real impact on public health continues to be a matter of debate. High numbers of tetracycline-resistant *Salmonella* strains have been isolated from pig farms.⁷,³⁴ However, resistance to first-choice antibiotics used for treatment of human infections causes even more concern. An increasing number of reports on *Salmonella* isolates from animals and humans show reduced susceptibility to fluoroquinolones.²,³¹,³⁵ Also, resistance to third-generation cephalosporins has been recently published.⁴,⁵

Considering the marked importance of *Salmonella* organisms as food-borne pathogens and the world-wide emergence of resistant or multidrug-resistant *Salmonella* strains,⁶,³³ in the present paper we describe the antimicrobial resistance patterns of *Salmonella* serotypes isolated from pigs and environmental samples collected from modern swine-raising systems in Brazil.

¹Departamento de Patologia Animal, Faculdade de Ciências Agrárias e Veterinárias, Unesp campus de Jaboticabal, 14 884-900, Jaboticabal, SP, Brasil.
²Departamento de Clínica e Cirurgia Veterinária da Faculdade de Ciências Agrárias e Veterinárias, Unesp campus de Jaboticabal, Jaboticabal, SP, Brazil 14 884-900.
³Instituto Adolfo Lutz, setor de Bacteriologia, Bairro Cerqueira César, São Paulo-SP, Brazil 01246-902.
MATERIALS AND METHODS

Antibiotic resistance patterns were studied in 17 Salmonella strains previously isolated from four pig farms located in São Paulo State, Brazil (Oliveira et al., manuscript submitted). Sixteen positive samples were isolated out of 1,026 collected samples and the serotypes of Salmonella enterica subsp. enterica comprised Salmonella Typhimurium (1), Salmonella Agona (5), Salmonella Sandiego (5), Salmonella Rissen (1), Salmonella Senftenberg (4), and Salmonella Javiana (1). Sixteen positive samples were identified out of all samples collected, including feces, floors, feeders, and water. Two different serotypes (S. Agona and S. Sandiego) were cultured from a single positive fecal sample. Bacteriological procedures for feces and water samples were followed as previously described. Floor and feeder samplings were performed after the animals were removed and the pens disinfected, using drag swab sets. The isolated Salmonella strains were serotyped according to Popoff and Le Minor. Considering the marked importance of Salmonella enterica serotypes as food-borne pathogens and the world-wide emergence of resistant or multidrug-resistant Salmonella strains, our goal was to report the antibiotic resistance profiles of Salmonella strains isolated from pigs and environmental samples collected from modern swine raising systems in Brazil. Despite the marked limitation of this study due to the small number of isolates (16 out of 1,026 samples), some results may be discussed. All strains isolated from pigs and environmental samples showed resistance to tetracycline and streptomycin. Although these antibiotics are not allowed for use as growth promoters by Brazilian legislation, they have been used by veterinarians for clinical purposes.

RESULTS

Seventeen Salmonella strains were isolated out of 1,026 samples collected. The Salmonella serotypes identified and the types of samples from which they were detected are shown in Table 1. The antimicrobial resistance patterns are shown in Table 2. Susceptibility varied among serotypes, but isolates from a single serotype showed the same resistance pattern. All isolates were resistant to at least three antimicrobial agents, tetracycline, streptomycin, and nalidixic acid. One isolate, Salmonella Rissen, was also resistant to cefotaxime and tobramycin. All serotypes were susceptible to ceftriaxone, norfloxacin, ciprofloxacin, ampicillin, gentamicin, and chloramphenicol. Fifteen isolates showed intermediate resistance to neomycin. Intermediate resistance to amikacin (3), trimethoprim (3), nalidixic acid (1), tobramycin (1), and cefotaxime (1) was detected as well. The serotypes from farm A were isolated from different types of samples; however, a very similar antimicrobial resistance profile was seen for these strains (Table 2).

DISCUSSION

Considering the marked importance of Salmonella enterica serotypes as food-borne pathogens and the world-wide emergence of resistant or multidrug-resistant Salmonella strains, our goal was to report the antibiotic resistance profiles of Salmonella strains isolated from pigs and environmental samples collected from modern swine raising systems in Brazil. Despite the marked limitation of this study due to the small number of isolates (16 out of 1,026 samples), some results may be discussed.

All Salmonella isolates collected from four pig farms showed resistance to tetracycline and streptomycin. Although these antibiotics are not allowed for use as growth promoters by Brazilian legislation, they have been used by veterinarians for clinical purposes. The antibiotics tested and respective breakpoints were as follows: extended spectrum penicillin (ampicillin, ≥32 μg/ml); broad-spectrum cephalosporins (cefotaxime, ≥64 μg/ml; ceftriaxone, ≥64 μg/ml; aminoglycosides (streptomycin, ≥2,000 μg/ml; neomycin, ≥16 μg/ml; gentamicin, ≥16 μg/ml; amikacin, ≥64 μg/ml; tobramycin, ≥16 μg/ml); narrow-spectrum quinolones (nalidixic acid, ≥32 μg/ml); broad-spectrum quinolones (ciprofloxacin, ≥4 μg/ml; norfloxacin, ≥16 μg/ml; tetracycline, ≥16 μg/ml; trimethoprim, ≥16 μg/ml; chloramphenicol, ≥32 μg/ml). The results were analyzed and interpreted according to the guidelines of the National Committee for Clinical Laboratory Standards (NCCLS). Briefly, after pre-incubation in tryptone soy broth and adjustment of turbidity to a 0.5 McFarland turbidity standard, bacterial suspensions were streaked onto freshly prepared Mueller-Hinton agar plates (Oxoid Ltd., Hampshire, UK) using sterile swabs. The reference strains used were Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853. Seven disks were placed on each 150-mm plate after 5 min to allow any excess surface moisture to be absorbed, and plates were aerobically incubated for 16–18 hr at 35°C. The strains were finally interpreted as resistant, intermediate or susceptible to each antibiotic according to the criteria currently recommended by the NCCLS, based on the diameters of the zones of complete inhibition to the nearest whole millimeter.

Table 1. Number of Salmonella Serotypes Cultured from Swine Farms A, B, C, and D, Located in São Paulo State (Brazil), Considering the Types of Samples from Which They Were Isolated

<table>
<thead>
<tr>
<th>Test farm</th>
<th>Serotype (number of isolates)</th>
<th>Samples (number of positive samples)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salmonella Agona</td>
<td>(3)</td>
<td>Rectal feces (1), dunging gutter water (2)</td>
</tr>
<tr>
<td>Salmonella Agona</td>
<td>(1)</td>
<td>Rectal feces (1)</td>
</tr>
<tr>
<td>A</td>
<td>Salmonella Sandiego (4)</td>
<td>Pool of feces (2), feed (1) drinking water (1)</td>
</tr>
<tr>
<td>Salmonella Javiana</td>
<td>(1)</td>
<td>Rectal feces (1)</td>
</tr>
<tr>
<td>Salmonella Agona</td>
<td>(1) + Salmonella Sandiego (1)</td>
<td>Rectal feces (1)</td>
</tr>
<tr>
<td>B</td>
<td>Salmonella Rissen (1)</td>
<td>Rectal feces (1)</td>
</tr>
<tr>
<td>C</td>
<td>Salmonella Senftenberg (2)</td>
<td>Rectal feces (2)</td>
</tr>
<tr>
<td>Salmonella Typhimurium</td>
<td>(1)</td>
<td>Rectal feces (2), pool of feces (2)</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>Clean feeder (1)</td>
</tr>
</tbody>
</table>

*Isolation of two serotypes from one fecal sample.
The antimicrobial agents tested were: cefotaxime (Ctx), ceftriaxone (Cro), amikacin (Ami), norfloxacin (Nor), streptomycin (Str), trimethoprim (Tm), neomycin (Neo), tobramycin (Tob), ciprofloxacin (Cip), tetracycline (Tet), ampicillin (Amp), gentamicin (Gen), nalidixic acid (Nal), and chloramphenicol (Chl).

The probability of horizontal gene transfer between bacteria is important to resistant genes spreading in a given environment, supporting previous reports. Therefore, no link between nalidixic acid and fluoroquinolone resistance was detected. We believe this is an important point because fluoroquinolone resistance has received special attention from the scientific community. Many reports have indicated a possible link between the increased recovery of Salmonella organisms showing reduced susceptibility to ciprofloxacin and the importance of using quinolones in farm animals, with the consequent emergence of fluoroquinolones resistance.

Curiously, all Salmonella serotypes from farm A showed a very similar resistance profile, despite the fact that the serotypes isolated may develop antibiotic resistance through different mechanisms. This result may indicate that horizontal gene transfer between bacteria is important to resistant genes spreading in a given environment, supporting previous reports. However, conclusions should be reached with caution because all serotypes were theoretically submitted to the same antimicrobial selective pressure on such farm. Further work looking at the genetic characterization of resistance determinants is underway to determine the identity and homology of resistance genes.
Improvement of biosecurity procedures on pig farms have a great potential to prevent the maintenance of resistant strains through internal cycles of contamination. To test this hypothesis, further studies focusing on the dynamics of resistance transfer in the environment and among animals are needed.

ACKNOWLEDGMENTS

The authors are grateful to Dr. Wondwossen Gebreyes (North Carolina State University) for his advice during the preparation of the manuscript and to Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and Conselho Nacional de Pesquisa (CNPq) for financial support.

REFERENCES

Address reprint requests to:
Dr. Luiz Fernando O.S. Carvalho
Departamento de Clínica e Cirurgia Veterinária da Faculdade de Ciências Agrárias e Veterinárias-Unesp
Campus de Jaboticabal
Via de acesso Prof. Paulo Donato Castellane s/n
Jaboticabal, SP, Brazil 14 884-900
E-mail: LFOSC@fcav.unesp.br