Review

Mechanisms linking bacterial infections of the bovine endometrium to disease and infertility

Luísa Cunha Carneiro a,b, James Graham Cronin a, Iain Martin Sheldon a,*

a Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea SA2 8PP, United Kingdom
b Faculty of Agricultural and Veterinary Science, Universidade Estadual Paulista, Jaboticabal, Brazil

A R T I C L E I N F O

Article history:
Received 14 July 2015
Received in revised form
24 November 2015
Accepted 5 December 2015
Available online 23 December 2015

Keywords:
Cow
Endometritis
Cytolysis
Innate immunity
Uterus

A B S T R A C T

Bacterial infections of the endometrium after parturition commonly cause metritis and endometritis in dairy cattle, and these diseases are important because they compromise animal welfare and incur economic costs, as well as delaying or preventing conception. Here we highlight that uterine infections cause infertility, discuss which bacteria cause uterine disease, and review the evidence for mechanisms of inflammation and tissue damage in the endometrium. Bacteria cultured from the uterus of diseased animals include Escherichia coli, Trueperella pyogenes, and several anaerobic species, but their causative role in disease is challenged by the discovery of many other bacteria in the uterine disease microbiome. Irrespective of the species of bacteria, endometrial cell inflammatory responses to infection initially depend on innate immunity, with Toll-like receptors binding pathogen-associated molecular patterns, such as lipopolysaccharide and bacterial lipopeptides. In addition to tissue damage associated with parturition and inflammation, endometrial cell death is caused by a cholesterol-dependent cytolysin secreted by T. pyogenes, called pyolysin, which forms pores in plasma membranes of endometrial cells. However, endometrial cells surprisingly do not sense damage-associated molecular patterns, but a combination of infections followed by cell damage leads to release of the intracellular cytokine interleukin (IL)-1 alpha from endometrial cells, which then acts to scale inflammatory responses. To develop strategies to limit the impact of uterine disease on fertility, future work should focus on determining which bacteria and virulence factors cause endometritis, and understanding how the host response to infection is regulated in the endometrium.

© 2015 Society for Biology of Reproduction & the Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn. Published by Elsevier Sp. z o.o. All rights reserved.
1. **Introduction**

Bacterial infections of the uterus cause disease and infertility in dairy cattle, particularly after parturition, when they lead to metritis and endometritis in up to 40% of animals [1]. These postpartum uterine diseases are important because they compromise animal welfare, and incur costs for treatment, reduced milk production, and replacement of infertile animals; €1.4 billion every year in the EU alone [2]. Here we address the question of how infections of the endometrium are linked to disease and infertility. We highlight the impact of uterine disease on fertility, then discuss which bacteria cause disease, and finally assimilate recent evidence about the mechanisms of inflammation and tissue damage in the endometrium.

2. **Bacterial infections of the uterus cause infertility**

In a meta-analysis of more than 10,000 animals, postpartum metritis increased the time to first insemination by 7.2 days, reduced conception rate to first insemination by 20%, and increased the calving to conception interval by 18.6 days [3]. Similarly, clinical endometritis increased the interval to first insemination by 11 days, and delayed conception by 32 days, compared with animals that did not have endometritis [4]. Cows with clinical endometritis between 20 and 33 days post partum were also 1.7 times more likely to be culled for reproductive failure than cows without endometritis [5]. Furthermore, infertility could be due to the endometrial inflammation in postpartum cattle infected with Trueperella pyogenes [6]. Together, these observations linking bacterial infections of the uterus with infertility provide an impetus to discover the underlying mechanisms. Evidence for how uterine disease impacts ovarian and neuroendocrine function have been reviewed recently [7]. So, the objective of the present review is to focus on the uterus.

3. **Microbial infections of the postpartum uterus**

From a historical perspective, microbial disease of the uterus of cattle merited little comment 80 years ago, and endometritis was not considered a common problem. However, between 1960 and 2000, endometritis in cattle started to be the subject of investigations to understand the pathogenesis of the disease and to select the most effective treatments. In one study, 93% of the uteri obtained within 15 days of calving yielded bacteria on aerobic and anaerobic culture of endometrial swabs and tissue [8]. The proportion of uteri from which bacteria were isolated had declined to 78% by 16–30 days, 50% by 31–45 days, and 9% by 46–60 days postpartum. Similar proportions of animals yielded culturable bacteria in subsequent studies [9,10]. However, the situation is more complicated because the bacterial flora fluctuates during the first 7 weeks postpartum due to spontaneous contamination, clearance and recontamination [11]. Furthermore, which bacterial isolates are contaminants of the uterus and which are pathogens is open to debate. Uterine infection was most commonly associated with the presence of Escherichia coli, T. pyogenes, Fusobacterium necrophorum, and Prevotella or Bacteroides species in studies spanning from the 1960s to the 1990s [8,10–12]. In the last 15 years, studies using aerobic and anaerobic culture methods provided similar evidence to the earlier investigations [9,13–15]. These bacteria were identified by standard culture techniques and are classified into pathogens, potential pathogens and opportunistic contaminants (Table 1). In particular, T. pyogenes is linked to the severity of endometrial pathology and clinical disease [10,14,16]. Furthermore, T. pyogenes, F. necrophorum and Prevotella species can act synergistically to increase the likelihood of endometritis and the severity of disease [17,18]. Associations between uterine disease and bacteria that are not readily cultured by standard techniques emerged recently as researchers started to use biochemical, molecular and sequencing techniques [19–23]. These studies have provided

<table>
<thead>
<tr>
<th>Pathogens</th>
<th>Potential pathogens</th>
<th>Contaminants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli</td>
<td>Acinetobacter spp.</td>
<td>Aerococcus viridans</td>
</tr>
<tr>
<td>Trueperella pyogenes</td>
<td>Bacillus licheniformis</td>
<td>Clostridium butyricum</td>
</tr>
<tr>
<td>Prevotella spp.</td>
<td>Enterococcus faecalis</td>
<td>Clostridium perfringens</td>
</tr>
<tr>
<td>Fusobacterium necrophorum</td>
<td>Haemophilus somnus</td>
<td></td>
</tr>
<tr>
<td>Fusobacterium nucleatum</td>
<td>Manihemisoma haemolytica</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pasteurella multocida</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Peptostreptococcus spp.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Staphylococcus aureus (coagulase +)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Streptococcus uberis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bacteroides species</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Firmicutes species</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fusobacteria species</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Corynebacterium spp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Enterobacter aerogeniae</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Klebsiella pneumoniae</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Micrococcus spp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Providencia retgeri</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Providencia stuartii</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Proteus spp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Propionobacterium granulosa</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Staphylococcus species</td>
</tr>
<tr>
<td></td>
<td></td>
<td>α-haemolytic Streptococci</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Streptococcus acidominimus</td>
</tr>
</tbody>
</table>
some contention in the field. Whilst some of the studies found E. coli, T. pyøøes and the expected anaerobic bacteria; others, surprisingly, found no evidence from their molecular analyses that E. coli or T. pyøøes cause uterine disease but rather reported finding other Fusibacteria species, Bacteroides and Firmicutes (Table 1). Gaps in knowledge remain about the relative contribution of cultivable compared with “unculturable” bacteria to uterine disease, and synergistic interactions between E. coli or T. pyøøes and other bacteria. A consistent finding among most molecular microbiology studies is that anaerobic bacteria are abundant in diseased uteri [19,20]. Perhaps this is not surprising as the endometrium is a microaerophilic environment, and tissue damage and necrosis likely reduce the oxygen tension further, as well as the endometrium providing nutrients to facilitate bacterial growth. Indeed, the risk factors most frequently associated with uterine infection are stillbirth, twins, dystocia, cesarean section operation, and particularly retained fetal membranes [24–27].

Direct links between microbes and uterine disease remain to be explored, especially for unculturable microbes. However, an experimental vaccine containing components of E. coli, F. necrophorum and T. pyøøes, prevented metritis in dairy cows [28]. Furthermore, infusion of E. coli and T. pyøøes into the uterus of naive cows induces endometritis [29,30]. So, taking the combined evidence for E. coli and T. pyøøes playing roles in postpartum uterine disease in dairy cattle, we will focus on these two microbes (Fig. 1).

3.1. Escherichia coli

It was assumed that E. coli isolated from the uterine lumen was associated with fecal contamination of the uterus during parturition, even though the level of fecal contamination on farms did not affect the uterine microbiome or severity of endometritis [12,27]. However, molecular typing techniques found that uterine disease is associated with phylogenetic clusters of E. coli [31,32]. These endometrial pathogenic E. coli (EnPEC) tend to be phylogenetically distant from the majority of extra-intestinal pathogenic E. coli (ExPEC), and more closely related to human intestinal pathogens [33]. However, the EnPEC have acquired, via horizontal transfer, DNA encoding iron acquisition systems and a virulence plasmid, similar to that found in several ExPECs. On the other hand, ExPEC have few virulence factors typical of enteric E. coli, although they possess the gene encoding the FimH adhesion factor, and FimH fosters adhesion of EnPEC to endometrial cells [31,32]. Beyond adhesion, EnPEC exploit cellular microfilaments and microtubules to

Fig. 1 – Mechanisms of pathology in the postpartum endometrium. Uterine infection is commonly associated with the presence of Gram-negative E. coli, and Gram-positive T. pyøøes and anaerobes. (A) Pattern recognition receptors, such as the Toll-like receptor (TLR) family, on endometrial cells detect pathogen-associated molecular patterns (PAMPs), leading to the secretion of cytokines, such as IL-1β, IL-6 and IL-10, chemokines, such as IL-8 and CCL5, and prostaglandin E2. Chemokines attract neutrophils and macrophages to the site of infection, where they are regulated by cytokines such as IL-6. (B) The cholesterol-dependent cytolysin – pyøøysis (PLO) is secreted as a monomeric protein from T. pyøøes, and inserts into cholesterol-rich lipid rafts in the plasma membrane of host cells, forming pores that lead to osmotic cell death. Loss of the protective epithelium, often through damage incurred during parturition or from PLO, allows bacterial access to the underlying stromal cells. The stromal cells are more sensitive to pyøøysis-mediated cytolysis as their plasma membrane contains more cholesterol than epithelial cells. In addition, activation of TLRs on stromal cell induces further production of cytokines and chemokines. (C) Following infection, damaged epithelial or stromal cells release the damage-associated molecular patterns (DAMPs) IL-1α, which signal through the cognate receptor IL-1R1 on epithelial and stromal cells to scale the inflammatory response.
invade endometrial cells [31]. Of course, like all Gram-negative bacteria, lipopolysaccharide (LPS, endotoxin) is a principal component of the bacterial cell wall of EnPEC, and is an important virulence factor [31].

3.2. Treponema pyogenes

T. pyogenes has undergone several name changes in the last 60 years, from Corynebacterium pyogenes, via Actinomyces pyogenes and Arcanobacterium pyogenes, to T. pyogenes [34]. T. pyogenes is consistently associated with the severity of postpartum endometritis in cattle [14,16,22], and causes uterine disease when infused into the uterus of cattle [30,35]. Unlike the diverse strains of E. coli, uterine isolates of T. pyogenes are phylogenetically similar [30]. Although, there is some variation in expression of virulence factors, including: neuraminidases nanH and nanP, which cleave sialic acids from host molecules, exposes host cell receptors for increased adhesion, and reduce mucus viscosity [36–38]; the collagen-binding protein cbpA, which binds to collagen types I, II and IV, and promotes adhesion to collagen-rich tissues; and fimA, required for fimbrial biogenesis and attachment of T. pyogenes to mucosal surfaces [36–38].

However, the most striking finding is that the plo gene is expressed ubiquitously by all isolates of T. pyogenes [30,36,37]. The plo gene encodes a cytolysin, pyolysin, which is the virulence factor thought to be responsible for much of the pathology associated with T. pyogenes infections, including mastitis in cattle, and abscesses in pigs, goats, cattle and mice [38,39]. The plo gene sequence is identical and the plo gene promoter is highly similar amongst uterine isolates of T. pyogenes [30]. Pyolysin is a cholesterol-dependent cytolysin, which is secreted as a monomeric protein by T. pyogenes [38,39]. Lipid rafts are membrane microdomains that are enriched in cholesterol, sphingomyelin, sphingolipids and phospholipids, and pyolysin inserts into these cholesterol-rich domains in the plasma membrane of host cells, and then pyolysin aggregates to form 30 nm diameter pores, leading to osmotic cell death (Fig. 1). Surprisingly, bovine endometrial stromal cells are more sensitive to pyolysin-mediated cytolsis than epithelial cells, neutrophils, monocytes or lymphocytes [30]. The sensitivity of stromal cells to pyolysin provides an explanation for how T. pyogenes causes cytroyis in the endometrium, once the protective epithelium is lost after parturition. Furthermore, loss of the epithelium likely allows the bacterium to transit from a commensal state to act as a pathogen. The sensitivity of endometrial stromal cells to pyolysin may be because stromal cells contain more cholesterol than epithelial cells [30]. Indeed, if stromal cell cholesterol content is reduced using methyl-b-cyclodextrin, the stromal cells become as resistant to pyolysin as endometrial epithelial cells [30,40]. Similarly, the dynamin inhibitor Dynasore, which inhibits endocytosis from the plasma membrane, also reduces endometrial cell cholesterol and disperses plasma membrane lipid rafts, which protects against pyolysin [40]. In addition to changes in plasma membrane cholesterol, the physical properties of cell membranes and the shape of cells may be modulated. For example, Dynasore destabilizes and remolds F-actin, which may influence the distribution of cholesterol in plasma membranes and membrane biophysical properties [41]. However, further work is needed to determine the specific protective effects in endometrial cells.

4. Immunity, inflammation and tissue damage

As well as tissue damage associated with parturient problems, and the cell death caused by bacterial pore-forming toxins, much of the pathology in the postpartum endometrium is a consequence of the host innate immune response to bacteria.

4.1. Innate immunity in the endometrium

The innate immune response is predicated on cellular pattern recognition receptors that bind pathogen-associated molecular patterns (PAMPs), which are components of microbes but not eukaryotic cells [42]. Evidence for pattern recognition receptors was first uncovered using Drosophila melanogaster, where Toll was found to be required for protection against fungal infection [43]. The first functional mammalian Toll-like receptor (TLR) was identified in mutant mice, where TLR4 protected against infection with Gram-negative bacteria by recognizing LPS [44]. A range of pattern recognition receptors have now been discovered, with some expressed on the surface of hematopoietic immune cells, whilst others are located in the cytoplasm [42]. Binding of PAMPs to pattern recognition receptors induces intracellular signaling, often including mitogen-activated protein kinases and nuclear factor kappa B, leading to the secretion of cytokines such as interleukin (IL)-1β and IL-6, chemokines such as IL-8, prostaglandins, and antimicrobial peptides [42].

Pattern recognition receptors are not only present in hematopoietic immune cells, but also in endometrial epithelial and stromal cells. Bovine endometrial cells use TLR4 to sense LPS, and TLR1, TLR2 and TLR6 to detect bacterial lipopeptides, leading to the secretion of interleukin (IL)-8, IL-6 and prostaglandin E2 (Fig. 1) [45–48]. These in vitro responses mimic the effect of EnPEC and T. pyogenes on ex vivo organ cultures of endometrium, which stimulates the accumulation of IL-8 and IL-6, as well as IL-1β [49,50]. In addition, prostaglandin E2 is more abundant in animals with uterine disease, and changes in prostaglandin secretion might impact the physiological control of ovarian function [48]. The in vitro inflammatory responses by endometrial cells also reflect increased abundance of genes encoding inflammatory mediators in endometrium collected from animals with uterine disease. The upregulated genes in diseased endometrium, or in cytology samples collected from the endometrium, include cytokines such as IL1A, IL1B and IL6; chemokines such as CXCL5 and CXCL8; and antimicrobial peptides such as TAP, DEFB5 and DEFB1 [51–55]. However, metabolic deficits after parturition, often termed “negative energy balance”, may perturb immunity and the ability to clear microbes from the endometrium [56].

Chemokines, such as IL-8 (encoded by the CXCL8 gene), attract neutrophils and macrophages to the site of infection or tissue damage, where these hematopoietic cells are regulated by cytokines, such as IL-6 [57]. In the postpartum uterus the epithelium is often disrupted, with migration of neutrophils and macrophages through the stroma (Fig. 1). However, it is
interesting to note that IL-6 is only secreted apically by the polarized epithelial cells of a confluent epithelium in vitro [58]. Presumably, IL-6 is secreted apically into the uterine lumen to ensure immune cells are only exposed to IL-6 once they reach the lumen, unless the epithelium is breached. Furthermore, a confluent epithelium also protects the underlying stroma from PAMPs, and from bacterial toxins such as pyolysin [58].

4.2. Tissue damage and inflammation in the endometrium

The “danger hypothesis” extends the role of innate immunity to suggest that cells also use pattern recognition receptors to sense and respond to signals from damaged tissues [59,60]. Damage-associated molecular patterns (DAMPs) are released into the extracellular fluid by damaged or necrotic cells, or from the extracellular matrix [59,60]. In a similar manner to the responses to PAMPs, DAMPs such as the nuclear protein high molecular weight group box 1 (HMGB1) are released by necrotic cells or activated macrophages, and bind to receptors including TLRs to stimulate inflammation [61,62]. Hyaluronan is an example of an extracellular matrix DAMP produced during tissue damage, which stimulates inflammation via TLR2 and TLR4 [63]. As there is considerable tissue damage in the postpartum endometrium, it was surprising that bovine endometrial cells or mononuclear cells did not respond to HMGB1 or a range of different molecular weights of hyaluronan [64]. Instead, the endometrium exploits an alternative danger-sensing mechanism. Damaged cells passively release the intracellular cytokine IL-1α [65,66]; and, endometrial cells release IL-1α protein if there is a combination of exposure to bacteria, or bacterial PAMPs, followed by cell damage (Fig. 1) [64]. In turn, IL-1α binds the cognate IL-1R on adjacent endometrial cells to stimulate the production of inflammatory mediators such as IL-6. Thus, IL-1α scales the inflammatory response in the endometrium when there is infection followed by cell damage. This mechanism makes biological sense, as the intensity of the inflammatory response in a tissue should match the severity of the challenge [67].

5. Prospects

The rise in incidence and economic impact of postpartum uterine disease in dairy cattle over the last 40 years was unexpected, and few of the discoveries about endometritis discussed in the present review were predictable even 20 years ago. Although, a remaining open question is the role of unculturable bacteria, the main pathogens were identified by culture and recent evidence shows that they are well adapted to the endometrium. The role of innate immunity for sensing and responding to pathogen-associated molecular patterns in endometritis is now clearly established. We have also uncovered IL-1α as a key damage-associated molecular pattern, when there is damage and infection of the endometrium. Finally, there is emerging evidence for the role of virulence factors, such as the pore-forming toxin pyolysin. Future work should focus on determining which bacteria and virulence factors cause endometritis, and understanding how the host response to infection is regulated in the endometrium. New knowledge about postpartum uterine disease will provide a platform for new therapeutics and vaccines.

Author contributions

All authors contributed to the writing of the manuscript, and all authors approved the final version.

Conflict of interest statement

The authors have nothing to disclose.

Acknowledgements

MS was supported by the UK Biotechnology and Biological Sciences Research Council (BBSRC, grant number K006592/1). LC was supported by the Brazilian Federal Agency for the Support and Evaluation of Graduate Education (CAPES).

REFERENCES

