Tooth color change caused by photosensitizers after photodynamic therapy: An in vitro study

Larissa Menezes Costa, Felipe de Souza Matos, Ayla Macyelle de Oliveira Correia, Nayane Chagas Carvalho, André Luís Faria-e-Silva, Luiz Renato Paranhos, Maria Amália Gonzaga Ribeiro

1. Introduction

The maintenance of an aseptic chain and the elimination of microorganisms from the root canal system is the main condition for a successful root canal treatment. Several techniques have been developed to achieve this goal. One of them, photodynamic therapy (PDT), stands out for its relative convenience, safety, and excellent antibacterial potential, as demonstrated by in vitro and in vivo studies [1,2,3,4]. This reaction causes the rupture of the bacterial cell wall, leading to the death of the microbial cell [1]. It has been suggested as a good option to maximize the disinfection of the root canal [1,10].

PDT involves the use of a low-intensity light source, i.e., laser, associated with a photosensitizer, which consists of a nontoxic dye. When cured by a source of laser light at a specific wavelength (630 to 800 nm), the photosensitizer reacts directly with biomolecules or oxygen molecules generating cytotoxic products, such as free radicals (type I reaction) or highly reactive singlet oxygen (type II reaction) [11,12]. This reaction causes the rupture of the bacterial cell wall, leading to the death of the microbial cell [1].

Phenothiazine-based dyes, such as Toluidine Blue, Methylene Blue and Malachite Green, are currently the photosensitizers used most often in PDT, and they have produced favorable results [1,13,14,15]. However, because they are dyes, these photosensitizers can change the color of the tooth structure [13], compromising teeth esthetics and the mental well-being of patients [16]. In this context, although the antibacterial effectiveness of PDT has been extensively investigated, few studies have evaluated the effect of photosensitizers on tooth color change [4,13,14]. Thus, this study...
aimed to evaluate the effect of photosensitizers used in PDT on tooth color change.

2. Materials and Methods

2.1. Sample

Forty healthy, extracted human mandibular premolars with similar crown size were selected for this study. Cervico-occlusal and mesiodistal measurements of the crowns were performed with a digital caliper (Starrett Indústria e Comércio Ltda., Pinheirinho, SP, Brazil) with 0.01 mm accuracy. Teeth whose vestibular region of the crown differed by more than 10% from the mean were discarded. The selected teeth had intact vestibular surface, complete rhizogenesis and single root canal, as confirmed by periapical radiography. The experiment was approved by the Research Ethics Committee of the University (Certificate of Presentation for Ethical Consideration: 0141.0.107.000-09).

2.2. Preparation of Samples

The teeth were cleaned with Gracey 5–6 periodontal curettes (Golgran Ind. e Com. de Instrumental Odontológico Ltda., Brasília, DF, Brazil) and polished with a rubber cup and prophylactic paste (Herjos, Vigodent, Rio de Janeiro, RJ, Brazil) at low speed. Then, they were placed in Eppendorf tubes containing distilled water and kept in an oven for 72 h at 37 °C, until the laboratory procedures were started [17,18].

After this period, the apical foramen of each tooth was sealed with light-cured resin composite (Fill Magic, Vigodent, Rio de Janeiro, RJ, Brazil), and two layers of red nail polish (Colorama, São Paulo, SP, Brazil) were applied across the outer root surface in order to make the roots impermeable [5,19]. Subsequently, the coronary pulp chamber was accessed and the remaining layer of enamel and dentin of the vestibular surface was measured with a digital caliper [17,20].

2.3. Chemical–Mechanical Preparation of Root Canals

The root canals of the selected teeth were prepared with the crown-down technique using Gates-Glidden drills (Dentsply Maillefer®, Rio de Janeiro, RJ, Brazil) nos. 1, 2 and 3 in the cervical and middle thirds and instrumentation with one size 40 k-file (Dentsply Maillefer®, Rio de Janeiro, RJ, Brazil). The specimens were irrigated during instrumentation with 10 mL sodium hypochlorite at 1% (Biodynamics, Ibiporã, PR, Brazil), followed by EDTA at 17% (Biodinâmica, Ibiporã, PR, Brazil) and final irrigation with saline solution at 0.9% (Laboratório Tayuyna Ltda., São Paulo, SP, Brazil). The irrigation with sodium hypochlorite at 1% and EDTA at 17% was performed with the objective of removing the smear layer and increase dentin permeability for better penetration of the photosensitizer [6].

After preparation, the canals were dried with absorbent paper cones (#40) (Tanariman Industrial Ltda., Manaus, AM, Brazil).

2.4. Color Analysis of Dental Crowns by Photoreflectance

The teeth were subjected to evaluation of color change using a spectrometer (Model HR2000, Ocean Optics, Orlando, USA), composed of an integrating sphere (Model ISP-REF, Ocean Optics, Orlando, USA) and an optical fiber cable (Ocean Optics, Orlando, USA). Barium sulfate (Vetec Química Fina Ltda., Rio de Janeiro, RJ, Brazil) was placed in a plastic container and used as reference material (white) for total reflection. The dark pattern was obtained by using the integrating sphere uncovered.

After that, measurements were performed for each specimen. For this reason, the light beam of the sphere was directed at the central portion of the vestibular surface of each sample and the values L*, a* and b* provided by the device were recorded. Ten measurements were taken for each specimen, and the end result was the mean of these values. Each mean separately provided the results of coordinates L*, a* and b* as recommended by the Commission Internationale de l’Eclairage (CIELAB-CIE-1976, Vienna, Austria). L* indicates brightness and varies between 0 for black and 100 for white; a* determines the amount of red (positive values) or green (negative values), and b* displays the amount of yellow (positive values) or blue (negative values).

2.5. Photodynamic Therapy (PDT)

After chemical–mechanical preparation and color analysis, the samples were randomly divided into four experimental groups according to the photosensitizers (PS) used, namely: MB (n = 10) — PDT with Methylen Blue at 0.01% (Chimiolux, Belo Horizonte, MG, Brazil); TB (n = 10) — PDT with Toluidine Blue at 0.01% (Farmácia Fórmula & Ação, São Paulo, SP, Brazil); MG (n = 10) — PDT with Malachite Green at 0.01% (Farmácia Fórmula & Ação, São Paulo, SP, Brazil), at a concentration of 0.1 mg/mL; and PC (n = 10) — positive control, PDT with Endo-PTC cream stained with Methylene Blue at 25% (Farmácia Fórmula & Ação, São Paulo, SP, Brazil).

2.6. Parameters of Laser Irradiation

The root canal was filled with the respective PS, with aid of a sterile syringe (MB, TB and MG groups) or a size 15 k-file (PC group). There was a 5-min pause (pre-irradiation time) before irradiation with Twin InGaAlP Diode Laser (MMOPTICS, São Carlos, SP, Brazil), previously calibrated by the manufacturer [21,22]. The following parameters of irradiation were used: wavelength = 660 nm, power density = 40 mW, continuous emission mode, energy density = 120 J/cm² and irradiation time = 120 s.

An optical fiber cable with 330 m in diameter (MMOPTICS, São Carlos, SP, Brazil) was used for the irradiation of light. The fiber cable was introduced inside the root canal to reach the working length (WL), at a distance of 1 mm from the radiographic apex. Helical movement was performed from the apical to the cervical region in order to ensure a uniform distribution of light within the canal [6].

After light curing, the PS was removed from the specimens by means of irrigation with 10 mL sodium hypochlorite at 1%. In all groups, the cable was dried with absorbent paper and, finally, the coronal access was sealed with white gutta-percha points (DFL, Rio de Janeiro, RJ, Brazil) and resin-modified glass ionomer cement (Vitro Fil LC, DFL, Rio de Janeiro, RJ, Brazil).

2.7. Reading of Color Change

After 60 days, the samples were again analyzed for color change using the spectrometer. The coordinate values of L*, a* and b* of each sample were reduced from the initial value (baseline) and color change was measured by the mean ΔE value, represented by the equation:

$$\Delta E = [(\Delta L)^2 + (\Delta a)^2 + (\Delta b)^2]^{1/2},$$

where \(\Delta L = L_1 - L_0\); \(\Delta a = a_1 - a_0\); and \(\Delta b = b_1 - b\) [18,23,24,25].

2.8. Data Analysis

The data were analyzed using one-way ANOVA. This analysis was complemented by multiple comparisons of the means by Tukey’s test at a significance level of 5%.

3. Results

Figs. 1, 2 and 3 indicate the means of the values obtained by coordinates L*, a* and b*, before (baseline) and 60 days after PDT in each sample. The values of ΔE (color change) can be seen in Fig. 4.

The results of ANOVA (one-way ANOVA) showed significant differences between the photosensitizers tested (p = 0.003). According to Tukey’s multiple comparison test (Table 1), there was no significant difference between the groups PC and TB (p = 0.008), as well as between...
MG and TB ($p = 0.009$). However, there was no significant difference between the groups PC, MG ($p = 0.957$) and MB ($p = 0.103$).

4. Discussion

There is considerable doubt as to the use of dyes in therapeutic procedures, such as in PDT. Currently, a considerable number of studies and clinical investigations are being carried out to determine PS, light sources and treatment parameters [1,14,15,26,27,28]. Although studies to date have demonstrated that the combination of conventional root canal therapy with PDT is effective in reducing bacterial load, teeth may be stained by photosensitizers.

Among the various methods to measure and analyze variation in tooth color, reflectance spectrophotometry is being extensively used. The spectrometer used in this study relies on the method based on the system CIE L*a*b* to track color changes. In this system, the differences in color are expressed numerically, which can be related to visual perception and clinical significance [29]. In addition, the tool minimizes the loss of light at the edges of the samples and maximizes the collection of reflected light in all directions, as the change in reflection of teeth is related to changes in tooth color [17].

The results showed that all photosensitizers caused change color. TB promoted lesser color change, followed by MB, without a significant difference between them. This effect was not observed by Figueiredo et al. [4] (2014) when they assessed color change in teeth submitted to photodynamic therapy with the use of endodontic phenothiazine dyes. Their results showed that after implementation of the protocol for removal of photosensitizers with Endo-PTC cream and sodium hypochlorite at 2.5%, the samples treated with Toluidine Blue showed greater change color when compared to Methylene Blue.

This effect was explained by the greater penetration power of Toluidine Blue into dentinal tubules as a result of its lower molecular weight (107.17 g/mol). Methylene Blue, in turn, has the highest molecular weight (375.91 g/mol) and has greater difficulty in penetrating through the dental canaliculi. Therefore, it causes lesser color change [4], which was not observed in the present study. This discrepancy can be explained by the difference in the methods employed. In the present study, the samples were analyzed before PDT and at 60 days after the completion of PDT and removal of the PS with sodium hypochlorite at 1%. In the study by Figueiredo et al. [4] (2014), the samples were analyzed before and immediately after PDT and removal of the PS with the Endo-PTC cream and sodium hypochlorite at 2.5%.

According to CIE L*a*b*, color changes (ΔE) whose values range between 0.0 and 0.5 are considered as traces. Changes are considered clinically perceptible when values range between 1.5 and 3.0. For values above 3.3, the changes are considered to be clinically unacceptable [4]. As regards final discoloration (ΔE), mean values before PDT and after 60 days of therapy ranged between 5.7 and 16.1. In this case, color changes caused by the use of photosensitizers are clinically unacceptable.

The study by Figueiredo et al. [4] (2014) showed that tooth color change occurs in pre-irradiation of photosensitizers (Toluidine Blue and Methylene Blue) and is clinically apparent. It is likely that longer times, during pre-irradiation, allow photosensitizers to penetrate more deeply into the dentin and closer to the dentin-enamel interface, thus promoting more pronounced changes.

A study conducted by Carvalho et al. [13] (2011) on the protocols for removal of dye photosensitizers after PDT and prevention against teeth staining, has demonstrated that the use of sodium hypochlorite at 2.5%, with or without Endo-PTC cream, was effective in removing the Methylene Blue dye. However, the dye did not show results for its efficacy in preventing stains in the dental structure after a certain period of time.

For Figueiredo et al. [4] (2014), the association of Endo-PTC cream with 2.5% NaOCl also produced satisfactory results for effective removal of the Methylene Blue and Toluidine Blue dyes. This suggests that the photosensitizers used for PDT cause color change. However, this discoloration is not permanent and can be improved by using Endo-PTC cream associated with 2.5% NaOCl.

The search for photosensitizers that are within the absorption range of the electromagnetic spectrum and that do not promote harmful effects when applied into the dental structure represents guiding principles in PDT. Thus, further studies are needed to determine the most
appropriate and effective protocol for clinical application, parameters of laser irradiation, type and concentration of effective photosensitizers in order to limit tooth color change, as well as the protocol for removal of dyes after different exposure times.

5. Conclusion

Based on the findings and taking into account the limitations of the present study, the photosensitizers Methylene Blue, Toluidine Blue and Malachite Green, used in photodynamic therapy at a concentration of 0.01%, promoted tooth color change. Toliudine Blue and Methylene Blue were the dyes that caused the least change color.

References