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ABSTRACT
In this paper we propose a general cure rate agingmodel. Our approach
enables different underlying activation mechanisms which lead to the
event of interest. The number of competing causes of the event of inter-
est is assumed to follow a logarithmic distribution. The model is param-
eterized in terms of the cured fractionwhich is then linked to covariates.
We explore the use of Markov chain Monte Carlo methods to develop
a Bayesian analysis for the proposed model. Moreover, some discus-
sions on the model selection to compare the fitted models are given, as
well as case deletion influence diagnostics are developed for the joint
posterior distribution based on the ψ-divergence, which has several
divergence measures as particular cases, such as the Kullback–Leibler
(K-L), J-distance, L1 norm, and χ 2-square divergence measures. Simu-
lation studies are performed and experimental results are illustrated
based on a real malignant melanoma data.

1. Introduction

Cure rate models cover a large amount of practical situations where there are sampling units
insusceptible to the occurrence of the event of interest. The proportion of such units is usually
termed as the cured fraction. The statistical literature on modeling lifetime data in presence
of a cure fraction is by now vast and growing rapidly.

Perhaps themost popular type of cure rate model is themixturemodel introduced by Boag
(1949) and Berkson and Gage (1952). In this model, it is assumed that a certain proportion
of the individuals are cured, in the sense that they do not present the event of interest during
a long period of time and can found to be immune to the cause of failure under study. The
mixture model has been considered by various authors, such as Farewell (1982, 1986); Ghi-
tany and Maller (1994); Maller and Zhou (1995); Chen and Ibrahim (2001); Sposto (2002);
Perperoglou et al. (2007), and Perdona and Louzada-Neto (2011), among others.

Following the proposition of comprehensive cure rate models, Yakovlev and Tsodikov
(1996); Ibrahim et al. (2001); Chen et al. (2002, 1999); Tsodikov et al. (2003); Tournoud
and Ecochard (2007); de Castro et al. (2009); Ortega et al. (2009); de Castro et al. (2010);
Cancho et al. (2011b), and Kim et al. (2011) include in their formulation the possibility of
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having a cured rate in the population, and assume the occurrence of the event of interest
might be a result of many competing causes (Gordon, 1990), with the number of causes and
the survival times associated with each cause (Cox and Oakes, 1984) being unknown, which
leads to the so-called latent competing causes (Louzada-Neto, 1999), which are assumed to
follow a discrete distribution such as the Poisson, the negative binomial, the geometric, the
COM-Poisson, and the power series, among others. For instance, in clinical studies the event
of interestmay be the death of a patient (which can occur due to different competing causes) or
a tumor recurrence (which can be attributed to metastasis-component tumor cells left active
after an initial treatment). Another approach, byCooner et al. (2006, 2007), forms an arranged
stochastic sequence of latent causes, which induce the occurrence of the event of interest via
an underlying activation mechanism that leads to the event of interest.

We deal with different underlying activation mechanisms that lead to the event of interest
when the latent number of competing causes is modeled by a logarithmic distribution (John-
son et al., 2005), hereafter, called the logarithmic cure rate (LCR) model. We focus in the scan
of a type of activation mechanism, beginning with the first activation possible, or the last one,
or even a random mechanism. We assume there is no information about which cause was
responsible for the individual death or disease recurrence.

Bayesian analysis for the cure ratemodel has appeared in the literature. For instance, we cite
Chen et al. (1999) and Cancho et al. (2011b). However, the Bayesian approach to LRC model
under a variety of activation mechanisms has never been considered. Thus, one purpose of
this paper is to propose a Bayesian approach for drawing inferences in LCR models in the
presence of covariates on the cure fraction.

After fitting a model, it is important to check its assumptions and conduct sensitivity stud-
ies in order to detect possible influential or extreme observations, which may cause distor-
tions on the analysis results, leading to the so-called diagnostic methods. Following the pio-
neering work by Cook (1986), case-deletion and local influence diagnostics have been widely
applied to many regression models. In order to examine outlying and influential observa-
tions, Louzada et al. (2013) present a Bayesian case deletion influence diagnostics based on
the Kullback–Leibler divergence. Then, in the above context, other purpose of this paper
is to develop case deletion influence diagnostics for the joint posterior distributions of the
parameters of the GBScr model based on the ψ-divergence measure (Peng and Dey, 1995;
Weiss, 1996). The ψ-divergence measure includes several divergence measures as particu-
lar cases, such as the Kullback–Leibler (K–L), J-distance, L1 norm, and χ 2-square divergence
measures.

The paper is organized as follows. In Section 2 we formulate the model. We explore the use
of Markov chain Monte Carlo (MCMC) methods to develop a Bayesian analysis in Section 3.
A simulation study with different models is presented in Section 4. An application to a real
data set is developed in Section 5. Finally, Section 6 ends up with some general remarks.

2. Model formulation

For an individual in the population, let M denote the unobservable number of causes of the
event of interest for this individual. Assume thatM follows a logarithmic distribution (John-
son et al., 2005) with probability mass function

P(M = m; θ ) = −1
log(1 − θ )

θm+1

(m + 1)
, m = 0, 1, 2, . . . , 0 < θ < 1 (1)
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The probability generating function ofM is given by

GM(s) = log(1 − θs)
s log(1 − θ )

, for|s| < 1 (2)

The time for the jth cause to produce the event of interest is denoted by Zj, j = 1, . . . ,M.
We assume that, conditional onM, the Zj are i.i.d. with cumulative distribution function F(z)
and surviving function S(z) = 1 − F(z). Also, we assume that Z1, Z2, . . . are independent of
M. The observable time to event is defined by the random variableY = Z(R), whereR depends
onM, Z(1) ≤ Z(2) ≤ · · · ≤ Z(R) ≤ · · · ≤ Z(M) are the order statistics, andY = ∞ ifM = 0. In
many biological processes R can be interpreted as a resistance factor of the immune system of
the individual. If the event of interest occurs (e.g., cancer relapse), then the random variable
Y takes the value of the Rth order statistics Z(R). In other words, as in Cooner et al. (2006,
2007), R out of M causes are required to produce the event of interest. The resistance factor
can be a fixed constant, a function ofM, or a random variable specified through a conditional
distribution onM.

Using the terminology borrowed fromCooner et al. (2006, 2007), in this paperwe deal with
three specifications for R. First, we assume that givenM ≥ 1, the conditional distribution of
R is uniform on {1, 2, . . . ,M} (random activation scheme). Under this setup, the surviving
function for the population is given by

Spop(y) = P(Y > y) = P(M = 0)+ {1 − P(M = 0)}S(y)

= − θ

log(1 − θ )
+
(
1 + θ

log(1 − θ )

)
S(y) (3)

which comes to be a mixture cure model with cured fraction p0 = P(M = 0) =
limy→∞ Spop(y) = −θ/ log(1 − θ ). From (3) the density function is

fpop(y) = −S′
pop(y) =

(
1 + θ

log(1 − θ )

)
f (y) (4)

where f (y) = −S′(y) denotes the proper density function of the time to event Z. Further-
more, the corresponding hazard function is

hpop(y) = −
[

θ + log(1 − θ )

θ − (θ + log(1 − θ ))S(y)

]
f (y)

As a second setup, the so-called first activation scheme,we suppose that the event of interest
happens due to any one of the possible causes. Therefore, for R = 1, the time to event isY =
Z(1) = min{Z1, . . . ,ZM}, implying that (Tsodikov et al., 2003)

Spop(y) = GM(S(y)) = log(1 − θS(y))
S(y) log(1 − θ )

(5)

where GM(·) is as in (2). The cured fraction is given by p0 = −θ/ log(1 − θ ). The density
function associated with (5) is given by

fpop(y) = −
[
θS(y)+ (1 − θS(y)) log(1 − θS(y))

(1 − θS(y))S2(y) log(1 − θ )

]
f (y) (6)

with hazard function

hpop(y) = −
[
θS(y)+ (1 − θS(y)) log(1 − θS(y))
(1 − θS(y))S(y) log(1 − θS(y))

]
f (y)
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In our third scenario, also known as the last activation scheme, the event of interest only
takes place after all theM causes have been occurred, so that R = M and the observed failure
time isY = Z(M) = max{Z1, . . . ,ZM}. According to Cooner et al. (2007),

Spop(y) = 1 + GM(0)− GM(F(y))

Hence, from (2) we have

Spop(y) = 1 − θ

log(1 − θ )
− log(1 − θF(y))

F(y) log(1 − θ )
(7)

so that the cured fraction is p0 = −θ/ log(1 − θ ). The surviving function in (7) leads to the
density function

fpop(y) = −
[
θF(y)+ (1 − θF(y)) log(1 − θF(y))

(1 − θF(y))F2(y) log(1 − θ )

]
f (y) (8)

with hazard function

hpop(y) = −
⎡⎣ θF(y)+ (1 − θF(y)) log(1 − θF(y))

(1 − θF(y))F2(y) log(1 − θ )
(
1 − θ

log(1−θ ) − log(1−θF(y))
F(y) log(1−θ )

)
⎤⎦ f (y)

From these results we realize that, whichever the activation scheme, the cured fraction is
the same. Themodels differ by their surviving, density, and hazard functions. The relationship
between the distribution functions in (3), (5), and (7) is described in Proposition 1.

Proposition 1. Under conditions of models in (3), (5), and (7) and for any distribution function
F(y), we have Sfirstpop(y) ≤ Srandompop (y) ≤ Slastpop(y) for y > 0.

The proof follows from the Theorem 2.1 from Kim et al. (2011).
The proper surviving function for non cured population, denoted by Snc(y), is computed

by Snc(y) = P(Y > y|M ≥ 1). We present in Table 1 the density and surviving functions for
the non cured population under different activation schemes. We note that Snc(0) = 1 and
Snc(∞) = 0, so that it is a proper surviving function. From the distribution for the non cured
population under the first activation, considering different choices for the distribution of the
latent random variablesZj’s, some recently proposed lifetimemodels can be obtained as a spe-
cial case. For example, if {Zj} j∈N follows the exponential orWeibull distribution, the exponen-
tial logarithmic distribution (Tahmasbi and Rezaei, 2008) andWeibull logarithmic (Ciumara
and Preda, 2009) distribution, respectively, are obtained. From Table 1 new families of distri-
bution can be generated.

In many applications of long-term aging models the cured fraction plays a central role.
With this concern in mind, we change the parameterization of the model in order to put the

Table . Non cured surviving function (Snc) and density function (Snc) for logarithmicmodels under different
activation devices.

Activation Snc(y) fnc(y)

First
log(1 − θS(y))
log(1 − θ )

− θ f (y)
log(1 − θ )(1 − θS(y))

Last 1 − log(1 − θF(y))
log(1 − θ )

− θ f (y)
log(1 − θ )(1 − θF(y))

Random S(y) f (y)
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Table . Surviving function (Spop) and density function (fpop) for Logarithmic cure rate models under dif-
ferent activation devices.

Activation Spop(y) fpop(y)

First − log(1 −W0S(t ))
W0S(y)

p0
W0S(y)+ {1 −W0S(y)} log(1 −W0S(y))

{1 −W0S(y)}W0S(y)
2 p0f (y)

Last 1 + p0 + log(1 −W0F(y))
W0F(y)

p0
W0F(y)+ {1 −W0F(y)} log(1 −W0F(y))

{1 −W0F(y)}W0F(y)
2 p0f (y)

Random p0 + (1 − p0)S(y) (1 − p0)f (y)

Remark:W0 = 1 + p0W (−e−1/p0/p0), whereW (·) is the LambertW function (Corless et al., ).

cured fraction p0 in the expressions. Since p0 = P(M = 0) = −θ/ log(1 − θ ), we have that
p0 = 1 +W (−θe−θ )/θ , whereW (·) stands for the LambertW function (Corless et al., 1996).
As we shall see more clearly in Section 3, this parameterization is advantageous. Using p0 as
parameter and expressions (3)–(8), we obtain the improper surviving and density functions
presented in Table 2. The Lambert W function in Table 2 can be found in the R package
emdbook.

Hereafter, we assume a Weibull distribution for the unobserved time Z with F(z; γ ) =
1 − exp(−zγ1eγ2 ) and f (z; γ ) = γ1z γ1−1 exp(γ2 − zγ1eγ2 ), for z > 0, γ1 > 0, γ2 ∈ R, and
γ = (γ1, γ2)

�. Of course, at least in principle, other lifetime distributions may be considered.
Figure 1 portrays distinct behaviors of the surviving functions in Tables 1 and 2. These plots
illustrate the flexibility afforded by our proposal.

3. Inference

Let us consider the situation when the failure timeY in Section 2 is not completely observed
and is subject to right censoring. Let Ci denote the censoring time. In a sample of size n,
we then observe Ti = min{Yi,Ci} and δi = I(Yi ≤ Ci), where δi = 1 if Ti is a failure time and
δi = 0 if it is right censored, for i = 1, . . . , n.

Let xi = (xi1, . . . , xip)� denote the vector of covariates for the ith individual. Completing
our model, we propose to relate the cured fraction to the covariates by the logistic link
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Figure . Surviving functions population (left panel) and non cured population (right panel) for the logarith-
mic models with p0 = 0.3, and a Weibull distribution (γ1 = 2, γ2 = −4) under different activations (first:
dashed, random: solid, and last: dotted).
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log
(

p0i
1 − p0i

)
= x�

i β or p0i = exp(x�
i β)

1 + exp(x�
i β)

(9)

where β = (β1, . . . , βp)
� encapsulates the vector of regression coefficients, so that for each

group of individuals represented by xi, we have a different cured fraction.With this link func-
tion the models are identifiable in the sense of Li et al. (2001).

We stress that regardless of the specific model in Table 2, covariates are associated with
the cured fraction through a unique expression very familiar to practitioners. If we had
adopted the parameterization in θ , for logarithmic distributions the cured fraction is p0 =
−θ/ log(1 − θ ), and θ would be linked to the covariates (e.g. logistic links). The connections
between the cured fraction and the covariates would be much more clumsier in these expres-
sions than in (9). Therefore, although the entries for the logarithmic model in Table 2 seem
uneasy, we have a direct interpretation of the coefficients in (9).

With the expression (9) we can write the likelihood of ϑ = (β�, γ�)� under non informa-
tive censoring as

L(ϑ;D) ∝
n∏
i=1

fpop(ti; ϑ)δi Spop(ti; ϑ)1−δi (10)

where D = (t, δ, x), t = (t1, . . . , tn)�, x = (x1, . . . , xn)�, and δ = (δ1, . . . , δn)
�, whereas

fpop(·; ϑ) and Spop(·; ϑ) are the improper density and surviving functions, respectively, in
Table 2.

3.1. Prior and posterior

Now, some inferential tools are investigated under a Bayesian viewpoint. The normal distri-
bution and gamma distribution with a as shape and b as scale (and mean a/b) are denoted by
N(μ, σ 2) and G(a, b). In this context we assume that β, γ1, and γ2 are a priori independent,
that is,

π(ϑ) =
p∏

i=1

π(βi)π(γ1)π(γ2) (11)

where β j ∼ N(0, σ 2
β j
), j = 1, . . . , p, γ1 ∼ G(a0, b0), and γ2 ∼ N1(0, σ 2

γ2
). Here all the hyper-

parameters are specified in order to express non informative priors.
Combining the likelihood function (10) and the prior distribution in (11), the joint poste-

rior distribution for ϑ is obtained as π(ϑ|D) ∝ L(ϑ;D)∏p
i=1 π(βi)π(γ1)π(γ2). This joint

posterior density is analytically intractable. So, we based our inference on the MCMC simu-
lation methods. In particular, the Gibbs sampler algorithm (see Gamerman and Lopes, 2006)
has proved to be a powerful alternative. In this direction, we observed that there is no closed
form available for any of the full conditional distributions needed to implement Gibbs sam-
pler. Thus we instead resort to the Metropolis–Hastings algorithm. We begin by making a
change of variables to ξ = (log(γ1), γ2,β). This transforms the parameter space toRp+2 (nec-
essary to work with Gaussian proposal densities). Accounting for the Jacobian of this trans-
formation, our joint posterior density (or target density) is now

π(ξ|D) ∝ L(ξ;D) exp
⎧⎨⎩−1

2

p∑
j=1

β2
j

σ 2
β j

− 1
2
γ 2
2

σ 2
γ2

− exp(ξ1)
b0

+ a0ξ1

⎫⎬⎭ (12)
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To implement the Metropolis–Hastings algorithm, we proceed as follows:
(1) Start with any point ξ(0), and stage indicator j = 0.
(2) Generate a point ξ′ according to the transitional kernelQ(ξ′, ξ j) = Np+2(ξ j, �̃), where

�̃ is covariance matrix of ξ is same in any stage.
(3) Update ξ( j) to ξ( j+1) = ξ′ with probability p j = min{1, π(ξ′|D)/π(ξ( j)|D)}, or keep

θ( j) with probability 1 − p j.
(4) Repeat steps (2) and (3) by increasing the stage indicator until the process reaches a

stationary distribution.
The computational program is available from the authors upon request.

3.2. Model comparison criteria

There exist a variety of methodologies to compare several competing models for a given data
set and to select the one that best fits the data. One of the most used in applied works is
derived from the conditional predictive ordinate (CPO) statistic. For a detailed discussion on
theCPO statistic and its applications to model selection, see Gelfand et al. (1992) and Geisser
and Eddy (1979). Let D the full data and D(−i) denoting the data with the ith observation
be deleted. In our model, for an observed time to event (δi = 1) we have from Section 3 that
g(yi|ϑ) = fpop(yi; ϑ) and, for a censored time, g(yi|ϑ) = Spop(yi; ϑ). We denote the posterior
density of ϑ given D(−i) by π(ϑ|D(−i)), i = 1, . . . , n. For the ith observation, CPOi can be
written as

CPOi =
∫
ϑ∈


g(yi|ϑ)π(ϑ|D(−i))dϑ =
{∫

ϑ

π(ϑ|D)
g(yi|ϑ) dϑ

}−1

(13)

The CPOi can be interpreted as the height of the marginal density of the time to event at yi.
Thus, large values of CPOi imply a better fit of the model. For the proposed model a closed
form of theCPOi is not available. However, a Monte Carlo estimate of CPOi can be obtained
by using a single MCMC sample from the posterior distribution π(ϑ|D). Let ϑ(1), . . . ,ϑ(Q)

be a sample of size Q of π(ϑ|D) after the burn-in. A Monte Carlo approximation of CPOi

(Ibrahim et al., 2001) is given by

ĈPOi =
⎧⎨⎩ 1
Q

Q∑
q=1

1
g(yi|ϑ(q))

⎫⎬⎭
−1

For model comparison we use the log pseudo marginal likelihood (LPML) defined by
LPML =∑n

i=1 log(ĈPOi). The larger is the value of LPML, the better is the fit of the model.
Other criteria like the deviance information criterion (DIC)proposed by Spiegelhalter et al.

(2002), the expected Akaike information criterion (EAIC) Brooks (2002), and the expected
Bayesian (or Schwarz) information criterion (EBIC) Carlin and Louis (2001) can be used.
These criteria are based on the posterior mean of the deviance, which can be approximated
byd =∑Q

q=1 d(ϑq)/Q, whered(ϑ) = −2
∑n

i=1 log
[
g(yi|ϑ)

]
. TheDIC can be estimated using

the MCMC output by D̂IC = d + ρ̂d = 2d − d̂, with ρD as the effective number of parame-
ters, which is defined as E{d(ϑ)} − d{E(ϑ)}, where d{E(ϑ)} is the deviance evaluated at the
posterior mean and is estimated as

D̂ = d

⎛⎝ 1
Q

Q∑
q=1

β(q),
1
Q

Q∑
q=1

γ
(q)
1 ,

1
Q

Q∑
q=1

γ
(q)
2

⎞⎠
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Similarly, the EAIC and EBIC can be estimated by means of ÊAIC = d + 2#(ϑ) and ÊBIC =
d + #(ϑ) log(n), where #(ϑ) is the number of model parameters.

3.3. Bayesian case influence diagnostics

Since regression models are sensitive to the underlying model assumptions, generally per-
forming a sensitivity analysis is strongly advisable. Cook (1986) uses this idea to motivate
his assessment of influence analysis. He suggests that more confidence can be put in a model
which is relatively stable under small modifications. The best known perturbation schemes
are based on case-deletion (Cook andWeisberg, 1982) in which the effects are studied of com-
pletely removing cases from the analysis. This reasoning will form the basis for our Bayesian
global influence methodology and in doing so it will be possible to determine which subjects
might be influential for the analysis.

Let Dψ (P, P(−i)) denote the ψ-divergence between P and P(−i), where P denotes the poste-
rior distribution of ϑ for full data, and P(−i) denotes the posterior distribution of ϑ without
the ith case. Specifically,

Dψ (P, P(−i)) =
∫
ϑ∈


ψ

(
π(ϑ|D(−i))

π (ϑ|D)
)
π(ϑ|D) dϑ (14)

where ψ is a convex function with ψ(1) = 0. Several choices of ψ are given in Dey and Bir-
miwal (1994). For example, ψ(z) = − log(z) defines K-L divergence, ψ(z) = (z − 1) log(z)
gives J-distance (or the symmetric version of K-L divergence), ψ(z) = 0.5|z − 1| defines the
variational distance or L1 norm, and ψ(z) = (z − 1)2 defines the χ 2-square divergence.

The relationship between the CPO (13) and theψ-divergencemeasure is described in next
proposition.

Proposition 2. The ψ-divergence measure can be written as

Dψ (P, P(−i)) = Eϑ|D

[
ψ

(
CPOi

g(yi|ϑ)
)]

(15)

where the expected value is taken with respect to the joint posterior distribution π(ϑ|D).
Proof. From Bayes’s theorem the posterior distribution of ϑ is given by

π(ϑ|D) = π(ϑ)
∏

j∈D g(y j|ϑ)∫
ϑ∈
 π(ϑ)

∏
j∈D g(y j|ϑ)dϑ

where π(ϑ) and
∏n

i=1 g(yi|ϑ) represent the prior distribution and the likelihood function ϑ,
respectively. The ratio of the posterior distributions is given by

π(ϑ|D(−i))

π (ϑ|D) = π(ϑ)
∏

j∈D(i) g(yi|ϑ)∫
ϑ∈
 π(ϑ)

∏
j∈D(i) g(y j|ϑ)dϑ

×
∫

ϑ∈
 π(ϑ)
∏

j∈D g(y j|ϑ)dϑ

π(ϑ)
∏

j∈D g(y j|ϑ)

= 1
g(yi|ϑ) ×

∫
ϑ∈
 π(ϑ)

∏
j∈D g(y j|ϑ)dϑ∫

ϑ∈

1

g(yi|ϑ)π (ϑ)
∏

j∈D g(y j|ϑ)dϑ

=
(∫

ϑ∈

1

g(yi|ϑ)π (ϑ|D)dϑ
)−1

g(yi|ϑ) = CPOi

g(yi|ϑ) �
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From Proposition 2, the K-L divergence can be expressed by

DK-L(P, P(−i)) = −Eϑ|D
{
log(CPOi)

}+ Eϑ|D
{
log
[
g(yi|ϑ)

]}
= − log(CPOi)+ Eϑ|D

{
log
[
g(yi|ϑ)

]}
(16)

From (15) we can compute Dψ (P, P(−i)) by sampling from the posterior distribution of ϑ via
MCMC methods. Let ϑ(1), . . . ,ϑ(Q) be a sample of size Q of π(ϑ|D). Then, a Monte Carlo
estimate of K(P, P(−i)) is given by

D̂ψ (P, P(−i)) = 1
Q

Q∑
q=1

ψ

(
ĈPOi

g(yi|ϑ(q))
)

(17)

From (17) a Monte Carlo estimate of K-L divergence DK−L(P, P(−i)) is given by

D̂K-L(P, P(−i)) = − log(ĈPOi)+ 1
Q

Q∑
q=1

log
[
g(yi|ϑ(q))

]
(18)

Dψ (P, P(−i)) can be interpreted as the ψ-divergence of the effect of deleting the ith case from
the full data on the joint posterior distribution of ϑ. As pointed by Peng and Dey (1995) and
Weiss (1996) (see also Cancho et al., 2010, 2011a), it may be difficult for a practitioner to
judge the cutoff point of the divergence measure so as to determine whether a small subset
of observations is influential or not. In this context, we will use the proposal given by Peng
and Dey (1995) andWeiss (1996) by considering as follows. Consider a biased coin which has
success probability p. Then the ψ-divergence between the biased and an unbiased coin is

Dψ ( f0, f1) =
∫
ψ

(
f0(x)
f1(x)

)
f1(x)dx (19)

where f0(x) = px(1 − p)1−x and f1(x) = 0.5, x = 0, 1. Now if Dψ ( f0, f1) = dψ (p) then it
can be easily checked that dψ satisfies the following equation:

dψ (p) = ψ(2p)− ψ(2(1 − p))
2

(20)

It is not difficult to see for the divergencemeasures considered, that is dψ increases as pmoves
away from 0.5. In addition, dψ (p) is symmetric about p = 0.5 and dψ achieves its minimum
at p = 0.5. In this point, dψ (0.5) = 0, and f0 = f1. Therefore, if we consider p > 0.75 (or
p ≤ 0.25) as a strong bias in a coin, and since dL1 (0.75) = dχ2 (0.75) = 0.25, it implies that
ith case is considered influential when dL1 (0.75) > 0.25 or dχ2 > 0.25. Thus, if we use the
K-L divergence, we can consider an influential observationwhen dK-L > 0.14. Similarly, using
the J-distance, an observation in which dJ > 0.27 can be considered as influential. �

4. Simulation study

A simulation study was designed with two objectives in mind, the first being to evaluate the
frequentist properties of the parameter estimates for the proposedmodels and amisspecifica-
tion studywas also performed in order to verify if we can distinguish between the curemodels
given in Table 2 in light of a data set based on the criterion described in Section 3. The second
being to examine the performance of the proposed diagnosticsmeasures, we considered simu-
lated data sets with one or more of the generated cases perturbed. In this study we considered
the logarithmic cure rate model under three (first, last, and random) activation schemes as
given in Table 2 with the Weibull distribution for the event times (Z) with parameters γ1 = 2
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and γ2 = −3.2. More specifically, for each individual i, i = 1, . . . , n, number of causes of the
event of interest for this individual (Mi) is generated of distribution Logarithmic with param-
eter θi equal to p0iW (−e−1/p0i/p0i), whereW (·) is the LambertW function (Corless et al.,
1996). In our simulations we have one binary covariate x with values drawn from Bernoulli
distribution with parameter 0.5. In this way, p0i = exp(β0 + β1xi)/(1 + exp(β0 + β1xi). We
took β0 = −0.5 and β1 = 0.7, so that the cured fraction for the two levels of x is p(0)0 = 0.378
and p(1)0 = 0.550, respectively. The censoring times were sampled from the uniform distri-
bution on the interval (0, τ ), where τ controlled the proportion of censoring of the uncured
population. In this study the proportion of censored observation is taken approximately to be
equal to 57%.

4.1. Frequentist properties

The goal of this simulation study is to show the good behavior of the Bayesian estimates,
based on the frequentist mean squared error (MSE) and the frequentist mean (Mean), and
the measurement used for model comparison. We performed the simulation generating sam-
ples of size n = 300 for the three different structures of activation. Therefore, three differ-
ent simulation settings are performed, each one with 500 Monte Carlo-generated data sets,
and once the data are simulated we fit the three models. The following independent priors
are considered to perform the Metropolis–Hastings algorithm, for β j ∼ N(0, 104) j = 0, 1,
γ1 ∼ Gamma(1, 0.1) and γ2 ∼ N(0, 104). Thus, our choice is to assume weakly but informa-
tive prior. Because our prior is still informative the posterior is always proper. After 20,000
sample burn-in, we used every tenth sample from the 40,000 MCMC posterior samples to
reduce the autocorrelations and yield better convergence results. We monitored the conver-
gence of theMetropolis–Hasting algorithm using the method proposed by Geweke (1992), as
well as trace plots.

For each sample the posterior mean of the parameter andDIC, EAIC, EBIC, and LPML are
recorded. Simulation summary statistics for the parameters assuming the models described
in Table 2, crossed with the three schemes of activation simulated, are given in Table 3. In this
table, MC Mean denotes the arithmetic average of the 500 estimates given by

∑500
j=1 θ̂k j/500,

and MC MSE is the empirical mean squared error given by
∑500

j=1(θ̂k j − θk)
2/500, where θk

is the respective true value of the estimated parameter θ̂k. Notice from Table 3 that the MC
Mean values are very close to the true value andMCMSE is small when the fit was performed
to the true activation scheme.

Table . Monte Carlo results based on each  simulated samples crossed with the three schemes of acti-
vation. MC mean and MC MSE are the mean average and the MSE average of the posterior mean estimates
of cured fraction, respectively.

Fitted model

First activation Last activation Random activation

True Cured MC MC MC MC MC MC
Model Fraction Mean MSE Mean MSE Mean MSE

First p(0)0 . . . . . .
p(1)0 . . . . . .

Last p(0)0 . . . . . .
p(1)0 . . . . . .

Random p(0)0 . . . . . .
p(1)0 . . . . . .
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Table . Percentages of samples in which the fitted model was indicated as the best one according to the
DIC, EAIC, EBIC, and LPML criteria.

Fitted model

True model First activation Last activation Random activation

First . . .
Last . . .
Random . . .

Moreover, presented in Table 4 are the percentages of samples in which the generating
distribution was indicated as the best one according to the DIC, EAIC, EBIC, and LPML cri-
teria. We can observe that the true model from which the sample was generated has a higher
percentage.

4.2. Influence of outlying observations

To examine the performance of the proposed diagnostic measures, we considered simulated
data sets with one or more of the generated cases perturbed. In order to do this, we consider
a sample of size 300 generated by the logarithmic cure rate model under the first activation
scheme. In the simulated data, yi ranged 0.07824–12.870 with median = 2.97, mean = 4.22,
and standard deviation= 3.50. We selected cases 90, 100, and 285 for perturbation. To create
influential observation in the data set, we choose one, two, or three of these selected cases
and perturb the response variable as follows: ỹi = yi + 4Sy, i = 4, 13, and 45, where Sy is the
standard deviation of the yi’s. TheMCMC computations were done similar to those in Section
4.1 and further to monitor the convergence of the Gibbs samples we used the methods rec-
ommended by Cowles and Carlin (1996).

We fit the logarithmic cure rate models under the last and random activation schemes.
Table 5 shows that the posterior inferences to cured fraction are not sensitive to the pertur-
bation of the selected case(s). In Table 5, data set (a) denotes the original simulated data set
with no perturbation and data sets (b)–(f) denote data sets with perturbed cases.

In Table 6 we report the Monte Carlo estimates of DIC, EAIC, EBIC, and LPML for each
perturbed version of the original data set under first, last, and random schemes of activation.
We can see that the logarithmic cure rate model under the first activation scheme presents a
better fit in all cases.

Nowwe consider the sample from the posterior distributions of the parameters of the loga-
rithmic cure rate model under the first activation scheme to calculate the ψ-divergence mea-
sures in (14) described in Section 3.3. The results in Table 7 show, before perturbation (data

Table . Mean and standard deviation (SD) for cured fraction estimates for each data set for fitting logarith-
mic cure rate models under the first, last, and random activation schemes.

First Last Random

p(0)0 p(1)0 p(0)0 p(1)0 p(0)0 p(1)0

Data set names Perturbed case Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

a None . . . . . . . . . . . .
b  . . . . . . . . . . . .
c  . . . . . . . . . . . .
d  . . . . . . . . . . . .
e {, } . . . . . . . . . . . .
f {, , } . . . . . . . . . . . .
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Table . Comparison between logarithmic cure rate models under the first, last, and random activation
schemes fitting by using different Bayesian criteria.

First Last Random

Data set names DIC EAIC EBIC LPML DIC EAIC EBIC LPML DIC EAIC EBIC LPML

a . . . − . . . . − . . . . − .
b . . . − . . . . − . . . . − .
c . . . − . . . . − . . . . − .
d . . . − . . . . − . . . . − .
e . . . − . . . . − . . . . − .
f . . . − . . . . − . . . . − .

set (a)), that all the selected cases are not influential according to all ψ-divergence measures.
However, after perturbation (data set, (b)–(f)), the measures increase indicating that the per-
turbed cases are influential.

In Figures 2 and 3, we have depicted the four ψ-divergence measures for the cases (a) and
(b), respectively. Clearly we can see that all measures performed well in identifying influential
case(s), providing larger ψ-divergence measures when compared to the other cases.

5. Malignant melanoma data

In this section we work out an example extracted from Scheike (2009) employing the models
presented in Section 2. The data set includes 205 patients observed after operation for
removal of malignant melanoma. The observed time (T ) ranges from 10 to 5565 days (from
0.0274 to 15.25 years, with mean = 5.9 and standard deviation = 3.1 years) and refers to
the time until the patient’s death or the censoring time. Patients dead from other causes,
as well as patients still alive at the end of the study, are censored observations (72%). We
take ulceration status (x1) (absent, n = 115; present, n = 90) and tumor thickness (x2)
(in mm, mean = 2.92 and standard deviation = 2.96) as covariates. The Kaplan–Meier
estimate of he surviving function given in Figure 4 levels off above 0.6. The presence of a
plateau indicates that models that ignore the possibility of cure will not be suitable for these
data.

First we fitted the models described in Table 2. For all models the following indepen-
dent priors were adopted in the Bayesian computations β j ∼ N(0, 104) j = 0, 1, 2, γ1 ∼
Gamma(1, 0.1) and γ2 ∼ N(0, 104). A total of 40,000 MCMC posterior samples were used

Table . ψ -Divergence measures for the simulated data fitting the logarithmic cure rate model under the
first activation scheme.

Data set names Case number dK-L dJ dL1
d
χ2

a  . . . .
 . . . .
 . . . .

b  . . . .
c  . . . .
d  . . . .
e  . . . .

 . . . .
f  . . . .

 . . . .
 . . . .
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Figure . ψ -divergence measures from data set (a).

in this analysis after burn-in. MCMC computations. We used every tenth sample from the
40,000MCMC posterior samples to reduce the autocorrelations and yield better convergence
results.

To compare the logarithmic cure rate model under the first, last and random activation
scheme fits, we also obtained the values of DIC, EAIC, EBIC, and LPML. These information
criteria furnish the values given in Table 8. According to all the criteria, the logarithmic cure
rate model under the first activation scheme (Log-1st, say) stands out as the best one. Taking
into account the criteria in Table 8, we select the Log-1st model as our working model.

The posterior means, medians, standard deviations, and 95% highest posterior den-
sity (HPD) intervals are shown in Table 9. The mean posterior of the shape parameter
(γ1) furnishes an evidence against the exponential distribution (γ1 = 1) for the unob-
served failure times. The covariates have a significant effect on the reduction of the cured
fraction.

We now consider the sample from the posterior distributions of the parameters of the Log-
1st models to calculate the ψ-divergence measures in (14) described in Section 3.3. Figure 5
shows the index plot of the four ψ-divergence measures, where we observed that cases 5 and
171 are possible influential observations in the posterior distribution.

Table 10 presents the relative changes (RCs) in the estimates after dropping one of the two
cases without standing influence and also when both are dropped at once (represented by
the set I = {5, 171}). The 95% HPD intervals for the new estimates are given in parentheses.
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Figure . ψ -divergence measures from data set (b).

The RC (in percentage) of each estimated parameter is defined by RCθ j = |(θ̂ j − θ̂ j(I))/θ̂ j| ×
100%, where θ̂ j(I) denotes the posterior mean of θ j, with j = 1, . . . , 5, after the set I of obser-
vations has been removed.We notice that there are little changes in the inference for the coef-
ficients. Particularly, β0 is not significant at 5% after dropping the observation 5. In Table 10
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Figure . Kaplan–Meier estimate of the surviving function.
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Table . Bayesian criteria for the fitted models.

Criterion

Activation LPLM DIC EAIC EBIC

First − . . . .
Last − . . . .
Random − . . . .

Table . Posterior summaries of the parameters for the Log-st model.

HPD interval (%)

Parameter Mean Median Standard deviation LI LS

γ1 . . . . .
γ2 − . − . . − . − .
β0 . . . − . .
β1 − . − . . − . − .
β2 − . − . . − . − .

we applied the selection criteria on each fitting. We observe a better fit when we drop the
observation 171 compared with the fitting when we drop the observation 5, according to all
criteria. Furthermore, when the observation 171 is removed all the regression coefficients are
significant.
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Figure . Index plots ofψ -divergence measures for the melanoma data.
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Table . RCs (in %) and the corresponding 95% highest posterior density (HPD) intervals for fitting the
Log-st model to the melanoma data dropped influence case.

Dropped observation

Model Parameter   Set I

Log-st γ1 . . .
(., .) (., .) (., .)

γ2 . . .
(−.,−.) (−.,−.) (−.,−.)

β0 . . .
(−., .) (., .) (., .)

β1 . . .
(−.,−.) (−.,−.) (−.,−.)

β2 . . .
(−.,−.) (−.,−.) (−.,−.)

LPML −. −. −.
DIC . . .

We turn our attention to the role of the covariates on the cured fraction p0. Table 11 shows
the posterior summaries of the cured fraction stratified by ulceration status with tumor thick-
ness equal to 0.32, 1.94, and 8.32mm,which correspond to the 5, 50, and 95 percentiles, under
the Log-1st model with and without 171st observation. Clearly, the withdrawal of the influ-
ential observation 171 leads to an increase in the cured fraction. Figure 6 displays the surviv-
ing function (without 171 observation) stratified by ulceration status for patients with tumor
thickness equal to 0.64, 1.94, and 8.32 mm. These plots highlight the combined impact of the
covariates on the cured fraction. For each selected value of tumor thickness the intervals do
not overlap.

We end up our application dealing with the estimation of the proportion of patients non
cured who survived beyond a certain fixed time. For illustration we choose 5 years. This pro-
portion is estimated from Snc(5) (model under the first activation scheme) given in Table 1.
Considering posterior samples of parameter of the Log-1st model without 171st observa-
tion, the Monte Carlo estimates of Snc(5) stratified by ulceration status (absent, present) for
non cured patients with tumor thickness equal to 0.32, 1.94, and 8.32 mm (joint with stan-
dard deviation posterior) are: (0.546[0.139], 0.416[0.110]), (0.538[0.138], 0.391[0.105]),
and (0.470[0.135], 0.252[0.0825]).

Table . Posterior summaries of the cured fraction stratified by ulceration status and selected tumor thick-
ness under the Log-st model.

Tumor Standard % HPD
Data set thickness Ulceration Mean Median deviation interval

Full (D) . Absent . . . (., .)
Present . . . (., .)

. Absent . . . (., .)
Present . . . (., .)

. Absent . . . (., .)
Present . . . (., .)

D- . Absent . . . (., .)
Present . . . (., .)

. Absent . . . (., .)
Present . . . (., .)

. Absent . . . (., .)
Present . . . (., .)
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Figure . Upper left panel: Kaplan–Meier estimate of the surviving function. Surviving function under the
Log-st model (without  observation) stratified by ulceration status (upper: absent, lower: present) for
patients with tumor thickness equal to . (upper right panel), . (lower left panel), and . mm (lower
right panel).

6. Conclusions

In this paper we proposed the logarithmic cure rate model under different activations as an
alternative model for modeling aging data with a cured fraction. The model can be tested
for the best fitting in a straightforwardly way. Moreover, we propose an influence diagnostic
approach from the Bayesian point of view, based on the ψ-divergence (Peng and Dey, 1995;
Weiss, 1996) between the posterior distributions of the parameters of the proposed model. In
the application to a melanoma data set, we discovered that the logarithmic cure rate model
under the first activation scheme delivers the best fit. We observed that the surviving proba-
bility decreases more rapidly for patients with thicker tumors, and that the cured fraction is
lower for patients with ulceration. The interpretation of the role of covariates is easy due to
the parameterization in the cured fraction.

Although we assumeM as logarithmic distributed, we believe that, at least in principle, the
methodology presented here may be extended by considering other distributions, such as the
negative binomial and power series ones, among others.
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