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Abstract
Objective: To conduct (1) a systematic survey of the reporting quality of simulation studies dealing with how to handle missing partic-
ipant data (MPD) in randomized control trials and (2) summarize the findings of these studies.

Study Design and Setting: We included simulation studies comparing statistical methods dealing with continuous MPD in randomized
controlled trials addressing bias, precision, coverage, accuracy, power, type-I error, and overall ranking. For the reporting of simulation
studies, we adapted previously developed criteria for reporting quality and applied them to eligible studies.

Results: Of 16,446 identified citations, the 60 eligible generally had important limitations in reporting, particularly in reporting simulation
procedures. Of the 60 studies, 47 addressed ignorable and 32 addressed nonignorable data. For ignorable missing data, mixed model was most
frequently thebest onoverall ranking (9 timesbest, 34.6%of times tested) andbias (10, 55.6%).Multiple imputationwas also performedwell. For
nonignorable data,mixedmodelwasmost frequently thebest onoverall ranking (7, 46.7%) andbias (8, 57.1%).Mixedmodel performancevaried
on other criteria. Last observation carried forward (LOCF)was very seldom the best performing, and for nonignorableMPD frequently theworst.

Conclusion: Simulation studies addressing methods to deal with MPD suffered from serious limitations. The mixed model approach
was superior to other methods in terms of overall performance and bias. LOCF performed worst. � 2017 Elsevier Inc. All rights reserved.
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What is new?

Key findings
� Reporting of simulation studies addressing ap-

proaches to deal with missing participant data
(MPD) in randomized trials suffer from important
limitations. Among 60 simulation studies that
compared 250 methods of dealing with MPD for
continuous outcomes with repeated measures in
RCTs, mixed model was most frequently the best
performing approach on overall ranking for ignor-
able and non-ignorable missing data. Multiple
imputation also performed well.

What this adds to what was known?
� Aside from precision, last observation carried for-

ward seldom performed best on any criterion and
performed worst most frequently for overall
ranking, bias, type I error and power.

What is the implication and what should change
now?
� When selecting methods to deal with continuous

missing data with repeated measures in RCTs,
mixed models will often prove the optimal choice
whether MPD is or is not ignorable. If they are con-
cerned about minimizing bias, trialists should
seldom if ever use LOCF. When statisticians choose
a mixed model to deal with continuous MPD, they
should consider the empirical results of a simulation
study sharing similar characteristics (same missing
mechanism, sample size, distribution of the data).
1. Introduction

Missing participant data (MPD) broadly defined as
‘‘missing information on the phenomena in which we are
interested [1]’’dalso labeled as loss to follow-up, discon-
tinued prematurely, or outcome not assessable [2]dis
frequent in randomized controlled trials (RCTs). When
intervention and control groups have different reasons for
MPD and those reasons are associated with the outcome
of interest, the prognostic balance that randomization is in-
tended to achieve is threatened.

MPD can adversely influence RCT results in two ways.
First, it may bias the treatment effect. For instance, if there
is more likely to be loss to follow-up with worse outcomes
in the intervention group than in the control group, the treat-
ment effect will be overestimated. Second, MPD can reduce
the ability of trials to detect true differences between groups
(i.e., reduce the statistical power) when only patients with
complete outcome data are included in the analysis.
Ensuring minimal loss to follow-up is the best approach to
deal with MPD. Often, however, despite institution of strate-
gies to minimize MPD, investigators fail to achieve full
follow-up in RCTs. MPD is frequent in RCTs, and it is there-
fore crucial for clinicians and researchers to be aware of the
risk of bias associated with MPD. Clinical trialists need to
both apply statistical methods that minimize bias and to iden-
tify the extent to which MPD is likely to bias results [3].

A commonly used taxonomy proposed by Little and Ru-
bin [4] classifies MPD as missing completely at random
(MCAR), missing at random (MAR), and missing not at
random (MNAR). An alternative taxonomy that uses
similar concepts refers to ignorable missingness (MCAR
or MAR) and nonignorable (MNAR) missingness [5].

If data are MCAR, outcomes are identical in distribution
in those with MPD and those with complete data, and point
estimates based on available data will not be misleading
although they will have a larger standard error than if data
for all patients were available. If data areMAR, the probabil-
ity of being missing is independent of the outcome given the
observed values. As a result, patient characteristics can be
used to make inferences about outcomes in those with MPD.

If data are MNAR, missingness is associated with out-
comes, and patient characteristics may also associated with
missing outcomes. When data are MNAR, the true underly-
ing mechanism for the missing outcome data is likely un-
known, and thus, assumptions for both the outcome data
and reasons for loss to follow-up will be required. Under
these circumstances, investigators should conduct sensi-
tivity analyses that vary these underlying assumptions.

MPD for continuous outcomes provides special chal-
lenges [6]. In the past decades, statisticians have proposed
many methods to deal with MPD for continuous outcomes
in RCTs [7e12]. Common approaches include data deletion
(e.g., complete case analyses), single imputation methods,
multiple imputation (MI) methods [13], and data augmenta-
tion approaches (e.g., expectationemaximization algorithm)
[14]. Single imputation includes methods such as hot deck,
cold deck, mean imputation, regression techniques, last
observation carried forward (LOCF) and composite methods
that apply several of the aforementioned methods [13].

Single imputation fails to take into account uncertainty in
the imputeddata and thereforemay result in spuriously narrow
confidence intervals (CIs) [15,16]. MI builds on the assump-
tion that data in the trials are MAR [1,17e19]. In contrast to
single imputation, MI incorporates multiple imputed data sets
with consideration of within- and between-data-set variability
that avoids spuriously narrow CIs.

Data augmentation does not explicitly replace missing
values. Instead, it invokes an algorithm that takes into ac-
count the observed data, the missing data, the relationships
among the observed data, and some underlying statistical
assumptions when estimating parameters [14]. Common
data augmentation methods include model-based ap-
proaches such as mixed-effects models, robust regression,
and generalized estimating equations (GEEs). These
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methods are based on maximum likelihood inferences
[20,21], pseudo-likelihood or maximum inferences [22],
and quasi-likelihood inferences [23].

Simulation studies use computer-intensive procedures to
assess the performance of statistical methods compared
with known truth [24]. Statisticians have used simulation
techniques to investigate the relative performance of
different methods of dealing with MPD in continuous out-
comes [25e30]. In comparison to applying alternative sta-
tistical methods to observed data from RCTs [31,32],
because they assess performance in relation to the known
truth, simulation studies provide more robust evidence of
the relative merits of the methods under consideration [24].

High-quality simulation studies can address complex sit-
uations in RCTs or other study designs that closely reflect
real-life data. Readers of simulation studies face challenges
in assessing the integrity of their study designs, understand-
ing the process of simulation, interpreting the results, and
making inferences. Insufficient details in reporting may
hamper these assessments [24].

Reporting criteria summarized in a checklist would aid in
evaluation and provide guidance to investigators in reporting
their simulation studies. The reporting guidelines suggested
by the Enhancing the Quality and Transparency of Health
Research Network do not include a checklist for reporting
of simulation studies. However, Burton et al. have proposed
a comprehensive checklist of generic issues that need to be
considered when designing, conducting, and reporting simu-
lation studies [33]. Adherence to these criteriawould provide
transparency and thus facilitate the reproducibility and
assessment of the credibility of simulation studies.

Investigators thus far have neither addressed the report-
ing quality of nor the optimal method proposed in simula-
tion studies evaluating methods of dealing with MPD for
individual RCTs. The aims of this article are to (1) propose
a checklist for reporting of simulation studies modified
from the criteria of Burton et al. [33]; (2) conduct a system-
atic survey using the modified criteria to address the report-
ing quality of simulation studies of methods of handling
missing data for individual RCTs; and (3) compare the per-
formance of analytical methods for dealing with continuous
MPD in RCTs in the systematic survey.
2. Methods

2.1. Definition

We defined MPD as information that is missing for an
outcome of interest for a number of trial participants. For
these participants, the trialist would typically have informa-
tion available for their baseline characteristics and poten-
tially for outcomes other than the one of interest. MPD
does not refer to missing (e.g., unpublished) studies, unre-
ported outcomes (e.g., outcomes planned to report in the
protocol but excluded from the trial report), or missing co-
variates (e.g., baseline information).
2.2. Checklist for reporting quality of simulation studies

Using Burton et al.’s checklist [24] (Appendix A at
www.jclinepi.com) that focuses on the design, conduct,
and reporting of simulation studies, we retained and modi-
fied items relevant to reporting. To improve replicability of
studies, we added ‘‘reported software to perform analysis’’
to item 2. To appropriately evaluate methods based on
various statistical criteria, we added precision, type-I error,
and power to item 8. The final adapted checklist we used
included the following:

1. Defined the aims of the simulation
2. Simulation procedures:

� Reported dependence of simulated data sets
� Reported starting seeds
� Reported random number generator
� Reported the occurrence of failures
� Reported software used to perform simulation
� Reported software to perform analysis

3. Justification of data generation
4. Scenarios investigated
5. Statistical methods evaluated
6. Number of simulations performed
7. Justification for number of simulation
8. Criteria to evaluate the performance of statistical

methods under different scenarios

For evaluating the statistical methods dealing with MPD,
the following assessment can be used to assess the perfor-
mances of the methods: bias, precision or variance, accu-
racy, type-I error, power, and coverage.

We used the criteria from our modified checklist to
assess the reporting quality of simulations studies
comparing different statistical methods to deal with contin-
uous MPD in RCTs.

2.3. Eligibility criteria

We included studies that fulfilled all of the following
criteria:

� Journal articles published in English;
� As their primary objective, addressed methods for
how parallel group RCTs might deal with MPD in
the context of continuous outcomes;

� Compared at least two approaches in at least one simu-
lation study including assessment of at least one of the
following properties: bias, precision, coverage, accu-
racy, power, and type-I error or overall ranking;

� Included simulation aimed to assess the impact of
MPD on treatment effect in RCTs;

We excluded studies that met any of the following
criteria:

� Meeting abstract, letter, commentary, editorial, proto-
col, book, or pamphlet;

http://www.jclinepi.com
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� Missing data not related to individual participant(s)
(e.g., missing studies, selective outcome reporting,
missing summary data (e.g., SD), missing study level
characteristic (e.g., mean age));

� Simulation studies that investigated approaches of
handling missing data for cluster RCTs, crossover
RCTs, or survival type of data;

� Simulation studies that handled MPD in health econ-
omy studies;

� Simulation studies that investigated general perfor-
mance of methods of imputing missing data but did
not focus on its impact on treatment effect in RCTs;

� Methodological studies summarizing how RCTs re-
ported, dealt with, or judged risk of bias associated
with MPD;

� Duplicate publication.

2.4. Search strategy

An experienced medical librarian participated in devel-
oping the search strategy. We conducted electronic searches
in MEDLINE (from inception to August 2014), Cochrane
Library (from inception to August 2014), Web of Science
(from inception to January 2015), and Journal Storage
(JSTOR) (from inception to January 2015). Appendix A
at www.jclinepi.com presents the detailed search strategy
for each database.

2.5. Study selection

Teams of two reviewers, working in duplicate, indepen-
dently screened titles and abstracts of all citations identified
in our search.We obtained the full text of all articles that either
reviewer deemed as potentially eligible. The same reviewers
screened the full texts in duplicate and independently and
resolved disagreement through discussion and, when unsuc-
cessful, with the help of a third author (a statistician). We con-
ducted screening and data abstraction using Web-based
systematic review software DistillerSR created by Evidence
partners (� 2017 Systematic Review and Literature Review
Software from Evidence Partners, https://systematic-review.
ca). For both screening and data abstraction (see details in the
following), we developed and pilot-tested standardized forms
with clear instructions and conducted calibration exercises.

2.6. Data abstraction

Teams of two reviewers (each including one methodolo-
gist and one statistician) abstracted data independently and
in duplicate. Teams resolved disagreement through discus-
sion or, if necessary, with assistance from another
statistician.

When authors referred to supplementary materials
regarding simulation process and the relative performance
of methods, we obtained those materials and abstracted
the information accordingly.

We used an excel spreadsheet to abstract information
related to the following:
� The general study characteristics
� The missing mechanism(s) of MPD assumed when
comparing methods

� The name and type(s) of methods compared in the
simulation

� The sample size, overall proportion of missing data,
and the distributions used to simulate data set(s).

� For simulations motivated from clinical trials, we also
collected the clinical area of the trial, primary
outcome, number of trials simulated.

� For the relative performance of investigated methods,
we recorded the ranking of the methods regarding
bias, precision, type-I error, power, accuracy, and
coverage and the overall ranking provided by the au-
thors along with the rationale for the overall ranking.

� When a study investigated multiple factors [24] such
as sample size or proportion of missing data that can
influence model performance, we recorded the
ranking from all scenarios.
2.7. Data analysis

For all analyses, we summarized the categorical vari-
ables with numbers and percentages.

2.7.1. Agreement
We assessed agreement between reviewers on full-text

eligibility using an unweighted kappa. We interpreted kappa
values as slight agreement (0.21e0.40), moderate agreement
(0.41e0.60), substantial agreement (0.61e0.80), or almost
perfect agreement (greater than 0.80) [34].

2.7.2. Classification of findings
First, we classified results on the basis of the missing

mechanism: MCAR, MAR, ignorable missing (either
MCAR or MAR), MNAR (also nonignorable missing),
and combined missing (MAR and MNAR).

Based on classification in the literature [12,14,26,27,35]
and consensus among authors, we created two classification
systems for the methods investigated. The first was a 14-
category list of approaches including the following: classic
complete case analysis, modified complete case analysis,
classic single imputation, modified single imputation, classic
LOCF, modified LOCF, classic MI, modified MI, classic
mixed model, modified mixed model, classic GEE, modified
GEE, classic robust regression, and modified robust regres-
sion Categories labeled ‘‘classic’’ referred to approaches
conducting analyses while assuming data are based on ignor-
able missingness, although some can also be applied to data
MNAR. The categories labeled ‘‘modified’’ referred to sta-
tistical methods that incorporate the missing mechanism
(i.e., NMAR) in both parameter estimation and inference
steps. When the 14 categories of methods were conceptually
similar and performed similarly, we combined them into a
broader seven-category list of approaches: complete case

http://www.jclinepi.com
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analysis, single imputation, LOCF, MI, mixed model, GEE,
and robust regression. In summaries of method performance
in both the 14-category and 7-category classifications, we
excluded studies that compared only variations in methods
within a single category.
2.7.3. Synthesis of findings
We recorded rankings (including best and worst) of the

performance of categories of methods for each simulation
and for each evaluation criterion (bias, precision, type-I er-
ror, power, accuracy, and coverage) [25] and, if provided by
the authors, an overall ranking. The overall ranking typi-
cally considered one key property (such as bias) or several
properties (e.g., bias and precision, power, and accuracy).

We also provided a data summary that combines MCAR,
MAR, and ignorable missing as labeled by the authors into
a category we called ‘‘ignorable missing.’’ We collapsed
the findings in this way because the performance of the
methods was similar across above three categories as iden-
tified by the authors of simulation studies.

Studies investigated the performance of methods using a
different number of simulations, each with its own condi-
tion(s) (e.g., one study might conduct simulations in 10
conditions that differed in sample size, effect size, and pro-
portion of data missing, and another study conduct a single
simulation with a single condition). For each mechanism
(MCAR, MAR, ignorable missing, MNAR, and combined
missing), whether identified by the authors or in our own
classification, we counted each study only once.

When studies conducted multiple simulations addressing
the same mechanism, and one approach was the best (or the
worst) in all simulations, that approach was counted in the
summary tables accordingly. When multiple simulations
were conducted, and the best or worst approaches varied
in simulations, that study was not included in the summary
tables. The latter situation occurred for the best performing
method, using the authors’ classification, in four studies for
MAR, three studies in MNAR, and did not occur in MCAR
and ignorable missing; for the worst performing method,
the situation occurred in four studies for MAR and did
not occur in MCAR, ignorable, and MNAR.
3. Results

3.1. General characteristics of included studies

Among 16,446 identified citations, we retrieved 507
studies for full-text screening; 60 proved eligible (Fig. 1).
The agreement between reviewers for full-text screening
was substantial (kappa 0.74).

Studies investigated conditions as follows: MCAR (15/
60, 25%), and MAR (32/60, 53.3%), ignorable missing (8/
60, 13.3%), MNAR (32/60, 53.3%, including four reported
as nonignorable missing), and combined missing (2/60,
3.3%) (Table 1). Including MCAR and MAR as ignorable
missing, 47 studies investigated ignorable missing data.

The total number of scenarios investigated within each
of the 60 studies varied from 1 to 40 with 4 as the most
common number of scenarios found in 13 (21.7%) studies.

All studies used at least one criterion to evaluate method
performance. Of the 60 studies, 49 (81.7%) assessed bias; 28
(46.7%) coverage; 26 (43.3%) precision; and 42 (70%) pro-
vided an overall ranking (Table 1). Appendix B at www.
jclinepi.com presents a study-by-study detailed description.

Of the 60 studies, 52 (92%) specified clinical areas that
motivated their studies (either specific clinical trials, or
typical of trials in an area, or a reference to a specific clin-
ical context without specific trials). The most common
motivating areas were infectious diseases (18/60, 30%)
and psychiatry (12/60, 20%) (Table 1). Almost half the
studies addressed surrogate outcomes (n 5 29, 48.3%)
(i.e., outcomes that are not themselves important to patients
but are substitutes for those that aredfor instance, bone
density for fractures). The total sample size of simulated
trials varied from 28 [36] to 2000 [35,37] with the most
common choice being 101e200 (46.7%). The extent of
missing data in simulated trials varied widely (1% [38] to
90% [39]) with the most frequently investigated being
21e30% (23/60, 38.3%). Over 40% of the studies (26/60,
43.3%) did not specify the percentage of missing data when
describing the simulated data set. Most studies assumed
data were normally distributed (38/60, 63.3%) in at least
one of the simulations conducted.
3.2. Reporting quality of simulation studies discussing
methods to handle MPD

Table 2 presents a summary of the reporting quality of
the eligible studies. Most (54 of 60: 83.3% with 95% CI
[73.9%, 92.7%]) clearly specified the aim of the simulation.

Regarding the simulation procedures, many critical items
were not explicitly reported. Most studies (45, 75% [64.0%,
86.0%]) failed to report whether they created independent
simulated data sets for different scenarios (situations with
different parameters of missing data, e.g., different missing
mechanism, different proportion of missing data). All but
one study (59, 98.3% [95%, 101.6%]), failed to report the
use of a random number generator (the one that did report
stated they used the random number generator ‘‘normal
(0)’’ in SAS) [40]. No study mentioned their choice of start-
ing seeds, nor whether failure occurred when estimating the
outcome of parameter of interest. Over half of the studies re-
ported neither the software package used to perform simula-
tions (35, 58.3% [45.8%, 70.8%]) nor to conduct analysis (31,
51.7% [39.1%, 64.3%]). In those that did provide the infor-
mation, SAS (13 studies, 21.8% [11.4%, 32.3%]) was the
most frequently applied software both for simulation and
for analysis.

A minority (15, 25% [14.0%, 36.0%]) failed to provide
justification for data generation. Almost all (57, 95%

http://www.jclinepi.com
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[89.5%, 100.5%]) reported the number of simulations
which varied from 50 to 50,000 replications, with the most
common choices being 1,000 (23 studies, 38.3% [26.0%,
50.6%]) and equal or less than 250 (12 studies, 20%
[9.9%, 30.1%]). Three studies failed to make clear how
many simulations were performed [41e43]. Very few
(3, 5% [0%, 10.5%]) provided a justification for the number
of simulations. Of the three that did provide the rationale,
two estimated the number of simulation based on an ex-
pected standard error around 95% CI of the coverage rate
[35,44] and one provided the justification based on the dis-
tribution of unstructured covariance matrix [45]. All
included studies provided criteria to evaluate the perfor-
mance of statistical methods.
3.3. Methods studied

The studies addressed 250methods.Many authors did not
provide the full name for the acronym of methods [46,47], a
clear definition of the proposed method [46,48], or official
names for proposed methods (instead referring to it as ‘‘pro-
posedmethod’’) [39,49]. Thus, our classifications ofmethods
required some judgment. Of the 60 studies, the 14-strategy
classification system identified 18 (30%) as a classic mixed
model; 17 (28.3%) modified mixed model; 18 (30%) classic
MI; 12 (20%) modified MI; 19 (31.7%) classic LOCF; 4
(6.7%)modifiedLOCF; 15 (25%) classic complete case anal-
ysis; 6 (10%) modified complete case analysis; 15 (25%)
classic single imputation; 2 (3.3%) modified single imputa-
tion; 8 (13.3%) classic robust regression; 10 (16.7%) modi-
fied robust regression; 4 (6.7%) classic GEE; 7 (11.7%)
and modified GEE. Of 60 studies, 12 (20.0%) studies
compared two methods, 16 (26.7%) compared three
methods, 15 (25.0%) compared four methods, 17 (28.3%)
compared more than four methods (Table 1).

In the seven-category classification, 31 (51.7%) investi-
gated mixed model; 21 (35%) MI; 20 (33.3%) LOCF, 17
(28.3%) complete case analysis, 15 (25%) single



Table 1. Summary of general characteristics of 60 included studies

n (%)

Clinical areaa

Nonmedical 1 (1.7)
Cardiology 3 (5.0)
Endocrinology 3 (5.0)
Gastrointestinal 1 (1.7)
Infectious diseases 18 (30.0)
Psychiatric 12 (20.0)
Renal 1 (1.7)
Respiratory 3 (5.0)
Rheumatology 3 (5.0)
Other 9 (15.0)

Type of primary outcome
Unclear 16 (26.7)
Length of stay (in hospital, ICU) 1 (1.7)
Symptoms 5 (8.3)
Quality of life 3 (5.0)
Functional status 2 (3.3)
Disease severity 5 (8.3)
Length of drug use 3 (5.0)
Surrogate outcome 29 (48.3)

Number of different trials simulated
1 56 (93.3)
2 4 (6.7)

Total sample sizeb

0e50 1 (1.7)
50e100 16 (26.7)
101e200 28 (46.7)
201e300 12 (20.0)
301e400 3 (5.0)
401e500 9 (15.0)
500e1,000 9 (15.0)
2,000 2 (3.3)

Proportion of missing datac

0e4% 1 (1.7)
5e10% 13 (21.7)
11e15% 7 (11.7)
16e20% 5 (8.3)
21e30% 23 (38.3)
31e40% 9 (15.0)
41e50% 12 (20.0)
51e60% 1 (1.7)
61e70% 2 (3.3)
71e80% 1 (1.7)
81e90% 1 (1.7)
Unclear 26 (43.3)

Number of scenarios investigated
1 10 (16.7)
2 6 (10.0)
3 9 (15.0)
4 13 (21.7)
5 1 (1.7)
6 6 (6.7)
8 3 (5.0)
9 4 (6.7)
10 1 (1.7)
12 4 (6.7)
15 1 (1.7)
18 1 (1.7)
32 2 (3.3)
40 1 (1.7)

(Continued )

Table 1. Continued

n (%)

Number of methods investigated
2 12 (20.0)
3 16 (26.7)
4 15 (25.0)
5 6 (10.0)
6 4 (6.7)
7 2 (3.3)
8 2 (3.3)
11 2 (3.3)
12 1 (1.7)

Number of different categories of
methods investigated (based on
seven-category classification)

1 20 (33.3)
2 18 (30.0)
3 15 (25.0)
4 7 (11.7)

Criteria to assess performance of methodsa

Bias 49 (81.7)
Precision 26 (43.3)
Accuracy 18 (30.0)
Type-I error 11 (18.3)
Power 13 (21.7)
Coverage 28 (46.7)

Missing mechanisms investigateda

MCAR 15 (25.0)
MAR 32 (53.3)
Ignorable missing (MCAR or MAR) 8 (13.3)
MNAR 32 (53.3)
Combined missing (MNAR and MAR) 2 (3.3)

Justification for data generation
Based on a real data set 32 (53.3)
Typical of real data 13 (26.7)
Not stated 15 (25.0)

Abbreviations: ICU, intensive care unit; MCAR, missing completely
at random; MAR, missing at random; MNAR, missing not at random.

‘‘Methods’’ refers to the specific method used in each study. ‘‘Cat-
egories of methods’’ refers to the seven-category classification
regarding methods.

a The total % of clinical areas may exceed 100% because there
are included studies simulated more than one trial in different clinical
areas or missing mechanisms.

b The percentage of total sample size may exceed 100% because
there are included studies simulated scenarios with multiple sample
sizes.

c The proportion of missing data may exceed 100% because there
are included studies simulated scenarios with multiple proportion of
missing data.

73Y. Zhang et al. / Journal of Clinical Epidemiology 88 (2017) 67e80
imputation, 14 (23.3%) robust regression, and 7 (11.7%)
GEE (Table 3). Of the 60 included studies, 20 (33.3%)
investigated different methods from only one category, 18
(30%) from two categories, 15 (25%) from three categories,
and 7 (11.7%) from four categories (Table 1). Among 20
studies that investigated only one category of methods, 6
(30%) studies investigated mixed model; 6 (30%) robust
regression; 3 (15%) MI; 3 (15%) GEE; and 2 (10%) com-
plete case analysis (Appendix C at www.jclinepi.com).

http://www.jclinepi.com


Table 2. Summary of reporting quality of included 60 studies

Criteria n % [95% CI]

Aims of the simulation
Reported 50 83.3 [73.9, 92.7]

Dependence of samples
Samples independent 15 25.0 [14.0, 36.6]

Starting seed
Different seeds used 0 0 [0, 3]

Random number generator
Reported 1 2.0 [0, 5.54]

Failures occur during simulation
Reported 0 0 [0, 3]

Software to perform simulations
Reported 25 41.7 [29.2, 54.2]

Software to perform analysis
Reported 29 48.3 [35.7, 61.0]

Justification for data generation
Reported 45 75.0 [64.0, 86.0]

Scenarios and statistical methods evaluated
Reported 60 100.0 [97, 100]

Number of simulations
Reported 57 95.0 [89.5, 100.5]

Any justification for number of simulations
Reported 3 5.0 [0, 10.5]

Criteria to evaluate the performance of statistical methods
Reported 60 100.0 [97, 100]

Abbreviation: CI, confidence interval.
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Appendix D at www.jclinepi.com presents a map of cate-
gories of methods included in each study. Appendix E at
www.jclinepi.com lists all 250 investigated methods with
reference number, first author, broad categories, our classi-
fications, methods name, and its descriptions.

3.4. Performance of included methods

In the following, we first present the 14-category classi-
fication of methods, the best performing category for each
of MCAR, MAR, ignorable missing, MNAR, and combined
Table 3. Category of methods investigated in 60 included studiesa

Seven-category
classification

14-category
classification n (%)

Data deletion Classic complete case analysis 15 (25)
Data deletion Modified complete case analysis 6 (10)
Single imputation Classic single imputation 15 (25)
Single imputation Modified single imputation 2 (3.3)
Single imputation Classic LOCF 19 (31.7)
Single imputation Modified LOCF 4 (6.7)
Multiple imputation Classic MI 18 (30)
Multiple imputation Modified MI 12 (20)
Data augmentation Classic mixed model 18 (30)
Data augmentation Modified mixed model 17 (28.3)
Data augmentation Classic GEE 4 (6.7)
Data augmentation Modified GEE 7 (11.7)
Data augmentation Classic robust regression 8 (11.7)
Data augmentation Modified robust regression 10 (16.7)

Abbreviations: LOCF, last observation carried forward; MI, multi-
ple imputation; GEE, generalized estimating equations.

a The total % of clinical areas may exceed 100% because one
study can investigate more than one category of methods.
missing (all as labeled by the authors). We then present, us-
ing the 7-category classification, the performance of each
method for each of ignorable and nonignorable MPD (our
classification), first with regard to the best approach, then
the worst. These summaries are presented as the number
of times a method performed best (or worst) and, the per-
centage in which it was the best (or worst) out of the total
times it was compared.

3.4.1. Best performance using 14-category classification
3.4.1.1. Missing completely at random. Of the 15 (25%)
studies that investigated data MCAR, 12 studies compared
different categories of methods. Among these 12 studies, 10
(83.3%) reported overall ranking; all reported bias, and 8
(66.7%) precision. Classic mixed model performed the best
in the overall ranking (4/5, 80%) and bias (4/4, 100%)
(Appendix F at www.jclinepi.com). Classic complete case
analysis performed the best second most frequently on bias
(3/4, 75%). Classic LOCF performed the best most
frequently regarding precision (3/4, 75%; Appendix F at
www.jclinepi.com).

3.4.1.2. Missing at random. Of 32 studies that investigated
data MAR, 31 studies compared different categories of
methods. Among these 31 studies, 26 (83.9%) reported best
overall ranking, 30 (96.8%) bias, 14 (45.2%) precision, 10
(32.2%) accuracy, 10 (32.2%) type-I error, 13 (41.9%) po-
wer, and 15 (48.4%) coverage. Classic and modified mixed
model (5/9, 55.6%; 4/7, 57.1%), respectively, performed
best in overall ranking, and classic and modified robust re-
gressions (3/5, 60%; 3/7, 42.9%), respectively, performed
similarly regarding overall ranking; they also performed
similarly with respect to bias (Appendix G at www.
jclinepi.com). Regarding precision, classic LOCF per-
formed the best most frequently (4/6, 66.7%), and classic
robust regression had the highest percentage best (3/3,
100%) (Appendix G at www.jclinepi.com). Regarding po-
wer, classic LOCF (3/4, 75%) and classic MI (3/4, 75%)
were most frequently, and with the highest percentage,
the best (Table 5). For coverage, classic complete case anal-
ysis (4/8, 50%) was the best most frequently and classic MI
(3/4, 75%) had the highest percentage best (Appendix G at
www.jclinepi.com).

3.4.1.3. Ignorable missing data. Of eight (13.3%) studies
that investigated what authors characterized as ignorable
missing data, seven studies compared different categories
of methods. Among these seven studies, six (85.7%) re-
ported consistent best overall ranking, six (85.7%) bias, five
(71.4%) precision, three (42.9%) accuracy, one (14.3%)
type-I error, one (14.3%) power, four (57.1%) coverage.
Modified MI was most frequently the best on overall
ranking (2/4, 50%) and coverage (2/5, 40%). Classic mixed
model was also most frequently the best on overall ranking
(2/5, 40%), and most frequently on bias (3/3, 100%) and
precision (2/2, 100%). Classic LOCF performed best the

http://www.jclinepi.com
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most regarding precision (2/2, 100%) and accuracy (2/2,
100%) (Appendix H at www.jclinepi.com).

3.4.1.4. Missing not at random. Of 32 (53.3%) studies that
investigated MNAR data, 26 studies compared different
categories of methods. Among these 26 studies, 24
(92.3%) reported consistent overall ranking, 26 (100%)
bias, 11 (42.3%) precision, 11 (42.3%) accuracy, 3
(11.5%) type-I error, 6 (23.1%) power, 12 (46.2%)
coverage. Classic and modified mixed model performed
the best most frequently regarding overall ranking (6/8,
75%; 3/7, 42.9%) and on bias (6/7, 85.7%; 6/6, 100%)
and accuracy (4/5, 80%; 2/5, 40%). Classic MI performed
best most frequently and with highest percentage on
coverage (3/3, 100%). Classic LOCF performed the best
most frequently regarding precision (4/7, 57.1%)
(Appendix I at www.jclinepi.com).

3.4.1.5. Missing at random and missing not at random.
Two studies [38,50] investigated the situation in which
studies had some data MAR and some NMAR, there was
no clear optimal methods. One study [38] investigated four
scenarios; classic complete case analysis were the best in
2/4, classic single imputation 1/4, and classic multiple
imputation ¼ on overall. The other study [50] investigated
two scenarios: classic mixed model and modified robust
regression performed the best in each scenario on overall
ranking and bias, respectively.

We observed similar performances of methods in the
classic and modified categories across all MCAR, MAR,
and ignorable missing mechanisms. Classic and modified
approaches also performed similarly in the MNAR mecha-
nism. We therefore grouped mechanisms to create ignor-
able missing (MCAR, MAR, or ignorable) and
nonignorable missing (MNAR), and combined classic and
modified approaches into single broader approaches. For
the 14-category system, if an approach (e.g., mixed model)
performed similarly in the classic and modified categories
(e.g., classic mixed model and modified mixed model,
respectively), we presented them both. After combining
categories, for such situations in the 7-category summary,
Table 4. Best performed methods when combining all ignorable missing (rep
categories of methods (N 5 31)a

Category Overall ranking Bias Precis

Complete case analysis 0 1 (11.1) 1 (14
Single imputation 0 1 (16.7) 1 (14
LOCF 1 (7.7) 2 (18.2) 7 (77
MI 8 (38.1) 7 (43.8) 1 (7.1
Mixed model 9 (34.6) 10 (55.6) 3 (27
GEE 1 (16.7) 0 0
Robust regression 2 (28.6) 1 (14.3) 1 (33

Abbreviations:MCAR, missing completely at random; MAR, missing at ran
GEE, generalized estimating equations.

a N is the number of studies that compared between categories of meth
we only counted them once. This explains the smaller num-
ber of studies in the 7- vs. the 14-category summaries.

3.4.2. Best performance using 7-category classification
3.4.2.1. All types of ignorable missing data. Of the 47
(78.3%) studies that investigated all types of ignorable
missing data, 31 (66.0%) studies compared different cate-
gories of methods. Among these 31 studies: 21 (67.7%) re-
ported consistent best overall ranking, 22 (71%) bias, 14
(45.2%) precision, 2 (6.4%) accuracy, 4 (12.9%) type-I er-
ror, 5 (16.1%) power, 14 (45.2%) coverage. Mixed model
and MI performed similarly with the highest number best
and most frequently the best on overall ranking and bias,
respectively (9/26, 34.6%; 8/21, 38.1%) (10/18, 55.6%;
7/16, 43.8%) (Table 4). MI performed the best most
frequently on coverage (6/12, 50%). LOCF preformed the
best most frequently for precision (7/9, 77.8%), and almost
always was least frequently the best for the remaining
criteria (Table 4).

3.4.2.2. Missing not at random. Of 32 (53.3%) studies
investigating MNAR data, 23 (71.9%) studies compared
different categories of methods. Among these 23 studies:
18 (78.3%) reported best overall ranking, 19 (82.6%) bias,
8 (34.8%) precision, 7 (30.4%) accuracy, 3 (13.0%) type-I
error, 6 (26.1%) power, 8 (34.8%) coverage. Mixed model
performed the best most frequently on overall ranking (7/
15, 46.7%), bias (8/14, 57.1%), accuracy (4/6, 66.7%),
and power (2/5, 40%). MI performed approximately as well
as mixed model on overall ranking (6/14, 42.9%). MI also
performed the best most frequently on coverage (4/8, 50%).
LOCF preformed most frequently the best for precision (4/
7, 57.1%) (Table 5).

3.4.3. Worst performancewith seven-categoryclassification
Studies often presented the best performing methods and

infrequently specified the worst performing methods.
Therefore, the number of studies in which we summarize
the worst performing methods are much fewer.

For all ignorable missing data, there was little to choose
regarding the worst performer across methods (Table 6).
orted as MCAR, MAR, or ignorable missing) in all scenarios for seven

n (%)

ion Accuracy Type-I error Power Coverage

.3) 1 (25) 1 (25) 0 0 (0)

.3) 0 0 1 (33.3) 2 (33.3)

.8) 0 0 1 (20) 1 (14.3)
) 1 (20) 2 (33.3) 2 (28.6) 6 (50)
.3) 0 1 (16.7) 1 (11.1) 4 (33.3)

1 (100) 0 0 0
.3) 0 0 0 1 (16.7)

dom; LOCF, last observation carried forward; MI, multiple imputation;

ods.
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Table 5. Best performed methods when reported as MNAR or nonignorable missing in all scenarios for seven categories of methods (N 5 23)a

Category

n (%)

Overall ranking Bias Precision Accuracy Type-I error Power Coverage

Complete case analysis 1 (12.5) 3 (42.9) 0 0 0 1 (50) 1 (20)
Single imputation 3 (42.9) 2 (28.6) 1 (25) 1 (50) 0 0 0
LOCF 0 1 (6.7) 4 (57.1) 0 1 (25) 2 (50) 0
MI 6 (42.9) 4 (30.8) 1 (11.1) 1 (20) 1 (50) 1 (50) 4 (50)
Mixed model 7 (46.7) 8 (57.1) 1 (12.5) 4 (66.7) 1 (25) 2 (40) 3 (30)
GEE 0 1 (50) 0 0 0 0 0
Robust regression 1 (50) 1 (50) 1 (50) 1 (66.7) 0 0 0

Abbreviations: MNAR, missing not at random; LOCF, last observation carried forward; MI, multiple imputation; GEE, generalized estimating
equations.

a n is the number of studies that compared between categories of methods.
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LOCF was, however, the worst for accuracy (2/3, 66.7%)
and coverage (2/7, 28.6%) (Table 6).

Among all MNAR simulations, LOCF performed worst
most frequently on overall ranking (4/15, 26.7%), bias (7/
15, 46.7%); on power (3/4, 75%); and on type-I error (3/4,
75%). Complete case analysis had the highest percentage
worst on bias (4/7, 57.2%) (Table 7). Mixed model was not
infrequently the worst on general ranking (3/15, 20%), pre-
cision (3/8, 37.5%), and accuracy (2/6, 33.3%). In all of these
three cases, mixed model was only compared against robust
regression, and robust regression consistently performed bet-
ter than mixed model in these studies [51e53] (Table 7).

3.4.4. Studies comparing alternatives within single cat-
egories of methods

Twenty studies focused on a single category of methods.
Because it performed the best of the available methods, we
focus here on the studies examining mixed models. Among
six such studies, four [35,41,54,55] investigated ignorable
missing data, one study [51] nonignorable missing data,
one study [52] both situations. The sample size of simu-
lated trials varies from 50 [41] to 500 [54] with number
of simulations varies from 200 [54,55] to 10,000 [51].

A study [52] that compared six mixed models found that,
when data wereMNAR, a lognormal selection model outper-
formed conditional quadratic models, quadratic/linear
model, conditional linear model, and pattern mixture model,
regarding overall ranking, bias, and accuracy. One study [35]
Table 6. Worst performed methods when combining all ignorable missing (re
categories of methods (N 5 31)a

Category Overall ranking Bias Precis

Complete case analysis 0 (0) 1 (11.1) 2 (28
Single imputation 1 (10.0) 1 (16.7) 1 (14
LOCF 1 (7.7) 1 (9.1) 0
MI 0 2 (12.5) 2 (14
Mixed model 0 0 (0) 2 (18
GEE 1 (20.0) 1 (25) 0
Robust regression 0 1 (14.29) 0

Abbreviations:MCAR, missing completely at random; MAR, missing at ra
GEE, generalized estimating equations.

a N is the number of studies that compared between categories of meth
compared random parameter mixture models with shared-
parameter model and these two methods performed the best
regarding bias in different simulations. One study [54] found
a joint model with separate dropouts outperformed joint
models with common dropout and ignoring dropout on bias
in all settings. One study [55] found joint multivariable
random effect model outperformed random effect model
regarding bias and overall ranking. One study [41] found a
varying coefficients model outperformed conditional linear
model regarding bias and overall ranking.
4. Discussion

4.1. Main findings

We identified 60 simulation studies that compared 250
methods of dealing with MPD for continuous outcomes
in RCTs. The reporting quality of these simulation studies
suffers from important limitations, especially regarding the
simulation procedures. Omissions included proportion of
missing data and software to perform simulation or analysis
(Table 2). Less serious but frequent omissions included
justification of number of simulations, failure to report
the random number generator used, and the starting seeds,
and failures during simulation (Table 2).

Studies addressing both ignorable (MCAR and MAR,
47/60 studies) and nonignorable (MNAR, 32/60 studies)
mechanisms evaluated a wide variety of statistical methods,
ported as MCAR, MAR, or ignorable missing) in all scenarios for seven

n (%)

ion Accuracy Type-I error Power Coverage

.6) 2 (40) 0 1 (25) 0

.3) 1 (50) 0 1 (33.3) 1 (16.7)
2 (66.7) 1 (25) 1 (20) 2 (28.6)

.3) 0 0 0 2 (16.7)

.2) 0 0 2 (22.2) 1 (8.3)
1 (100) 0 0 0
0 0 0 1 (16.7)

ndom; LOCF, last observation carried forward; MI, multiple imputation;

ods.



Table 7. Worst performed methods when reported as MNAR (nonignorable) in all scenarios for seven categories of methods (N 5 23)a

Category

n (%)

Overall ranking Bias Precision Accuracy Type-I error Power Coverage

Complete case analysis 1 (12.5) 4 (57.2) 2 (50) 1 (50.0) 1 (100) 2 (100) 2 (40)
Single imputation 1 (14.3) 2 (28.6) 0 1 (50) 0 0 2 (100)
LOCF 4 (26.7) 7 (46.7) 0 0 3 (75) 3 (75) 2 (28.6)
MI 1 (7.1) 5 (38.5) 1 (11.1) 2 (40) 1 (50) 0 3 (37.5)
Mixed model 3 (20.0) 4 (28.8) 3 (37.5) 2 (33.3) 0 2 (40) 1 (10.0)
GEE 0 0 0 0 0 0 0
Robust regression 0 1 (50) 0 1 (50.0) 0 0 0

Abbreviations: MNAR, missing not at random; LOCF, last observation carried forward; MI, multiple imputation; GEE, generalized estimating
equations.

a N is the number of studies that compared between categories of methods.
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with limited overlap between studies. The most frequently
addressed approach, mixed model, was assessed in 31
studies. Across studies addressing ignorable missing data,
mixed model was most frequently the best performing
approach on overall ranking (9), although it was best
among all the instances in which it was tested in only a
third of cases. With respect to bias, mixed model was
frequently the highest ranking (10) and also ranked first
in a large percentage of instances in which it was tested
(55.6%), although its performance on other properties (pre-
cision, accuracy, type-I error, power, and coverage) was
weaker (Table 4). MI also performed well for ignorable
MPD (Table 4).

Across studies addressing nonignorable (MNAR) data,
mixed model was most frequently ranked best for overall
ranking (7/15, 46.7%), bias (8/14, 57.1%), and accuracy
(4/6, 66.7%), although seldom on other properties. MI per-
formed similarly well and was second most frequently the
best on overall ranking (6/14, 42.9%). Aside from preci-
sion, LOCF seldom performed best on any criterion
(Table 5) and performed the worst most frequently for over-
all ranking (4/15, 26.7%), bias (7/15, 46.7%), type-I error
(3/4, 75%), and power (3/4, 75%) (Table 7).
4.2. Strengths and limitations

Strengths of our study include a comprehensive search
and independent and duplicate screening and data extraction.
We conducted a systematic and comprehensive search across
general medical databases as well as databases that capture
statistically oriented articles. Pilot testing of data extraction
helped ensure the validity of the data collection process. By
choosing to summarize only studies comparing statistical
methods in simulations for dealing with MPD, we restricted
comparisons to those presented in relation to known truth, an
approach more compelling than examination of trial results
alone, where the truth cannot be known [24].

We examined all the major characteristics relevant to
performance of each method. Our pairing of a statistician
with a methodologist for data abstraction data helped
ensure the accuracy of the process. Chance-corrected agree-
ment in judging eligibility was high. We applied a strategy
to eliminate the cluster effect that would otherwise have
occurred if we counted each condition from studies that
conducted simulations for several conditions. Finally, we
used a modification of an established checklist developed
specifically for simulation studies to evaluate reporting
quality.

Our study has limitations. For the reporting quality of
studies, we focused exclusively on reporting and did not
try to assess the merits of the design and conduct of simu-
lation studies. Therefore, our systematic survey does not
explicitly provide information addressing the methodolog-
ical quality of included simulation studies.

We focused on simulation studies that clearly stated the
methods compared are for RCT designs. Excluding simula-
tion studies that did not specifically state the use of method
in RCT framework might potentially missed some statisti-
cal methods. The variation in simulation approaches across
studies limits strength of inference from our results. Ideally,
all studies would have addressed similar criteria (e.g., bias,
precision, coverage) using similar assumptions and param-
eters (such as extent of MPD). Had this been the case, we
could have made cross-study comparisons. Because the
assessment criteria, statistical assumptions, and parameters
differed across studies, we were restricted to within-study
comparisons.

Summarizing the results of 60 studies addressing 250
methods proved challenging. First, we had to place
methods in categories, a process that involves judgment.
Once categorized, summarizing the relative performance
of the methods presented challenges. We counted the num-
ber of times each method was ranked best or worst, and the
percentage of times it was tested best or worst. This
approach ignores intermediate performance and is highly
dependent on the number of methods authors chose to
compare in individual studies. For instance, one study
compared two methods and found LOCF was superior to
complete case analysis. In this instance, LOCF gets the
same credit for being the best as mixed model might when
being compared against a number of other methods. The
relatively small number of times methods were tested
leaves uncertainty about their relative merits. Finally,
because of the variation of assumptions, sample size of
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simulated data set, number of simulations, as well as the
criteria used to assess performance of methods, we summa-
rized the results of studies that evaluated only a single cate-
gory of approaches for mixed model but not other single
category. Finally, the results from these findings might
not be generalizable to simulation studies dealing with
dichotomous or time to event outcomes, on MPD in
nonparallel group RCTs, or on simulation studies address-
ing issues other than MPD.

4.3. Interpretation of findings

The best ranking and worst ranking were generally
consistent: methods deemed least frequently to be best were
more frequently the worst. For both ignorable and nonign-
orable MPD, mixed model and MI were the superior
methods with respect to bias. Although MI performed simi-
larly to mixed model, considering it is more complicated to
apply in the analysis (multiple data sets need to be
analyzed), mixed model is more efficient and to that extent
superior [56]. LOCF had very high precision but was worst
on bias, type-I error, and power. The precision of LOCF is
likely because it does not take into account the uncertainty
associated with imputed values.

4.4. Implications

4.4.1. Implications for trialists
Our results suggest trialists may consider using mixed

models to deal with MPD whether they believe MPD is
or is not ignorable. If they are concerned about minimizing
bias, trialists should seldom if ever use LOCF.

4.4.2. Implications for methodologists and future
research

Statisticians and methodologists need to enhance the
clarity, completeness, and transparency of simulation
studies evaluating methods for dealing with MPD for indi-
vidual RCTs by following standards for comprehensive re-
porting. Providing explicit descriptions assists the
understanding of readers and makes it more likely that re-
sults will be reproducibledor, if they are not, to allow ex-
planations of discrepancies. Transparent reporting reveals
drawbacks of research that facilitates the critical appraisal
of simulation studies and may play a role in improving
the design and conduct of future studies.

Authors proposing statistical methods to address MPD
for continuous outcomes should first categorize the
methods they are testing. A standard classification system
for this categorization would be helpful; in the interval, au-
thors might use the 14-category classification we have pro-
posed. Authors should also provide the full name of the
methods with acronyms if applicable using established ter-
minology regarding the name of the methods and a clear
description of the methods. Development of a consensus
regarding criteria that define optimal performance of
methods of analysis, and statistical procedures for address-
ing these criteria (e.g., sample sizes and extent of MPD
used in simulations) would be highly desirable.

When statisticians choose a mixed model to deal with
continuous MPD for trialists, they should consider the
empirical results of a simulation study sharing similar char-
acteristics (same missing mechanism, sample size, distribu-
tion of the data, etc.). The six simulation studies
[35,41,51,52,54,55] that assessed the performance of the
mixed methodsdas well as the studies that compared
mixed model with other categories of methodsdwill pro-
vide evidence on which to base the selection.

4.4.3. Implications for journal editors
Our results suggest that evaluations of other simulation

studies may also reveal serious limitations in reporting
quality. If this proves a frequent problem, editors of medi-
cal and statistical journals may consider endorsing a check-
list for the reporting of simulation studies. If such a
checklist were adopted and adhered to, poorly reported
simulation studies would not pass through the peer review
process without correction of the omissions.
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