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A B S T R A C T

In this paper, a fast, simple and new alternative method for determination of water content (moisture) in bio-
diesel using electrochemical impedance spectroscopy (EIS) is developed. The method is based on the sensitive
variation of the charge transfer resistance (Rct) of the biodiesel medium in the presence of different quantities of
water. To obtain an accurate analytical measurement, a pre-treatment based on a simple dilution by acetonitrile
is employed. The two identical Pt electrodes are used in the measurement cell filled with sample solution. The
experiment conditions are also optimized for the measurements. The obtained analytical linear curve between
the water content and EIS impedance is the basis for the water content analysis in biodesiel fuel. The EIS method
is then successfully applied to both real and certified samples, and the results confirm that the method is reliable
with high sensitivity, precision and accuracy. The comparison of EIS method with the official standard method is
also made through the Student test t, demonstrating that both methods are statistically consistent and similars.
The validation of such an EIS method confirms that the method presented for the fist time in this paper can be
succesessfully applied to determining the water content of biodiesel fuel.

1. Introduction

The sustainable and environmentally-beneficial biodiesel is a pro-
mising and alternative combustion fuel due to its energetic and physi-
cochemical properties are similar to petroleum diesel. Furthermore,
when used as the fuel, it is not necessary to adjust the diesel engines
[1–3]. However, their marketing is subject to the fulfillment of stan-
dards and regulations governing the parameter control of biodiesel
quality. Usually these standards / regulations are based on American
(ASTM D6751), European (EN 14214) and Brazilian (ANP Resolution
45/2014) specifications, which establish the biodiesel quality stan-
dards. All these norms give to biodiesel fuel the specifications and
adequate properties, including blend components, blend stock, neat
automotive fuel and fuel purity [4–6].

Regarding the fuel purity, biodiesel contaminants are a major con-
cern. The contaminants include metals [7–9], water [10], fatty acid
methyl esters [11], sulphur [12], mono-,di- and triacylglycerides and
free and total glycerol [13], methanol and ethanol [14], as well as io-
dine [15]. An important quality parameter for commercialization of

biodiesel is the water content. As identified, even a small amount of
water (moisture) can cause corrosion of fuel tank components, affecting
the heat of combustion, supporting the growth of microorganisms, and
favoring gelation at low temperatures [10,16]. In addition, a serious
problem in biodiesel is the hydrolytic and oxidative degradation in-
duced by the ester hydrolysis when water is present in the medium
[17]. This biodiesel moisture may be induced by the processes of pro-
duction, washing, storage and transportation due to the hygroscopic
character of biodiesel [10,17,18]. Therefore, analysis of the water
content in biodiesel is necessary for the quality control.

There are many established analytical methods for determining the
quality parameters of biodiesel to ensure the good performance of the
fuel and engines [7–15]. For water content analysis, the Karl Fisher
method is the most widely adopted, but requires a sophisticated ti-
trator, expensive reagents and qualified personnel to operate the
equipment [19,20]. Other methods have also been proposed by the
scientific community for determining the water content in different
matrices [21]. However, using electrochemical method, particularly
Electrochemical Impedance Spectroscopy (EIS), to determinate the
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water content in biodiesel has not been fully established in literature.
EIS is a technique that can be used for various analytical purposes,

such as corrosion [22–24], adsorption [25,26], functioning of batteries
and fuel cells [27,28], and measurement of the electrical conductivity
for soils and sediments [29]. As recognized, EIS can distinguish in-
dividual contributions of different components to the electrochemical
processes, based on the variation of time constants and other controlled
variables [30].

Regarding the fuel component analysis, Kung et al. [31] developed
an EIS impedimetric sensor for monitoring the ethanol and water
contents in gasoline streaming using a pair of carbon electrodes. Their
method could measure these parameters (water and ethanol contents)
of the fuel in less than 1 s at 20–40 °C with good reproducibility and a
relative standard deviation of 2%. The water content was estimated by
comparing the impedance data obtained with and without desiccation
of the sample [30]. A further work on biodesiel fuel [32], they could
measure the mixing ratio of biodiesel in diesel with less than 10 s, using
EIS with a pair of identically printed carbon paste electrodes. At low
frequencies (< 1 Hz), it was possible to estimate the mixing ratio of
biodiesel (r2> 0.98) with good resolution, reproducibility and stability
(CV<3%, n = 8), which is important for quality control and regula-
tion of biofuel [32]. Perini et al. [33] developed a methodology em-
ploying EIS technique for in-situ analyzing and characterizing the
water-in-oil emulsion. The results obtained by EIS measurements in-
dicated that the analysis could be carried out on site without the need
for sample preparation, allowing the characterization of crude oil
emulsions and water-in-oil [33]. In our previous work, an EIS technique
was explored as the tool to analyze the biodiesel content in petroleum
diesel. The results indicated that the method was sufficiently suitable as
an alternative way to the official one for determining biodiesel content
in commercial diesel fuel [34].

As a continuing research to address the quality control through
analyzing the water content in the biodiesel fuel, the EIS technique as
an alternative method is further explored, and the results show that this
method is simple and fast with good sensitivity and reproducibility.

2. Experimental section

2.1. Apparatus

The electrochemical measurements were performed in an electro-
chemical cell (500 μL capacity) containing two identical Pt electrodes
(0.25 cm2 geometric area) connected with a potentiostat equipped with
AUTOLAB PGSTAR 302 and FRA 4.9 impedance module. The technique
used to carry out the measurements was the electrochemical impedance
spectroscopy (EIS) at open circuit potential (OCP). The electrical con-
ductivity measurements were performed on a Digimed conductivity
(MD 32 model).

2.2. Reagents

All reagents used were of analytical grade. The water used was
distilled and deionized to a resistivity of 18.2 MΩ cm−1, produced by a
Barnstead Nanopure System – Thermo Scientific. The samples were
prepared by diluting biodiesel in concentrated acetonitrile from Merck
(Darmstadt, Germany). Both the electrochemical cell and electrodes
were cleaned by 10% nitric acid solution, concentrated acetone, and
then the deionized water.

2.3. Sample preparation

Methyl soybean biodiesel samples were produced in-house, using
the biodiesel samples from the Interlaboratory Program (PIB-ANP)
provided by the Research Laboratory of Analytical Chemistry of
Petroleum and Biofuels (LAPQAP-Federal University of Maranhão).

2.4. Analysis procedure

The EIS measurements were performed in an electrochemical cell
with sample solution which contained pure biodiesel and concentrated
acetonitrile. When measuring the sample, successive additions of water
aliquots into the cell were performed, and the impedimetric signal was
measured. Table 1 shows the optimized experimental parameters used
for the water content determination by the present method. The am-
plitude of the perturbation signal was 50 mV, since highly resistive
systems require minimally small amplitudes [34,42]. The range of
frequency adopted was 106 to 10−1 in all experiments.

3. Results and discussion

3.1. Preliminary study

To optimize the experimental conditions for quantitative analysis of
water content in biodiesel, three types of electrode were evaluated
(glassy carbon, stainless steel and platinum (Pt)). Pt electrode showed
the best results in terms of stability, resolution with lower dispersion of
points, and response sensitivity.

Regarding the pre-treatment sample solutions, pure biodiesel could
not give a satisfactory due to the resistive characteristics of this biofuel.
Then microemulsion and biodiesel/acetonitrile were evaluated as the
possible pre-treatment of the samples. Compared to microemulsion, the
sample of biodesiel/acetonitrile presented very good results with sui-
table response from the electroanalytical point of view. Therefore, the
biodesiel/acetonitrile solution was chosen as the pre-treatment sample
for the subsequent studies.

In order to check the linearity of the system, the relationship be-
tween the values of impedance modulus (|Z| / |Z|) and amplitude [35]
at a frequency of 27.54 Hz from low to high amplitudes were obtained,
which showed an excellent linearity. This linearity was considered es-
sential for the reliability of EIS measurements. From the results, the
amplitude of 50 mV was chosen and considered suitable for the all
subsequent experiments.

3.2. Equivalent electrical circuit (EEC)

Fig. 1 shows the Nyquist diagram and the corresponding Bode plot
for biodiesel/acetonitrile sample. The proposed equivalent electrical
circuit (Inset in Fig. 1(A)) is based on the characteristics of impedance
spectra obtained in Fig. 1(A) and (B). The Nyquist diagram is char-
acterized by a capacitive arc, followed by a second low frequency be-
havior that can be attributed to interfacial phenomena [36–38]. Bode
plot in Fig. 1(B) shows a variation of the frequency with the log module
impedance between 106 and 104 Hz, indicating a capacitive behavior
(Cd). Between 104 and 101 Hz, the modulus of impedance does not
change with the magnitude of the impedance, indicating a resistive
behavior [35–37].

The values of real and imaginary components are in the order of
KΩ cm−2 and a good correlation between experimental and simulated
data was obtained. In the proposed equivalent circuit (Inset in
Fig. 1(A)), Rs is the resistance of the solution, Q is the capacitance of the
electrical double layer, Rct is the charge transfer resistance, and CPE is

Table 1
Optimized electrochemical parameters for the determination of water in
biodiesel by electrochemical impedance spectroscopy.

Parameter Specifications

Frequency Range (Hz) 106 to 10-1

OCP times 20 s
Points per frequency decade 10
Amplitude 50 mV
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the constant phase element (pseudo capacitance) [37–41]. The capa-
citance of the double layer is dependent on the conductive or the in-
sulating property of the interface, the charge transfer resistance is due
to the electron transfer generated by the redox processes related to the
electrolytic solution [37,42].

The adjustments of the Nyquist diagrams were all done by trial until
obtaining approximately the experimental curves by appropriate choice
of parameter values. Table 2 shows the values obtained from the pro-
posed electric circuit. All components are verified by the evaluation of
the chi-square parameter at the magnitude order of 10−5 with a con-
fidence level around 98%.

These results clearly show that a comparison between the experi-
mental and simulated data presented small errors, which show that the
method is reliable and indicates a good analytical performance.

3.3. Electrochemical behavior of Pt electrode in pure acetonitrile and
biodiesel/acetonitrile

The ideal biodiesel sample concentration in the biodiesel/acetoni-
trile mixture was evaluated through experiments with different sample
concentrations covering the range between 0% and 40% biodiesel, in
both the absence and presence of water. This study was important in
order to establish the best conditions for the analysis. Impedance
spectra for this experiment are showed in Fig. 2, which shows a growing
increase of resistivity of the medium with increasing biodiesel con-
centration in the mixture. Akita et al. [43] also observed this behavior,
which was attributed to the low conductivity of biodiesel [43,44]. We
believe that the magnitude increase in the impedance semicircle (Rct)
probably reflect the effect of the solution resistance on the kinetics of Pt
surface charge transfer and reactant adsorption process. Further study
is needed to identified the electrode processes on the Pt surface. In this
work, the solution overall real impedance could be expressed as Eq. (1):

= +Z R R /2r s ct (1)

where Rs is the resistance of the solution, Rct is the resistance of Pt
surface charge transfer, and Zr is the overall real impedance [45].

When the same experiment (Fig. 2) was carried out in the presence

of a constant concentration of water (454 mg Kg−1), a linear increase of
Rct with increasing of the biodesiel content was observed (Inset in
Fig. 2). However, after 30% of biodesiel content, the Rct value is slightly
dropped, suggesting that 30% of biodesiel is the optimal value in terms
of sensitivity for the method. Therefore, 30% was chosen for the other
subsequent experiments.

From the point of view of the process that occurs, the electrical
properties of water are large enough to cause a measurable change in
Rct, that is the principle explored in the present method. On the other
hand, water has a high dielectric constant (ɛ' = 80) compared to other
materials, such as ethanol (ɛ' = 24.30), diesel (ɛ' = 2.0), and biodiesel
(ɛ' = 2.0–3.0) [46–49]. The literature has also already shown that the
presence of water droplets of nanometric size, dispersed in the oil
phase, alter the conductivity [49].

About the electrolysis of water, it decomposes under high voltages,
at around 3 V. In the present study all experiments were carried out in
open circuit potential (OCP), in order to obtain information about the
processes occurring on the electrode surface, referent to its exposure to
the medium, with minimal disturbance of the system, [48]. This cer-
tainly decreases or avoid electrolysis processes in the system studied.

Fig. 1. (A) - Nyquist diagram; (B) Bode plot,
for a sample of 30% v/v of biodiesel in
acetonitrile. The equivalent circuit for the
system is presented in the inset figure; fre-
quency range: 106–10−1 Hz; amplitude:
50 mV; points per decade measurement: 10;
OCP time: 20 s.

Table 2
Parameters obtained from the adjustment performed based on the proposed equivalent
circuit.

Rsol (kΩ) Q (pF) Rct (kΩ) CPE Chi-Square

Value 2.60 5.97 120.4 0.34 × 10−5 2.18 × 10−5

Error (%) 16.4 1.13 0.47 1.03 –

Fig. 2. Nyquist diagrams for the Pt electrodes for increasing biodiesel concentrations (the
range between 0% and 40% biodiesel) in acetonitrile medium; Frequency range:
106–10−1 Hz; amplitude: 50 mV; points per decade measurement: 10; OCP time: 20 s.
Inset figure shows Rct in acetonitrile medium as a function of biodesiel content in the
presence of of 454 mg kg−1 of water.
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3.4. Influence of heat treatment on electrochemical response of the mixture

To further confirm the effect of sample water content on EIS spectra,
the experiments employing heat-treatment on biodiesel samples were
carried out, as shown in Fig. 3. EIS measurements were performed
before and after the heat-treatment of samples in an oven at 90 °C. For a
better understanding, the measurements were also made with and
without addition of water. The temperature of 90 °C was chosen in
order to avoid the loss of other compounds added to the commercial
biodiesel, such as antioxidants, alcohols and other volatile compounds,
which could somehow mask or influence the electrochemical response
of the measurements of impedance.

The measurement was carried out after every 30 min of heating. An
aliquot of the sample was withdrawn for EIS analysis, and the sample
remainder continued being heating. This procedure was done succes-
sively, until the total time of 150 min. EIS measurements were carried
out with different drying times of biodiesel sample to demonstrate the
dependence of solution resistance on the heating time (Fig. 3). It can be
seen that Rct increases with increasing heat time. This observation can
be attributed to the reduction of water content in the solution. This
result also confirms the correlation of Rct with water content in bio-
diesel.

As can be seen from the Nyquist diagrams in Fig. 3 (inset figure), a
value for the second intercept of about 2.1 × 102 KΩ is obtained for the
sample before any heating or water addition. A shift can be observed
(increasing Z' from 210 to 280 kΩ) when the sample is heated (dryed),
indicating the increasing of resistivity due to the decreasing of water
content in the sample. After addition of water to the mixture solution, a
new variation of arc diameter is observed, indicating a decrease of re-
sistivity due to the increase of the water content. This change in Rct can
be attributed to the dehydration of biodiesel. Perini et al. [33] observed
the similar results after dehydration by centrifugating oil samples
during analysis of water content in oil sample emulsions.

3.5. Analytical curve and application in real samples

After studying the electrical properties and optimizing the main
experimental conditions, measurements were carried out in 30% v/v
biodiesel/acetonitrile mixtures in the presence of water. An analytical
curve was constructed based on the EIS measurements with different
amounts of water content, as shown in Fig. 4A, where Rct values are
dependent on the water content in biodiesel. The analytical curve
corresponds to the following water concentrations: 454.1, 908.3,

1362.4, 1816.5 mg Kg−1 (Fig. 4B).
Fig. 4 indicates that the addition of water in the solution decreases

the Rct value, and the diferences in Rct value are linearly dependent on
water content (Equation: y = 2.66×102 – 0.06 x, r2: 0.995). In EIS
studies conducted by Jafari et al. [38], this same behavior of Rct de-
creasing was also observed in the presence of water in gasoline.

We expected the resistance of biodiesel/acetonitrile medium was
decreased because the polar compounds (especially water) contained in
biodiesel are much more soluble in acetonitrile than in biodiesel, re-
ducing the charge transfer resistance, as expected by the authors of a
previous study [33], but this was not observed, experimentally in the
present work. According to these authors [33] the increase in Rct was
attributed to the stability of the emulsions and the formation of rigid
films at the water-oil interfaces, and not directly to the quantity of
water.

The electrical conductivity results that we have obtained indicated
that the conductivity of the medium was actually increased pro-
portionally with the addition of water. This behavior was evidenced
much more in the EIS measurements, what is attributed to the higher
sensitivity of the EIS technique for charge transfer processes. Moreover,
due to the presence of ester bonds, biodiesel has a higher polarity than
the petroleum [33], consequently, biodiesel has a much greater ten-
dency to absorb moisture [50]. This fact indicates that the water con-
tent contributes much more to the decrease in the charge transfer re-
sistance in the biodiesel, as verified in the studies carried out by EIS in
the literature and in the present work.

In previous studies carried out to characterize acetonitrile adsorp-
tion on platinum surface, an increasing in the charge transfer resistance
was observed with increasing water content in the solution, suggesting
that both acetonitrile and water were adsorbed onto the electrode
surface [51–53].

Some studies from the literature have already reported the use of
acetonitrile as a solvent for water content determination [20,53–55].
Those studies were based on the fact that most hydrophobic matrices
such as biodiesel, oils and lubricants are immiscible in acetonitrile.
Therefore, acetonitrile is considered to be a simple and efficient
medium for determining the water content. On the other hand, the
method indicates a good selectivity, compared to other molecules,
which is attributed to the this high affinity of acetonitrile by the water.
Besides, the fact the water be a molecule that has only polar char-
acteristics, while other possible interferents like alcohols are both polar
and nonpolar [48,54,56], indicates a higher selectivity of EIS mea-
surements in acetonitrile medium for water compared to the other
molecules.

Based on those early findings and the results presented in Fig. 4, it is
possible to see a new and feasible method to measure the water content
in biodiesel. The analytical curve shown in Fig. 4(B) is obtained by the
standard addition method, and shows a good linear relationship be-
tween water content and Rct with a linear regression medium value for
the correlation coefficient of 0.995.

In a further study, the conductivity measurements were also con-
ducted in order to verify and confirm the feasibility of the present
method. In this study, conductivity measurements were performed
without adding any water into biodiesel/acetonitrile mixture, which
was used as the reference. After successive additions of water in the
medium (454.1, 908.3, 1362.4, 1816.5 and 2270.7 mg kg−1 H2O), the
corresponding conductivities were measured and the obtained results
were consistent with those obtained by impedance in terms of both
dependency and linearity (Equation: y = 0.24 – 4.23 × 10−5x, r2:
0.999). In this case, an increase in conductivity was obtained with in-
creasing water content. However, the value differences were less pro-
nounced than EIS measurements, indicating that EIS technique is much
more sensitive and more analytically appropriate.

The EIS method described above was applied to a sample which was
certified through an official interlaboratory program of the Brazilian
government (Interlaboratory Program for Biodiesel of National Agency

Fig. 3. Nyquist diagrams for Pt electrodes in 30% v/v biodiesel/acetonitrile mixture with
increasing heat time. Operational conditions are the same as in Fig. 2. Inset figure shows
Nyquist diagrams for acetonitrile solution containing 30% v/v biodiesel before and after
heat-treatment and with the addition of water.
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of Petroleum, Natural Gas and Biofuels (PIB)/ANP), as courtesy of
LAPQAP UFMA laboratory. The analysis was made in triplicate in order
to validate the results from the analytical and statistical point of view
(Table 3).

The accuracy was assessed through recovery tests. After adding
known amounts of water, the samples could give a recovery of 101.3%.
The results indicated a good accuracy of the proposed method, which
should be able to serve as a method for the analysis of water content in
biodiesel using EIS technique.

The medium value of water content in the sample was calculated as
the ratio between the linear coefficient and the slope of the curve. The
results obtained in replicates (n = 3) showed an average water content
of 459.5±3.1 mg kg−1. Considering the standard value from the cer-
tified sample (450.0 mg kg−1), this result indicated only a small error
ranging between 1.4% and 2.8%. According to official regulations
[4,6], this value should be reasonably accurate for this type of biofuel.

It can also be seen that the relative standard deviation (RSD) is
0.67% for the sample of biodiesel, indicating a good precision of the EIS
procedure. The values found for the limit of detection (LOD)
(0.2 mg kg−1) and the limit of quantification (LOQ) (0.55 mg kg−1) are
also considered good and adequate for analysis of water content in
biodiesel.

3.6. Comparison of the present method with the official method and some
work reported in literature

The present method was compared with the Karl Fisher method (the
official method (ANP Resolution 45/2014, based on EN ISO 12937))
using two biodiesel samples. Table 4 presents the values obtained for
the biodiesel samples from soybean and bovine fat mixed oils.

The results shown in Table 4 are statistically concordants in terms of
water content determination in the biodiesel samples. The value ob-
tained for tcal for the two samples were less than the value for ttab
considering a confidence level of 95%, indicating that both methods are
statistically equivalent. These results also indicate that there is not
significative interferences in the method. In spite of in acetonitrile other

species are extracted, such as alcohols, phenolic compounds, hydro-
peroxides and organic acids, [54], the affinity of acetonitrile by the
water and its polar characteristics [56] can justify this observed se-
lectivity.

Table 5 presents some studies reported in literature concerning the
analysis of the water content in different matrices by electrochemical
techniques (EQ) and infrared (IR). It can be seen that the EIS method
can achieve good results when compared to other published methods.
Therefore, the present EIS study is the most complete in terms of ana-
lytical evaluation including the analytical sensitivity, limit of detection
and limit of quantification.

On the other hand, in terms of sample treatment, although three
studies done in untreated samples, the solubilization of the sample in
acetonitrile (present work) can be considered a very simple procedure
which is only a dilution in an adequate solvent.

Regarding RSD, only one work presented a value less than 0.67%.
The other ones presented values much superior (1.5% and 1.84%).
These results confirm the good precision of the present work.

4. Conclusion

The present study shows that the variation of water content in
biodiesel diluted in acetonitrile is proportional to the variation of
electrode/solution impedance, based on which a new method of EIS
measurements for the determination of the water content in biodiesel is
developed.

After optimizing the experimental conditions, the analytical linear
curve between the water content and EIS impedance is obtained. The
EIS method is then successfully applied to both real and certified
samples, and the results confirm that the method is reliable with high
sensitivity, precision and accuracy.

The comparison of EIS method with the official standard method
through the Student test t demonstrated that both methods are

Fig. 4. Nyquist diagrams (A) and analytical
curve (B) (showing the linear dependence be-
tween the Rct value and the water content in
biodiesel), recorded in 30% v/v biodiesel/
acetonitrile solution, before (black) and
after successive additions of water.
Operational conditions are the same as in
Fig. 2.

Table 3
Merit parameters obtained from the determination of water content in biodiesel in a real
and certified sample by the present method.

Parameter Sample water content (mg Kg−1)

µ (mg Kg−1, 95%) 459.45± 3.06
SD 3.06
RSD (%) 0.67
LOD (mg Kg−1) 0.2
LOQ (mg Kg−1) 0.55
Sensibility (Ω/cm2 Kg mg−1) 55.39
Accuracy (recovery) 101.3%

Table 4
Student test t for biodiesel samples (soybean and bovine fat mixed oils) by the proposed
method (EIS) and the official standard method, Karl Fisher.

Average value Pt/EIS Karl Fisher

Xaverage 1 (mg Kg−1) 460.6 486.8
Xaverage 2 (mg Kg−1) 512.7 540.6
Teste-t de Student (Sample 01)
tcal −4.03
ttab 4.30
Relationship tcal and ttab tcal < ttab
Teste-t de Student (Sample 02)
tcal − 3.74
ttab 4.30
Relationship tcal and ttab tcal < ttab
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statistically similar, what also indicated that there was not any inter-
ference on the obtained results.

The obtained results demonstrated that the method developed in
this paper can be succesessfully applied to determining the water
content of biodiesel fuel.
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Electrode(s) Pt Glassy carbon – – Pt
Sample Biodiesel Gasoline Edible oils Biodiesel Petroleum
Technical EIS EIS FTIR spectroscopy FTIR spectroscopy EIS
Treatment of the sample (electrolyte) Acetonitrile Untreated Acetonitrile Untreated Untreated
RSD 0.67% 1.5% 0.05% 1.84% –
Sensibility (Ω/cm2 Kg mg−1) 55.39 – – – –
Detection limit (mg Kg−1) 0.2 – – <0.05% –
Limit of quantification (mg Kg−1) 0.55 – – – –

(*) EIS method in this paper; (-) Not provided.
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