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Abstract
This article addresses the various properties and different methods of estimation of the 

unknown parameters of Gompertz distribution. Although, our main focus is on estimation 
from both frequentist and Bayesian point of view, yet, various mathematical and statistical 
properties of the Gompertz distribution (such as quantiles, moments, moment generating 
function, hazard rate, mean residual lifetime, mean past lifetime, stochasic ordering, stress-
strength parameter, various entropies, Bonferroni and Lorenz curves and order statistics) 
are derived. We briefly describe different frequentist approaches, namely, maximum 
likelihood estimators, moments estimators, pseudo-moments estimators, modified moments 
estimators, L-moment estimators, percentile based estimators, least squares and weighted 
least squares estimators, maximum product of spacings estimators, minimum spacing 

*E-mail:  devendrastats@gmail.com

Journal of Statistics & Management Systems
ISSN  0972-0510 (Print), ISSN  2169-0014 (Online)
Vol. 21 (2018), No. 5, pp. 839–876
DOI : 10.1080/09720510.2018.1450197

http://www.tarupublications.com
http://www.tandfonline.com
dx.doi.org/10.1080/09720510.2018.1450197


840� S. DEY, F. A. MOALA AND D. KUMAR

absolute distance estimators, minimum spacing absolute-log distance estimator, Cramér-
von-Mises estimators, Anderson-Darling and right-tail Anderson-Darling and compare 
them using extensive numerical simulations. Coverage probabilities for the frequentist 
methods are also obtained. Next we consider Bayes estimation under different types of loss 
function (symmetric and asymmetric loss functions) using gamma priors for both shape and 
scale parameters. Furthermore, the Bayes estimators and their respective posterior risks are 
computed and compared using MCMC algorithm. Finally, a real data set have been analyzed 
for illustrative purposes. 

Subject Classification:  (2010) 60E05, 62F10.

Keywords: Bayes estimator, Maximum likelihood estimators, Moment estimators, Minimum  
distances estimators, Failure rate function, Mean residual life function.

1.  Introduction

Benjamin Gompertz (1825) introduced the Gompertz distribution 
in connection with human mortality and actuarial Tables. Since then, 
considerable attention has received from demographers and actuaries. 
This distribution is a generalization of the exponential distribution and 
has many real life applications, especially in medical and actuarial studies. 
It has some nice relations with some of the well-known distributions such 
as exponential, double exponential, Weibull, extreme value (Gumbel 
Distribution) or generalized logistic distribution (see Willekens (2002)). 
An important characteristic of the Gompertz distribution is that it has an 
exponentially increasing failure rate for the life of the systems and is often 
used to model highly negatively skewed data in survival analysis (Johnson 
and Johnson (1979)). In recent past, many authors have contributed to the 
studies of statistical methodology and characterization of this distribution; 
for example, Read (1983), Makany (1991), Rao and Damaraju (1992), Franses 
(1994), Chen (1997) and Wu and Lee (1999). Garg et al. (1970) studied some 
of the statistical properties of the Gompertz distribution and estimated 
the parameters using maximum likelihood method with reference to 
the data on the effects of prolonged oral contraception on mortality in 
mice. Jaheen (2003a, 2003b) studied this distribution based on progressive 
type-II censoring and record values using Bayesian approach. Wu et al. 
(2003) derived the point and interval estimators for the parameters of the 
Gompertz distribution based on progressive type II censored samples. 
Wu et al. (2004) used least squared method to estimate the parameters of 
the Gompertz distribution. Ismail (2010) discussed the point and interval 
estimations of a two-parameter Gompertz distribution under partially 
accelerated life tests with Type-II censoring. Kiani et al. (2012) studied 
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the performance of the Gompertz model with time-dependent covariate 
in the presence of right censored data. Moreover, they compared the 
performance of the model under different censoring proportions (CP) and 
sample sizes. Recently, Lenart (2014) obtained moments of the Gompertz 
distribution and maximum likelihood estimators of its parameters.

We have a stream of estimation methods available for the parametric 
distribution in the literature, some of the estimation methods are well 
researched on theoretical aspect. However, it is worth noting that in the 
case of small samples, there is often evidence that the maximum likelihood 
method does not perform well. Therefore, other estimating methods have 
recently been developed. The appeal of the methods of estimation vary 
from user to user and area of application. For instance, one may prefer 
to use the uniformly minimum variance estimation method although the 
estimator does not have a closed form expression.

The motivation of the paper is two fold: first is to study the properties of 
the Gompertz distribution (GM), and second is to estimate the parameters 
of the model from both frequentist and Bayesian viewpoints for different 
sample sizes and different parameter values and to develop a guideline 
for choosing the best estimation method for the Gompertz distribution, 
which we think would be of deep interest to applied statisticians.

The uniqueness of this study comes from the fact that thus far, no 
attempt has been made to compare all these estimators for the two-
parameter Gompertz distribution along with statistical properties. Different 
estimation methods were compared for generalized Rayleigh distributions 
by Kundu and Raqab (2005); for generalized logistic distributions by 
Alkasasbeh and Raqab (2009); for the Weibull distribution by Teimouri 
et al. (2013) and Dey et al. (2014, 2015, 2016, 2017a, 2017b, 2017c, 2017d, 
2017e, 2017f) for the two-parameter Rayleigh, weighted exponential, two-
parameter Maxwell, exponentiated-Chen, Dagum, transmuted-Rayleigh, 
two parameter exponentiated-Gumbel, new extension of generalized 
exponential and NH distributions. Maximum likelihood estimates using 
different experimental schemes studied by Azzam (1994) and asymptotic 
normality of maximum likelihood estimators for non-parametric Markov 
chains was studied by AL-Eideh (1996). The paper is organized as 
follows. Various mathematical and statistical properties of the Gompertz 
distribution are presented in Section 2. Section 3 describes fourteen 
frequentist methods of estimation. The Bayes estimators are presented 
in section 4. In Section 5, performance of several estimation procedures 
along with coverage percentages of bootstrap confidence interval using 
frequentist approaches are provided. The methodology developed in this 
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manuscript and the usefulness of the Gompertz distribution is illustrated 
by using a real data example. Finally, concluding remarks are provided 
in Section 6.

A random variable X has the Gompertz distribution with parameters  
c and l, say GM(c, l), if its density function is 

( 1)
( ; , ) ; 0, , 0, (1)

cxecx cf x c e e x c
λ

λ λ λ
− −

= > >

and the corresponding c.d.f is given by 
( 1)

( ; , ) 1 ; 0, , 0. (2)
cxe

cF x c e x c
λ

λ λ
− −

= − > >

 It can be seen that 
( ; , ) [ ( log[ ( )])] ( ); 0, , 0,f x c c F x F x x cλ λ λ= + − > >

where ( ) 1 ( ).F x F x= −  Below, we state and prove a theorem which 
characterizes the distribution:

Theorem 1: The random variable X follows a Gompertz distribution with 
parameters l and c if and only if the density function f satisfies the homogeneous 
differential equation of the form: 

( ) 0 (3)cxf e c fλ′ + − =

where prime denotes first order differentiation.

Proof. Suppose X is a Gompertz distribution random variable, then  
f(x; l, c) and f ¢(x; l, c) are the pdf and the first derivative of the pdf of 
the Gompertz distribution. By substituting f (x) and f ¢(x) in the differential 
equation (3), the equation is satisfied.

Conversely, we assume that f satisfies equation (3), then we have 

. (4)cxf dx e dx c dx
f

λ
′

= − +∫ ∫ ∫

 After simplification we get, 
( 1)

, 0 (5)
cxecx cf De e x

λ
− −

= >

 where D is the normalizing constant and the value of D = l.	  
 Application of the Theorem: From the homogeneous differential 

equation (3), we get 
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( )1 log (6)cf fx
c fλ

+ ′
=

or equivalently, 

'

1 log (7)cF Fx
c Fλ

 ′ + ″
=  

 

where F is the corresponding cdf of the Gompertz distribution. Thus, the 
importance of this theorem lies in the linearizing transformation (6) and (7) 
which could be regarded as Gompertz model alternative to the Berkson’s 
logit transform (Berkson (1944)) for the ordinary logistic model and Ojo 
(1997) logit transform for generalized logistic model. Hence equation (6) 
or (7) could be referred as Gompertz logit transform. Thus the theorem 
shows the flexibility of Gompertz distribution. 

2.  Statistical and Mathematical Properties of Gompertz Distribution

The quantile function 1( ) ( ),px Q p F p−= =  for 0 < p < 1, of the Gompertz 
distribution is obtained from (2), it follows that the quantile function xp is 

1= ln 1 ln(1 ) . (8)p
cx p

c λ
 
− − 

 

 In particular, the median of the Gompertz distribution can be written 
as 

1( ) ln 1 ln(1 0.5) . (9)d
cMd X M

c λ
 

= = − − 
 

 Figure 1(a) shows the plot of the pdf of the Gompertz distribution 
for different values of the parameters c and l and from the plot, it is quite 
evident that the Gompertz distribution is positively skewed distribution.

If the random variable X is distributed GM(c, l), then its nth moment 
around zero can be expressed as 

1

1( ) [ln( )] . (10)
c xn nc

n

eE X e x dx
c c

λ
λλ −∞

= ∫

On simplification, we get 

1
1

!( ) , (11)n nc
n

nE X e E
cc

λ λ−  
=  

 
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where 

1

1( ) (ln( )) , (12)
!

n n s zx
sE z x x e dx

n
∞ − −= ∫

1
( ) ,

xt

n n

eE x dt
t

−∞
= ∫

and 
0( ) ( ),s sE z E z=

is the generalized integro-exponential function (Milgram(1985)). The 
variance, skewness and kurtosis measures can now be calculated using 
the relations 

2 2( ) ( ) ( ),Var X E X E X= −

3 2 3

3/2

( ) 3 ( ) ( ) 2 ( )Skewness( ) ,
( )

E X E X E X E XX
Var X

− +
=

4 3 2 2 4

2

( ) 4 ( ) ( ) 6 ( ) ( ) 3 ( )Kurtosis( ) .
( )

E X E X E X E X E X E XX
Var X

− + −
=

 It can be noticed from Table 1 that both the mean and the variance of 
the Gompertz distribution are increasing function of l where as both the 
skewness and kurtosis are decreasing function of l (see Fig.2). 

2.1 Moment Generating Function

Many of the interesting characteristics and features of a distribution 
can be obtained via its moment generating function and moments. Let X 
denote a random variable with the probability density function (1). By 
definition of moment generating function of X and using (1), we have 

10
0

( 1)( ) ( ) ( ) ( 1) . (12)ptx tx
x p

p

t pM t E e e f x dx
c p

c

λ
λ

λ

∞∞

+
=

 
Γ + = = = −        
 

∑∫

2.2 Hazard function

The basic tools for studying the ageing and reliability characteristics 
of the system are the hazard rate (HR) and the mean residual lifetime 
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(MRL). Thus the hazard rate function of the Gompertz distribution is 
given by 

( ; , )( ; , ) . (13)
1 ( ; , )

cxf x cH x c e
x c
λ

λ λ
λ λ

= =
−

Note that the hazard rate function is increasing function if c > 0 or 
constant function if c = 0. Figure 1(b) shows the shapes of the hazard 
function for different selected values of the parameters c and l. From 
the plot, it is quite evident that the Gompertz distribution has increasing 
hazard rate function. 

2.3 Mean residual Life Function

 The mean residual life (MRL) is the expected remaining life, X – x, 
given that the item has survived to time x. Thus, in life testing situations, 
the expected additional lifetime given that a component has survived 
until time x is called the (MRL). Since the (MRL) function is the expected 
remaining life, x must be subtracted, yielding for x > 0. 

( )
( ) ( | )

( )
x
S t dt

x E X x X x
S t

µ

∞

= − > = ∫

  ( ) = (1 )ct

x x
S t dt exp e dt

c
λ∞ ∞  

⇒ − 
 

∫ ∫

let = ,ct
c

z eλ  we have 

( ) = (0, ),
c

incx

eS t dt z
c

λ

∞
Γ∫

where 
1( , ) = , , 0.a t

inc x
a x t e dt x a

∞ − −Γ ≥∫
 Therefore, 

( ) (0, ). (14)
z

inc
ex z
c

µ = Γ

2.4 Mean Past Lifetime (MPL)

Mean past lifetime function is an important reliability measure for 
evaluating systems’ performance. Assume that a component with lifetime 
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X has failed before time x, i.e., X ≥ x. Hence, the mean past lifetime (MPL) 
of the component can be defined by k (x), i.e., the expectation of the 
conditional random variable x – X | X ≥ x as 

0
 (0, )( )

( ) ( | ) ,
( )

1 exp ( 1)

x cxc
inc

cx

e eF t dt ck x E X x X x
F t

c e
c

λ λγ

λ
= − ≤ = =

  
− −  

  

∫

where 
1

0
( , ) = , , 0.

x a t
inc a x t e dt x aγ − − ≥∫

2.5 Stochastic ordering

Stochastic ordering has been recognized as an important tool in 
reliability theory and other fields to assess comparative behavior. If X and 
Y are independent random variables with cdfs, sfs and pdfs FX(x) and FY(x), 

( ) 1 ( )X XF x F x= −  and ( ) 1 ( ),Y YF x F x= −  and fx(x) and fy(x), respectively, then  
X is said to be smaller than Y in the following ordering as: 

•	 stochastic order (X £st (Y)) if FX(x) ≥ FY(x) for all x 
•	 hazard rate order (X £hr (Y)) if hX(x) ≥ hY(x) for all x 
•	 mean residual life order (X £mrl (Y)) if mX(x) ≥ mY(x) for all x 

•	 likelihood ratio order (X £lr (Y)) if ( )
( )

X

Y

f x
f x  decrease in x.

 The following theorem reveals that the Gompertz distributions 
are ordered with respect to strongest likelihood ratio ordering when 
appropriate assumptions are satisfied.

Theorem 2: Let X ~ G(c1, l1) and Y ~ G(c2, l2). If c1 = c1 = c and l1 ≥ l2, then  
X £lr Y, X £hr Y, X £mrl Y and X £st Y.

Proof. The likelihood ratio is 

11 1
1

1

22 2
2

2

 exp ( 1)
( )
( )

 exp ( 1)

c x c x

X

c x c xY

e e
cf x

f x
e e

c

λ
λ

λ
λ

 
− − 
 =
 
− − 
 
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thus, 

1 2
1 2 1 2

( )
log ( )   .

( )
c x c xX

Y

f xd c c e e
dx f x

λ λ= − − +

 Now if c1 = c2 = c and l1 ≥ l2 then ( )
( )log 0,X

Y

f x
f x

d
dx

≤  which implies that 

X £lr Y and hence X £lr Y, X £hr Y, X £mrl Y and X £st Y. 

2.6 Entropies

 The entropy of a random variable measures the variation of the 
uncertainty. A large value of entropy indicates the greater uncertainty in 
the data. Some popular entropy measures are Rényi entropy (Rényi, 1961) 
or Shannon entropy (Shannon, 1951). If X is a non-negative continuous 
random variable with pdf f (x) then Shannon’s entropy is defined as: 

0
( ) [ ln ( )] ( ) ln ( ) .H f E f x f x f x dx

∞
= − = −∫

and this is usually referred to as the continuous entropy (or differential 
entropy). An explicit expression of Shannon entropy for Gompertz 
distribution is obtained as 

1

0

1
0

( 1)  1( ) ln
( 1) 2

(15)( 1)( 1) .

p pp c

p

p
p

p

eH f c
c p c c

t p
cc p

c

λ

λ λλ λ

λ

λ

+∞

=

∞

+
=

   −
= − − − −   Γ +    

 
Γ + − −        
 

∑

∑

 If X has the probability distribution function f(◊), Rényi entropy 
(Rényi, 1961) can be expressed as 

( )0

1
1 0

1( ) ln ( ) , 0, 1,
1 (16)

1 ( 1)1ln ln ( 1) .
1 ( 1)

p
q

q
p q

H x f x dx

p pc
p q p

δ
δ δ δ

δ
δ

δ
δ λ

∞

∞ ∞

−
= =

= > ≠
−

  −   Γ +
= − + −    − +   

∫

∑∑

 2.7 Bonferroni and Lorenz curve

Boneferroni and Lorenz curves are proposed by Bonferroni (1930). 
These curves have applications not only in economics to study income and 



848� S. DEY, F. A. MOALA AND D. KUMAR

poverty, but also in other fields like reliability, demography, insurance 
and medicine. They are define as 

0

1( ) ( ) (17)
q

B p xf x dx
pµ

= ∫

and 

0

1( ) = ( ) , (18)
q

L p xf x dx
µ ∫

respectively, where m = E(X) and q = F –1 (p). By using (1), one can reduce 
(18) and (19) to 

2
/

0 0

( 1) [ ( 1)]
 ( ) ,
 ! ! ( 2)

k
k l l

c

k l

c k q
ceB p

p k l l

λ

λ
λ

µ

+
∞ ∞

= =

 
− + 

 =
+∑∑

2
/

0 0

( 1) [ ( 1)]
 ( ) ,

! ! ( 2)

k
k l l

c

k l

c k q
ceL p

p k l l

λ

λ
λ

+
∞ ∞

= =

 
− + 

 =
+∑∑

respectively. 

2.8 Order Statistics

Moments of order statistics play an important role in quality control 
testing and reliability to predict the failure of future items based on the 
times of few early failures. We know that if X(1) £  £ X(n) denotes the order 
statistic of a random sample X1,, Xn from a continuous population with 
cdf F (x) and pdf f (x) then the pdf of X(j) is given by 

( ) ( )1

( )

!( ) ( ) ( ) 1 ( ) , (19)
( 1)!( )!

j n j

X j

nf x f x F x F x
j n j

− −
= −

− −

for j = 1, ..., n. The pdf and cdf of the jth order statistic for a Gompertz 
distribution is given by 

1

( ) 0

1 !( ) ( 1)  
( 1)!( )!

(20)( 1)exp ( 1)

j
u cx

X j u

cx

jnf x e
j n j u

u n j e
c

λ

λ

−

=

 −
= −  

− −  
 + − +
− − 
 

∑

and 
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1

:
0

1 ( )( ) ( 1) exp ( 1) . (21)
jn

u cx
j n

l k u

n j n lF x e
cl u
λ−

= =

  −  +
= − − −    

   
∑∑

The k – th moments of Xj : n can be expressed 
1

:
0 0

1

1 ( 1) ! ( 1)[ ] (22)
( 1)!( )! ( 1)

( 1) ( 1) 1exp .
( 1)

u pj
k
j n

p u

p p

jk nE X
j n j p u

u n j u n j
c c c k

λ

λ λ

+−∞

= =

+

 −Γ + −
=  

− − Γ +  

     + − + + − +
× −     +    

∑∑

 An application of the first moments of order statistics can be 
considered in calculating the L-moments which are in fact the linear 
combinations of the expected order statistics. See Hosking (1990) for 
details. 

2.9 Stress Strength Parameter 

 Here, we derive the reliability R = Pr(X1 > X2) when X1 and X2 are 
independent Gompertz random variables distributed with parameters (c1, 
l1) and (c2, l2), then 

2 1 1 2
0

/2 1
2 1

2 11 1 2

01 1 1

2 1
11

1

0 2

1

( ) ( ) ( )

( 1)
1 exp 1

!

( 1)
.

! 1

p pc
p

p

c
p q

c
q

q

R P X X f x F x dx

c
c c

p
c c p c

c
cq p q
c

λ
λ

λλ λ

λ

∞

∞

=

 
  + +
 
 

∞

=

= < =

   
−              = − + Γ +            

 
−  

 
  

+ +  
   

∫

∑

∑

	
 If c1 = c2 = c, then 

2

1 2

.R
λ

λ λ
=

+
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3.  Methods of Estimation

3.1 Method of Maximum Likelihood 

The method of maximum likelihood is the most frequently used 
method of parameter estimation (Casella and Berger(1990)). The success of 
the method stems no doubt from its many desirable properties including 
consistency, asymptotic efficiency, invariance property as well as its 
intuitive appeal. Let x1, , xn be a random sample of size n from (1), then 
the log-likelihood function of (1) without constant terms is given by 

1 1
( , ; ) log ( , ; ) log ( 1).

n n cxi
i

i i
c x L c x n c x e

c
λλ λ λ

= =

= = + − −∑ ∑

 For ease of notation, we will denote the first partial derivatives of 
any function f (x, y) by fx and fy. Now setting 

0 and 0,c λ= = 

we have 

1

1 ( 1) 0, (24)
n cxi

i

n e
cλ λ =

= − − =∑

and 

2 2
1 1 1

0. (25)
n n ncx cxi i

c i i
i i i

nx x e e
c c c
λ λ λ

= = =

= − + − =∑ ∑ ∑

The MLEs Ĉ and λ̂  of c and l are obtained by solving this nonlinear 
system of equations. Since the MLE of the vector of unknown parameters  
q = (c, l) cannot be derived in closed forms, therefore it is not easy to 
derive the exact distributions of the MLEs and hence we can not get 
the exact bounds of the parameters. The idea is to use the large sample 
approximation. It is known that the asymptotic distribution of the MLE 
θ̂  is 

	
1

2
ˆ( ) (0, ( ))N Iθ θ θ−− →

(see Lawless (1982)), where I–1(q) is the inverse of the observed information 
matrix of the unknown parameters  q = (c, l). 

1
2 2

2
1

2 2

2
ˆˆ( , ) ( , )

log log

( )
log log

c c

L L
ccI

L L
c λ λ

λθ

λ λ

−

−

=

 ∂ ∂
− − 

∂ ∂∂ =
 ∂ ∂
− − ∂ ∂ ∂ 
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ˆˆ ˆvar( ) cov( , )
.ˆ ˆˆcov( , ) var( )

MLE MLE MLE cc c

cMLE MLE MLE

c c
c

λ

λ λλ

λ σ σ
σ σλ λ

   
= =        

 The derivatives in I(q) are given as follows 
2

2
2 2

1 1 1ˆ

log 2 22 ,
MLE

n n ncx cx cxi i i
i i

i i ic c

L nc x e x e e
c cc c

λ
= = ==

 ∂
= − + − + ∂  

∑ ∑ ∑

2

2 2
ˆ

log ,
MLE

L n

λ λ
λ λ

=

∂
= −

∂

   

2

2
1 1ˆˆ ,

log 1 1( 1) .
MLE MLE

n ncx cxi i
i

i ic c

L e x e
c cc

λ λ
λ = == =

 ∂
= − − ∂ ∂  

∑ ∑

 Therefore, the above approach is used to derive the approximate 
100(1 – t)% confidence intervals of the parameters q = (c, l) as in the 
following forms 

	 2 2

ˆ ˆˆ ˆ( ), ( ).MLE MLE MLE MLEc z Var c z Varτ τλ λ± ±

Here, 
2

Zτ  is the upper 2
τ 
 
 

th percentile of the standard normal 

distribution. 

3.2 Method of Moments and pseudo-moments 

 The MMEs of the Gompertz distribution can be obtained by equating 
the first two theoretical moments of (1) with the sample moments 

1 1
1 n

iin
m x

=
= ∑  and 2

2 =1
1= n

iin
m x∑  respectively. Thus the MMEs Ĉ and λ̂  

of c and l are

0
1

1

1 1n
c

i
i

x e E
n c c

λ λ
=

 
=  

 
∑

and 

2 1
12

1

1 2! .
n

c
i

i
x e E

n cc

λ λ
=

 
=  

 
∑
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Based on the sample moments m1 and m2, the pseudo-moment 
estimators (PME) c  and λ  of c and l are obatined by 

,
( , , ) ( , , )min

c
S X c S X c

λ
λ λ=



where 
22 2

1 2( , , ) = ( ) ( ) .S X c m E x m E xλ   − + −   

3.3 Method of Modified Moments

Another way of finding the MME is using the sample mean and the 
sample variance. We know that 

0
1

1( | , ) = (26)cE X c e E
c c

λ λλ
 
 
 

 and 
2

1 0
1 12

2! 1( | , ) .c cVar X c e E e E
c c cc

λ λλ λλ
    

= −     
     

The population coefficient of variation is 

( | , )( | , ) =
( | , )

Var X cCV X c
E X c

λ
λ

λ

which is independent of the parameter c. So, the estimate ˆ
MMMEλ  for l can 

be obtained by solving the non-linear equation 

( | , ) = 0 (27)
( | , )

Var X c s
E X c x

λ
λ

−

where x  and s are the sample mean and sample standard deviation 
respectively. Once we have ˆ

MMMEλ  for l, we can obtain ˆ .MMMEc  

3.4 Method of Least-Squares and Weighted least squares

The least square estimators and weighted least square estimators 
were proposed by Swain et al. (1988) to estimate the parameters of Beta 
distributions. Suppose F (Xi : n) denotes the distribution function of the 
ordered random variables 1: 2: :< < <n n n nX X X  where 1 2{ , , , }nX X X  is 
a random sample of size n from a distribution function F(◊). Therefore, in 
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this case, the least square estimators of c and l, say ˆ
LSEc  and ˆ

LSEλ  can be 
obtained by minimizing 

( )
2

:
=1

( , ) = | ,
1

n

i n
i

iS c F x c
n

λ λ
 

− + 
∑

with respect to c and l, where F(◊) is the cdf of the Gompertz distribution. 
Equivalently, they can be obtained by solving: 

( ) ( )

( ) ( )

: 1 :
1

: 2 :
1

| , | , 0
1

| , | , 0.
1

n

i n i n
i

n

i n i n
i

iF x c x c
n

iF x c x c
n

λ η λ

λ η λ

=

=

 
− = + 

 
− = + 

∑

∑

 The WLSEs, ĈWLSE and λ̂WLSE, can be obtained by minimizing 

( )
22

:
1

( 1) ( 2)( , ) | , .
( 1) 1

n

i n
i

n n iW c F x c
i n i n

λ λ
=

 + +
= − − + + 
∑

 These estimators can also be obtained by solving: 

( ) ( )

( ) ( )

2

: 1 :
1

2

: 2 :
1

( 1) ( 2) | , | , 0
( 1) 1

( 1) ( 2) | , | , 0
( 1) 1

n

i n i n
i

n

i n i n
i

n n iF x c x c
i n i n

n n iF x c x c
i n i n

λ η λ

λ η λ

=

=

 + +
− = − + + 

 + +
− = − + + 

∑

∑

where 

( )
:( 1)

:
1 : :2| , (1 ( 1)) (28)

cxi ne cxc i n
i n i nx c e e cx

c

λλη λ
− −

= + −

and 

( )
:( 1)

:
2 :

1| , ( 1). (29)
cxi ne cxc i n

i nx c e e
c

λ

η λ
− −

= −

3.5 Method of Percentile

The percentile estimator is a statistical method used to estimate the 
parameters by comparing the sample points with the theoretical points. 
This method was originally suggested by Kao (1958, 1959). Since the 
cumulative distribution of the Gompertz distribution is 

( 1)
( ; , ) 1 ,

cxe
cF x c e
λ

λ
− −

= −
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therefore, the quantile function is given by 

(1= ln[1 ln 1 ( )) .p
cx F x

c λ
− − 

Let X(j) be the jth order statistic, i.e, X(1) £ X(2) £  £ X(n). If pj denotes 
some estimate of ( )( ; , ),jF x c λ  then the estimators of c and l can be obtained 
by minimizing 

	

2

( )
1

1 ln[1 ln(1 )]
n

j j
j

cx p
c λ=

 
− − − 

 
∑

with respect to c and l. The estimators of c and l can be obtained by 
solving the following nonlinear equations 

( )
1 2

ln(1 ) 1 ln(1 ) ln 1 ln(1 )
1 ln[1 ln(1 )] 0

1 ln(1 )

j j jn

j j
j

j

c c cp p p
cx p

c cc p

λ λ λ
λ

λ
=

    
− − − − − −          − − − =      − −  

  

∑

2

( )
=1

1 ln(1 )1 ln[1 ln(1 )] = 0
1 ln(1 )

n j

j j
j

j

pcx p
c c p

λ
λ

λ

 
 −   − − −      − −  
  

∑

respectively. We call the corresponding estimators as the percentile 
estimators or PCE’s. Several estimators of pj can be used here, see for 
example Mann et al. (1974). In this paper, we consider 1 .j

j
n

p
+

=

3.6 Method of L-Moments 

In this section, we provide the L-moments estimators which can 
be obtained by equating the first two sample L-moments with the 
corresponding population L-moments. The first two sample L-moments 
are 

1 ( ) 2 ( ) 1
1 1

1 2, ( 1)
( 1)

n n

i i
i i

l x l i x l
n n n= =

= = − −
−∑ ∑

and the first two population L-moments are 

0
1 1:1 1

1( ) ( ) cE X E X e E
c c

λ λλ
 

= = =  
 
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2 2:2 2:1
1 ( ) ( ) ,
2

E X E Xλ  = − 

where 

2:2 0
( ) 2 ( ) ( )E X xf x F x dx

∞
= ∫

 On simplification, we get 
2

0 0
1 1

1 1 22 c ce E e E
c c c c

λ λλ λ   
= −   

   

and 
2

0
1:2 10 0

1 2( ) 2 ( ) 2 ( ) ( ) cE X xf x dx xf x F x dx e E
c c

λ λ∞ ∞  
= − =  

 
∫ ∫

 The L-moments estimators ĈLME and λ̂LME of the parameters c and l 
can be obtained by solving numerically the following equations: 

( ) ( )1 1 2 2
ˆ ˆˆ ˆ, , , . (30)LME LME LME LMEc l l l c l lλ = =

3.7 Method of Maximum Product of Spacings and Minimum Spacing Distance 

Cheng and Amin (1979,1983) introduced the maximum product 
of spacings (MPS) method as an alternative to MLE for the estimation 
of parameters of continuous univariate distributions. Ranneby (1984) 
independently developed the same method as an approximation to the 
Kullback-Leibler measure of information. Using the same notations in 
subsection 3.4, define the uniform spacings of a random sample from the 
Gompertz distribution as: 

( ) ( ): 1:( , ) | , | , , 1, 2, , ,i i n i nD c F x c F x c i nλ λ λ−= − = …

where 0:( | , ) = 0nF x c λ  and 1:( | , ) = 1.n nF x c λ+  Clearly 1
=1 ( , ) = 1.n

i iD c λ+∑  
Following Cheng and Amin (1983)), the maximum product of spacings 
estimates ĈMPS and λ̂MPS, of the parameters c and l are obtained by 
maximizing, with respect to c and l, the geometric mean of the spacings:

1
1 1

=1
( , ) = ( , ) , (31)

n n

i
i

G c D cλ λ
+ + 

 
 
∏

or, equivalently, by maximizing the function 
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1

1

1( , ) log ( , ). (32)
1

n

i
i

H c D c
n

λ λ
+

=

=
+ ∑

The estimates ĈMPS and λ̂MPS of the parameters c and l can be obtained 
by solving the nonlinear equations

1

1 : 1 1:
1

( , ) 1 1 ( | , ) ( | , ) 0 (33)
1 ( , )

n

i n i n
i i

H c x c x c
c n D c
λ η λ η λ

λ

+

−
=

∂  = − = ∂ + ∑

1

2 : 2 1:
1

1 1( , ) ( | , ) ( | , ) 0 (34)
1 ( , )

n

i n i n
i i

H c x c x c
n D c

λ η λ η λ
λ λ

+

−
=

∂  = − = ∂ + ∑

where 1( | , )cη λ⋅  and 2( | , )cη λ⋅  are given by (28) and (29), respectively. 
Cheng and Amin (1983) showed that maximizing H as a method of 
parameter estimation is as efficient as MLE estimation and the MPS 
estimators are consistent under more general conditions than the MLE 
estimators.

Similarly, the minimum spacing distance estimators of ĈMSADE and  
λ̂MSALDE, of c and l are obtained by minimizing

1

1

1( , ) ( , ), (35)
1

n

i
i

T c h D c
n

λ λ
+

=

 
=  + 
∑

where h (x, y) is an appropriate distance. Some choices of h (x, y) are |x – y| 
and | log x – log y |, which are called absolute and absolute-log distance, 
respectively. These estimators are called minimum spacing absolute 
distance estimator (MSADE) and minimum spacing absolute-log distance 
estimator (MSALDE). This method was originally proposed by Torabi 
(2008). The MSADE and MSALDE of parameters c and l can be obtained 
by minimizing 

1

=1

1( , ) = ( , ) (36)
1

n

i
i

T c D c
n

λ λ
+

−
+∑

 and 
1

1

1( , ) log ( , ) log (37)
1

n

i
i

T c D c
n

λ λ
+

=

= −
+∑

with respect to c and l respectively.
The estimators ĈMSADE and λ̂MSADE of c and l can be obtained by solving 

the nonlinear equations 
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( ) ( )
1

1 : 1 1:
1

1( , )
1( , ) . | , | , 0

1( , )
1

n i

i n i n
i

i

D c
nT c x c x c

c D c
n

λ
λ η λ η λ

λ

+

−
=

−∂ +  = − = ∂
−

+

∑

( ) ( )
1

2 : 2 1:
1

1( , )
1( , ) . | , | , 0,

1( , )
1

n i

i n i n
i

i

D c
nT c x c x c

D c
n

λ
λ η λ η λ

λ
λ

+

−
=

−∂ +  = − = ∂
−

+

∑

where 1
1( , ) .i n

D c λ
+

≠  The estimators ĈMSALDE and λ̂MSALDE of c and l can be 
obtained by solving the nonlinear equations 

( ) ( )

1

1

1 : 1 1:

1log ( , ) log 11( , ) . .
( , )1log ( , ) log

1
| , | , 0

n i

i i
i

i n i n

D c
nT c

c D cD c
n

x c x c

λ
λ

λ
λ

η λ η λ

+

=

−

−∂ +=
∂

−
+

 − = 

∑

( ) ( )

1

1

2 : 2 1:

1log ( , ) log 11( , ) . .
( , )1log ( , ) log

1
| , | , 0,

n i

i i
i

i n i n

D c
nT c

D cD c
n

x c x c

λ
λ

λ λ
λ

η λ η λ

+

=

−

−∂ +=
∂

−
+

 − = 

∑

where 1
1log ( , ) log .i n

D c λ
+

≠

3.8 Methods of Minimum Distances

 In this section, we will discuss three methods based on the test statistics 
of Cramér-von-Mises, Anderson- Darling and Right-tail Anderson-
Darling. Mainly, these methods determine the values of parameters that 
minimize the distance between the theoretical and empirical cumulative 
distribution functions (see, DÁgostino (1986); Luceño (2006)). 

3.8.1 Method of Cramér-von-Mises 

 The Cramér-von Mises estimator is a type of maximum goodness-of-
fit estimators (also called minimum distance estimators) and is based on 
the difference between the estimate of the cumulative distribution function 
and the empirical distribution function. MacDonald (1971) motivated the 
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choice of the Cramér-von Mises statistic by providing empirical evidence 
that the bias of the estimator is smaller than the other goodness-of-fit 
estimators.

Thus, the Cramér-von Mises estimators ĈCME and λ̂CME of the 
parameters c and l are obtained by minimizing, with respect to c and l, 
the function:

( )
2

:
1

1 2 1( , ) | , . (38)
12 2

n

i n
i

iC c F x c
n n

λ λ
=

 −
= + − 

 
∑

These estimators can also be obtained by solving the following non-
linear equations: 

	

( ) ( )

( ) ( )

: 1 :
=1

: 2 :
=1

2 1| , | , = 0,
2

2 1| , | , = 0,
2

n

i n i n
i

n

i n i n
i

iF x c x c
n

iF x c x c
n

λ η λ

λ η λ

 −
− 

 
 −

− 
 

∑

∑

where ( )1 | ,cη λ⋅  and ( )2 | ,cη λ⋅  are given by (30) and (31), respectively.

3.8.2 Methods of Anderson-Darling and Right-tail Anderson-Darling

Other type of maximum goodness-of-fit estimator is based on an 
Anderson-Darling statistic (Anderson & Darling, (1952)) and is known 
as the Anderson-Darling estimator. The Anderson-Darling estimators 
ĈADE and λ̂ADE of the parameters c and l are obtained by minimizing, with 
respect to c and l, the function: 

( ) ( ){
( )}

:
1

1 :

1( , ) 2 1 log | ,
(39)

log | , .

n

i n
i

n i n

A c n i F x c
n

F x c

λ λ

λ
=

+ −

= − − − +∑

These estimators can also be obtained by solving the following non-
linear equations: 

( ) ( )
( )

( )
( )

( ) ( )
( )

( )
( )

11 : 1 :

1 : 1 :

22 : 1 :

1 : 1 :

| ,| ,
2 1 0,

| , | ,

| ,| ,
2 1 0,

| , | ,

n
i n n i n

i i n n i n

n
i n n i n

i i n n i n

x cx c
i

F x c F x c

x cx c
i

F x c F x c

η λη λ

λ λ

η λη λ

λ λ

+ −

= + −

+ −

= + −

 
 − − = 
  
 
 − − = 
  

∑

∑
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where ( )1 | ,cη λ⋅  and ( )2 | ,cη λ⋅  are given by (28) and (29) , respectively.
Similarly, the Right-tail Anderson-Darling estimators ĈRTADE and  

λ̂RTADE of the parameters c and l can be obtained by minimizing, with 
respect to c and l, the function:

( ) ( )
( )

:
1 1

1 :

1( , ) 2 | , 2 1
2

(40)
log | , .

n n

i n
i i

n i n

nR c F x c i
n

F x c

λ λ

λ
= =

+ −

= − − −∑ ∑

 These estimators can be obtained by solving the following non-linear 
equations: 

( )
( ) ( )

( )
( )

( )
( ) ( )

( )
( )

11 : 1 :

1 1: 1 :

22 : 1 :

1 1: 1 :

| ,| ,
2 1 2 1 0,

| , | ,

| ,| ,
2 1 2 1 0,

| , | ,

n n
i n n i n

i ii n n i n

n n
i n n i n

i ii n n i n

x cx c
n i

F x c F x c

x cx c
n i

F x c F x c

η λη λ

λ λ

η λη λ

λ λ

+ −

= = + −

+ −

= = + −

− + − =

− + − =

∑ ∑

∑ ∑

where ( )1 | ,cη λ⋅  and ( )2 | ,cη λ⋅  are given by (28) and (29), respectively. 

4.  Bayesian Analysis

 In this section, we consider Bayesian inference of the unknown 
parameters of the GM(c, l). It is assumed that c and l has the independent 
gamma prior distributions with probability density functions 

1( ) 0 (41)cg c c e cα β− −∝ >

and 
1( ) 0. (42)a bg e λλ λ λ− −∝ >

 The hyperparameters a, b, a, and b are known and non-negative. 
If both parameters c and l are unknown, joint conjugate priors do not 
exist. It is not unreasonable to assume independent gamma priors on 
the shape and scale parameters for a two-parameter GM(c, l), because 
gamma distributions are very flexible, and the Jeffreys (non-informative) 
prior, introduced by Jeffreys (1946) is a special case of this. The joint prior 
distribution for both parameters in this case is given by 

1 1( , ) exp( ) exp( ).ap c c c bαλ β λ λ− −∝ − −
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Thus, the joint posterior distribution is given by 

1 1

1 ( 1)
1 1( , | )   . (43)

n n cx

i i

ic x e bi cn ap c c e e
β λ

αλ λ = =

   
   − − − +
   + − −    
∑ ∑

∝x

 The marginal distribution of c given l and data is given by 

1 1
( 1)

1( | , )   .

n n
cxii

i i

c x e
cp c c e e
λβ

αλ = =

 
 − − − −  
∑ ∑

∝x

 Similarly, the marginal distribution of l given c and data is given by 

1

1 ( 1)
1( | , )  .

n
cxi

i
e b

cn ap c e
λ

λ λ =

 
 − − +
 + −  
∑

∝x

 Next, we must consider the question of what loss function will be used 
to derive the Bayes estimates from the marginal posterior distributions. 
Below we provide an MCMC algorithm and the loss functions (See Ali et 
al. (2013); Dey et al. (2015)) used to compute the Bayes estimates and their 
respective posterior risk (see Table 2).

4.1 Algorithm

The algorithm used to obtain the Bayesian estimates is given as 
follows:
l	 �Set initial values c0 and l0 for the parameters c and l;
l	 �At step i + 1, we draw a new set of values (ci+1, li+1) from the 

conditional posterior p(ci|li, x) and p(li|ci, x);
l	 Repeat above step M times to obtain one chain of M values for (c, l);
l	 �The Bayes estimate of the parameters c and l, under the above-

defined loss functions are given as 

1 1

1 1ˆˆ , , (44)
M M

i i
i i

c c
M M

λ λ
= =

= =∑ ∑

	 respectively.
l	 �The credible interval can be obtained by sorting the observations of 

c and l. 

5.  Simulations

In this section we present some experimental results to evaluate 
the performance of the different methods of estimation discussed in the 
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previous sections. The study is based on 1000 generated data set from the  
GM(c, l) for different sample sizes (n = 10, 50, 100) and different values of 
(c, l). The values of true parameters are chosen to propose the different 
shape of density function. The estimates are compared in terms of their 
bias and mean-squared error (MSE). Tables 3-4 contains the averages of 
the 1000 bias and the corresponding mean squared error (MSE).

We also obtained the Bayes estimates under five different loss 
functions such as, the squared error loss function (SELF), weighted 
squared error loss function (WSELF), modified squared error loss function 
(MSELF), precautionary loss function (PLF) and K-loss (KLF).

Estimates and respective posterior risks under different loss functions 
are calculated for the simulated data set and are presented in Tables 7-8. 
Figures 3-4 show the risk functions of the estimates for different sample 
sizes and for different values of the parameters c and l.

To obtain the Bayes estimates and credible intervals, we need to 
appeal to the MCMC algorithm in order to obtain a sample of values 
of c and l from the joint posterior. Specifically, a chain is run for 20,000 
iterations and the first 5,000 runs are discarded, and base inferences on 
posterior summaries of the parameters and credible intervals calculated 
from the samples.

Besides, the empirical coverage probability for parameters c and l are 
obtained. Tables 5-6 show the coverage probabilities varying the sample 
size n for the frequentist methods discussed in the paper. The confidence 
intervals for the parameters are constructed by using asymptotic 
distribution and also by using the bootstrap approach. Some of the points 
are quite clear from Tables 3-4 that as sample size increases, the average 
bias and the MSEs decrease. It verifies the consistency of all the estimators.

The bias and MSEs of c generally increases with increasing c and l for 
all methods of estimation. The bias and MSEs of l generally increases with 
increasing l and c for all methods of estimation.

When c increases and l decreases, MMM estimators have the 
smallest MSEs for c and MME estimators have the smallest MSEs for l. 
The Performance of the MPS are also quite satisfactory.

It is evident from Tables 7-8 that as c increases and l decreases, KLF 
has the smallest posterior risk as compare to other loss functions while PLF 
is on the second choice for c but for l, MSELF has the smallest posterior 
risk as compare to other loss functions while KLF is the second choice.

Also, when both c and l increases, KLF has the smallest risk in case 
of c and MSELF has the smallest risk in case of l. It is to be noted that 
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posterior risk is more comprehensive measure for comparison of different 
loss functions in Bayesian setup.

6.  An example with literature data

 In this section, we use a real data set to illustrate the proposed 
estimation methods discussed in the previous sections. Let us consider 
the following data set introduced in King et al. (1979): 
112, 68, 84, 109, 153, 143, 60, 70, 98, 164, 63, 63, 77, 91, 91, 66, 70, 77, 63, 66, 
66, 94, 101, 105, 108, 112, 115, 126, 161, 178. 

These data represent the numbers of tumor-days of 30 rats fed with 
unsaturated diet. Chen (1997) and Asgharzadeh and Abdi (2011) used the 
Gompertz distribution for these data set in order to obtain exact confidence 
intervals and joint confidence regions for the parameters based on two 
different statistical analysis. Let us also assume the Gompertz distribution 
with density (1) fitted to the data and to compare the performance of the 
methods discussed in this paper. For a Bayesian analysis, we assume 
the independent Gamma prior distributions for the parameters c and l, 
with the hyper parameter values a = b = a = b = 0.01. The Bayes estimates 
cannot be obtained in closed form therefore we use MCMC procedure 
to compute the Bayes estimates and also to construct credible intervals. 
Using the software R, we simulated 50,000 MCMC samples (5.000 “burn-
in-samples”) for the joint posterior distribution. The convergence of the 
chains was monitored from trace plots of the simulated samples. The 
estimates and 95% confidence intervals under classical methods are given 
in Table 9. We also computed the Bayesian estimates and 95% intervals 
credible intervals for the parameters based on MCMC algorithm. The 
estimated values are Ĉ = 0.0239, λ̂  = 0.0017 and the corresponding intervals 
are given by (0.0154, 0.0320) and (0.0006, 0.0038). The marginal posterior 
distributions for the parameters c and l of the Gompertz distribution are 
shown in Figure 5. Table 10 shows the Bayes estimators and corresponding 
risks obtained with respect to symmetric and asymmetric loss functions.

Real data analysis shows that MME performs better than among 
all frequentist estimators while MMM is the second choice in case of c. 
But in case of l, WLSE performs better than among all the frequentist 
estimators while LME is the second choice. It is noticed from the real data 
analysis that both MSELF and KLF have the smallest risk among all Bayes 
estimators considered. 
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7.  Conclusion

 In this article, we provide explicit expressions for the quantiles, 
moments, moment generating function, hazard rate, mean residual 
lifetime, mean past lifetime, stochastic ordering, various entropies, 
stress-strength parameter, Bonferroni and Lorenz curve and order 
statistics. The model parameters are estimated by fifteen methods of 
estimation, namely maximum likelihood estimators, moments estimators, 
pseudo-moments estimators, modified moments estimators, L-moment 
estimators, percentile based estimators, least squares and weighted least 
squares estimators, maximum product of spacings estimators, minimum 
spacing absolute distance estimators, minimum spacing absolute-log 
distance estimator, Cramér-von-Mises estimators, Anderson-Darling 
and right-tail Anderson-Darling estimators and the Bayes estimators. 
Results of a simulation study to compare these methods are presented, 
which showed that among frequentist estimators, modified moments and 
moments estimators performs better than their counter parts. Among the 
Bayes estimators, Bayes estimators based on MSELF and KLF performed 
better. The performance of maximum product spacing estimators is fairly 
reasonable and competitive. 
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1(a):pdf and 1 (b):hazard function (h(x)) 
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Figure 2
Plots of skewness and kurtosis versus c 

 

Figure 3
Plot of risk functions for different sample sizes for the parameters c and l. 
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Figure 4
Plot of risk functions for different sample sizes for the parameters c and l. 

 

Figure 5
The posterior densities for the parameters c and l of the Gompertz  

distribution fitted by the data. 
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Appendix

Table 1
Mean, variance, skewness, kurtosis and coefficient of variation (CV) for 

different values of l and c = 5 

l Mean Variance Skewness Kurtosis CV

0.1 0.040483 0.119325 137.5606 163.1597 8.532829
0.2 0.081943 0.237156 34.09007 79.87667 5.942993
0.5 0.212367 0.579386 6.266150 30.03675 3.584239
1.0 0.450999 1.017066 6.094266 13.68068 2.321868
1.5 0.718330 1.075730 5.345578 8.776922 1.712642
2.0 1.016999 1.096544 1.331925 8.520371 1.312654
2.5 1.349859 1.513496 0.930739 7.116877 1.005465
3.0 1.719995 1.618114 0.632212 6.842248 0.739567
3.5 2.130746 1.782139 0.464134 5.520244 0.473307
4.0 2.585719 1.842089 0.438354 5.40.998 0.401116

Table 2
Bayes estimator and posterior risk under different loss functions 

Loss function Bayes estimator Posterior risk
2

1 ( )L SELF dθ= = − ( | )E θ x var( | )θ x

2

2
( )dL WSELF θ

θ
−

= = 1 1( ( | ))E θ − −x 1 1( | ) ( ( | ))E Eθ θ − −−x x

2

3 1 dL MSELF
θ

 
= = − 

 

1

2

( | )
( | )

E
E
θ
θ

−

−

x
x

1 2

2

( | )1
( | )

E
E
θ
θ

−

−
−

x
x

2

4
( )dL PLF

d
θ −

= = 2( | )E θ x 22( ( | ) ( | ))E Eθ θ−x x

2

5
dL KLF

d
θ

θ

 
= = −  

 
1

( | )
( | )
E

E
θ
θ −

x
x

12( ( | ) ( | ) 1)E Eθ θ − −x x

Note: SELF, squared error loss function; WSELF, weighted squared error loss function; 
MSELF, modified squared error loss function; PLF, precautionary loss function, and KLF, 
K-loss function.
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 Table 3
Average bias of the estimates of c and l and their associated MSEs (in 

parenthesis) for the different methods with c = 3 and l = 0.02

c = 3 l = 0.02

Method n = 10 n = 50 n = 100 n = 10 n = 50 n = 100

MLE 0.4853 0.1003 0.0532 0.0040 0.0004 -9.6e-05

(1.4217) (0.1556) (0.0685) (0.0009) (0.0001) (6.0e-05)

MME 0.1117 0.0622 0.0627 0.0084 0.0019 7.9e-05

(0.4145) (0.1741) (0.0958) (0.0014) (0.0002) (8.0e-05)

PME 0.4458 0.1020 0.0699 0.0068 0.0016 1.2e-05

(1.2453) (0.2382) (0.1034) (0.0015) (0.0002) (8.1e-05)

MMM -0.0578 0.0039 0.0038 0.0147 0.0038 0.0019

(0.8231) (0.2305) (0.1258) (0.0021) (0.0002) (0.0001)

LSE -0.0376 -0.0033 0.0104 0.0238 0.0041 0.0014

(1.3166) (0.2133) (0.0956) (0.0031) (0.0002) (8.9e-05)

WLSE -0.0042 0.0253 0.0269 0.0215 0.0028 0.0007

(1.2806) (0.1788) (0.0796) (0.0027) (0.0002) (7.2e-05)

PCE -0.1969 -0.0857 -0.0376 0.0274 0.0063 0.0025

(0.9791) (0.1854) (0.0819) (0.0032) (0.0002) (9.1e-05)

LME -0.0665 -0.0590 -0.0413 0.0219 0.0060 0.0032

(0.6333) (0.1993) (0.1144) (0.0036) (0.0004) (0.0001)

MPS -0.2515 -0.1042 -0.0661 0.0270 0.0060 0.0030

(0.8423) (0.1392) (0.0656) (0.0030) (0.0002) (8.4e-05)

MSADE -0.2350 -0.1118 -0.0605 0.0334 0.0080 0.0039

(1.0084) (0.2155) (0.1154) (0.0056) (0.0004) (0.0001)

MSALDE -0.2222 -0.0919 -0.0611 0.0321 0.0068 0.0035

(0.9501) (0.1815) (0.0884) (0.0051) (0.0003) (0.0001)

CME 0.4990 0.0933 0.0581 0.0088 0.0016 0.0003

(2.0563) (0.2368) (0.1020) (0.0016) (0.0002) (8.1e-05)

ADE 0.0659 0.0296 0.0272 0.0673 0.0027 0.0007

(5.9452) (0.1719) (0.0757) (2.8688) (0.0002) (7.1e-05)

RTADE 0.2880 0.0550 0.0316 0.0129 0.0020 0.0007

(1.5559) (0.1760) (0.0830) (0.0024) (0.0002) (8.1e-05)
 



868� S. DEY, F. A. MOALA AND D. KUMAR

Table 4
Average bias of the estimates of c and l and their associated MSEs (in 

parenthesis) for the different methods with c = 0.5 and l = 3 

c = 0.5 l = 3

Method n = 10 n = 50 n = 100 n = 10 n = 50 n = 100

MLE 1.3604 0.2068 0.0678 -0.3588 -0.1174 -0.0503

(7.1912) (0.4408) (0.1994) (2.1338) (0.3379) (0.1763)

MME 1.6132 0.4784 0.3307 -0.6285 -0.31423 -0.2339

(6.7009) (0.5393) (0.3065) (1.4136) (0.3642) (0.2220)

PME 1.0469 0.4574 0.3364 -0.3165 -0.3102 -0.2163

(2.0004) (0.3564) (0.2237) (1.1742) (0.3000) (0.1795)

MMM 1.0793 0.2958 0.1711 0.8509 0.4362 0.3967

(4.1126) (0.3251) (0.1366) (11.3500) (1.8746) (1.2864)

LSE -0.0533 -0.0526 -0.0250 0.5580 0.1048 0.0644

(10.4377) (1.0366) (0.4675) (5.1551) (0.6531) (0.3116)

WLSE 0.0769 0.0345 0.0196 0.4802 0.0585 0.0374

(9.2030) (0.7560) (0.3264) (4.6047) (0.5627) (0.2750)

PCE -0.0190 -0.1296 -0.1241 0.3130 0.1247 0.1177

(4.7496) (0.4337) (0.2125) (3.3975) (0.5131) (0.2686)

LME 1.3415 0.6158 0.4276 -0.5846 -0.4392 -0.3260

(5.4819) (0.7865) (0.4624) (1.1810) (0.4475) (0.2852)

MPS -0.1630 -0.1595 -0.1337 0.4382 0.1357 0.1123

(4.4940) (0.3987) (0.1882) (3.5166) (0.4526) (0.2326)

MSADE 0.4820 0.0055 -0.0241 0.4800 0.1073 0.0832

(7.9963) (0.6330) (0.3013) (6.1932) (0.7594) (0.3763)

MSALDE -0.1156 -0.1564 -0.1245 0.5536 0.1753 0.1263

(5.5052) (0.5122) (0.2395) (4.7821) (0.6586) (0.3321)

CME 1.4440 0.1624 0.0812 0.0372 0.0175 0.0210

(18.2589) (1.1202) (0.4873) (4.0886) (0.6287) (0.3045)

ADE 0.2725 0.0144 0.0008 0.3821 0.0738 0.0499

(6.5831) (0.6162) (0.2749) (4.7571) (0.5467) (0.2681)

RTADE 0.5669 0.0655 0.0095 0.1764 0.0257 0.0404

(6.3753) (0.4781) (0.2251) (3.6210) (0.4624) (0.2444)
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Table 5
Coverage probabilities for the parameters c and l

c = 3 l = 0.02
Method n = 10 n = 50 n = 100 n = 10 n = 50 n = 100
MLE 0.95 0.95 0.95 0.73 0.87 0.91
MME 1.00 0.98 0.97 1.00 0.97 0.95
PME 0.92 0.93 0.94 0.91 0.93 0.93
MMM 0.93 0.96 0.96 0.94 0.96 0.96
LSE 0.95 0.93 0.95 0.95 0.93 0.95
WLSE 0.95 0.94 0.95 0.94 0.94 0.95
PCE 0.94 0.91 0.95 0.93 0.92 0.95
LME 0.94 0.94 0.94 0.95 0.93 0.95
MPS 0.91 0.91 0.91 0.92 0.91 0.93
MSADE 0.97 0.91 0.93 0.95 0.92 0.94
MSALDE 0.93 0.90 0.92 0.92 0.91 0.93
CME 0.86 0.91 0.94 0.87 0.93 0.94
ADE 0.94 0.94 0.94 0.93 0.94 0.95
RTADE 0.90 0.94 0.94 0.91 0.94 0.94

 
Table 6

Coverage probabilities for the parameters c and l

c = 0.5 l = 3
Method n = 10 n = 50 n = 100 n = 10 n = 50 n = 100
MLE 0.92 0.95 0.95 0.85 0.93 0.95
MME 0.73 0.81 0.80 0.90 0.93 0.90
PME 0.90 0.99 0.92 0.95 0.97 0.93
MMM 0.81 0.92 0.95 0.89 0.95 0.96
LSE 0.94 0.96 0.98 0.96 0.97 0.98
WLSE 0.91 0.80 0.93 0.95 0.82 0.94
PCE 0.78 0.87 0.94 0.79 0.85 0.93
LME 0.92 0.96 0.97 0.95 0.96 0.97
MPS 0.63 0.89 0.92 0.63 0.87 0.92
MSADE 0.67 0.87 0.93 0.69 0.87 0.92
MSALDE 0.57 0.73 0.83 0.58 0.72 0.81
CME 0.56 0.70 0.83 0.59 0.72 0.85
ADE 0.62 0.74 0.86 0.63 0.75 0.86
RTADE 0.57 0.73 0.85 0.60 0.74 0.86
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Table 7
Bayes estimates of c and l and their posterior risks under different loss 

functions for c = 3 and l = 0.02 

c = 3 l = 0.02
Method n = 10 n = 50 n = 100 n = 10 n = 50 n = 100

SELF 3.3000 3.0755 3.0403 0.0458 0.0238 0.0215
WSELF 2.9325 3.0317 3.0193 0.0138 0.0180 0.0186

Estimate MSELF 2.5792 2.9871 2.9981 0.0041 0.0133 0.0160
PLF 3.4207 3.0970 3.0507 0.0700 0.0271 0.0230
KLF 3.0807 3.0536 3.0298 0.0245 0.0207 0.0200

Method n = 10 n = 50 n = 100 n = 10 n = 50 n = 100
SELF 0.8214 0.1333 0.0634 0.0045 0.0001 7.3e-05

WSELF 0.3674 0.0438 0.0209 0.0320 0.0058 0.0028
Risk MSELF 0.1836 0.0148 0.0070 0.7583 0.2853 0.1453

PLF 0.2414 0.0428 0.0207 0.0482 0.0065 0.0030
KLF 0.7736 0.0145 0.0069 3.3233 0.3452 0.1572

 
Table 8

Bayes estimates of c and l and their posterior risks under different loss 
functions for c = 0.5 and l = 3 

c = 0.5 l = 3
Method n = 10 n = 50 n = 100 n = 10 n = 50 n = 100

SELF 1.1078 0.6283 0.5556 3.1018 2.9701 2.9884
WSELF 0.0430 0.1750 0.2618 2.5418 2.8587 2.9334

Estimate MSELF 0.0034 0.0159 0.0279 1.9664 2.7395 2.8778
PLF 1.6181 0.7756 0.6419 3.3470 3.0230 3.0154
KLF 0.1952 0.3249 0.3782 2.8030 2.9138 2.9608

Method n = 10 n = 50 n = 100 n = 10 n = 50 n = 100
SELF 2.1225 0.2275 0.1101 1.6643 0.3158 0.1613

WSELF 1.0648 0.4532 0.2938 0.5599 0.1114 0.0550
Risk MSELF 0.8538 0.8987 0.9142 0.2647 0.0428 0.0193

PLF 1.020 0.2945 0.1724 0.4905 0.1056 0.0540
KLF 8.9484 2.2521 1.1342 0.2571 0.0399 0.0190
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Table 9
Estimators and 95% confidence intervals of c and l of the Gompertz 

distribution for different estimation methods 

Method Ĉ 95% CI 94l 95% CI
MLE 0.0241 (0.0160, 0.0322) 0.0016 (0.0002, 0.0031)
MME 0.0113 (0.0097, 0.0125) 0.0048 (0.0034, 0.0067)
PME 0.0116 (0.0102, 0.0119) 0.0047 (0.0038, 0.0073)

MMM 0.0134 (0.0090, 0.0137) 0.0034 (0.0026, 0.0061)
LSE 0.0332 (0.0210, 0.0501) 0.0010 (0.0002,0.0030 )

WLSE 0.0416 (0.0287, 0.0612) 0.0005 (0.0001, 0.0016)
PCE 0.0291 (0.0187, 0.0403) 0.0011 (0.0003, 0.0030)
LME 0.0329 (0.0202, 0.0456) 0.0008 (0.0002, 0.0028)
MPS 0.0214 (0.0126, 0.0298) 0.0019 (0.0007, 0.0043)

MSADE 0.0215 (0.0116, 0.0318) 0.0016 (0.0005, 0.0049)
 MSALDE 0.0190 (0.0099, 0.0285) 0.0026 (0.0009, 0.0066)

 CME 0.0355 (0.0242, 0.0538) 0.0009 (0.0002, 0.0025)
 ADE 0.0243 (0.0157, 0.0367) 0.0017 (0.0005, 0.0040)

 RTADE 0.0208 (0.0130, 0.0327) 0.0023 (0.0006, 0.0049)
 

Table 10
Bayes estimates of cand l and posterior risks under different loss functions 

Loss functions Ĉ risk λ̂ risk

SELF 0.0239 0.0042 0.0018 0.0008
WSELF 0.0230 0.0008 0.0014 0.0003
MSELF 0.0220 0.0404 0.0011 0.1961

PLF 0.0242 0.0008 0.0020 0.0004
KLF 0.0234 0.0363 0.0016 0.2203
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