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Abstract Various factors can affect the parasite distribution
on a host. In this study, the influence of sex, body size, and
locality of a rodent host, Oligoryzomys nigripes, on lice
abundance was investigated. A generalized linear model
indicated that the sex and locality of O. nigripes significant-
ly contributed to the variation in lice abundance on the host.
The male bias of lice parasitizing the rodent host O. nigripes
may be associated with intersexual differences in physiolo-
gy and behavior, while locality differences in lice abundance
may be associated with differences in host density and
diversity between the two localities sampled. Studies of
host–parasite associations improve the understanding of
the ecology of infectious diseases, as well as the evolution
of these host–parasite interactions.

Introduction

The parasite abundance in a host population may differ
between host sexes. Sex bias towards males in parasitism
occurs in several groups of mammals (Krasnov et al. 2005;
Zuk 2009), and the proximal causes include body mass,
suggesting that larger individuals can support more parasites
(Moore and Wilson 2002) and reduced immunocompetence,
suggesting a hormonal mechanism mediating sex differen-
ces in parasite susceptibility (Zuk and McKean 1996; Klein
2004). The causes are not mutually exclusive and may
interact in the formation of sex bias parasitism. In polygy-
nous mating systems, intersexual competition for females
favors larger males and compromises male immune systems
due to higher testosterone levels compared with monoga-
mous systems (Klein 2000a; Fernandes et al. 2010; Barcelar
et al. 2011).

Gender differences in parasite abundance may also be the
result of intersexual differences in behavior leading to great-
er parasite exposure of one sex (Zuk and McKean 1996;
Hillegass et al. 2008). In some mammal groups, males have
greater mobility than females, facilitating contact with other
infected individuals and parasite infective stages (Bordes et
al. 2009). In these situations, males can be responsible for
parasite transmission within host populations (Durden 1983;
Ferrari et al. 2004; Krasnov et al. 2011).

In addition to host traits having a strong effect on parasite
composition and abundance, the environment outside the
host may also have an impact on ectoparasites (Lareschi
and Krasnov 2010). Local variation in host density may
influence the frequency of intraspecific and interspecific
contacts and thus the rate of parasite transmission by
infected individuals (Ryder et al. 2007), which may also
be influenced by differences in host species composition
between localities if different species share the same ecto-
parasites (Krasnov et al. 2006).
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Anoplura is a group of obligate parasites of eutherian
mammals that are quite common in rodent species (Light et
al. 2010). Hoplopleura is a cosmopolitan genus of sucking
lice comprising over 136 species worldwide and its mem-
bers parasitize rodent hosts almost exclusively (Kim 2006;
Smith et al. 2008). However, published studies with Ano-
plura are mainly descriptions of new species (e.g., Castro et
al. 2001; Durden and Timm 2001; Durden and Raush 2007;
Weaver and Barton 2008) or of species assemblages on a
particular host (e.g., Durden and Wilson 1991; Durden et al.
1997; Weaver and Smales 2009). In this study, we gathered
data on Hoplopleura lice (Insecta: Anoplura) parasitizing
the rodent Oligoryzomys nigipres (Mammalia: Rodentia) at
two localities in the same geographical area of southeastern
Brazil to test the hypothesis that host sex, body mass, and
locality affect lice abundance.

Material and methods

Study area

The study was performed at two localities, 70 km apart, in
the Cerrado of Southeast Brazil in São Paulo State: Mogi
Guaçu Experimental Station (22°24' S, 47°15' W) and Itir-
apina Experimental Station (22°24' S; 82°47' W). The Itir-
apina Experimental Station has an area of 3,212 ha and
covers altitudes ranging from 700 to 827 m, while the Mogi
Guaçu Experimental Station has an area of 3,050 ha and
covers altitudes ranging from 600 to 730 m. The Cerrado is
a Neotropical savannah formation comprising different veg-
etation physiognomies that differ in the density and compo-
sition of woody and ground layer plants, forming a
continuum from open and dry grasslands to dense forests
(Goodland 1971). The sample sites in both areas consist of a
physiognomy known as “Cerradão” which is characterized
by a dense forest with high trees and a totally closed canopy
(Oliveira-Filho and Ratter 2002).

Data sampling

Fieldwork was conducted from February 2009 to June 2010.
The data were obtained from rodents captured on five con-
secutive days per month in each study area. To capture the
rodents, 80 Sherman traps (dimensions 7.5×9.0×23.5 cm)
were used; four traps, baited with sweet potato and peanut
butter, were placed on the ground in each capture station.
Therefore, the total capture effort was 6,800 trap nights.
Each rodent captured was placed in a glass container with
a small hole on the lid and a piece of cotton soaked in
acetate inside to anesthetize the rodent, facilitating its han-
dling. Each rodent was marked with a numbered leg band, its
weight was recorded with the Pesola® scale (precision01 g),

and its sex was identified and recorded. The hair of each
rodent was brushed several times with a toothbrush over a
white plastic tray. The ectoparasites from each host were
collected from the plastic tray and were placed in a glass jar
containing 70 % alcohol with an inner and outer label con-
taining the following information: host species, host sex, host
identification (number of the leg band), date of capture, and
capture site. After each use, the plastic tray was thoroughly
inspected and cleaned before receiving another anaesthetized
rodent. The rodents captured were released after the parasite
collection procedure. The ectoparasites collected (Anoplura)
were identified by Professor Pedro Marcos Linardi and his
team from the Federal University of Minas Gerais. This re-
search was authorized by the System of Authorization and
Information in Biodiversity (SISBio number 17669).

Statistical analyses

Two discrete distribution models, Poisson and negative bi-
nomial, were fitted to the lice abundance data using maxi-
mum likelihood, and the chi square goodness-of-fit test was
used to determine if the observed data fit one of these
distributions. The Poisson distribution indicates a pattern
of random distribution of parasite abundance among hosts,
while the negative binomial distribution indicates a default
aggregate distribution (overdispersion data), with many
hosts harboring few parasites and a few hosts harboring
many parasites (Poulin 2007). In this study, the distribution
of lice abundance was fitted to a negative binomial distri-
bution (χ2018.25; d.f. 0 14; P value00.19). Even though
the Poisson regression is the classic model used to count
data, its use is limited when the data show overdispersion
and/or excessive zeros (Cameron and Trivedi 1998). The
generalized linear model of the negative binomial regression
models the overdispersion data (Zeileis et al. 2008) and was
used in this study with the response variable being the lice
abundance per host and the explanatory variables being the
body size (weight), the gender (sex), and the location of
occurrence (locality) of the host species.

A Cochran–Mantel–Haenszel chi square test (CMH test)
was used to test the null hypothesis that the explanatory
variables “sex” and “locality” are conditionally independent
in relation to lice abundance. The test showed that the
variables are conditionally independent (CMH test020.85;
d.f. 0 16; P00.184), i.e., there is no interaction between the
variables, excluding from consideration interactions be-
tween the variables in the procedure of adjusting the models.
The variables “gender” and “weight” also do not interact
because O. nigripes does not display sexual size dimor-
phism (Eisenberg and Redford 1999). Therefore, the body
weight in this case is only an indication of the age of the
host. Like all generalized linear models, the negative binomial
regression allows estimates of significant parameters for the
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factors to be interpreted in terms of rate ratio (Dobson 2002) to
assess the magnitude of the variance between the classes of the
significant factors. For model validation analysis, the Pearson
residual patterns were used to generate a normal probability
plot of residuals. In this method, simulated bands with a 90 %
confidence interval (or confidence envelopes) were built using
1,000 simulations to help to better interpret the graph. If the
model is well adjusted, most of the points representing the
residuals must be distributed within these bands (Atkinson
1987). All statistical procedures were performed using the R
environment 2.12.2 (R Development Core Team 2010). The
adjustments of regression models were made using the pscl
extension 1.03.6 (Zeileis et al. 2008).

Results

A total of 91 individuals of O. nigripes was captured in both
areas, Mogi Guaçu (n033) and Itirapina (n058), during the
fieldwork period. In Mogi Guaçu, only one species of louse,
Hoplopleura travassosi (n061) was found parasitizing O.
nigripes, while in Itirapina, two species of lice, H. travassosi
(n0348) and Hoplopleura imparata (n042), were found on
the same host species.

The negative binomial regression model indicated that
the explanatory variables “sex” and “locality” significant-
ly influenced the abundance of lice per individual host
(Table 1). The lice abundance in males was greater than
in females (rate ratio01.8), and in Itirapina, the lice
abundance was greater than in Mogi Guaçu (rate ratio0
2.6). The graph of the probability of the residuals shows
that most of the points representing the residual are
distributed within the confidence bands, indicating that
the model is valid (Fig. 1).

Discussion

The abundance of lice parasitizingO. nigripeswas influenced
by gender and location of occurrence of the host. Males have a
significantly larger abundance of parasites compared with
females. The sexual bias in parasitic infestation of vertebrate

hosts is found both for endoparasites (Poulin 1996; Ferrari et
al. 2004) and for arthropod ectoparasites (Harrison et al. 2010;
Matthee et al. 2010).

Intersexual differences in morphology, physiology, and
behavior are the factors responsible for sexual bias in para-
sitism (Klein 2000a; Moore andWilson 2002; Hillegass et al.
2008; Krasnov et al. 2011). In mammal systems, males tend
to be larger than females (Lindenfors et al. 2007), making it
difficult to separate the effects of “body size” and “sex” in
analyses. However, the rodent species studied here does not
show sexual dimorphism in size (Eisenberg and Redford
1999), which excludes the influence of morphological sex
differences on the preferential tendency of parasitism for
males by the lice species of this study. Thus, physiological
and behavioral intersexual differences may be the factors
influencing this trend of parasitism.

The influence of physiology on the sexual difference of
parasitism is based on a negative relationship between the
levels of male hormone, testosterone, and the performance
of the immune function. High levels of testosterone have
negative effects on the immune function and thus males may
be more susceptible to infection than females (Klein 2000b,
2004). Additionally, selective pressures that influence differ-
ences in reproductive strategy between males and females
contribute to the intersexual variance in immunity and sus-
ceptibility to parasites (Zuk 2009; Negro et al. 2010). Males
in monogamous mating systems are subject to weaker sex-
ual selection than promiscuous species (Zuk and McKean
1996) and the corresponding lower level of stress can be an
advantage with respect to susceptibility to parasites.

Table 1 Best fit regression model to describe lice abundance on O.
nigripes hosts from two localities in Brazil (α00.05)

Coefficients Estimate S.E. z P

Intercept 2.133 0.801 2.662 0.008

Weight −0.054 0.037 −1.461 0.144

Sex 0.961 0.448 2.148 0.032a

Locality −1.255 0.460 −2.725 0.006a

a Significant factor

Fig. 1 Quantiles of standard normal plots based on the negative
binomial model
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Some studies on the use of space by Sigmodontinae
rodents (which O. nigripes is included) suggest that these
rodents have a promiscuous mating system (Püttker et al.
2006; Blondel et al. 2009; Steinmann et al. 2009; Pires et al.
2010). The male competition for access to females results in
increased levels of testosterone, which is associated with
aggressive interactions and produces a severe physiological
stress, increasing the susceptibility of males to parasitic
infection (Negro et al. 2010; Ostner et al. 2011).

In addition to physiological differences between sexes,
behavioral differences may also play an important role in
sexual bias of parasitism. Males of O. nigripes traverse
greater distances than females, most likely as a consequence
of the promiscuous mating system (Püttker et al. 2006),
where males have greater mobility, which increases the
chances of finding sexual partners (Fernandes et al. 2010;
Pires et al. 2010; Perdue et al. 2011).

Reproduction of this species in southeastern Brazil
occurs all year round, showing two peaks, from September
to November and from February to April (Eisenberg and
Redford 1999), and it is assumed there is no difference in
the pattern of mobility throughout the year. The high male
mobility facilitates intraspecific and interspecific contact
with infected individuals and with infective stages of para-
site (Krasnov et al. 2005; Bordes et al. 2009).

The abundance of lice parasitizing O. nigripes also
differed between the two localities of Cerrado sampled,
with Itirapina showing an abundance of lice per host
significantly higher than in Mogi Guaçu. The difference
between the localities in the abundance of parasites can
be a reflection of the difference in density of host species
in both areas, which influences the frequency of intra-
specific contacts (Krasnov et al. 2006; Ryder et al.
2007). In Itirapina, individuals of O. nigripes were al-
ways caught in traps, while in Mogi Guaçu, sometimes
no individuals were caught in the traps.

The difference in host species diversity between loca-
tions may also be responsible for the variation in the
abundance of ectoparasites because interspecific contacts
promote host shift when different species share the same
parasite (Krasnov et al. 2006; Lareschi and Krasnov
2010). In Mogi Guaçu, no other species of rodent was
found to be parasitized by lice, whereas in Itirapina, it
was observed that Necromys lasiurus (n017), which was
only captured in this locality, shares the two species of
lice with O. nigripes. However, while O. nigripes harbors
more individuals of H. travassosi (n0348) than individ-
uals of H. imparata (n042), the N. lasiurus species
harbors more individuals of H. imparata (n0381) than
individuals of H. travassosi (n09).

Other studies in South America indicate a similar pattern:
H. travassosi parasitizing rodents from the genus Oligoryz-
omys (Oryzomyini) and H. imparata parasitizing N. lasiurus

or species of the genus Akodon (both Akodontini) (e.g.,
Barros-Batesti et al. 1998; Lareschi and Krasnov 2010). In
this study, the presence of H. imparata in 20 % of O.
nigripes individuals parasitized and H. travassosi in 17 %
of N. lasiurus individuals parasitized is indicative of the
occurrence of the horizontal transfer of lice between host
species through interspecific contacts.

Agosta et al. (2010) proposed in a review that host switch
or colonization of novel hosts in an evolutionary–ecological
context is possible when the parasite is pre-adapted to the
novel host because the novel host shares important charac-
teristics with the current host or was a host in the past, or
when the parasite displays phenotypic plasticity that enables
the use of the novel host.

Sucking lice have a very high level of parasite–host
specificity (Smith et al. 2008). More than 87 % of all known
species of sucking lice are associated with one, two, or three
host species. Sixty-two percent (62 %) of the Hoplopleur-
idae family is specific to a single host species (Kim 2006),
and the transmission between individual hosts occurs by
contact (Durden 1983). The composition of host species
and their relative abundance have an important role in the
exchange of parasites transmitted directly. Higher density
and a higher number of host species in a locality increase the
chances of intraspecific and interspecific parasitic exchange
between individuals (Arneberg et al. 1998; Krasnov et al.
2002; Valera et al. 2003).

To conclude, we found that sex and locality were the
important factors affecting lice abundance, most likely be-
cause male hosts show greater mobility and physiological
stress as a result of the promiscuous mating system of the
species and because the increased number and density of
host species found at one location, Itirapina, associated with
the mobility of the hosts facilitates the intraspecific and
interspecific exchange of lice between individuals.
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