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Abstract-Many classification algorithms, such as Neural Net­
works and Support Vector Machines, have a range of hyper­
parameters that may strongly affect the predictive performance 
of the models induced by them. Hence, it is recommended to 
define the values of these hyper-parameters using optimization 
techniques. While these techniques usually converge to a good 
set of values, they typically have a high computational cost, 
because many candidate sets of values are evaluated during the 
optimization process. It is often not clear whether this will result 
in parameter settings that are significantly better than the default 
settings. When training time is limited, it may help to know 
when these parameters should definitely be tuned. In this study, 
we use meta-learning to predict when optimization techniques are 
expected to lead to models whose predictive performance is better 
than those obtained by using default parameter settings. Hence, 
we can choose to employ optimization techniques only when they 
are expected to improve performance, thus reducing the overall 
computational cost. We evaluate these meta-learning techniques 
on more than one hundred data sets. The experimental results 
show that it is possible to accurately predict when optimization 
techniques should be used instead of default values suggested by 
some machine learning libraries. 

I. INTRODUCTION 

The predictive performance of a Machine Learning (ML) 
algorithm is usually influenced by the choice of the values 
of its hyper-parameters. Several studies have been investigat­
ing optimization techniques to optimize the hyper-parameters 
of Support Vector Machines (SVMs) for data classification 
problems [1]-[3]. However, the optimization of SVMs' hyper­
parameters usually has a high computational cost, since a large 
number of candidate solutions needs to be evaluated. Some 
tools implementing this ML algorithm suggest default values 
for the hyper-parameters. For some data sets, the use of these 
default values produce classification models with good predic­
tive performance. Therefore, deciding if the optimization of 
the hyper-parameters will improve model accuracy compared 
to the default values is an important decision to reduce the 
computation cost. 

This study investigates the development of a recommenda­
tion system able to predict whether a hyper-parameter tuning 
process is necessary when SVMs are applied to a new data 
set. This recommendation system is based on Meta-learning 
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(MTL) [4] ideas to induce a classification model that, based 
on the characteristics of a data set, recommends the tuning of 
the hyper-parameters or the use of default values. MTL has 
frequently been employed to select [5], rank [6], or predict [7] 
the performance of ML algorithms on a new data set. 

The recommendation system proposed here consists of 
three steps. First, we create a meta-data set where the pre­
dictive features consist of characteristics (meta-features) from 
many data sets, and the target feature indicates whether or not 
optimization techniques proved useful on that data set. Next, 
a meta-model is induced from this meta-data set. Then, this 
model can be employed to predict whether an optimization 
technique should be used to tune the hyper-parameter values 
for a new data set. 

Three meta-heuristics for parameter optimization were in­
vestigated in the experiments: Genetic Algorithm (GA) [8], 
Particle Swarm Optimization (PSO) [9] and Estimation of 
Distribution Algorithms (EDA) [10]. GA and PSO are often 
explored in related work, while EDA has attracted the attention 
of the conununity in recent years. Of course, there exist many 
more techniques for optimization, even some that are more 
time-efficient [11], [12], but their optimization performance is 
typically similar to that of the meta-heuristics used here, given 
sufficient computation time. We compare the performance of 
the optimized models with the models generated using default 
hyper-parameter values provided by Weka [13] and LIBSVM 
[14]. 

This paper is structured as follows: section II contextualizes 
the hyper-parameter tuning problem and presents related work. 
Section III presents our experimental methodology and steps 
covered to obtain the results, which are discussed in section 
IV. The last section presents our conclusions and future work. 

II. RELATED WORK 

Finding a good configuration for the hyper-parameters of 
a ML algorithm requires specific knowledge, intuition and, 
often, trial and error. In [15], the tuning of hyper-parameters 
is seen as an optimization problem, aiming to optimize the 
predictive performance (e.g., accuracy) of the models induced 
by the algorithm. 



Many deterministic and probabilistic techniques have been 
proposed for the optimization of hyper-parameters of ML 
algorithms. Among the deterministic techniques, Grid Search 
(GS) is often used due to its simplicity and good results 
in previous studies [16]. GS is an exhaustive search method 
that requires the discretization of the hyper-parameters space. 
Hence, if execution time is important, it may not be a good 
choice. It may also yield suboptimal results for numeric hyper­
parameters because not all values are considered. Although 
more robust deterministic techniques have been proposed, GS 
is still the most used [3]. 

For optimization problems of high dimensionality (with 
many hyper-parameters) and large data sets, GS becomes 
computationally infeasible. In these scenarios, probabilistic 
optimization methods, such as GAs, are generally preferred 
[17]. Other authors explored the use of Pattern Search (PS) 
[18], gradient descent [1], or simple but effective techniques 
such as Random Search (RS) [16]. Other approaches are 
model-based, and aim to model the effects of parameters based 
on the outcomes of previous evaluations. These include local 
search (ParamILS [19]), estimation of distributions (REVAC 
[20]) and Bayesian optimization [21]. 

MTL has also been used to adjust the hyper-parameters of 
ML algorithms. One approach is to regard different parameter 
settings as independent algorithms and predict the best setting 
based on characteristics of the data set in question [22], [23]. 
In these cases, the parameter settings are predicted without 
actually evaluating the model on the new data set. In [7], [24], 
MTL is used to estimate the training time of classification 
algorithms for different hyper-parameter configurations. 

Other studies combined MTL with optimization techniques 
for the selection of hyper-parameter values [25]-[28]. In these 
studies, MTL recommends hyper-parameter values for the 
initial population of a search technique, leading optimization 
methods to a faster convergence. 

Another MTL approach, named Active Testing [29], [30], 
selects the algorithm and its hyper-parameters simultaneously. 
It uses the evaluations of all hyper-parameter settings tested 
on the new data set, and all evaluations on prior data sets, to 
select the best new candidate algorithm-parameter combination 
in the next iteration. This procedure has also been employed 
for the hyper-parameter tuning of SVMs specifically [31]. 

The use of MTL to predict when hyper-parameters should 
be tuned was also studied by [32]. However, the investigation 
performed here contains some important differences: 

• meta-labels were defined according to a conservative 
rule, instead of an empirical threshold [32]; 

• we analyzed a larger number of meta-heuristics 
(MTHs) in order to verify whether this SVM tuning 
problem is dependent on the technique; 

• an additional set of meta-features, namely data com­
plexity meta-features, was investigated in this paper; 

• in evaluating our techniques, we used two alternative 
default hyper-parameter values as baselines 

• although we used a smaller quantity of data sets (143 
vs. 326), we considered both binary and multi-class 
problems instead of only binary problems. 

TABLE l. SYM HYPER-PARAMETER RANGE VALUES ADOPTED [34]. 

Hyper-parameter 

cost (C) 

gamma (,) 

Maximum 

III. EXPERIMENTAL METHODOLOGY 

To predict and understand in which cases optimizing SVM 
hyper-parameters is better than using the default values, we 
evaluate the predictive performance of models induced by 
SVMs on 143 public data sets using the meta-heuristics 
(MTHs) GA, PSO and EDA to tune SVM's hyper-parameters. 
The predictive performance is compared to the default values 
provided by the Weka [13] and LIBSVM library [14] (labelled 
DF-WEKA and DF-LIBSVM, respectively). 

For the MTHs, each individual is a pair of real values 
representing the SVM hyper-parameter C (cost) and the width 
of the Gaussian kernel ,. Only the Gaussian kernel is consid­
ered here because it usually achieves good performance, can 
handle nonlinear decision boundaries, and has less numerical 
difficulties than other kernel functions (e.g. the value of 
the polynomial kernel may be infinite) [33]. The predictive 
accuracy obtained by the induced model was used as the 
fitness measure for all optimization techniques. Higher fitness 
values indicate better predictive performance, i.e., better hyper­
parameter values. Table I shows the range of values for C and 
, [34]. 

Figure 1 illustrates the MTL framework. In the hyper­
parameter tuning process (Item 2), the performance of the 
base-level SVM models on the data sets (Item 1) is evaluated 
using a k fold cross-validation [27]. This k-CV methodology 
splits each data set into training, validation and test sets. 
Whenever a tuning technique is executed, the data set is 
divided into k stratified folds. For each candidate solution 
found by a MTH, the SVM technique is trained with k - 2 
folds (training folds). One of the remaining folds, referred to as 
validation fold, is used to select the optimal hyper-parameter 
setting, i.e., the setting that induced the model with the best 
predictive performance for this validation fold. Finally, the 
other remaining fold, referred as test fold, is used to evaluate 
the optimized model on new, previously unseen, data. 

A. Data sets 

For the experiments, 143 classification data sets with 
different characteristics were collected from the VCI repository 
(Figure 1 - Item 1). These data sets, listed in Table II, were 
characterized by extracting a set of meta-features (Figure 1 -
Item 3), each describing an aspect of the data set (see Section 
III-C). 

B. Hyper-parameter tuning process 

In a hyper-parameter optimization task, time is an impor­
tant factor to be considered in practical scenarios. Several 
authors have mentioned that the tuning process may take many 
hours to find good hyper-parameter values for a single data 
set [27], [32]. Thus, researchers and users of ML algorithms 
frequently do not tune their hyper-parameters. 

We have performed MTH optimization using different 
budget sizes, from 50 to 10 000 evaluations of the fitness func­
tion. Results suggested that when we increase the number of 
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Fig. 1. Overview of the evaluation procedure Meta-learning for hyper-parameter prediction (when or not to tune). 

1. abalone-3c1ass 
6. acute-inflammations-urinary 
11. autoUniv-aul-lOO 
16. autoUniv-au7-300-drift-au7-cpdl-800 
21. ballons-adult-stretch 
26. blogger 
31. bupa 
36. conneclionist-vowel1-reduced 
41. digits2 
46. fertility-diagnosis 
51. habermans-suervival 
56. heart-disease-reprocessed-hungarian 
61. indian-liver-patient 
66. led7digit 
71. monksl 
76. planning-relax 
81. robot-failure-lp3 
86. robot-nav-sensor-readings-4 
91. shuttle-landing-contrOl 
%. statiog-austraJian-credit 
101. statlog-landsat-satellite 
106. texture 
111. thyroid-allrep 
116. thyroid-sick-euthyroid 
121. user-knowledge 
126. volcanoes-a3 
131. volcanos-e4 
136. wdbc 

2. abalone-7class 
7. annealing 

TABLE I!. 

12. autoUniv-au4-2500 
17. autoUniv-au7-700 
22. ballons-yellow-smaU+adult-stretch 
27. blood-transfusion-service 
32. climate-simulation-craches 
37. connectionist-vowell 
42. dresses-sales 
47. flags 
52. heart-disease-processed-cleveland 
57. hepatitis 
62 ionosphere 
67. lenses 
72. monks2 
77. qsar-biodegradation 
82. robot-failure-lp4 
87. saheart 
92. spam base 
97. statlog-gerrnan-credit-numeric 
102. statlog-vehicle-silhoueues 
107. thoracic-surgery 
112. thyroid-ann 
117. thyroid-sick 
122. vertebra-coluOln-2c 
127. volcanoes-a4 
132. volcanos-e5 
137. wholesale-channel 
141. wine-quaJity-white-5class 

VCI DATA SETS USED IN EXPERIMENTS 

Data sets 
3. abalone-I lclass 
8. appendicitis 
13. autoUniv-au6-IOOO 
18. autoUniv-au7-epdl-SOO 
23. ballons-yellow-small 
28. breast-cancer-wisconsin 
33. cOlc 
38. credit-approval 
43. ecoti 
48. flare 
53. heart-disease-processed-hungarian 
58. hill-valey-with-noise 
63. iris 
68. leukemia-has linger 
73. monks3 
78. qualitative-bankruptcy 
83. robot-failure-lpS 
88. seeds 
93. speet-heart 
98. statlog-gerrnan-credit 
103. steel-plates-faults 
108. thyroid-alldp 
113. thyroid-dis 
118. tica-tac-toe 
123. vertebra-coluOln-3c 
128. volcanoes-e l 
133. voting 
138. wholesale-region 
142. wine 

4. abalone-28class 
9. arrhythmia 
14. autoUniv-au6-drift-au6-cdl-500 
19. balance-scale 
24. banana 
29. breast-tissue-4class 
34. eolon32 
39. dbworld-subjects-stemmed 
44. energy-effieienty-yl 
49. glass 
54. heart-disease-processed-switzerland 
59. hill-vaUey-without-noise 
64. kr-ve-kp 
69. lymphography 
74. parklnsons 
79. robot-failure-Ipl 
84. robot-nav-sensor-readings-2 
89. seismic-bumps 
94. spectf-heart 
99. statlog-heart 
104. systhetic-control 
109. thyroid-allhyper 
114. thyroid-hypothyroid 
119. trains 
124. volcanoes-a l 
129. volcanoes-e2 
134. waveform-vi 
139. wilt 
143. wpbc 

5. accute-inflammations-nephritis 
10. audiology 
15. autoUniv-au6-cdl-400 
20. balloons-adulHstretch 
25. banknote-authentication 
30. breast-tissue-6class 
35. connectionist-Olines-vs-rocks 
40. dermatology 
45. energy-effieiency-y2 
50. gliomal6  
55. heart-disease-processed-va 
60. horsec-otic-surgical 
65. leaf 
70. molecular-promotor-gene 
75. piOla-indian-diabetes 
80. robot-failure-lp2 
85. robot-nav-sensor-readings-24 
90. semeion 
95. spectometer 
100. statlog-image-segmentation 
105. teaching-assistant-evaluation 
110. thyroid-allhypo 
115. thyroid-newthyroid 
120. turkiye-student 
125. volcanoes-a2 
130. volcanoes-e3 
135. waveform-v2 
140. wine-quality-red 

evaluations, the generalization power (test accuracy) decreases 
for imbalanced data sets, and improves for more balanced 
data sets. This behavior suggests that overfitting occurs for the 
imbalanced data sets while there were small gains for balanced 
data sets. 

Furthermore, we noted that while we allowed a large 
number of optimization iterations, MTHs already converged to 
a common solution after few iterations. This result can be ex­
plained by the relatively small search space, and consequently, 
the low complexity of the optimization problem, since we are 
tuning only two hyper-parameters. Based on these results, we 
decided to use a restricted budget of 200 evaluations when 
performing experiments with SVMs in particular. 

Returning to Figure 1, the hyper-parameter tuning process 
(Item 2) provides the information needed to define the target 
values (labels) on the meta-data set. The target values depend 
on the predictive performance of the induced models with and 
without hyper-parameter tuning by MTHs. In the experiments, 
all MTHs were run over the 143 data sets for SVM hyper­
parameter tuning with the same initial configuration: 20 in­
dividuals in the initial population and at most 10 iterations. 
Thus, the MTHs can evaluate 200 different combinations of 
hyper-parameter values (individuals) per execution. 

The MTHs GA, PSO and EDA were implemented in R 
using packages "GA", "pso", and "copulaedas", respectively. 



TABLE III. WIN-TIE-Loss OF THE OPTIMIZATION TECHNIQUES FOR 

143 DATA SETS. 

Technique Win Tie Loss 

GA 2 121 20 
PSO I 125 17 
EDA 2 117 24 
DF-LmSVM 0 10 123 
DF-WEKA 2 20 121 

They available on CRANI. The parameter values for GA and 
PSO were chosen base on [34]. We used an EDA with a 
Gaussian copula function (GCEDA) [10]. Its parameter values 
are the default values provided by the package. 

Each technique was run 30 times for each data set, return­
ing the mean and standard deviation of the accuracies on both 
the validation and test partitions. In each of the executions, 
the initial population of MTHs was started randomly. The 
predictive performance of the models induced by the tuned 
SVMs was compared with models induced by SVMs using 
the default values provided by DF-WEKA and DF-LIBSVM. 

To statistically analyse the optimization effect over all data 
sets, the Friedman statistical test with the Nemenyi post-hoc 
test and a confidence level of 95% was applied. According 
to the test, all the MTHs found overall significantly better 
hyper-parameter values than the default values (DF-WEKA, 
DF-LIBSVM). Moreover, the test showed that there is no 
significant difference in the predictive performance among the 
MTHs. All tuning techniques presented very similar accura­
cies, with a small standard deviation (about 0.01 to 0.03) over 
the executions. Table III shows win-tie-Ioss occurrences in 
base-level learning. A technique 'wins' if its Friedman rank 
on a dataset is one critical difference better than the next 
technique. The critical difference is defined by the Nemenyi 
test over all datasets. 

The use of MTHs to tune the hyper-parameters increased 
the computational cost by around 600 times compared to the 
use of the default values. Therefore, for some data sets, the 
default parameter values can be used to significantly lower the 
computational cost, with relatively little accuracy loss. 

C. Meta-features 

The meta-data set (Figure 1 - Item 5) is constructed out 
of the meta-features (Figure 1 - Item 3) of the 143 data sets, 
and the results of the SVM hyper-parameter tuning process 
described earlier. Since each data set results in one meta­
example, the meta-data set is composed out of 143 unlabeled 
meta-examples, each one representing one of the original data 
sets. Two meta-data sets were created according to the meta­
features used to describe the data sets: 

• one with 17 STATLOG meta-features, originally used 
in the STATLOG project [35], and later in many 
similar studies [22], [25], [26]. These meta-features 
are simple measures based on statistics, such as the 
number of classes, number of attributes, class distri­
bution and so on; 

• one with 13 data complexity meta-features: based on 
data complexity measures [36], [37] that have been ex­
plored in some recent work [38]-[40]. These measures 

I http://cran.r-project.org/ 

TABLE IV. META-FEATURES USED IN EXPERIMENTS. 

Type 

STAT 
STAT 
STAT 
STAT 
STAT 
STAT 
STAT 
STAT 
STAT 
STAT 
STAT 
STAT 
STAT 
STAT 
STAT 
STAT 
STAT 

COMP 
COMP 
COMP 
COMP 
COMP 
COMP 
COMP 
COMP 
COMP 
COMP 
COMP 
COMP 
COMP 

Name 

#cls 
#attr 

#NumAttr 
#NomAttr 

#smpl 
#dim 

#NumRate 
#NomRate 
#SymMin 
#SymMax 
#SymAvg 
#SymSd 

#SymSum 
%Cmin 
%Cmax 

%CMean 
%CSd 

FI 
F2 
F3 
L l  
L2 
L3 
NI 
N2 
N3 
N4 
T l  

F l v  
F4 

Meta-feature 

Number of classes 
Number of attributes 
Number of numeric attributes 
Number of nominal (symbolic) attributes 
Number of samples 
Dimensionality (attributes / samples) 
Numerical attributes rate 
Nominal attributes rate 
Minimum number of levels of the symbolic attributes 
Maximum number of levels of the symbolic attributes 
Average number of levels of the symbolic attributes 
Standard deviation of levels of the symbolic attributes 
Total number of levels of the symbolic attributes 
Percentage of elements of the minority class 
Percentage of elements of the majority class 
Average number of elements by class 
Standard deviation of elements by class 
Fisher's discriminant ratio 
Overlapping the per-class bounding boxes 
Maximum individual feature efficiency 
Distance of erroneous instances to a linear classifiers 
Training error of a linear classifier 
Non-linearity of a linear classifier 
Fraction of points lying on the class boundary 
Average intra/inter class nearest neighbor distances 
LOO error rate of the 1-NN 
Non-linearity of the I-NN 
Fraction of maximum covering spheres on data 
Fisher's discriminant ratio 
Collective Feature Efficiency 

analyze the complexity of a classification problem 
considering the overlap in the feature values, the 
separability of the classes, and geometry/topological 
properties. 

All the meta-features are listed in Table IV. The last meta­
feature is the target, whose values indicate if the hyper­
parameter tuning improves the predictive performance of the 
model or not. The target values are equal for both meta­
databases. These values were defined according to the rule 
described in the next subsection. 

D. Meta-data set 

In order to label the meta-examples of the meta-data set, we 
followed a confidence interval rule (Figure 1 - Item 4). Given 
a data set x, the best MTH M and the best DF D obtained 
for x, the deviation of M and D techniques are defined by: 

J.L(M(x)) - a(M(x)) 
J.L(D(x)) + a(D(x)) 

(1) 

where J.L is the averaged accuracy and a is the standard 
deviation over the 30 executions of the technique. A meta­
example x' created from x receives a label according to the 
rule: 

L(x') = { �JN, if (Mdev(X') - Ddev(X')) :s; 0, 
otherwise. 

(2) 

Thus, if the difference between the ranges of the best MTH 
(black ball on Figure 1 - Item 4) and best DF (red ones) for 
a meta-example is smaller than or equal to zero, the meta­
example receives the label 'DF'. Otherwise, it receives the 
label 'TUN', meaning that a tuning step is recommended. With 
these labels and the meta-features previously computed, we 
obtain the meta-data set. 



E. Meta-learner 

Six ML classification algorithms were used as meta­
learners (Figure 1 - Item 6): J48 Decision Tree (148), Na·ive 
Bayes (NB), k-Nearest Neighbors (k-NN) with k = 3, Mul­
tilayer Perceptron (MLP), Random Forest (RF) and Support 
Vector Machines (SVM). These techniques follow different 
learning paradigms, each representing a distinct bias, and may 
result in different predictions. 

An ensemble was also built with the predictions from 
these classifiers (ENS). The ensemble prediction is defined by 
majority voting. Since there is an even number of classifiers, 
ties are broken by choosing the majority class (TUN'). The 
meta-learners were evaluated based on the following measures: 
classification error rate, precision, recall and F-Score. 

F MTL experiments 

Based on our confidence interval rule (2), 46 of the 143 
data sets were labeled with the DF class: the induced models 
presented a predictive performance similar to those induced 
when the hyper-parameters were tuned by the optimization 
techniques. The other 97 meta-examples received the label 
of the tuning ( TUN) class. Due to the small number of 
meta-examples, the Leave-One-Out Cross-Validation (LOO­
CV) methodology was adopted to evaluate the predictive 
performance of the meta-learners. 

At each LOO-CV iteration a single meta-example (testing 
partition) represents the new unknown data set (Figure 1 - Item 
7) for which the meta-features are known but not the actual 
target label (to tune or not to tune). The training partition of the 
meta-learner uses all 142 remaining meta-examples, already 
labeled according to the meta-label rule. Thus, the meta-learner 
will predict whether the use of default values for SVM hyper­
parameters on the new test data set is the best alternative 
(Figure 1 - Item 8). The accuracy measures of the meta-learner 
are averaged over all LOO-CV iterations/executions. 

IV. EXPERIMENTAL RESULTS 

According to some studies, the hyper-parameters of SVMs 
should always be tuned when looking for the best predictive 
performance [14], [25], [27]. Conversely, other studies reported 
experimental results where the default values provided pre­
dictive performances similar to those obtained by optimized 
hyper-parameters [3]. In this section, the main empirical re­
sults are presented and discussed. We run meta-learners twice 
considering the two meta-data sets: one with simple STATLOG 
measures, and another one with data complexity measures. 

A. MTL predictive performance 

Table V summarizes the predictive performance obtained 
by the meta-learners. The first column contains the ML algo­
rithms used as meta-learner. The second one emphasizes the 
meta-feature set used to describe the meta-examples. Subse­
quent columns present the results for different performance 
measures: mean classification error rate, precision, recall, and 
F-Score. Since the meta-database is imbalanced, with 32% of 
the examples in the minority class, a trivial classifier would 
have a mean classification error rate equal to 0.322. 

TABLE Y. META-LEARNING RESULTS WITH STATLOG AND 

COMPLEXITY META-FEATURES AND LOO-Cy' 

Classifier Meta-feature Set Error Precision Recall F-Score 

J48 STATLOG 0.252 0.667 0.435 0.526 
MLP STATLOG 0.266 0.643 0.391 0.486 

NB STATLOG 0.455 0.408 0.913 0.564 

3-NN STATLOG 0.238 0.625 0.652 0.638 
RF STATLOG 0.196 0.765 0.565 0.650 

SVM STATLOG 0.245 0.867 0.283 0.426 
ENS STATLOG 0.182 0.750 0.652 0.698 

J48 COMPLEXITY 0.308 0.538 0.304 0.389 
MLP COMPLEXITY 0.266 0.611 0.478 0.537 

NB COMPLEXITY 0.476 0.369 0.674 0.477 
3-NN COMPLEXITY 0.266 0.571 0.696 0.627 

RF COMPLEXITY 0.259 0.645 0.435 0.519 
SVM COMPLEXITY 0.203 0.947 0.391 0.554 
ENS COMPLEXITY 0.252 0.639 0.500 0.561 

In this recommendation problem, a false positive (FP) is a 
wrong recOlmnendation to use default hyper-parameter values 
and a false negative (FN) is a wrong recommendation to use 
tuned hyper-parameter values. If the predictive performance 
is more important that runtime, a 'false positive - FP' is 
considered worse than a FN, because it would result in SVMs 
with lower predictive performance. In this case, we should 
look at precision values in Table V. The best precision value 
was obtained by the SVM algorithm performed on meta-data 
generated by data complexity meta-features. 

On the other hand, if processing time is more important, the 
recall values should be used. Although the induced SVMs will 
probably be less accurate, the time required for their induction 
will be smaller. The NB algorithm trained on STATLOG 
measures obtained the highest recall value in our experiments, 
but presented a low precision value, due to the high number 
of FPs in predictions. 

In table V, we can also observe some low recall values. 
This might be due the class imbalance, making it difficult 
to predict the minority class. Correcting the class balancing 
may be not enough to solve the problem. An alternative 
approach would be to define more meta-features to extract 
more information and help in the prediction. 

A more general picture of the meta-learner's predictive 
performance is provided by the F-Score measure, which is 
a balance between precision and recall measures. According 
to these values, ENS using STATLOG meta-features was the 
best overall. The 3-NN with data complexity meta-features also 
obtained a high F-Score value. 

B. Hits and Misses 

Figure 2 depicts the hits and misses of all meta-models over 
all meta-examples. The y-axis represents the meta-models: the 
algorithm and the set of meta-features used in executions. 
STAT denotes a meta-model built with STATLOG meta­
features, and COMP with data complexity ones. The x-axis 
represents all the 143 meta-examples of the meta-database. In 
the figure, a hit is represented by a light gray square, and a 
miss by a black one. 

Here, we can observe that only one dataset is misclassified 
for all meta-models: 'robot-failure-lp4' (it has 116 examples, 
90 attributes and 61% of elements in the majority class). Few 
datasets are classified correctly by all meta-models. The RF 
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Fig. 2. Hits and erros of all meta-learners in 143 meta-examples. 

Fig. 3. The frequency of each attribute were selected by 148 models. 

and SVM algorithms are correct on a lot of datasets, but 
classify several cases differently. 

There are a few gains made by the ensemble (ENS) and its 
predictions present a pattern similar to the RF. The exception 
is the NB algorithm, which is a good complement of the other 
techniques. It hits almost all of DF meta-examples, but misses 
a lot of TUN examples. In general, there is no improvement 
obtained by using only data complexity meta-features. 

C. Looking for patterns 

The meta-database can also be used to analyze which 
dataset characteristics can help us decide whether the default 
hyper-parameter values are a good choice for the given dataset, 
or not. In Figure 4, we show a meta-decision tree, trained 
on the meta-data set, predicting when tuning is definitely 
recommended. 

Figure 3 shows the frequency with which each attribute 
was selected by the induced decision trees. Only the attributes 
that were selected at least once are shown. Since the meta-data 

set has 143 meta-examples, each attribute can be selected up 
to 143 times using LOO-CY. 

The meta-attributes selected with the highest frequency 
in the models induced with STATLOG meta-features were: 
%CMax (percentage of examples in the majority class), #Nu­
mAttr (number of numerical predictive attributes), #cls (num­
ber of classes), #attr (number of predictive attributes), and 
%CMin (percentage of examples in the minority class). 

The decision tree in Figure 4 was the most frequently 
induced during the meta-level learning. This decision tree was 
generated 139 times and has 15 nodes, 8 of them leaf nodes. 
The predictive attribute most frequently selected as root node 
was %CMax, and obtained an accuracy value of 0.881. 

The tree shows that if a data set is highly imbalanced, with 
more than 79% of the examples in the majority class, the meta­
learner usually recommends the use of default hyper-parameter 
values. Perhaps, the tuning does not work well for imbalanced 
datasets, so performing the tuning process without a balancing 
method will not adequately improve the SVM accuracy. 

The second-most important meta-feature is the number of 
predictive attributes. When there is a large number of predic­
tive attributes, tuning becomes important. For large numbers 
of predictive attributes, SVMs tend to overfit. In order to deal 
with this problem, the gamma parameter needs to be wider 
(set to a lower value). This issue was previously reported and 
explained in [41], [42]. Indeed, reconunending the tuning when 
a dataset has many attributes (#attr > 13) might make sense 
if we consider the SVM data normalization process (carried 
out internally by LIBSVM). Although LIBSVM takes it into 
account by using "( = lip as the default value, tuning is still 
recommended. Even so, this rule should not be taken as a 
golden rule, since this may be due to learning artifacts from 
the involved datasets. 

The tree also recommends tuning when the proportion of 
numerical attributes is low (#NumAttr � 11). In general, 
all categorical/factor attributes are converted into a binary 
encoding. In such a mixed/discrete space, 'non default' kernel 
hyper-parameter values might make more sense here then 
in the purely numerical case, as distances and geometrical 
properties will work differently. 

We also looked at the importance of the attributes in the 



Fig. 4. The most frequent decision tree obtained by the J48 algorithm. 

RF models. We analyzed only the RF-STAT meta-models 
since their predictions were better than those obtained by RF­
COMP ones. We got a sorted vector from models with values 
indicating the mean decrease in accuracy when removing a 
specific attribute. The most significant attribute was %CMax, 
followed by %CSd and #attr. This corroborates what we 
observed in the decision tree models. Even while being a 
simpler and less accurate, decision trees allow a insight of 
the behavior of the learning process on the meta-level. 

D. Overall considerations 

The SVM hyper-parameter (C) and the width of the 
Gaussian kernel (,) have been shown to be interdependent. 
There is no truly global optimum for this optimization, but 
instead there is a ridge of optimal solutions: if C goes up, , 
can be adjusted to reach the same performance again. So, we 
defined a conservative confidence interval rule when choosing 
the class for meta-examples. It followed some conservative 
and empirical steps. Decision trees were induced to explain 
which characteristics from a data set could justify when one 
hyper-parameter setting approach should be favoured. 

In [32] authors have found that the NNI meta-feature 
(performance of a I-NN algorithms on that data set) was the 
root node of the tree in meta-level. In our study we found a 
different meta-feature in the root node: %CMax, the percentage 
of examples in the majority class. Our tree shows that if data 
is highly imbalanced, the meta-learner tends to recommend 
the use of default hyper-parameter values. When analyzing 
RF meta-models, we observed that %Cmax and #attr were of 
great importance in the accuracy of these meta-models. Other 
experiments should be conducted to verify if the addition of 
the meta-feature NNI on the set of meta-features evaluated in 
this paper will lead to a higher predictive performance of the 
meta-models. 

V. CONCLUSIONS 

This paper investigated the use of MTL to induce a 
classification model able to predict with a high predictive 
accuracy when optimization techniques should be used for 
tuning the hyper-parameters of SVMs instead of using default 
values suggested by both a well-known SVM library and a ML 
tool. 

Experiments with MTHs using 143 data sets from the UCI 
repository were carried out to evaluate the effect of hyper­
parameter tuning. From these experiments, a meta-data set 
was created for the induction of meta-models able to predict 
with high predictive performance when hyper-parameter tun­
ing should be used instead of default values. Different ML 
algorithms, mainly RF and ENS, presented good prediction 
rates, better than the use of a single classifier. 

Observing the most frequent decision tree, we claim that 
a small number of simple meta-features was sufficient to 
characterize the data sets. According to this decision tree, 
for highly imbalanced data sets, tuning does not obtain much 
higher performance. Probably, the tuning process might not 
work well for imbalanced datasets, so performing the tuning 
without a balancing method can not improve SVM accuracy. 

As future work, we intend to investigate different ap­
proaches to extract meta-features and expand the number of 
data sets. We also plan to explore other methodologies on the 
meta level, including data balancing and meta-feature selection 
process to find the most relevant meta-features. Moreover, we 
should include a significance test to define the meta-target, 
and include experiments with other classification algorithms 
instead of SVMs, such as decision trees and Deep Learning 
algorithms, which have a larger number of sensitive hyper­
parameters. Finally, we aim to make all our experiments avail­
able on OpenML [43], [44] for reproducibility and reusability. 
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