

 Universidade de São Paulo

2015-07

To tune or not to tune: recommending when to

adjust SVM hyper-parameters via meta-

learning

International Joint Conference on Neural Network, 2015, Killarney.
http://www.producao.usp.br/handle/BDPI/49273

Downloaded from: Biblioteca Digital da Produção Intelectual - BDPI, Universidade de São Paulo

Biblioteca Digital da Produção Intelectual - BDPI

Departamento de Ciências de Computação - ICMC/SCC Comunicações em Eventos - ICMC/SCC

http://www.producao.usp.br
http://www.producao.usp.br/handle/BDPI/49273

To tune or not to tune: recommending when to
adjust SVM hyper-parameters via Meta-learning

Rafael G. Mantovani *, Andre L. D. Rossi t, Joaquin Vanschoren t, Bernd Bischl § and Andre C. P. L. F. Carvalho *

* Universidade de Sao Paulo (USP), Sao Carlos - SP, Brazil
Email: {rgmantov.andre}@icmc.usp.br

t Universidade Estadual Paulista (UNESP), Itapeva - SP, Brazil
Email: alrossi@itapeva.unesp.br

t Eindhoven University of Technology (TU/e), Eindhoven, The Netherlands
Email: j.vanschoren@tue.nl

§ Ludwig-Maximilians-University Munich, Germany
Email: bernd.bischl@stat.uni-muenchen.de

Abstract-Many classification algorithms, such as Neural Net­
works and Support Vector Machines, have a range of hyper­
parameters that may strongly affect the predictive performance
of the models induced by them. Hence, it is recommended to
define the values of these hyper-parameters using optimization
techniques. While these techniques usually converge to a good
set of values, they typically have a high computational cost,
because many candidate sets of values are evaluated during the
optimization process. It is often not clear whether this will result
in parameter settings that are significantly better than the default
settings. When training time is limited, it may help to know
when these parameters should definitely be tuned. In this study,
we use meta-learning to predict when optimization techniques are
expected to lead to models whose predictive performance is better
than those obtained by using default parameter settings. Hence,
we can choose to employ optimization techniques only when they
are expected to improve performance, thus reducing the overall
computational cost. We evaluate these meta-learning techniques
on more than one hundred data sets. The experimental results
show that it is possible to accurately predict when optimization
techniques should be used instead of default values suggested by
some machine learning libraries.

I. INTRODUCTION

The predictive performance of a Machine Learning (ML)
algorithm is usually influenced by the choice of the values
of its hyper-parameters. Several studies have been investigat­
ing optimization techniques to optimize the hyper-parameters
of Support Vector Machines (SVMs) for data classification
problems [1]-[3]. However, the optimization of SVMs' hyper­
parameters usually has a high computational cost, since a large
number of candidate solutions needs to be evaluated. Some
tools implementing this ML algorithm suggest default values
for the hyper-parameters. For some data sets, the use of these
default values produce classification models with good predic­
tive performance. Therefore, deciding if the optimization of
the hyper-parameters will improve model accuracy compared
to the default values is an important decision to reduce the
computation cost.

This study investigates the development of a recommenda­
tion system able to predict whether a hyper-parameter tuning
process is necessary when SVMs are applied to a new data
set. This recommendation system is based on Meta-learning

978-1-4799-1959-8/15/$31.00 @2015 IEEE

(MTL) [4] ideas to induce a classification model that, based
on the characteristics of a data set, recommends the tuning of
the hyper-parameters or the use of default values. MTL has
frequently been employed to select [5], rank [6], or predict [7]
the performance of ML algorithms on a new data set.

The recommendation system proposed here consists of
three steps. First, we create a meta-data set where the pre­
dictive features consist of characteristics (meta-features) from
many data sets, and the target feature indicates whether or not
optimization techniques proved useful on that data set. Next,
a meta-model is induced from this meta-data set. Then, this
model can be employed to predict whether an optimization
technique should be used to tune the hyper-parameter values
for a new data set.

Three meta-heuristics for parameter optimization were in­
vestigated in the experiments: Genetic Algorithm (GA) [8],
Particle Swarm Optimization (PSO) [9] and Estimation of
Distribution Algorithms (EDA) [10]. GA and PSO are often
explored in related work, while EDA has attracted the attention
of the conununity in recent years. Of course, there exist many
more techniques for optimization, even some that are more
time-efficient [11], [12], but their optimization performance is
typically similar to that of the meta-heuristics used here, given
sufficient computation time. We compare the performance of
the optimized models with the models generated using default
hyper-parameter values provided by Weka [13] and LIBSVM
[14].

This paper is structured as follows: section II contextualizes
the hyper-parameter tuning problem and presents related work.
Section III presents our experimental methodology and steps
covered to obtain the results, which are discussed in section
IV. The last section presents our conclusions and future work.

II. RELATED WORK

Finding a good configuration for the hyper-parameters of
a ML algorithm requires specific knowledge, intuition and,
often, trial and error. In [15], the tuning of hyper-parameters
is seen as an optimization problem, aiming to optimize the
predictive performance (e.g., accuracy) of the models induced
by the algorithm.

Many deterministic and probabilistic techniques have been
proposed for the optimization of hyper-parameters of ML
algorithms. Among the deterministic techniques, Grid Search
(GS) is often used due to its simplicity and good results
in previous studies [16]. GS is an exhaustive search method
that requires the discretization of the hyper-parameters space.
Hence, if execution time is important, it may not be a good
choice. It may also yield suboptimal results for numeric hyper­
parameters because not all values are considered. Although
more robust deterministic techniques have been proposed, GS
is still the most used [3].

For optimization problems of high dimensionality (with
many hyper-parameters) and large data sets, GS becomes
computationally infeasible. In these scenarios, probabilistic
optimization methods, such as GAs, are generally preferred
[17]. Other authors explored the use of Pattern Search (PS)
[18], gradient descent [1], or simple but effective techniques
such as Random Search (RS) [16]. Other approaches are
model-based, and aim to model the effects of parameters based
on the outcomes of previous evaluations. These include local
search (ParamILS [19]), estimation of distributions (REVAC
[20]) and Bayesian optimization [21].

MTL has also been used to adjust the hyper-parameters of
ML algorithms. One approach is to regard different parameter
settings as independent algorithms and predict the best setting
based on characteristics of the data set in question [22], [23].
In these cases, the parameter settings are predicted without
actually evaluating the model on the new data set. In [7], [24],
MTL is used to estimate the training time of classification
algorithms for different hyper-parameter configurations.

Other studies combined MTL with optimization techniques
for the selection of hyper-parameter values [25]-[28]. In these
studies, MTL recommends hyper-parameter values for the
initial population of a search technique, leading optimization
methods to a faster convergence.

Another MTL approach, named Active Testing [29], [30],
selects the algorithm and its hyper-parameters simultaneously.
It uses the evaluations of all hyper-parameter settings tested
on the new data set, and all evaluations on prior data sets, to
select the best new candidate algorithm-parameter combination
in the next iteration. This procedure has also been employed
for the hyper-parameter tuning of SVMs specifically [31].

The use of MTL to predict when hyper-parameters should
be tuned was also studied by [32]. However, the investigation
performed here contains some important differences:

• meta-labels were defined according to a conservative
rule, instead of an empirical threshold [32];

• we analyzed a larger number of meta-heuristics
(MTHs) in order to verify whether this SVM tuning
problem is dependent on the technique;

• an additional set of meta-features, namely data com­
plexity meta-features, was investigated in this paper;

• in evaluating our techniques, we used two alternative
default hyper-parameter values as baselines

• although we used a smaller quantity of data sets (143
vs. 326), we considered both binary and multi-class
problems instead of only binary problems.

TABLE l. SYM HYPER-PARAMETER RANGE VALUES ADOPTED [34].

Hyper-parameter

cost (C)

gamma (,)

Maximum

III. EXPERIMENTAL METHODOLOGY

To predict and understand in which cases optimizing SVM
hyper-parameters is better than using the default values, we
evaluate the predictive performance of models induced by
SVMs on 143 public data sets using the meta-heuristics
(MTHs) GA, PSO and EDA to tune SVM's hyper-parameters.
The predictive performance is compared to the default values
provided by the Weka [13] and LIBSVM library [14] (labelled
DF-WEKA and DF-LIBSVM, respectively).

For the MTHs, each individual is a pair of real values
representing the SVM hyper-parameter C (cost) and the width
of the Gaussian kernel ,. Only the Gaussian kernel is consid­
ered here because it usually achieves good performance, can
handle nonlinear decision boundaries, and has less numerical
difficulties than other kernel functions (e.g. the value of
the polynomial kernel may be infinite) [33]. The predictive
accuracy obtained by the induced model was used as the
fitness measure for all optimization techniques. Higher fitness
values indicate better predictive performance, i.e., better hyper­
parameter values. Table I shows the range of values for C and
, [34].

Figure 1 illustrates the MTL framework. In the hyper­
parameter tuning process (Item 2), the performance of the
base-level SVM models on the data sets (Item 1) is evaluated
using a k fold cross-validation [27]. This k-CV methodology
splits each data set into training, validation and test sets.
Whenever a tuning technique is executed, the data set is
divided into k stratified folds. For each candidate solution
found by a MTH, the SVM technique is trained with k - 2
folds (training folds). One of the remaining folds, referred to as
validation fold, is used to select the optimal hyper-parameter
setting, i.e., the setting that induced the model with the best
predictive performance for this validation fold. Finally, the
other remaining fold, referred as test fold, is used to evaluate
the optimized model on new, previously unseen, data.

A. Data sets

For the experiments, 143 classification data sets with
different characteristics were collected from the VCI repository
(Figure 1 - Item 1). These data sets, listed in Table II, were
characterized by extracting a set of meta-features (Figure 1 -
Item 3), each describing an aspect of the data set (see Section
III-C).

B. Hyper-parameter tuning process

In a hyper-parameter optimization task, time is an impor­
tant factor to be considered in practical scenarios. Several
authors have mentioned that the tuning process may take many
hours to find good hyper-parameter values for a single data
set [27], [32]. Thus, researchers and users of ML algorithms
frequently do not tune their hyper-parameters.

We have performed MTH optimization using different
budget sizes, from 50 to 10 000 evaluations of the fitness func­
tion. Results suggested that when we increase the number of

A
B
C

for each dataset and
tuning technique

I
Datasets

8 Hyper-parameter
2 Tuning Process retums best solution •••.•• !\��.��s�.��acy)

Tuning techniques' accuracies
(averaged - 30 runs) •

dataset 0.

B�6�1 �:';�.:i' j��1 r-l---------+:
"" "�'" MOO. ." �, i

averaged validation •• i accuracy guides the search

extracting predictive meta-features

00008

o Meta-database

[" ; :�=�:
c

...................
.... ��==� ____ �

Met

rl

·

1�

ture

G

s

______ .�'��•...... •
D' �

New dataset predictive meta-features
values from new dataset

Fig. 1. Overview of the evaluation procedure Meta-learning for hyper-parameter prediction (when or not to tune).

1. abalone-3c1ass
6. acute-inflammations-urinary
11. autoUniv-aul-lOO
16. autoUniv-au7-300-drift-au7-cpdl-800
21. ballons-adult-stretch
26. blogger
31. bupa
36. conneclionist-vowel1-reduced
41. digits2
46. fertility-diagnosis
51. habermans-suervival
56. heart-disease-reprocessed-hungarian
61. indian-liver-patient
66. led7digit
71. monksl
76. planning-relax
81. robot-failure-lp3
86. robot-nav-sensor-readings-4
91. shuttle-landing-contrOl
%. statiog-austraJian-credit
101. statlog-landsat-satellite
106. texture
111. thyroid-allrep
116. thyroid-sick-euthyroid
121. user-knowledge
126. volcanoes-a3
131. volcanos-e4
136. wdbc

2. abalone-7class
7. annealing

TABLE I!.

12. autoUniv-au4-2500
17. autoUniv-au7-700
22. ballons-yellow-smaU+adult-stretch
27. blood-transfusion-service
32. climate-simulation-craches
37. connectionist-vowell
42. dresses-sales
47. flags
52. heart-disease-processed-cleveland
57. hepatitis
62 ionosphere
67. lenses
72. monks2
77. qsar-biodegradation
82. robot-failure-lp4
87. saheart
92. spam base
97. statlog-gerrnan-credit-numeric
102. statlog-vehicle-silhoueues
107. thoracic-surgery
112. thyroid-ann
117. thyroid-sick
122. vertebra-coluOln-2c
127. volcanoes-a4
132. volcanos-e5
137. wholesale-channel
141. wine-quaJity-white-5class

VCI DATA SETS USED IN EXPERIMENTS

Data sets
3. abalone-I lclass
8. appendicitis
13. autoUniv-au6-IOOO
18. autoUniv-au7-epdl-SOO
23. ballons-yellow-small
28. breast-cancer-wisconsin
33. cOlc
38. credit-approval
43. ecoti
48. flare
53. heart-disease-processed-hungarian
58. hill-valey-with-noise
63. iris
68. leukemia-has linger
73. monks3
78. qualitative-bankruptcy
83. robot-failure-lpS
88. seeds
93. speet-heart
98. statlog-gerrnan-credit
103. steel-plates-faults
108. thyroid-alldp
113. thyroid-dis
118. tica-tac-toe
123. vertebra-coluOln-3c
128. volcanoes-e l
133. voting
138. wholesale-region
142. wine

4. abalone-28class
9. arrhythmia
14. autoUniv-au6-drift-au6-cdl-500
19. balance-scale
24. banana
29. breast-tissue-4class
34. eolon32
39. dbworld-subjects-stemmed
44. energy-effieienty-yl
49. glass
54. heart-disease-processed-switzerland
59. hill-vaUey-without-noise
64. kr-ve-kp
69. lymphography
74. parklnsons
79. robot-failure-Ipl
84. robot-nav-sensor-readings-2
89. seismic-bumps
94. spectf-heart
99. statlog-heart
104. systhetic-control
109. thyroid-allhyper
114. thyroid-hypothyroid
119. trains
124. volcanoes-a l
129. volcanoes-e2
134. waveform-vi
139. wilt
143. wpbc

5. accute-inflammations-nephritis
10. audiology
15. autoUniv-au6-cdl-400
20. balloons-adulHstretch
25. banknote-authentication
30. breast-tissue-6class
35. connectionist-Olines-vs-rocks
40. dermatology
45. energy-effieiency-y2
50. gliomal6
55. heart-disease-processed-va
60. horsec-otic-surgical
65. leaf
70. molecular-promotor-gene
75. piOla-indian-diabetes
80. robot-failure-lp2
85. robot-nav-sensor-readings-24
90. semeion
95. spectometer
100. statlog-image-segmentation
105. teaching-assistant-evaluation
110. thyroid-allhypo
115. thyroid-newthyroid
120. turkiye-student
125. volcanoes-a2
130. volcanoes-e3
135. waveform-v2
140. wine-quality-red

evaluations, the generalization power (test accuracy) decreases
for imbalanced data sets, and improves for more balanced
data sets. This behavior suggests that overfitting occurs for the
imbalanced data sets while there were small gains for balanced
data sets.

Furthermore, we noted that while we allowed a large
number of optimization iterations, MTHs already converged to
a common solution after few iterations. This result can be ex­
plained by the relatively small search space, and consequently,
the low complexity of the optimization problem, since we are
tuning only two hyper-parameters. Based on these results, we
decided to use a restricted budget of 200 evaluations when
performing experiments with SVMs in particular.

Returning to Figure 1, the hyper-parameter tuning process
(Item 2) provides the information needed to define the target
values (labels) on the meta-data set. The target values depend
on the predictive performance of the induced models with and
without hyper-parameter tuning by MTHs. In the experiments,
all MTHs were run over the 143 data sets for SVM hyper­
parameter tuning with the same initial configuration: 20 in­
dividuals in the initial population and at most 10 iterations.
Thus, the MTHs can evaluate 200 different combinations of
hyper-parameter values (individuals) per execution.

The MTHs GA, PSO and EDA were implemented in R
using packages "GA", "pso", and "copulaedas", respectively.

TABLE III. WIN-TIE-Loss OF THE OPTIMIZATION TECHNIQUES FOR

143 DATA SETS.

Technique Win Tie Loss

GA 2 121 20
PSO I 125 17
EDA 2 117 24
DF-LmSVM 0 10 123
DF-WEKA 2 20 121

They available on CRANI. The parameter values for GA and
PSO were chosen base on [34]. We used an EDA with a
Gaussian copula function (GCEDA) [10]. Its parameter values
are the default values provided by the package.

Each technique was run 30 times for each data set, return­
ing the mean and standard deviation of the accuracies on both
the validation and test partitions. In each of the executions,
the initial population of MTHs was started randomly. The
predictive performance of the models induced by the tuned
SVMs was compared with models induced by SVMs using
the default values provided by DF-WEKA and DF-LIBSVM.

To statistically analyse the optimization effect over all data
sets, the Friedman statistical test with the Nemenyi post-hoc
test and a confidence level of 95% was applied. According
to the test, all the MTHs found overall significantly better
hyper-parameter values than the default values (DF-WEKA,
DF-LIBSVM). Moreover, the test showed that there is no
significant difference in the predictive performance among the
MTHs. All tuning techniques presented very similar accura­
cies, with a small standard deviation (about 0.01 to 0.03) over
the executions. Table III shows win-tie-Ioss occurrences in
base-level learning. A technique 'wins' if its Friedman rank
on a dataset is one critical difference better than the next
technique. The critical difference is defined by the Nemenyi
test over all datasets.

The use of MTHs to tune the hyper-parameters increased
the computational cost by around 600 times compared to the
use of the default values. Therefore, for some data sets, the
default parameter values can be used to significantly lower the
computational cost, with relatively little accuracy loss.

C. Meta-features

The meta-data set (Figure 1 - Item 5) is constructed out
of the meta-features (Figure 1 - Item 3) of the 143 data sets,
and the results of the SVM hyper-parameter tuning process
described earlier. Since each data set results in one meta­
example, the meta-data set is composed out of 143 unlabeled
meta-examples, each one representing one of the original data
sets. Two meta-data sets were created according to the meta­
features used to describe the data sets:

• one with 17 STATLOG meta-features, originally used
in the STATLOG project [35], and later in many
similar studies [22], [25], [26]. These meta-features
are simple measures based on statistics, such as the
number of classes, number of attributes, class distri­
bution and so on;

• one with 13 data complexity meta-features: based on
data complexity measures [36], [37] that have been ex­
plored in some recent work [38]-[40]. These measures

I http://cran.r-project.org/

TABLE IV. META-FEATURES USED IN EXPERIMENTS.

Type

STAT
STAT
STAT
STAT
STAT
STAT
STAT
STAT
STAT
STAT
STAT
STAT
STAT
STAT
STAT
STAT
STAT

COMP
COMP
COMP
COMP
COMP
COMP
COMP
COMP
COMP
COMP
COMP
COMP
COMP

Name

#cls
#attr

#NumAttr
#NomAttr

#smpl
#dim

#NumRate
#NomRate
#SymMin
#SymMax
#SymAvg
#SymSd

#SymSum
%Cmin
%Cmax

%CMean
%CSd

FI
F2
F3
L l
L2
L3
NI
N2
N3
N4
T l

F l v
F4

Meta-feature

Number of classes
Number of attributes
Number of numeric attributes
Number of nominal (symbolic) attributes
Number of samples
Dimensionality (attributes / samples)
Numerical attributes rate
Nominal attributes rate
Minimum number of levels of the symbolic attributes
Maximum number of levels of the symbolic attributes
Average number of levels of the symbolic attributes
Standard deviation of levels of the symbolic attributes
Total number of levels of the symbolic attributes
Percentage of elements of the minority class
Percentage of elements of the majority class
Average number of elements by class
Standard deviation of elements by class
Fisher's discriminant ratio
Overlapping the per-class bounding boxes
Maximum individual feature efficiency
Distance of erroneous instances to a linear classifiers
Training error of a linear classifier
Non-linearity of a linear classifier
Fraction of points lying on the class boundary
Average intra/inter class nearest neighbor distances
LOO error rate of the 1-NN
Non-linearity of the I-NN
Fraction of maximum covering spheres on data
Fisher's discriminant ratio
Collective Feature Efficiency

analyze the complexity of a classification problem
considering the overlap in the feature values, the
separability of the classes, and geometry/topological
properties.

All the meta-features are listed in Table IV. The last meta­
feature is the target, whose values indicate if the hyper­
parameter tuning improves the predictive performance of the
model or not. The target values are equal for both meta­
databases. These values were defined according to the rule
described in the next subsection.

D. Meta-data set

In order to label the meta-examples of the meta-data set, we
followed a confidence interval rule (Figure 1 - Item 4). Given
a data set x, the best MTH M and the best DF D obtained
for x, the deviation of M and D techniques are defined by:

J.L(M(x)) - a(M(x))
J.L(D(x)) + a(D(x))

(1)

where J.L is the averaged accuracy and a is the standard
deviation over the 30 executions of the technique. A meta­
example x' created from x receives a label according to the
rule:

L(x') = { �JN, if (Mdev(X') - Ddev(X')) :s; 0,
otherwise.

(2)

Thus, if the difference between the ranges of the best MTH
(black ball on Figure 1 - Item 4) and best DF (red ones) for
a meta-example is smaller than or equal to zero, the meta­
example receives the label 'DF'. Otherwise, it receives the
label 'TUN', meaning that a tuning step is recommended. With
these labels and the meta-features previously computed, we
obtain the meta-data set.

E. Meta-learner

Six ML classification algorithms were used as meta­
learners (Figure 1 - Item 6): J48 Decision Tree (148), Na·ive
Bayes (NB), k-Nearest Neighbors (k-NN) with k = 3, Mul­
tilayer Perceptron (MLP), Random Forest (RF) and Support
Vector Machines (SVM). These techniques follow different
learning paradigms, each representing a distinct bias, and may
result in different predictions.

An ensemble was also built with the predictions from
these classifiers (ENS). The ensemble prediction is defined by
majority voting. Since there is an even number of classifiers,
ties are broken by choosing the majority class (TUN'). The
meta-learners were evaluated based on the following measures:
classification error rate, precision, recall and F-Score.

F MTL experiments

Based on our confidence interval rule (2), 46 of the 143
data sets were labeled with the DF class: the induced models
presented a predictive performance similar to those induced
when the hyper-parameters were tuned by the optimization
techniques. The other 97 meta-examples received the label
of the tuning (TUN) class. Due to the small number of
meta-examples, the Leave-One-Out Cross-Validation (LOO­
CV) methodology was adopted to evaluate the predictive
performance of the meta-learners.

At each LOO-CV iteration a single meta-example (testing
partition) represents the new unknown data set (Figure 1 - Item
7) for which the meta-features are known but not the actual
target label (to tune or not to tune). The training partition of the
meta-learner uses all 142 remaining meta-examples, already
labeled according to the meta-label rule. Thus, the meta-learner
will predict whether the use of default values for SVM hyper­
parameters on the new test data set is the best alternative
(Figure 1 - Item 8). The accuracy measures of the meta-learner
are averaged over all LOO-CV iterations/executions.

IV. EXPERIMENTAL RESULTS

According to some studies, the hyper-parameters of SVMs
should always be tuned when looking for the best predictive
performance [14], [25], [27]. Conversely, other studies reported
experimental results where the default values provided pre­
dictive performances similar to those obtained by optimized
hyper-parameters [3]. In this section, the main empirical re­
sults are presented and discussed. We run meta-learners twice
considering the two meta-data sets: one with simple STATLOG
measures, and another one with data complexity measures.

A. MTL predictive performance

Table V summarizes the predictive performance obtained
by the meta-learners. The first column contains the ML algo­
rithms used as meta-learner. The second one emphasizes the
meta-feature set used to describe the meta-examples. Subse­
quent columns present the results for different performance
measures: mean classification error rate, precision, recall, and
F-Score. Since the meta-database is imbalanced, with 32% of
the examples in the minority class, a trivial classifier would
have a mean classification error rate equal to 0.322.

TABLE Y. META-LEARNING RESULTS WITH STATLOG AND

COMPLEXITY META-FEATURES AND LOO-Cy'

Classifier Meta-feature Set Error Precision Recall F-Score

J48 STATLOG 0.252 0.667 0.435 0.526
MLP STATLOG 0.266 0.643 0.391 0.486

NB STATLOG 0.455 0.408 0.913 0.564

3-NN STATLOG 0.238 0.625 0.652 0.638
RF STATLOG 0.196 0.765 0.565 0.650

SVM STATLOG 0.245 0.867 0.283 0.426
ENS STATLOG 0.182 0.750 0.652 0.698

J48 COMPLEXITY 0.308 0.538 0.304 0.389
MLP COMPLEXITY 0.266 0.611 0.478 0.537

NB COMPLEXITY 0.476 0.369 0.674 0.477
3-NN COMPLEXITY 0.266 0.571 0.696 0.627

RF COMPLEXITY 0.259 0.645 0.435 0.519
SVM COMPLEXITY 0.203 0.947 0.391 0.554
ENS COMPLEXITY 0.252 0.639 0.500 0.561

In this recommendation problem, a false positive (FP) is a
wrong recOlmnendation to use default hyper-parameter values
and a false negative (FN) is a wrong recommendation to use
tuned hyper-parameter values. If the predictive performance
is more important that runtime, a 'false positive - FP' is
considered worse than a FN, because it would result in SVMs
with lower predictive performance. In this case, we should
look at precision values in Table V. The best precision value
was obtained by the SVM algorithm performed on meta-data
generated by data complexity meta-features.

On the other hand, if processing time is more important, the
recall values should be used. Although the induced SVMs will
probably be less accurate, the time required for their induction
will be smaller. The NB algorithm trained on STATLOG
measures obtained the highest recall value in our experiments,
but presented a low precision value, due to the high number
of FPs in predictions.

In table V, we can also observe some low recall values.
This might be due the class imbalance, making it difficult
to predict the minority class. Correcting the class balancing
may be not enough to solve the problem. An alternative
approach would be to define more meta-features to extract
more information and help in the prediction.

A more general picture of the meta-learner's predictive
performance is provided by the F-Score measure, which is
a balance between precision and recall measures. According
to these values, ENS using STATLOG meta-features was the
best overall. The 3-NN with data complexity meta-features also
obtained a high F-Score value.

B. Hits and Misses

Figure 2 depicts the hits and misses of all meta-models over
all meta-examples. The y-axis represents the meta-models: the
algorithm and the set of meta-features used in executions.
STAT denotes a meta-model built with STATLOG meta­
features, and COMP with data complexity ones. The x-axis
represents all the 143 meta-examples of the meta-database. In
the figure, a hit is represented by a light gray square, and a
miss by a black one.

Here, we can observe that only one dataset is misclassified
for all meta-models: 'robot-failure-lp4' (it has 116 examples,
90 attributes and 61% of elements in the majority class). Few
datasets are classified correctly by all meta-models. The RF

3NN-COMP-

3NN-STAT­

ENS-COMP­

ENS-STAT­

J4B-COMP -

.E J4B-STAT -
� MLP-COMP­

o MLP-STAT­Ol « RF-COMP-

RF-STAT­

SVM-COMP­

SVM-STAT­

NS-COMP­

NS-STAT-

50

� I
I

I
I

Dataset

I
I I

II :�
II

I
I I

I
I
I

Y!I I
150

Fig. 2. Hits and erros of all meta-learners in 143 meta-examples.

Fig. 3. The frequency of each attribute were selected by 148 models.

and SVM algorithms are correct on a lot of datasets, but
classify several cases differently.

There are a few gains made by the ensemble (ENS) and its
predictions present a pattern similar to the RF. The exception
is the NB algorithm, which is a good complement of the other
techniques. It hits almost all of DF meta-examples, but misses
a lot of TUN examples. In general, there is no improvement
obtained by using only data complexity meta-features.

C. Looking for patterns

The meta-database can also be used to analyze which
dataset characteristics can help us decide whether the default
hyper-parameter values are a good choice for the given dataset,
or not. In Figure 4, we show a meta-decision tree, trained
on the meta-data set, predicting when tuning is definitely
recommended.

Figure 3 shows the frequency with which each attribute
was selected by the induced decision trees. Only the attributes
that were selected at least once are shown. Since the meta-data

set has 143 meta-examples, each attribute can be selected up
to 143 times using LOO-CY.

The meta-attributes selected with the highest frequency
in the models induced with STATLOG meta-features were:
%CMax (percentage of examples in the majority class), #Nu­
mAttr (number of numerical predictive attributes), #cls (num­
ber of classes), #attr (number of predictive attributes), and
%CMin (percentage of examples in the minority class).

The decision tree in Figure 4 was the most frequently
induced during the meta-level learning. This decision tree was
generated 139 times and has 15 nodes, 8 of them leaf nodes.
The predictive attribute most frequently selected as root node
was %CMax, and obtained an accuracy value of 0.881.

The tree shows that if a data set is highly imbalanced, with
more than 79% of the examples in the majority class, the meta­
learner usually recommends the use of default hyper-parameter
values. Perhaps, the tuning does not work well for imbalanced
datasets, so performing the tuning process without a balancing
method will not adequately improve the SVM accuracy.

The second-most important meta-feature is the number of
predictive attributes. When there is a large number of predic­
tive attributes, tuning becomes important. For large numbers
of predictive attributes, SVMs tend to overfit. In order to deal
with this problem, the gamma parameter needs to be wider
(set to a lower value). This issue was previously reported and
explained in [41], [42]. Indeed, reconunending the tuning when
a dataset has many attributes (#attr > 13) might make sense
if we consider the SVM data normalization process (carried
out internally by LIBSVM). Although LIBSVM takes it into
account by using "(= lip as the default value, tuning is still
recommended. Even so, this rule should not be taken as a
golden rule, since this may be due to learning artifacts from
the involved datasets.

The tree also recommends tuning when the proportion of
numerical attributes is low (#NumAttr � 11). In general,
all categorical/factor attributes are converted into a binary
encoding. In such a mixed/discrete space, 'non default' kernel
hyper-parameter values might make more sense here then
in the purely numerical case, as distances and geometrical
properties will work differently.

We also looked at the importance of the attributes in the

Fig. 4. The most frequent decision tree obtained by the J48 algorithm.

RF models. We analyzed only the RF-STAT meta-models
since their predictions were better than those obtained by RF­
COMP ones. We got a sorted vector from models with values
indicating the mean decrease in accuracy when removing a
specific attribute. The most significant attribute was %CMax,
followed by %CSd and #attr. This corroborates what we
observed in the decision tree models. Even while being a
simpler and less accurate, decision trees allow a insight of
the behavior of the learning process on the meta-level.

D. Overall considerations

The SVM hyper-parameter (C) and the width of the
Gaussian kernel (,) have been shown to be interdependent.
There is no truly global optimum for this optimization, but
instead there is a ridge of optimal solutions: if C goes up, ,
can be adjusted to reach the same performance again. So, we
defined a conservative confidence interval rule when choosing
the class for meta-examples. It followed some conservative
and empirical steps. Decision trees were induced to explain
which characteristics from a data set could justify when one
hyper-parameter setting approach should be favoured.

In [32] authors have found that the NNI meta-feature
(performance of a I-NN algorithms on that data set) was the
root node of the tree in meta-level. In our study we found a
different meta-feature in the root node: %CMax, the percentage
of examples in the majority class. Our tree shows that if data
is highly imbalanced, the meta-learner tends to recommend
the use of default hyper-parameter values. When analyzing
RF meta-models, we observed that %Cmax and #attr were of
great importance in the accuracy of these meta-models. Other
experiments should be conducted to verify if the addition of
the meta-feature NNI on the set of meta-features evaluated in
this paper will lead to a higher predictive performance of the
meta-models.

V. CONCLUSIONS

This paper investigated the use of MTL to induce a
classification model able to predict with a high predictive
accuracy when optimization techniques should be used for
tuning the hyper-parameters of SVMs instead of using default
values suggested by both a well-known SVM library and a ML
tool.

Experiments with MTHs using 143 data sets from the UCI
repository were carried out to evaluate the effect of hyper­
parameter tuning. From these experiments, a meta-data set
was created for the induction of meta-models able to predict
with high predictive performance when hyper-parameter tun­
ing should be used instead of default values. Different ML
algorithms, mainly RF and ENS, presented good prediction
rates, better than the use of a single classifier.

Observing the most frequent decision tree, we claim that
a small number of simple meta-features was sufficient to
characterize the data sets. According to this decision tree,
for highly imbalanced data sets, tuning does not obtain much
higher performance. Probably, the tuning process might not
work well for imbalanced datasets, so performing the tuning
without a balancing method can not improve SVM accuracy.

As future work, we intend to investigate different ap­
proaches to extract meta-features and expand the number of
data sets. We also plan to explore other methodologies on the
meta level, including data balancing and meta-feature selection
process to find the most relevant meta-features. Moreover, we
should include a significance test to define the meta-target,
and include experiments with other classification algorithms
instead of SVMs, such as decision trees and Deep Learning
algorithms, which have a larger number of sensitive hyper­
parameters. Finally, we aim to make all our experiments avail­
able on OpenML [43], [44] for reproducibility and reusability.

ACKNOWLEDGMENT

The authors would like to thank CAPES, CNPq and
FAPESP (Brazilian Agencies) for the financial support.

REFERENCES

[1] O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee, "Choosing
multiple parameters for support vector machines," Machine Learning,
vol. 46, no. 1-3, pp. 131-159, Mar. 2002.

[2] S.-w. Lin, K.-C. Ying, S.-c. Chen, and Z.-J. Lee, "Particle swarm op­
timization for parameter determination and feature selection of support
vector machines," Expert Systems with Applications, vol. 35, no. 4, pp.
1817 - 1824, 2008.

[3] I. Braga, L. P. do Carmo, C. C. Benatti, and M. C. Monard, "A note
on parameter selection for support vector machines," in Advances in

Soft Computing and Its Applications, ser. Lecture Notes in Computer
Science, F. Castro, A. Gelbukh, and M. Gonzalez, Eds. Springer Berlin
Heidelberg, 2013, vol. 8266, pp. 233-244.

[4] P. Brazdil, C. Giraud-Carrier, C. Soares, and R. VilaJta, Metalearning:
Applications to Data Mining, 2nd ed. Springer Verlag, 2009.

[5] S. Ali and K. A. Smith-Miles, "A meta-learning approach to automatic
kernel selection for support vector machines," Neurocomputing, vol. 70,
no. 13, pp. 173-186, 2006.

[6] J. Kanda, A. C. P. L. F. Carvalho, E. Hruschka, and C. Soares,
"Selection of algorithms to solve traveling salesman problems using
meta-learning," Int. 1. Hybrid Intel!. Syst., vol. 8, no. 3, Aug. 2011.

[7] M. Reif, F. Shafait, and A. Dengel, "Prediction of classifier training time
including parameter optimization," in Proceedings of the 34th Annual
German conference on Advances in artificial intelligence, ser. KI'l1.
Springer-Verlag, 2011, pp. 260-27l.

[8] D. Goldberg, Genetic Algorithms in Search, Optimization and Machine

Learning. Addison Wesley, 1989.

[9] J. Kennedy, "Particle swarms: optimization based on sociocognition,"
in Recent Development in Biologically Inspired Computing, L. Castro
and F. V. Zuben, Eds. Idea Group, 2005, pp. 235-269.

[IO] M. Hauschild and M. Pelikan, "An introduction and survey of estimation
of distribution algorithms," Swarm and Evolutionary Computation,
vol. 1, no. 3, pp. III - 128, 201l.

[II] H. H. Hoos, "Automated algorithm configuration and parameter tuning,"
in Autonomous Search, Y. Hamadi, E. Monfroy, and F. Saubion, Eds.
Springer Berlin Heidelberg, 2012, pp. 37-7l.

[I2] J. Styles, H. H. Hoos, and M. MUller, "Automatically configuring algo­
rithms for scalling performance," in Proceedings of the 6th International
Conference on Learning and Intelligent Optimization, ser. LION'06,
2012, pp. 1-12.

[13] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, "The weka data mining software: An update," SIGKDD Explor.
News!., vol. 11, no. 1, pp. 10-18, Nov. 2009.

[14] c.-c. Chang and C.-J. Lin, "LIBSVM: A library for support vector
machines," ACM Transactions on Intelligent Systems and Technology,
vol. 2, pp. 27: 1-27:27, 201l.

[15] F. Hutter, H. H. Hoos, and T. StUtzle, "Automatic algorithm config­
uration based on local search," in Proceedings of the 22nd national
conference on Artificial intelligence - Volume 2, ser. AAAI'07. AAAI
Press, 2007, pp. 1152-1157.

[16] J. Bergstra and Y. Bengio, "Random search for hyper-parameter opti­
mization;' f. Mach. Learn. Res., vol. 13, pp. 281-305, Mar. 2012.

[17] F. Friedrichs and C. [gel, "Evolutionary tuning of multiple svm param­
eters," Neurocomput., vol. 64, pp. 107-117, 2005.

[I 8] T. Eitrich and B. Lang, "Efficient optimization of support vector
machine learning parameters for unbalanced datasets," fournal of Com­
putational and Applied Mathematics, vol. 196, no. 2, pp. 425-436, 2006.

[I9] F. Hutter, H. Hoos, K. Ley ton-Brown, and T. Stiitzle, "Paramils: an
automatic algorithm configuration framework," fournal of Artificial
Intelligence Research, no. 36, pp. 267-306, 2009.

[20] v. Nannen and A. E. Eiben, "Relevance estimation and value calibration
of evolutionary algorithm parameters," in Proceedings of the 20th
International foint Conference on Artificallntelligence, ser. [JCAr07.
Morgan Kaufmann Publishers Inc., 2007, pp. 975-980.

[21] C. Thornton, F. Hutter, H. H. Hoos, and K. Ley ton-Brown, "Auto­
WEKA: Combined selection and hyperparameter optimization of clas­
sification algorithms," in Proc. of KDD-2013, 2013, pp. 847-855.

[22] c. Soares, P. B. Brazdil, and P. Kuba, "A meta-learning method to
select the kernel width in support vector regression," Machine Learning,
vol. 54, no. 3, pp. 195-209, 2004.

[23] c. Soares and P. B. Brazdil, "Selecting parameters of svm using meta­
learning and kernel matrix-based meta-features," in Proceedings of the
2006 ACM symposium on Applied computing, ser. SAC'06. ACM
Press, 2006, pp. 564-568.

[24] R. Priya, B. F. De Souza, A. L. D. Rossi, and A. C. P. L. F.
Carvalho, "Using genetic algorithms to improve prediction of execution
times of ML tasks," in Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 7208 LNAI, no. PART I, 2012, pp. 196-207.

[25] T. A. F. Gomes, R. B. C. Prudencio, C. Soares, A. L. D. Rossi,
and nd Andre C. P. L. F. Carvalho, "Combining meta-learning and
search techniques to select parameters for support vector machines,"
Neurocomput., vol. 75, no. 1, pp. 3-13, Jan. 2012.

[26] P. B. C. Miranda, R. B. C. Prudencio, A. C. P. L. F. Carvalho, and
C. Soares, "An experimental study of the combination of meta-learning
with particle swarm algorithms for SVM parameter selection," Lecture
Notes in Computer Science, vol. 7335 LNCS, no. PART 3, pp. 562-575,
2012.

[27] M. Reif, F. Shafait, and A. Dengel, "Meta-learning for evolutionary
parameter optimization of classifiers," Machine Learning, vol. 87, pp.
357-380,2012.

[28] M. Feurer, T. Springenberg, and F. Hutter, "Initializing bayesian hy­
perparameter optimization via meta-learning," in Proceedings of the
Twenty-Ninth AMI Conference on Artificial Intelligence, Jan. 2015.

[29] R. Leite and P. Brazdil, "Active testing strategy to predict the best
classification algorithm via sampling and metal earning," in Proceedings

of the 2010 Conference on ECA12010: 19th European Conference on
Artificial Intelligence. Amsterdam, The Netherlands, The Netherlands:
[OS Press, 2010, pp. 309-314.

[30] R. Leite, P. Brazdil, and 1. Vanschoren, "Selecting classification algo­
rithms with active testing," in Proceedings of the 2012 Conference on
Machine Learning and Data Mining (MLDM 2012), 2012, pp. 117-I3l.

[31] P. Miranda and R. Prudencio, "Active testing for SVM parameter
selection," in Neural Networks (/JCNN), The 2013 International foint

Conference on, Aug 2013, pp. 1-8.

[32] P. Ridd and C. Giraud-Carrier, "Using metalearning to predict when
parameter optimization is likely to improve classification accuracy,"
in Meta-learning and Algorithm Selection Workshop at ECAI 2014,
J. Vanschoren, P. Brazdil, C. Soares, and L. Kotthoff, Eds., August
2014, pp. 18-23.

[33] C.-w. Hsu, c.-C. Chang, and c.-J. Lin, A Practical Guide to Support
Vector Classification, Department of Computer Science - National
Taiwan University, Taipei, Taiwan, 2007.

[34] A. L. D. Rossi and A. C. P. L. F. Carvalho, "Bio-inspired optimization
techniques for svm parameter tuning," in Proceedings of 10th Brazilian
Symposium on Neural Networks. IEEE Computer Society, 2008, pp.
435-440.

[35] P. B. Brazdil and R. 1. Henery, "Analysis of results," in Machine learn­
ing, neural and statistical classification, D. Michie, D. J. Spiegelhalter,
C. C. Taylor, and J. Campbell, Eds. Ellis Horwood, 1994, ch. 10, pp.
175-212.

[36] T. K. Ho and M. Basu, "Complexity measures of supervised classi­
fication problems," Pattern Analysis and Machine Intelligence, IEEE

Transactions on, vol. 24, no. 3, pp. 289-300, 2002.

[37] A. Orriols-Puig, N. Macia, and T. K. Ho, "Documentation for the data
complexity library in c++," Barcelona, Spain, Tech. Rep., 2010.

[38] Y. Nojima, S. Nishikawa, and H. Ishibuchi, "A meta-fuzzy classifier for
specifying appropriate fuzzy partitions by genetic fuzzy rule selection
with data complexity measures," in 2011 IEEE International Conference
on Fuzzy Systems (FUZZ-IEEE 2011). IEEE, Jun. 2011, pp. 264-27l.

[39] L. P. F. Garcia, A. C. Lorena, and A. C. P. L. F. de Carvalho, "A study
on class noise detection and elimination," in SBRN, 2012, pp. 13-18.

[40] L. P. F. Garcia, A. C. de Carvalho, and A. C. Lorena, "Noisy data
set identification," in Hybrid Artificial Intelligent Systems, ser. Lecture
Notes in Computer Science, J.-S. Pan, M. M. Polycarpou, M. Wo?niak,
A. C. de Carvalho, H. Quintin, and E. Corchado, Eds. Springer Berlin
Heidelberg, 2013, vol. 8073, pp. 629-638.

[41] J. Vanschoren, B. Pfahringer, and G. Holmes, "Learning from the
past with experiment databases," in Proceedings of PRICAI 2008, ser.
Lecture Notes in Computer Science, 2008, vol. 5351, pp. 485-496.

[42] J. Vanschoren, H. Blockeel, B. Pfahringer, and G. Holmes, "Experiment
databases," Machine Learning, vol. 87, no. 2, pp. 127-158, 2012.

[43] J. Vanschoren, J. N. van Rijn, B. Bisch), and L. Torgo, "OpenML: Net­
worked science in machine learning," SIGKDD Explorations, vol. 15,
no. 2, pp. 49-60, 2013.

[44] J. van Rijn, B. Bisch!, L. Torgo, B. Gao, V. Umaashankar, S. Fischer,
P. Winter, B. Wiswedel, M. Berthold, and J. Vanschoren, "OpenML: A
collaborative science platform," in Proceedings of ECMLPKDD 2013,

ser. Lecture Notes in Computer Science, 2013, vol. 8190, pp. 645-649.

