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Background: A common challenge in medicine, exemplified in the analysis of biomarker data, is that large
studies are needed for sufficient statistical power. Often, this may only be achievable by aggregating mul-
tiple cohorts. However, different studies may use disparate platforms for laboratory analysis, which can
hinder merging.
Methods: Using circulating placental growth factor (PlGF), a potential biomarker for hypertensive disor-
ders of pregnancy (HDP) such as preeclampsia, as an example, we investigated how such issues can be
overcome by inter-platform standardization and merging algorithms. We studied 16,462 pregnancies
from 22 study cohorts. PlGF measurements (gestational age P20 weeks) analyzed on one of four plat-
forms: R&D� Systems, Alere�Triage, Roche�Elecsys or Abbott�Architect, were available for 13,429
women. Two merging algorithms, using Z-Score and Multiple of Median transformations, were applied.
Results: Best reference curves (BRC), based on merged, transformed PlGF measurements in uncompli-
cated pregnancy across six gestational age groups, were estimated. Identification of HDP by these
PlGF-BRCs was compared to that of platform-specific curves.
Conclusions: We demonstrate the feasibility of merging PlGF concentrations from different analytical
platforms. Overall BRC identification of HDP performed at least as well as platform-specific curves. Our
method can be extended to any set of biomarkers obtained from different laboratory platforms in any
field. Merged biomarker data frommultiple studies will improve statistical power and enlarge our under-
standing of the pathophysiology and management of medical syndromes.
� 2015 International Society for the Study of Hypertension in Pregnancy. Published by Elsevier B.V.
Open access under CC BY-NC-ND license.
1. Introduction cation of women with HDP using the merged BRC was compared to
Large datasets are essential for sufficient statistical power to
characterize subsets of disease. The usefulness of single cohorts
can be enhanced by combining several studies to facilitate analyses
of pooled individual patient data (IPD). However, to date such
studies have only collected primary outcomes measured on com-
parable scales or, in the case of biomarkers, using the same assay
platforms. Different assay platforms may vary in their sensitivity,
precision, and concentration ranges. In such cases, valid methods
of standardization of laboratory data are required in order to
aggregate individual patient data.

The Global Pregnancy Collaboration (CoLAB) was established in
2011 (http://pre-empt.cfri.ca/colaboratory/global-pregnancy-col-
laboration) to facilitate data and sample sharing between research
groups studying preeclampsia and other pregnancy disorders.
Preeclampsia is a hypertensive disorder of pregnancy which com-
plicates 3–4% of pregnancies and is a leading cause of maternal
and fetal/neonatal mortality and morbidity worldwide. Because
preeclampsia is clinically and biologically heterogeneous, (e.g.
early and late disease have different prognoses and perhaps etiolo-
gies) improvements in management, prediction, diagnosis, preven-
tion and treatment have been difficult to achieve [1–3].

Circulating maternal biomarkers of placental origin have been
proposed as novel tools for identifying hypertensive disorders of
pregnancy (HDP). However, to date, precise estimates of diagnostic
sensitivity and specificity have yet to be achieved because individ-
ual studies have been too small. Clinical data can be easily stan-
dardized for aggregation of cohorts, but laboratory biomarker
data present the unique problem that they often use different ana-
lytical platforms with different ranges and results.

This paper focuses on clinical and laboratory data for placenta
protein, placental growth factor (PlGF) to predict and/or diagnose
hypertensive disorders of pregnancy (HDP). These disorders are
associated with severe reductions in circulating PlGF concentra-
tions [1,4,5]. In the cohorts included in this study, PlGF was quan-
tified on one of four laboratory platforms, each with different
analytic performance. We developed a method of standardizing
PlGF data to allow pooling. Additionally, concentrations of PlGF
are known to change with gestational age (GA) and to show the
power of the pooled data, we developed a best reference curve
(BRC) over six gestational age groups. The rate of accurate identifi-
unmerged (platform-specific) rates.
This paper demonstrates a principle that can be generalized to

the study of other biomarkers for any complex, heterogeneous
medical conditions requiring large cohorts to draw useful conclu-
sions, which also use different assay platforms to measure the
same biomarker.
2. Materials and methods

2.1. Study database

In 2011–2012, we invited principal investigators with studies
of circulating maternal angiogenic factors in pregnancy to partic-
ipate in this study. We included any study in which maternal
blood samples were collected at least once at any time during
pregnancy (uncomplicated or otherwise) and had been analyzed
for PlGF. Adequate clinical, demographic and pregnancy outcome
information was necessary for inclusion. 22 cohorts were
included in the present analyses (Supplementary material
Table 1, with references to detailed information about each
study, including individual patient consent and formal study
research ethical approval). The datasets varied in sample size,
maternal demographics as well as study design, including both
low and high risk pregnancies. Missing data were retrieved,
where possible. Individual datasets were integrated into one cen-
tral database, which was cleaned and checked to ensure data
integrity was maintained. Reported measures of PlGF below the
limit of detection for each of the four platforms were recorded
as the threshold value. These occurred in less than 1.5% of the
observations and were not removed because these observations
are expected to include the most severe cases of placental dys-
function associated with HDP.

The final database contained information on 16,462 pregnan-
cies. Here we included only those women (n = 13,429) who had
at least one PlGF measurement at or after 20 weeks’ gestation
(the time when preeclampsia presents clinically, by definition).
Four different analytical platforms had been used by the included
cohorts: Alere Triage PlGF, Roche Elecsys PlGF, R&D Systems PlGF
and Beckman-Coulter PlGF. The number of pregnancies by cohort
and analytical platform is listed in Supplementary material Table 1.

http://pre-empt.cfri.ca/colaboratory/global-pregnancy-collaboration
http://pre-empt.cfri.ca/colaboratory/global-pregnancy-collaboration
http://creativecommons.org/licenses/by-nc-nd/4.0/
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2.2. Flow-chart for the methodology

Supplementary material Fig. 1 is a flow-chart of the generalized
methodology of this paper. Blue boxes outline the steps from
definition of non-cases through to merging of data and estimation
of the BRC. Red boxes highlight validation steps associated with
particular elements of the methodology. Green boxes indicate
additional information for the user.

2.3. Data transformations for normal pregnancies

The primary aim of the analysis was to merge PlGF measure-
ments from the four platforms used by the 22 study cohorts. This
was achieved by first considering the least variable group of obser-
vations (termed ‘non-cases’): in our example this group comprised
those women who had uncomplicated pregnancies. A non-case
was defined here as any woman who delivered a live born infant
at term (P37 weeks gestation) with a birthweight >10th percentile
for gestational age at delivery and sex, and without HDP, fetal
growth restriction, or gestational diabetes. Women with pre-
existing hypertension and/or pre-existing diabetes were excluded.

7600 (56.6%) pregnancies met these non-case criteria. To ensure
independence, each pregnancy contributed only one PlGFmeasure-
ment (from blood drawn at or after 20 weeks’ gestation) to the anal-
ysis. In pregnancies where multiple samples have been taken the
measurement was randomly selected. The number of non-case
observations for each platform is presented in Table 1 for the gesta-
tional age categories: 20–23+6, 24–26+6, 27–32+6, 33–36+6, 37–39+6,
40+ weeks (where 20–23+6 includes measurements taken from the
start of 20 weeks gestation to 23 weeks and 6 days gestation).

To determine whether non-case measurements could be stan-
dardized for subsequent merging across platforms, we considered
two merging algorithms based on Z-Score and Multiples of the
Median (MoM) transformations.

2.3.1. The Z-Score transformation
The Z-Score transformation assumes normality of non-case

measurements within each subgroup. In our PlGF data, the mea-
surements within each GA-platform subgroup were shown to be
log-normally distributed. Hence, a log-transformation was needed
to achieve normality. The estimated mean and standard deviation
of the log-transformed PlGF measurements of each non-case
platform-GA subgroup were used to transform non-case PlGF mea-
surements as

yZ
i ¼ lnðyiÞ � lp½i�g½i�

rp½i�g½i�
ð1Þ

where yi and yi
Z are the original and Z-Score-transformed PlGF mea-

surements respectively, lp[i]g[i] and rp[i]g[i] correspond to the mean
and standard deviation (of the log-transformed non-case subgroup)
for the platform associated with the ith patient (p[i]) and GA cate-
gory associated with the ith patient (g[i]).

If the assumption of normality holds then, by definition, each
transformed platform-GA subgroup follows a standard Normal dis-
tribution (zero mean, unit standard deviation). Hence transformed
data from all platforms may be merged within GA categories. If this
assumption is not satisfied, the transformation is still valid as a
method of standardization of data for merging (since the transfor-
mation provides standardized observations irrespective of being
standard Normal).

2.3.2. The MoM transformation
The Multiple of the Median (MoM) transformation only requires

the estimation of one parameter (m) to transform the measure-
ments (yi) in each platform-GA subgroup to a common scale:
yMoM
i ¼ lnðyiÞ

mp½i�g½i�
ð2Þ

where yi and yi
MoM are the original and MoM-transformed PlGF

measurements and mp[i]g[i] denotes the sample median of the log-
transformed platform-GA subgroup associated with the ith patient.
The MoM-transformed measurements within each GA category
are on the same scale and may be merged.

2.4. Merging of transformed non-case measurements

Bootstrapping was used to estimate the parameters of both
transformations for each platform-GA subgroup. The bootstrap
estimates provide insight into the distribution of the parameter
estimates, e.g., variability/precision of the estimates. The transfor-
mations were then applied to individual PlGF measurements for all
pregnancies defined as non-cases. These transformed PlGF mea-
surements across all four platforms were merged within each GA
category.

2.5. Validation of merging

Merged data plots (not shown) were used to assess the degree
of merging within each GA category. K-means clustering analysis
was used to determine whether distinct groups within the merged
data set were identifiable.

2.6. Validation of parameter estimate

Leave-one-out cross-validation (LOO-CV) was used to measure
the possible influence of each cohort on parameter estimation for
both transformations. Bootstrap empirical confidence intervals
were used to determine the significance of cohort effects. No single
cohort had an effect on the estimation of a single parameter in all
GA categories, again supporting a valid merging process of our 22
heterogeneous cohorts.

2.7. Reference curve thresholds and application

We extended the analysis to estimate the best reference curve
(BRC) for transformed PlGF concentrations over gestational age.
The merged data in each GA category were used to estimate a ref-
erence curve. Thresholds at the 5th percentile (along with the asso-
ciated 95% empirical confidence interval) were estimated
empirically using bootstrap samples of the transformed non-case
PlGF measurements in each GA category.

We applied the BRC to the identification of pregnancies compli-
cated by hypertensive disorders as an example here. We compared
the performance of the merged 5th percentile thresholds to that of
the corresponding platform-specific thresholds, in identifying
pregnancies with any HDP outcome (termed a ‘‘case”).

For illustrative purposes only, our case definition was any
woman who had a final diagnosis of gestational hypertension,
preeclampsia, super-imposed preeclampsia, HELLP syndrome (a
form of severe preeclampsia comprising hemolysis, elevated liver
enzymes and low platelets) or eclampsia occurring after 20 weeks
gestation. Gestational hypertension and preeclampsia were
defined by the individual cohorts according to the conventionally
used definition; new onset-hypertension (P140/90) PGA
20 weeks, together with new-onset proteinuria in the case of
preeclampsia. Only pregnancies with PlGF measurements from
blood sampled at the time of diagnosis or within 2 weeks prior
to diagnosis were included. As before, each woman only con-
tributed a single measurement to the analysis. There were 1423
pregnancies meeting these criteria (Table 1).



Table 1
Non-case and case sample sizes by gestational age category and platform.

Platform GA category Non-cases Cases

R&D Alere Roche Abbott GA category total R&D Alere Roche Abbott GA category total

20–23+6 434 117 88 3900 4539 1 2 7 2 12
24–26+6 266 35 144 395 840 19 22 28 11 80
27–32+6 78 462 152 178 870 64 122 78 26 290
33–36+6 69 171 91 394 725 96 140 156 95 487
37–39+6 76 96 66 145 383 67 147 80 133 427
40+ 6 99 41 97 243 18 36 24 49 127
Platform Total 929 980 582 5109 7600 265 469 373 316 1423
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PlGF measurements from cases were transformed using the Z-
Score and MoM algorithms (as described above) for comparison
with the BRC. LOO-CV was used to measure both the possible
cohort influences and possible platform influences on parameter
estimation. Performance was evaluated by the rate of correct iden-
tification of cases for the merged and platform-specific thresholds.
3. Results

3.1. Z-Score transformation parameter estimates

The mean (lp[i]g[i]) and standard deviation (rp[i]g[i]) for the Z-
Score transformation of the log-transformed PlGF measurements
were estimated using 10,000 bootstrap iterations. The estimated
mean and standard deviation of the non-case PlGF measurements
in each platform-GA subgroup are presented in Table 2 alongside
the associated bootstrap standard errors. These estimates were
used to transform the original PlGF measurements (Eq. (1)). The
transformed datasets were tested for normality using the Ander-
son–Darling test (data not shown). For 62.5% of the platform-GA
subgroups (15 of 24) the null hypothesis (that the distributions
are Normal) was not rejected at the 5% significance level (p-
values ranging from 0.06 to 0.91).

Kolmogorov–Smirnov tests (data not shown) confirmed that in
each GA category, transformed non-case measurements on each of
the four platforms followed the same distribution, thus validating
our decision to merge these transformed data sets.
Table 2
Estimated mean (l) and standard deviation (r) parameters for the Z-Score transformation a
(and Associated Bootstrap Standard Errors).

Platform p[i]
GA g[i]

R&D Alere

20–23+6 l 5.953 (0.029) 5.220
r 0.598 (0.020) 0.733
m 5.945 (0.044) 5.289

24–26+6 l 6.345 (0.034) 5.885
r 0.559 (0.024) 0.569
m 6.343 (0.043) 5.940

27–32+6 l 6.353 (0.075) 6.068
r 0.664 (0.053) 0.782
m 6.465 (0.102) 6.095

33–36+6 l 5.673 (0.104) 5.462
r 0.855 (0.068) 1.172
m 5.650 (0.160) 5.608

37–39+6 l 5.184 (0.074) 4.512
r 0.645 (0.067) 1.140
m 5.076 (0.071) 4.470

40+ l 5.258 (0.299) 4.010
r 0.685 (0.233) 0.974
m 5.214 (0.329) 3.846
3.2. MoM transformation parameter estimates

The median of the log-transformed PlGF measurements in each
platform-GA group (mp[i]g[i]) to be used in the Multiple of the Med-
ian transformation algorithm was estimated with 10,000 bootstrap
iterations (Table 2). Kolmogorov–Smirnov tests (data not shown)
confirmed the suitability of merging MoM transformed measure-
ments from the four platforms within each GA category. These esti-
mated parameters were used in the MoM transformation of the
original PlGF measurements (Eq. (2)).

The PlGF measurements on all four platforms are measured in
pictograms per milliliter (pg/ml). The transformed PlGF measure-
ments do not have equivalent physical units. The transformed
measurements are therefore referred to as the PlGF Z-Scores (or
PlGF MoMs).
3.3. Validation of merging

Merging was deemed successful as clustering analysis could not
identify platform-specific groups of merged PlGF Z-Scores (or PlGF
MoMs) in any GA category. To further compare these algorithms,
the Adjusted Rand Index was calculated for the k-means clustering
technique (k = 4) in each GA category (Z-score range: �0.002,
0.004, MoM range: �0.011, 0.011) and showed that each algorithm
provided a merged data set in which platform-specific groups were
unidentifiable, justifying their merging (and later their use in cre-
ating a common best reference curve for PlGF).
nd median (m) parameter for the MoM transformation of each platform-GA subgroup

Roche Abbott

(0.068) 5.642 (0.049) 5.430 (0.008)
(0.063) 0.461 (0.030) 0.524 (0.007)
(0.072) 5.596 (0.075) 5.405 (0.011)

(0.097) 6.021 (0.046) 6.067 (0.030)
(0.059) 0.552 (0.030) 0.602 (0.026)
(0.133) 6.046 (0.106) 6.050 (0.030)

(0.036) 6.162 (0.056) 6.383 (0.052)
(0.031) 0.689 (0.036) 0.695 (0.039)
(0.051) 6.184 (0.062) 6.378 (0.038)

(0.089) 5.836 (0.081) 5.938 (0.049)
(0.063) 0.766 (0.051) 0.985 (0.034)
(0.084) 5.801 (0.142) 6.022 (0.043)

(0.119) 5.389 (0.098) 4.994 (0.742)
(0.063) 0.787 (0.066) 0.905 (0.043)
(0.221) 5.387 (0.096) 4.957 (0.096)

(0.098) 4.918 (0.110) 4.796 (0.104)
(0.061) 0.705 (0.058) 1.026 (0.054)
(0.169) 4.956 (0.178) 4.796 (0.127)



Table 3
Thresholds [and lower bound of associated 95% CI] estimated from merged and platform-specific transformed data.

GA category 20–23+6 24–26+6 27–32+6 33–36+6 37–39+6 40+

Transformation
Z-Score Merged �1.53 [�1.48] �1.66 [�1.51] �1.73 [�1.63] �1.77 [�1.62] �1.56 [�1.47] �1.54 [�1.36]

R&D �1.65 [�1.47] �1.65 [�1.42] �1.89 [�1.28] �1.49 [�1.26] �1.33 [�0.94] �1.05 [�0.21]
Alere �1.65 [�1.28] �1.54 [�1.11] �1.74 [�1.60] �1.97 [�1.59] �1.67 [�1.46] �1.30 [�1.12]
Roche �1.42 [�1.24] �1.57 [�1.34] �1.72 [�1.46] �1.60 [�1.34] �1.52 [�1.31] �1.48 [�1.44]
Abbott �1.52 [�1.48] �1.66 [�1.46] �1.64 [�1.48] �1.76 [�1.60] �1.58 [�1.29] �1.54 [�1.28]

MoM Merged 0.85 [0.86] 0.84 [0.86] 0.79 [0.81] 0.69 [0.72] 0.72 [0.74] 0.71 [0.74]
R&D 0.84 [0.85] 0.85 [0.87] 0.79 [0.85] 0.78 [0.81] 0.85 [0.90] 0.87 [0.98]
Alere 0.76 [0.81] 0.85 [0.88] 0.77 [0.79] 0.56 [0.64] 0.58 [0.64] 0.74 [0.78]
Roche 0.89 [0.91] 0.85 [0.88] 0.80 [0.83] 0.79 [0.83] 0.78 [0.81] 0.77 [0.79]
Abbott 0.86 [0.86] 0.84 [0.86] 0.82 [0.84] 0.70 [0.72] 0.74 [0.72] 0.67 [0.72]

Fig. 1. Platform-specific thresholds (black) and the merged thresholds (red) for the Z-Score transformation.
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3.4. Validation of parameter estimate

Leave-one-out cross-validation found that no single cohort had
an effect on the estimation of a single parameter in all GA cate-
gories, again supporting a valid merging process of our 22 hetero-
geneous cohorts.
3.5. Reference curve thresholds and application

These merged thresholds are presented in Table 3. Note that the
threshold values for PlGF Z-Scores and PlGF MoMs are not directly
comparable since they are on different scales. LOO-CV
demonstrated that no single cohort or platform had a significant
effect on these estimates.

Similarly, thresholds (and associated 95% empirical confidence
intervals) for the platform-GA subgroups of transformed PlGF mea-
surements were constructed (Table 3). Fig. 1 illustrates the differ-
ence between the platform-specific thresholds and the merged
thresholds for the Z-Score transformation. The platform-specific
thresholds (shown in black) display much higher variability
(shown by the wide spread between the mean threshold and the
lower bound of its associated 95% empirical confidence interval)
than the merged thresholds (shown in red).

A threshold was deemed to correctly identify a case if its
transformed PlGF was lower than the estimated GA-specific



Fig. 2. PlGF Z-Scores from cases with PlGF Z-Score thresholds.

58 Ó. Burke et al. / Pregnancy Hypertension: An International Journal of Women’s Cardiovascular Health 6 (2016) 53–59
threshold. PlGF Z-Scores from cases are shown in Fig. 2 with the
merged thresholds based on the non-case PlGF Z-Scores (PlGF
MoMs plot similar, but not shown). The highest rates of case iden-
tification occurred prior to 33 weeks’ gestation, with loss of sensi-
tivity in sampling at later GA (Table 4) which is consistent with
published reports [3,6]. (Note that the four platforms are anon-
ymized by randomly assigned platform numbers 1–4 in Table 4).
From the figures reported in Table 4, it is clear that the merged
thresholds (based on Z-Score or MoM transformation) performed
similarly. The Z-Score merged thresholds yielded rates of incorrect
diagnosis averaging 5% (range 2.6–8.3%) as expected by construc-
tion of reference curve (note that the lower bound of the 95% con-
fidence interval for the merged thresholds resulted in an average of
6.2% false positives with range 5–12%). The MoMmerged threshold
performance showed an average of 10% non-cases incorrectly iden-
tified as cases (range 3.2–32%).
4. Discussion

We have developed and validated a generalizable method for
pooling and merging laboratory data from four different analytical
platforms. We illustrate our pooled data analysis strategy with
Table 4
Rates of correct identification of cases for merged and platform-specific (P-S) thresholds [

GA category 20–23+6 24–26+6 27–32+6

Method Platform

Z-Score 1 1.00 [1.00] 1.00 [1.00] 0.95
2 1.00 [1.00] 1.00 [1.00] 0.96
3 0.71 [0.71] 0.71 [0.79] 0.81
4 0.00 [0.00] 0.45 [0.55] 0.92
Overall 0.67 [0.67] 0.83 [0.86] 0.91

MoM 1 1.00 [1.00] 1.00 [1.00] 0.94
2 1.00 [1.00] 1.00 [1.00] 0.97
3 0.71 [0.71] 0.71 [0.79] 0.79
4 0.00 [0.00] 0.55 [0.55] 0.92
Overall 0.67 [0.67] 0.84 [0.86] 0.91

P-S thresholds average
rate

0.68 [0.68] 0.81 [0.83] 0.91
hypertensive disorders of pregnancy and the circulating maternal
biomarker PlGF, which is increasingly used in clinical practice.

Merging of PlGF measurements quantified on different assay
platforms allowed for the development of a best reference curve
(BRC) for uncomplicated pregnancy that can be applied, in future,
to the identification of complicated pregnancies. We would like
to highlight three main components of the above analyses. Firstly,
using clustering analysis and the Adjusted Rand Indices, we com-
pared the ability of each transformation (Z-Score and MoM) to pro-
duce measurements that are easily merged. Both transformations
performed well. The rates of case identification using reference
thresholds derived from the merged data (Table 4) indicated that
the MoM transformation performed slightly better than the Z-
Score transformation in later age groups. The choice between using
the MoM BRC-PlGF or the Z-score BRC-PlGF may rely on the inves-
tigator’s preferences. The differences between the overall diagnos-
tic rates of both merged thresholds and the average diagnostic
rates of the platform-specific thresholds were not statistically sig-
nificant at the 5% level for any GA category. We conclude that the
merged BRC performs just as well as those estimated specifically
for each platform, with the added practical advantages of being
based on a much larger and broader sample. The merged BRC is
particularly useful for collaborative investigations across cohorts.

Our method has been developed to study pregnancy-related
screening or diagnosis data but is applicable to any medical condi-
tion where there is intrinsic variability in the tests that measure
the same biomarker(s). The choice of BRC for any given study
and any biomarker will in general depend on the distribution of
the data being used. It is clear from our results in this PlGF merging
study of pregnancy blood samples that the diagnostic information
itself has not been degraded by merging the data from these
heterogeneous platforms and cohorts.

Of the possible biases in our study, some are intrinsic to con-
structing reference ranges whether from single or multiple data-
sets. They are considered no further than to say that the validity
of our approach depends on our definition of non-cases and the
requirement that no non-case contributed more than one value
to the BRC. Unstandardized use of the same analytical platform
in different laboratories may lead to small systematic biases in
the results. We found no evidence for this kind of bias of a magni-
tude that could constitute an important problem in our application
here, as removal of any single cohort in our LOO-CV methodology
(and the respective PlGF measurements) did not significantly alter
the merged BRC-PlGF across all GA ranges. Distributions of both
serum and plasma measurements were shown to be similar and
therefore these data were combined for the analysis, however
the combination of matrices may be a potential source of
variability.
and lower bound of associated 95% CI].

33–36+6 37–39+6 40+

[0.97] 0.16 [0.20] 0.06 [0.10] 0.00 [0.00]
[0.97] 0.73 [0.79] 0.38 [0.43] 0.25 [0.28]
[0.81] 0.46 [0.49] 0.46 [0.49] 0.08 [0.13]
[0.92] 0.27 [0.31] 0.37 [0.40] 0.20 [0.33]
[0.92] 0.44 [0.48] 0.34 [0.38] 0.17 [0.23]

[0.97] 0.13 [0.15] 0.00 [0.00] 0.00 [0.00]
[0.97] 0.84 [0.86] 0.59 [0.64] 0.28 [0.31]
[0.81] 0.29 [0.37] 0.21 [0.34] 0.00 [0.04]
[0.92] 0.25 [0.31] 0.35 [0.42] 0.31 [0.37]
[0.92] 0.41 [0.46] 0.35 [0.41] 0.20 [0.24]

[0.92] 0.42 [0.53] 0.34 [0.41] 0.20 [0.32]
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It is assumed that there is statistical independence between
platforms and case-mix. In an ideal situation, each blood sample
from the pregnant woman would be measured on all four plat-
forms and in the same laboratory to allow direct comparison. How-
ever in this application, to our knowledge, PlGF measurements of
this form are currently not available for any pregnancy cohorts.

Biases that could be generated during the merging of the PlGF
data are highly relevant because we wanted to establish a general-
izable method applicable to merged data of many tests in multiple
contexts. After merging the non-case values, there was no residual
cluster that could be attributed to one analytical platform. By LOO-
CV we also excluded the possibility of a dominant contribution
from any single cohort. In relation to this specific study, since we
did not systematically seek every known pregnancy cohort globally
and also since relevant pregnancy cohorts with angiogenic factor
analyses from low and middle income countries are lacking, there
is a possibility of potential inclusion bias. We believe any such bias
to be minimal but this will be addressed more specifically in our
future clinical analyses of this database.

The accuracy of medical diagnostic tests is usually considered
[7] in relation to a clear, verifiable, single diagnosis using labora-
tory methods that are already standardized for the purpose of
introduction into routine clinical practice. Examples include tests
in prenatal screening for fetal chromosomal abnormalities [8].
The present paper describes a methodology which may be more
applicable to research and discovery. Preeclampsia, like other syn-
dromes such as many inflammatory and cardiovascular conditions,
lacks sharp diagnostic definitions. In preeclampsia and related
placentally-mediated disorders of pregnancy, there are many clin-
ical presentations in a gray zone between normality and abnormal-
ity. Furthermore the disease can be extremely variable, indicating
underlying heterogeneity. Clinical diagnosis could be improved in
relation to better definitions of disease subtypes using biomarkers
(3), but further discovery relating to diagnostic challenges is
impeded by the low power of single studies, and the fact that
researchers have used several laboratory assays with differing ana-
lytical performances for measuring single biomarkers. It is at this
level that our method is likely to be most useful.

We have constructed a ‘‘PlGF converter” that enables any
researcher or clinician to calculate a general PlGF percentile based
on a PlGF concentration measured during pregnancy after week 20,
on any of the four platforms included in our study (It also includes
options for comparison against merged thresholds (both Z-Score
and MoM) and platform-specific thresholds). A link to the PlGF
converter is on the CoLAB home page (http://pre-empt.cfri.ca/co-
laboratory/global-pregnancy-collaboration).

We hope that the awareness of our merging method will
encourage researchers to plan their studies, in any biomarker field,
to allow their data to be merged with other future datasets in order
to gain more statistical power and research value for rare study
outcomes. Harmonization of data collection is being addressed
now in various clinical arenas [9], also for preeclampsia [10,11],
where application of the new ‘‘PlGF converter” could be useful
when merging pregnancy PlGF biomarker studies.

The clinical value of our PlGF reference curve has yet to be val-
idated. Future work will use the merged BRC-PlGF across gesta-
tional age to better characterize clinical subgroups of the
hypertensive disorders of pregnancy and other important compli-
cations such as fetal growth restriction. We will use the BRC-
PlGF to explore how different clinical groups of HDP and fetal
growth restriction are sub-classified on the basis of PlGF [3]. We
will extend our studies, using similar merging algorithms, to other
angiogenic markers (sFlt-1 and sEng), and to other pregnancy con-
ditions such as gestational diabetes mellitus and more rare preg-
nancy outcomes, including intrauterine fetal death. Pregnancy
disorders are not the only relevant conditions where this strategy
could be useful: other complex syndromes such as the metabolic
syndrome or polycystic ovarian syndrome present the same
problems.

Overall, we show here that heterogeneity of laboratory assays in
biomarker studies need not be a barrier for inclusion in pooled
analysis of individual patient datasets. The method shows how to
transform and validate merging for any set of biomarkers obtained
from different laboratory platforms in any field.
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