In situ X-ray diffraction studies on the piezoelectric response of PZT thin films

A. Davydok a,b,*, T.W. Cornelius a, C. Mocuta c, E.C. Lima d, E.B. Araujo e, O. Thomas a

Aix Marseille Université, CNRS, Université de Toulon, IM2NP UMR 7334, 13397 Marseille, France
b Max-Planck-Institut für Eisenforschung, Department Structure and Nano-/Micromechanics of Materials, D-40237 Düsseldorf, Germany
c SOLEIL Synchrotron, DiffAbs beamline, L’Orme des Merisiers, Saint-Aubin - BP 48, 91192 Gif-sur-Yvette Cedex, France
d Universidade Federal do Tocantins, 77500-000 Porto Nacional, TO, Brazil
e Departamento de Física e Química, Universidade Estadual Paulista, Av. Brasil, 56 Centro, 15385-000 Ilha Solteira, SP, Brazil

ARTICLE INFO

Article history:
Received 5 October 2015
Received in revised form 21 January 2016
Accepted 22 January 2016
Available online 23 January 2016

Keywords:
Piezoeffect
X-ray diffraction
Thin film
Anisotropy
In-situ experiment

ABSTRACT

Piezoelectric properties of randomly oriented self-polarized PbZr0.50Ti0.50O3 (PZT) thin films were investigated using in situ synchrotron X-ray diffraction. Possibilities for investigating the piezoelectric effect using micro-sized hard X-ray beams are demonstrated and perspectives for future dynamical measurements on PZT samples with variety of compositions and thicknesses are given. Studies performed on the crystalline [100, 110] directions evidenced piezoelectric anisotropy. The piezoelectric coefficient d33 was calculated in terms of the lab reference frame (dperp) and found to be two times larger along the [100] direction than along the [110] direction. The absolute values for the dperp amount to 120 and 230 pm/V being in good agreement with experimental and theoretical values found in literature for bulk PZT ceramics.

1. Introduction

Lead zirconate titanate, Pb(Zr1−xTix)O3 (PZT), is probably one of the most studied ferroelectric materials in the past years due to its excellent piezoelectric and dielectric properties [1]. The main studies on the PZT system were performed at compositions around the morphotropic phase boundary (MPB), at compositions of x ≈ 0.48, where dielectric and piezoelectric properties show their maximum values. In thin film form, the potentials of PZT have been demonstrated for applications as capacitors [2], micromechanical devices [3], nonvolatile ferroelectric memories [4], and others.

The PZT system has been systematically investigated for several years to understand the high piezoelectric response at compositions around the MPB. The discovery of a stable ferroelectric monoclinic phase (space group Cm) in the PZT system close to the MPB [5, 6] has provided a new perspective to explain some results attributed before to the coexistence of tetragonal (P4mm) and rhombohedral (R3m) phases [7, 8]. Later, first-principles calculations and experimental findings were consistent with the monoclinic phase as an intermediate phase in a narrow region of composition between tetragonal and rhombohedral phases in the PZT system [8]. Although the high piezoelectric response could be explained in terms of a rotation of the polarization from [001] to [111] directions in cubic indexes in the PZT [8], it is not yet clear if a monoclinic unit cell is a necessary condition for large piezoelectric responses or if the rotation of the polarization model really describes the origin of the higher piezoelectric responses in PZT and similar systems with MPB regions [9]. Despite the many uncertainties and controversies on this subject, it is unquestionable that our understanding of the piezoelectric response in perovskites has improved considerably in the last decade.

Although most of the studies in the past were on bulk ceramics, recent studies on PZT and other ferroelectric thin films have shown that the relaxation of a residual strain in films is accompanied by systematic changes in polarization properties [10]. Sometimes, these changes manifest as a self-polarization in thin films attributed to mechanical coupling between the ferroelectric film and a rigid substrate [11], to compressive/tensile stresses [12] or to Schottky barriers located at the bottom film-electrode interface [13, 14]. These studies demonstrate an intrinsic dependence on sample size in ferroelectrics and have motivated studies on ferroelectric thin films.

Different techniques are widely used to measure the piezoelectric coefficients of bulk ferroelectrics. However, for thin films the absolute displacement of the surface is extremely small in comparison to bulk materials being often out of the resolution limit of displacement probes. Therefore, methods with high strain sensitivity are desirable to obtain precise values of the piezoelectric coefficients for thin films. In this context, the normal load method and interferometric measurements of electric field-induced displacements have been often used to measure

http://dx.doi.org/10.1016/j.tsf.2016.01.045
0040-6090/© 2016 Elsevier B.V. All rights reserved.
the effective piezoelectric coefficient in bulk ferroelectric and thin films [15,16]. In addition, strain and piezoelectric properties of ferroelectric thin films can be measured quantitatively using time-resolved in situ synchrotron X-ray diffraction (XRD) with the appropriate spatial resolution and the sample under an applied electric field [17–20]. In situ high-resolution XRD has been performed to study the switching behavior of 90° domains in epitaxial tetragonal PZT thin films under applied bias voltage [21–24], as well as to investigate the electromechanical properties and the origin of the polarization fatigue in highly (111) and (001) oriented tetragonal PZT thin films [25,26].

Recently, we observed a self-polarization effect [27,28] on polycrystalline randomly oriented PZT thin films prepared by a modified Pechini polymeric method [29]. Although structural, electrical and local piezoelectric properties of these films were investigated to infer about the origin of this self-polarization effect [30], the piezoelectric anisotropy in this film was not yet investigated by in situ XRD. The present work reports on synchrotron microfocused X-ray diffraction experiments on such polycrystalline PZT thin films with a Zr/Ti 50/50 concentration. The lattice expansion/contraction was monitored in situ as a function of an applied electric field revealing “butterfly loops” [10] which are clear indications for the piezoelectric hysteresis. In addition, studies as a function of the crystallite orientation demonstrated piezoelectric anisotropy within the thin film showing piezoelectric coefficients which are two times larger along the [100] direction than along the [110] direction. The absolute values of the d_{perp} amount to 120 and 230 pm/V for (100) and (110) oriented grains being in good agreement with experimental and theoretical values found in literature for bulk PZT.

2. Experimental

PZT thin films with a nominal composition Pb(Zr$_{0.50}$Ti$_{0.50}$)O$_3$ were deposited by spin coating on the Pt/TiO$_2$/SiO$_2$/Si substrates using a polymeric precursor route based on the Pechini method [18]. As starting material, this method used PZT powder previously prepared by the conventional solid-state reaction as described in the literature [19]. For preparation of PZT powder, appropriate amounts of reagent-grade PbO (Aldrich, 99.99%), ZrO$_2$ (Aldrich, 99.9%) and TiO$_2$ (Aldrich, 99.99%) were mixed at Zr/Ti = 50/50 ratio by ball milling for 4 h. The mixed powder was calcined at 850 °C for 3.5 h in an electric furnace to obtain the PbZr$_{0.50}$Ti$_{0.50}$O$_3$ powder. Next, to prepare the polymeric resin PZT powder was dissolved in nitric acid solution (30% of HNO$_3$ and 70% of distilled water) during 1 h at 80 °C to obtain the metallic Pb$^{2+}$, Zr$^{4+}$, and Ti$^{4+}$ ions in solution. To compensate the lead loss during the powder dissolution, citric acid (CA) was added to stabilize the growth of the perovskite phase, 10 mol% of lead oxide was added in excess during the powder dissolution. After completing the dissolution, citric acid (CA) was added to the metal solution followed by stirring and heating at 90 °C for 1 h to form a citrate solution. Finally, ethylene glycol was added to the citrate solution and stirred while heating at around 110 °C until a clear polymer was obtained. The obtained polymeric resin was deposited on the substrates by spin coating at 5000 rpm for 30 s. To remove organics, the polymer film was submitted to a pyrolysis at 300 °C for 30 min. In order to image the different sample regions and, in particular, to locate the contacted electrode, the sample was mapped over a range of 4×4 mm2 in steps of 100 μm using a 6 circle diffractometer (kappa geometry). The incident 10 keV X-ray beam was focused down to a spot size of 8 μm × 5 μm (full width half maximum, FWHM) in horizontal and vertical direction, respectively, using bent mirrors in Kirkpatrick–Baez (KB) geometry. This micrometric focal spot ensured that the footprint of the X-ray beam on the sample surface was always significantly smaller than the size of the top electrodes even at low incident angles of ~8° (footprint ~60 μm × 5 μm during the XRD measurements reported here). This configuration guarantees experiments in the central part of the electrodes where a homogeneous electric field is expected and edge effects are avoided. The in situ diffraction measurements were performed in coplanar geometry with the sample mounted horizontally on a xyz translation-stage for precise lateral sample positioning. The diffracted intensity was monitored using a two-dimensional pixelated area detector (XPAD) with 560 × 960 pixels and a pixel size of 130 μm [31]. It was installed at a distance of 650 mm from the sample covering a 6° range in angular 2θ direction in a single image.

3. Results and discussion

A 0/20 diffractogram of the sample is presented in Fig. 1(a) revealing Bragg peaks of the PZT thin film, the Pt bottom electrode and the Si substrate. The Si 004 reflection served for alignment and as a reference for indexation purposes of the other Bragg peaks. The shoulder towards lower diffraction angles at the Pt 111 Bragg peak (highlighted by an arrow) originates from the gold electrodes deposited on top of the film.

In order to image the different sample regions and, in particular, to locate the contacted electrode, the sample was mapped over a range of 4×4 mm2 in steps of 100 μm using two different diffraction Bragg peaks as contrast signal for the maps. Fig. 1(b) and (c) displays scanning X-ray diffraction maps (SXD M) recorded using the Pt 111 and Au 111 Bragg peaks as contrast signal. While the position of the gold electrodes
into angular one (two theta and azimuth). The powder ring transforming the pixel coordinates of the detector metrical corrections were applied on the curved signal stemming from one applied electric peak increases. For further data analysis, the XPAD images recorded for one applied electric field were averaged. Before image analysis geometrical corrections were applied on the curved signal stemming from the powder ring transforming the pixel coordinates of the detector into angular one (two theta and azimuth). The 2θ Bragg peak profile is extracted following an azimuthal regrouping of the data (pixels corresponding to the same 2θ value). Two such line profiles for an applied potential of 0 ± 0.1 V and 9 ± 0.1 V are shown in Fig. 2(a), for different applied potentials. All diffraction patterns show a segment of the Debye–Scherrer ring revealing a polycrystalline nature of the PZT thin film. With increasing electric field, the diffraction signal moves by few pixels on the detector, the maximum diffraction intensity decreases, and the width of the diffraction peak increases. For further data analysis, the XPAD images recorded for one applied electric field were averaged. Before image analysis geometrical corrections were applied on the curved signal stemming from the powder ring transforming the pixel coordinates of the detector into angular one (two theta and azimuth). The 2θ Bragg peak profile is extracted following an azimuthal regrouping of the data (pixels corresponding to the same 2θ value). Two such line profiles for an applied potential of 0 ± 0.1 V and 9 ± 0.1 V are shown in Fig. 2(b) respectively. On the one hand, the width of these line profiles allows for determining the average size of the grains constituting the film. The mean grain size amounts is about 20 nm which is in good agreement with TEM studies (not shown here). On the other hand, these line profiles verify the shift of the Bragg peak as a function of the applied voltage as well as the slight decrease at maximum intensity. In order to extract the position and the full width at half maximum of the Bragg peak, the line profiles were fitted by a Gaussian. While 1 pixel on the detector corresponds to an angular opening of 0.011°, the aforementioned fitting process allows for measuring sub-pixel shifts rendering an estimated strain resolution of the order of 10\(^{-4}\).

Fig. 2(c) presents the 2θ value of the fitted center position of the PZT 110 Bragg peak for U = 0 V and U = 9 V as a function of time. The exposure time for each diffraction pattern (i.e. detector image) was 20 s. As soon as a voltage of 9 V is applied on the film (t = 0 s), the 2θ-position of the Bragg peak shifts towards lower values by 0.02° implying that strain is induced by the applied electric field. After 600 s, the voltage was switched back to the initial value of U = 0 V. While maintaining the electric field, the Bragg peak continuously moves to lower angles with time, indicating a lattice expansion. This lattice expansion may originate from the Joule effect heating up the sample. Compared to the piezoelectric strain induced by the electric field, the thermal lattice expansion is a factor of 5 less over a time period of 10 min. The studied sample contains Au and Pt electrodes whose thermal expansion coefficients are much higher than those for piezo ceramics [36] making them ideal as a reference for detecting heating effects. Hence, the evolution of the Pt 111 Bragg peak was studied as a function of the applied potential (not shown here) revealing a variation of \(-10^{-3}\) degrees in its 2θ-position, which is close to the resolution limit of this experimental approach. This change in diffraction angle corresponds to a thermal strain of \(-10^{-4}\) and, thus to a temperature increase of \(-10^\circ C\) at U = 9 V. Thus, the thermal expansion by Joule heating was neglected for the further studies.

The piezoelectric response of the PZT thin film was investigated for two different crystalline orientations (PZT(110) and PZT(100)) by increasing the applied voltage from 0 V to +9 V, then decreasing it to −9 V and raising it back to 0 V (i.e. E ranging from −140 to +140 kV/cm) in steps of 0.5 V. At each step, 30 diffraction patterns with an exposure time of 20 s each were recorded. Before increasing the voltage to the following step, the voltage was reduced to 0 V for 200 s in order to minimize a possible heating by the Joule effect as described before. From the change of the 2θ position of the center of the respective Bragg peak at 0 V and at the applied potential, the strain induced by the piezoelectric effects was calculated. Fig. 3(a) and (b)
The effective electric field and thus to switch the polarization of the studied film [29]. Further experiments are needed to uncover the origin of this behavior.

4. Conclusions

In conclusion, in-situ microfocused X-ray diffraction experiments on PZT thin films were conducted as a function of the applied electric field rendering possible both the direct measurement of the piezoelectric strain induced by the electric field and the determination of the piezoelectric coefficient for different crystalline orientations. Butterfly loops demonstrate the piezoelectric hysteresis in the material while the fact that the loops are not closed indicate the existence of a self-polarization. The experiment further addresses the piezoelectric anisotropy: the piezoelectric coefficient is about a factor two larger in the [110] than in the [111] direction. These studies pave the wavy to novel research on the origin of the self-polarization effect in thin films as a function of their thickness and their composition. Moreover, future synchronous experiments in combination with AC electric fields may allow for dynamic measurements giving access to the reorientation of the piezoelectric domains.

Acknowledgments

The authors gratefully acknowledge the SOLEIL Synchrotron for allocating beam time. Detector and Electronics Support Groups, as well as P. Joly, are acknowledged for excellent technical support during the experimental campaign at SOLEIL Synchrotron on Diffabs beamline. We would like to express our gratitude to the CAPES-COFECUB (Project N° 801-14), CNPq (Research grant 305973/2012-6 and Project N° 400677/2014-8) and FAPESP (Project N° 2010/16504-0) for their financial support.

References

In situ observation of ferroelectric 90°-domain switching in tetragonal Pb(Zr0.50Ti0.50)O3 thin films with no preferential orientation, Mater. Res. Bull. 47 (2012) 3548.

D. Taylor, D. Damjanovic, Piezoelectric properties of rhombohedral Pb(1/3Pb,1/3Bi)1/3Zr1/3TiO3 thin films with (100), (111), and “random” crystallographic orientation, Appl. Phys. Lett. 76 (2000) 1615.

