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Antibacterial activity of diacetylcurcumin against
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adhesion
Janaina de C�assia Orlandi Sardi,1 Carlos Roberto Polaquini,2 Irlan Almeida Freires,1 Livia Câmara de Carvalho Galv~ao,1
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Abstract

Purpose. Staphylococcus aureus infections have contributed to the global healthcare burden, particularly with regard to

hospital-acquired meticillin-resistant S. aureus (MRSA) infections.

Methodology. This study describes the antibacterial activity of diacetylcurcumin (DAC) against meticillin-susceptible S.

aureus/MRSA biofilm formation, survival, metabolic activity and structure; its ability to prevent bacterial adhesion to human

cells; and toxicity in Galleria mellonella larvae.

Results. DAC showed excellent antibacterial activity, with MIC ranging between 17.3 and 34.6 µmol l�1, and minimum

bactericidal concentration ranging between 69 and 277 µmol l�1. It significantly reduced bacterial biofilm survival – by 22–

63% (at MIC, 10�MIC or 100�MIC) as compared to the 25–42% reduction by vancomycin (P<0.0001) – and severely affected

biofilm cell structures, leading to damaged architecture and the formation of amorphous cell clusters. Treatment with DAC

(MIC/4) decreased bacterial adhesion to HaCaT keratinocytes from 1 to 5 h (P<0.0001). Finally, DAC demonstrated low toxicity

in G. mellonella at its effective anti-biofilm concentrations.

Conclusion. These findings open new avenues for the study of this curcumin derivative as an excellent prototype with anti-

MRSA activity.

INTRODUCTION

Staphylococcus aureus is considered to be the main causative
agent of community- and hospital-acquired infections [1],
most of which occur in asymptomatic carriers. Short- or
long-term S. aureus colonization becomes an issue when the
individual’s immune system is compromised [2]. Hence, the
outcomes of S. aureus infections are seen as a serious pub-
lic-health issue, particularly in the hospital setting where
clones resistant to meticillin and/or to other antibiotics are
endemic and may increase the risk of death [3]. Since metic-
illin-resistant S. aureus (MRSA) was first described in the
1960s as a major nosocomial pathogen, its incidence in
infections has continued to rise worldwide in healthcare
institutions and, more recently, in the community setting.
This bacterium has been detected in about 30 to 50% of

healthy individuals. In the USA, 1/100 individuals are colo-
nized with MRSA, which has raised a serious concern due
to its transmissibility by direct contact, predisposing the
population to life-threatening infections [4, 5]. MRSA infec-
tions have become a major, difficult-to-treat clinical issue,
especially in severe cases, due to the limited treatment
options currently available [2]. S. aureus is commonly asso-
ciated with artificial surfaces, including prosthetic orthopae-
dic implants, heart valves, pacemakers and vascular
catheters [5, 6]. Hence, an area of primary concern with
MRSA biofilm infections is the rapid increase in the use of
medical implants and prostheses, and the concomitant rise
in device-related infections [5–7].

Biofilm production is an important virulence factor of
micro-organisms associated with chronic infections, such
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as sinusitis, otitis media, cholecystitis, prostatitis, osteomye-
litis, skin chronic infections and infections associated
with foreign bodies (implants and catheters), with S. aureus
being frequently identified as an important agent respon-
sible for such infections [8]. Both S. aureus and Staphy-
lococcus epidermidis are the most clinically significant
pathogens among Gram-positive bacteria able to form bio-
films [9]. The ability of these bacteria to adhere to the abi-
otic surfaces of medical devices and form robust biofilms
thereon contributes to the pathogenicity of staphylococci
infections [10]. After a medical device is installed, its poly-
mer-based material is rapidly covered with plasma proteins
and extracellular matrix, thereby enhancing microbial colo-
nization of its surfaces [11]. In addition to indirect bacterial
binding to the polymer, direct non-specific binding may
also occur, mainly due to electrostatic and hydrophobic
interactions promoted by bacterial surface proteins [12].
The rates of infection associated with medical devices in
intensive care units of developing countries are higher than
those of developed countries [13]. In view of this, there has
been a collective effort to find or develop novel molecules
with antimicrobial activity in order to increase the arsenal
of drugs against infections caused by biofilm-forming resis-
tant strains.

Curcumin is a polyphenol compound isolated from ground
rhizomes of the plant Curcuma longa L. [14]. This plant has
a broad spectrum of biological actions [15, 16], including
antioxidant, analgesic, anti-inflammatory, antiseptic, anti-
cancer, antiviral, antibacterial, antifungal and antiplatelet
activities [17, 18]. Curcumin has been widely used in Ayur-
vedic medicine for centuries, with no reports of toxicity
[17, 18]. Over the past 50 years, research has shown that pol-
yphenols such as curcumin play an important role in health
maintenance and disease prevention [16]. A number of stud-
ies have demonstrated that C. longa extract and fractions
have antibacterial activity against pathogenic bacteria,
including S. aureus [19, 20]. A study showed that the MICs
of curcumin, the main compound isolated from C. longa,
ranged from 125 to 250 µg ml�1 against ten meticillin-
susceptible S. aureus (MSSA) and MRSA strains. In addition,
a checkerboard combinatorial test indicated that curcumin
reduced by 2- to 128-fold the MICs of antibiotics commonly
used against MRSA, such as oxacillin, ampicillin, ciprofloxa-
cin and norfloxacin, thereby demonstrating the potential
clinical effectiveness of curcumin and its derivatives to treat
MRSA infections [19]. Many other authors have also studied
the action of curcumin on fungal pathogens [21, 22].

Much effort has been made to develop more potent, effective
and well-tolerated drugs. Hence, synthetic chemical modifi-
cation has been prominent in the design of new compounds
with enhanced antibacterial activity and fewer toxic effects.
Previous studies performed by Changtam et al. [23] demon-
strated that a derivative molecule of curcumin, named diace-
tylcurcumin (DAC), was effective against Mycobacterium
tuberculosis. DAC is a synthetic derivative of curcumin in
which the two phenolic hydroxyl (HO–) groups are replaced

by acetyl groups (CH3COO–) [24]. Herein, we investigated
the antibacterial activity of DAC against MSSA and MRSA
biofilm formation, metabolic activity and structure. We fur-
ther tested the ability of DAC to prevent bacterial adhesion
to human cells, and determined its toxicity in vivo using the
Galleria mellonellamodel.

METHODS

Synthesis of DAC

DAC was synthesized by a curcumin–acetylation reaction
according to Changtam et al. [23]. Acetic anhydride (25ml)
was added to a solution of curcumin (1.1 g, 3mmol) in pyri-
dine (25ml) and the reaction mixture was kept under mag-
netic stirring at 100

�
C. After 96 h, the residue was

partitioned with ethyl acetate (3�25ml), washed with H2O
(3�25ml) and dried at room temperature. The crude prod-
uct was purified over a silica gel column eluted with mix-
tures of hexanes and ethyl acetate. The molecular structure
of DAC was established by 1H and 13C NMR spectral analy-
sis. For the microbiological assays, DAC was diluted follow-
ing the protocol proposed by Scorzoni et al. [25].

Micro-organisms

S. aureus ATCC 25923 (MSSA) and S. aureus ATCC 33591
(MRSA) strains were used in this study. Both strains were
maintained as frozen stocks at �80

�
C until use. For the

assays, the strains were subcultured onto trypticase soy agar
(TSA), and a single colony was inoculated into trypticase
soy broth (TSB) medium and incubated at 37

�
C for 24 h.

Determination of MIC and minimum bactericidal
concentration (MBC)

The MIC of DAC was determined by the microdilution
technique according to the Clinical and Laboratory Stand-
ards Institute protocol M07-A9 [26]. DAC was diluted and
tested at concentrations ranging from 553 to 1.0 µmol l�1.
Vancomycin (Sigma-Aldrich) was used as a standard drug,
2% DMSO (v/v; vehicle) was used as a negative control and
culture medium free of any other agent was included to
check for sterility. The MIC was defined as the lowest con-
centration of the molecule that inhibited visible microbial
growth.

The MBC was determined by subculturing aliquots from
the wells corresponding to the MIC and above onto TSA
plates, which were incubated at 37

�
C for 24 h. The MBC

was defined as the lowest concentration of the molecule that
allowed no visible growth on the solid medium.

Effects of DAC on S. aureus and MRSA adhesion to
HaCaT cells

Cell cultures of human keratinocytes (HaCaT) were
obtained from the Bank of Cells of Rio de Janeiro (Rio de
Janeiro, Brazil). Cells were maintained in Dulbecco’s
medium (DMEM) supplemented with 10% fetal bovine
serum (Gibco) plus 100U penicillin ml�1, 100 µg streptomy-
cin sulfate ml�1 and 200mM L-glutamine at 37

�
C, 5% CO2.

In this assay, the inhibitory effects of DAC against S. aureus/

Sardi et al., Journal of Medical Microbiology 2017;66:816–824

817



Downloaded from www.microbiologyresearch.org by

IP:  186.217.236.55

On: Wed, 19 Jun 2019 16:39:07

MRSA adhesion to HaCaT cells were investigated. First, an
adhesion curve (0, 2, 3, 4 and 5 h) was plotted to determine
the initial time of bacterial adhesion to the human cells. The
adhesion assay was performed using 24-well plates contain-
ing 1�105 cells per well, according to Sardi et al. [27] with
minor modifications. After formation of monolayers of cells
in the wells, aliquots of 500 µl bacterial inocula (5�103 c.f.u.
ml�1) were added to each well. The plates were incubated at
36.5

�
C and 5% CO2 for the previously mentioned times.

After each incubation time, the cells were washed three
times with sterile PBS and then trypsinized. Aliquots of
100 µl were plated for c.f.u. measurement onto TSA plates
and incubated at 37

�
C for 24 h. The effects of DAC on bac-

terial adhesion to HaCaT cells were evaluated by adding the
compound at MIC/4 (final concentration) simultaneously
with the inoculum. This concentration was chosen as it
ensures that bacterial growth and survival are not affected
by treatment with the antimicrobial substance [28]. After 1,
2, 3, 4 and 5 h of adhesion the cells were washed three times
with sterile PBS, trypsinized and plated for c.f.u. measure-
ment onto TSA plates. The percentage of inhibition of adhe-
sion was calculated based on the final number of adhered
bacteria in relation to an untreated group indicating 100%
bacterial adhesion. In order to demonstrate that DAC
directly affects the mechanism of bacterial adhesion to kera-
tinocytes instead of decreasing adhesion indirectly by limit-
ing bacterial growth and survival, we included a control
with DAC-treated (MIC/4) cells and culture medium.

Effects of DAC on biofilm formation and preformed
biofilm survival

Effects on biofilm formation

An aliquot of 100 µl standardized cell suspension (1�108

c.f.u. ml�1) was added to the wells of 96-well microplates.
The plates were incubated at 37

�
C for 2 h to allow for cell

adhesion. Then each well was washed with PBS to remove
non-adherent yeasts, and the forming biofilms were
treated with DAC at MIC, 10�MIC or 100�MIC (final
concentration) for 24 h at 37

�
C. After incubation, biofilms

were washed to remove planktonic and killed cells, and
then serially diluted and plated for c.f.u. measurement, as
described below (in the quantification of c.f.u. section).
Vancomycin was used as a standard drug, and a negative
control with culture medium alone was also included.

Effects on preformed biofilms

A total of 100 µl bacterial inoculum (OD6000.08–1.0) was
added to TSB plus 0.1% glucose (TSB-g). The medium was
added to each well of a 96-well cell culture-treated polysty-
rene microtiter plate with a final inoculum concentration of
1�107 c.f.u. per well. The plates were incubated at 37

�
C for

24 h to allow for biofilm formation [29]. Following mature
biofilm formation, the wells were washed three times with
200 µl sterile saline (0.85%) to remove planktonic cells.
Then 100 µl TSB-g containing the DAC (MIC, 10�MIC
and 100�MIC) was added. TBS-g was added to wells with
and without bacterial inoculum to serve as controls. The
plates were incubated at 37

�
C for 24 h. After the incubation

period, the plates were washed once with PBS and proc-
essed for semi-quantitative (sodium 2,3-bis(2-methoxy-
4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tet-
razolium hydroxide inner salt (XTT) assay) or quantitative
(counting of c.f.u. ml�1) analysis.

XTT assay

The XTT reduction assay was used to determine the meta-
bolic activity of DAC-treated biofilms [30]. After treatment,
biofilms were washed once with PBS, and the plates were
incubated at 37

�
C for 2 h with 100 µl XTT (1.0 mg XTT

ml�1 and 1mmol menadione l�1). Conversion of the XTT
substrate to a soluble coloured formazan product correlates
with cell viability. The resulting absorbance was read at
490 nm using a microplate reader (ASYS UVM 340).

Quantification of c.f.u.

After treatment with DAC, biofilms were scraped from the
bottom of the wells using a 100 µl micropipette to allow for
dissociation of cells. A volume of 100 µl containing the cell
suspension was aspirated from the wells, transferred to a
tube containing 900 µl PBS and vortexed for 3min. Then
serial dilutions were carried out and 100 µl of each suspen-
sion was plated onto TSA plates. The survival (percentage
of c.f.u.) was determined comparatively based on the sur-
vival of S. aureus/MRSA untreated biofilms.

Effects of DAC on biofilm structure

Scanning electron microscopy (SEM) analysis was carried
out to evaluate the effects of DAC on the structure and
integrity of S. aureus/MRSA biofilms. First, biofilms were
grown for 24 h at 37

�
C on tissue-culture-treated chambered

glass slides (Corning BD Falcon), washed three times with
PBS to remove planktonic cells, and then treated with DAC
at different concentrations (MIC, 10�MIC, 100�MIC). A
negative control group with untreated biofilm was also
included. After 24 h, the samples were washed twice and
maintained in 2.5% glutaraldehyde/PBS (v/v, pH 7.4) for
2 h at room temperature. The slides were serially dehydrated
with ethanol (from 50 to 100%) for 5min, coated with gold
at 40mA (BAL-TEC SCD 050) and observed using a scan-
ning electron microscope (Jeon JSM 5600LV) [31].

Systemic toxicity of DAC in G. mellonella larvae

This assay was carried out to evaluate the acute toxicity of
DAC in a G. mellonella alternative model, as previously
described, with modifications [32]. A total of 20 healthy lar-
vae were randomly selected for each group, weighing
between 0.2 and 0.3 g. The larvae were chilled on ice for
20min and had their prolegs cleaned with 70% ethanol.
Five microlitres DAC at different concentrations (MIC,
10�MIC, 100�MIC) and the vehicle (DMSO) were injected
into the haemocoel of each larva through the last left proleg
by a trained operator using a 25 µl Hamilton syringe (Ham-
ilton). After injection, the larvae were incubated at 37

�
C

and their survival was monitored at selected intervals over
72 h. The larvae unable to move when touched and showing
high levels of melanization were counted as dead.

Sardi et al., Journal of Medical Microbiology 2017;66:816–824

818



Downloaded from www.microbiologyresearch.org by

IP:  186.217.236.55

On: Wed, 19 Jun 2019 16:39:07

Statistical analysis

All assays were performed in triplicate for three indepen-
dent experiments. The data concerning the biofilm assays
were analysed by one-way analysis of variance (ANOVA)
with Tukey’s multiple comparison test, with a significance
level of 5%. For the G. mellonella toxicity model, Kaplan–
Meier killing curves were plotted on GraphPad Prism 5.0
and estimations of differences in survival were compared
using the log-rank test.

RESULTS

Antibacterial activity against planktonic cells

DAC was tested for its ability to inhibit bacterial growth of
S. aureus ATCC 25923 (MSSA) and ATCC 33591 (MRSA)
strains. Table 1 shows the MIC and MBC values of DAC
and vancomycin (a standard drug) against MSSA and
MRSA. The MIC values of DAC ranged from 17.3 to 34.6
µmol l�1 and the MBC values from 69.2 to 277.1 µmol l�1,
suggesting that it is a potent bacterial inhibitor. The MBC/
MIC ratio was indicative that DAC has predominantly bac-
teriostatic activity against these strains. Vancomycin also
showed low MIC (0.69 to 1.4 µmol l�1) and MBC (5.52 to
11.0 µmol l�1) values.

Inhibitory effects of DAC on S. aureus and MRSA
adhesion to human cells

The inhibitory effects of DAC on bacterial adhesion to
HaCaT cells were investigated. As seen in Fig. 1, treatment
with DAC at MIC/4 led to a significant decrease of adhesion
in both strains from 1 to 5 h (P<0.0001) when compared to
the untreated group. The inhibitory effects were more
pronounced against MSSA (43 to 66%) than MRSA (34 to
46%). These findings show that DAC (used at a sub-
inhibitory concentration) directly affects the mechanism of
S. aureus adhesion to keratinocytes.

Effects of DAC on biofilm formation and preformed
biofilm survival

DAC was tested for its ability to inhibit biofilm formation
(Fig. 2) and survival of preformed biofilms (Figs 3 and 4).
Treatment with DAC at 10�MIC and 100�MIC caused a

significant decrease of MSSA and MRSA biofilm formation
as compared to the untreated group (P<0.0001). Further-
more, significant differences in biofilm formation were
observed upon treatment with vancomycin, and when com-
paring the effects of DAC and vancomycin on biofilm for-
mation (Fig. 2). As seen in Fig. 3, MSSA and MRSA
preformed biofilms treated with DAC at 10�MIC and
100�MIC showed concentration-dependent reduced meta-
bolic activity in both strains when compared to the
untreated group (P<0.0001). However, at MIC it did not
affect the biofilm metabolic activity significantly (P>0.05),
similarly to vancomycin. In order to confirm these semi-
quantitative findings, we carried out a quantitative assay for
determination of c.f.u. ml�1 in treated biofilms. Fig. 4
shows that all concentrations of DAC led to a significant
decrease of biofilm survival (P<0.0001) as compared to the
control, with better results for the concentration 100�MIC.

Table 1. MIC and MBC values of DAC and vancomycin (a standard

drug) against S. aureus ATCC 25923 (MSSA) and S. aureus ATCC 33591

(MRSA)

Values are expressed in µmol l�1.

Group S. aureus ATCC 33591

(MRSA)

S. aureus ATCC 25923

(MSSA)

MIC MBC MBC/

MIC

ratio

MIC MBC MBC/

MIC

ratio*

DAC 34.6 277.1 8 17.3 69.2 4

Vancomycin 1.4 11.0 8 0.69 5.52 8

*Bacteriostatic (MBC/MIC �4) or bactericidal (MC/MIC <4) activity.
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Fig. 1. Percentage inhibitory effects (mean±SD) of DAC on MRSA and

MSSA adhesion to human keratinocytes (HaCaT). Treatment with DAC

at MIC/4 led to a significant decrease of MRSA (a) and MSSA (b) adhe-

sion to HaCaT cells over time as compared to the untreated group

(***P<0.0001, ANOVA with Tukey’s post-test).
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In brief, DAC reduced MSSA preformed biofilm survival by
approximately 22% (MIC), 32% (10�MIC) and 63.7%
(100�MIC) as compared to 25% (MIC), 33% (10�MIC)
and 42% (100�MIC) for vancomycin. DAC-treated MRSA
biofilms were reduced by 14% (MIC), 27% (10�MIC) and
53% (100�MIC) as compared to 15% (MIC), 28%
(10�MIC) and 42% (100�MIC) for vancomycin. These
findings support the view that the inhibitory effects of DAC
on biofilm formation and survival are comparable to or
more effective than those of the standard drug vancomycin
(Figs 2, 3 and 4).

Effects of DAC on biofilm structure

SEM analysis was carried out to evaluate the deleterious
effects of DAC on the structure and integrity of mature
biofilms of MSSA and MRSA. It was observed that DAC
severely affected biofilm cell structures at 10�MIC, and
particularly at 100�MIC, leading to damaged architecture
and formation of amorphous cell clusters (Fig. 4). The
SEM photomicrographs also illustrate the reduced bacterial
population in DAC-treated biofilms (Figs 4 and 5), which
corroborates the findings of the quantitative analysis shown
in Fig. 4.

Systemic toxicity of DAC in G. mellonella larvae

The in vivo toxicity of DAC was assessed using the G. mello-
nella alternative model, as previously described. The larvae
were injected with DAC at concentrations of 10�MIC
and 100�MIC, which showed significant anti-biofilm
activity in vitro and correspond to the doses 3.12 and
31.2mg (kg larvae)�1, respectively. As shown in Fig. 6,
intra-haemocoelic administration of DAC did not cause sig-
nificant acute toxic effects in the larvae over a period of 72 h
(P>0.05). DMSO was used as a vehicle and did not show sta-
tistically significant toxicity either (P>0.05).

DISCUSSION

MRSA has been held responsible for an increasing health-
care burden worldwide, with high asymptomatic carriage
among healthcare workers and the population in general
[5, 33]. To date, vancomycin is the most commonly admin-
istered drug in cases of infections associated with MRSA
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biofilms [34]. However, 9.3% of MRSA strains isolated
from healthcare workers were found to be resistant to van-
comycin [33]. Therefore, there has been a significant effort
from the scientific community to develop novel target-
specific drugs with potent antimicrobial activity to be used
alternatively against multi-resistant strains. Herein, a DAC
compound was synthesized and proved for what is believed
to be the first time to have promising anti-MRSA activity
comparable to that of vancomycin, as well as low toxicity
in vivo.

Bacterial attachment to host cells is one of the early strate-
gies for successful establishment of infection [35]. This pro-
cess can be mediated by a number of components, such as
adhesins, pili or fimbriae, and specific exopolysaccharides
[35, 36]. As S. aureus is a frequent colonizer of skin and
mucosal surfaces, we tested the ability of DAC to prevent
bacterial adhesion to HaCaT cells. The findings indicated
that at sub-inhibitory concentrations DAC significantly

inhibited adhesion of both MSSA and MRSA to keratino-
cytes over time, which could contribute to the prevention of
infection onset. Further studies should clarify the exact
structures and mechanisms affected by DAC in the bacterial
cell leading to disrupted adhesion.

(a)

15

10

M
R

S
A

 b
io

fil
m

 (
c
.f.

u
. m

l–
1
 lo

g
1

0
)

5

0

15

10

M
S

S
A

 b
io

fil
m

 (
c
.f.

u
. m

l–
1
 lo

g
1

0
)

5

0

Untrd 1× 10×

***

*** ***

***

***
***

DAC treated Vancomycin treated

100× 1× 10× 100×

(b)

Untrd 1× 10×

***
***

***

***
***

***

DAC treated Vancomycin treated

100× 1× 10× 100×

Fig. 4. Quantitative analysis (determination of c.f.u. ml�1) of the inhibi-

tory effects (mean±SD) of DAC and vancomycin on MRSA and MSSA

preformed biofilm survival. Treatment with DAC and vancomycin at

MIC, 10�MIC and 100�MIC caused a significant decrease of MRSA (a)

and MSSA (b) mature biofilm survival as compared to the untreated

(untrd) group (***P<0.0001, ANOVA with Tukey’s post-test).

S. aureus ATCC 33591 (MRSA)

(a)

(b) (b)

(c)(c)

(a)

S. aureus ATCC 25923 (MSSA)

Fig. 5. SEM photomicrographs (�5000) showing MSSA and MRSA bio-

film cells untreated (a), and treated with DAC at 10�MIC (b) and

100�MIC (c). Treated biofilms showed deleterious structural changes

and reduced microbial population. Bars, 5 µm.

100

DAC (10×MIC)

DAC (100×MIC)

DMSO (vehicle)

80

60

P
e
rc

e
n
t 

su
rv

iv
al

40

20

0
0 20 40 60

Time (h)

80

Fig. 6. Percentage survival over time of G. mellonella larvae injected

with DAC at doses of 3.12 and 31.2mg (kg larvae)�1, which correspond

to their effective anti-biofilm concentrations (10�MIC and 100�MIC,

respectively) previously determined in vitro (P>0.05, log-rank test).

Sardi et al., Journal of Medical Microbiology 2017;66:816–824

821



Downloaded from www.microbiologyresearch.org by

IP:  186.217.236.55

On: Wed, 19 Jun 2019 16:39:07

A number of studies have described the potential of curcu-
min as an antimicrobial agent [37–39], but very little
research has focused on its biconjugate analogue DAC.
Mishra et al. [40] showed that DAC has antibacterial activ-
ity against multi-resistant Gram-positive and Gram-
negative bacteria, including S. aureus, but there are no
reports of its anti-biofilm effects. Semi-quantitative and
quantitative data suggest that DAC may have clinically sig-
nificant effects against MSSA and MRSA biofilm formation,
and survival of preformed biofilms as the results were as sat-
isfactory as or more effective than those of vancomycin.
Mun et al. [19] demonstrated that curcumin exhibited
inhibitory activity on MRSA strains, with MIC values of 125
to 250 µg ml�1. Our results showed that DAC has action at
much lower concentrations (7.8 to 15.6 µg ml�1). Conver-
sion of the phenolic hydroxyl group (HO�) present in the
structure of curcumin into the acetyl group (CH3COO�) in
DAC (Fig. 7) resulted in the potentiation of the antibacterial
activity of the latter. This change results in increased lipo-
philicity, which may be related to greater capacity of pene-
tration through the biomembranes [41, 42].

Teow et al. [43] suggested that curcumin activity is not
altered by the drug-resistance machinery in S. aureus, since
in other studies it did not show differences in MIC values
against MSSA and MRSA [19]. However, our results
showed that MSSA was more sensitive to treatment with
DAC than MRSA, indicating that the activity of DAC is
affected by resistance mechanisms.

It has been well established that bacteria growing in biofilms
are considerably less susceptible to the action of antibiotics
than those in the planktonic form. During biofilm develop-
ment, bacteria may evade host defences and become toler-
ant to high concentrations of antimicrobials, making
infections particularly difficult to eradicate [5, 44, 45]. The
effective concentration of antimicrobials against biofilms
can be up to 10- to 1000-fold higher than that against plank-
tonic cultures [46–48]. Therefore, the concentrations
10�MIC and 100�MIC were selected in this study for the
treatment of forming and mature biofilms. A recent study
by Manner et al. [49] showed that dehydroabietic acid – a

diterpenoid abundant in the resin of coniferous trees – pre-
vents S. aureus biofilm formation and that 2- to 4-fold
higher concentrations of this compound are needed to sig-
nificantly reduce the viability and biomass of preformed
S. aureus biofilms. In this study, we demonstrated that 10-
to 100-fold higher concentrations of DAC were able to
reduce bacterial population and disrupt the conformation of
mature MSSA and MRSA biofilms in a concentration-
dependent manner.

In order to provide preliminary evidence on the short-term
toxicity of DAC for future clinical use, we carried out an
assay with the invertebrate model of G. mellonella larvae.
This validated model is broadly used in the international lit-
erature and indicates the acute toxic effects over time of
exogenously administered substances [32]. The results of
this study showed that DAC has no significant toxic effects
in vivo when tested at its effective anti-biofilm concentra-
tions, which is encouraging for clinical use. The G. mello-
nella model has several advantages over other ones,
including quick and low-cost data generation, and in partic-
ular it is an alternative approach to the use of mammals for
primary toxicological assessment, therefore reducing the
number of vertebrate animals for experimentation and
refining subsequent studies [50].

Conclusion

It may be concluded that DAC has strong anti-biofilm activ-
ity against MSSA and MRSA strains comparable to that of
vancomycin. In addition, it is able to inhibit bacterial adhe-
sion to human cells and has low toxicity in the G. mellonella
model. These findings open new avenues for the study of
this curcumin derivative as an excellent prototype with anti-
MRSA activity. Further studies should focus on its mecha-
nism of action and long-term toxicity in other relevant
models.
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H-6¢); 7.64 (d; J=16,0 Hz; H-1). 13C NMR (CDCl3; 100 MHz) dC: 20.7 (4¢-OCOCH3); 55.9 (3¢-OCH3); 101.8 (C-4); 111.0 (C-2¢); 121.1 (C-6¢)
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