Molecular identification of cryptic diversity in species of cis-Andean Mylossoma (Characiformes: Serrasalmidae)

Nadayca T. B. Mateussi, Carla Simone Pavanelli & Claudio Oliveira

To cite this article: Nadayca T. B. Mateussi, Carla Simone Pavanelli & Claudio Oliveira (2017) Molecular identification of cryptic diversity in species of cis-Andean Mylossoma (Characiformes: Serrasalmidae), Mitochondrial DNA Part A, 28:5, 778-780, DOI: 10.1080/24701394.2016.1180515

To link to this article: https://doi.org/10.1080/24701394.2016.1180515

Published online: 09 May 2016.
Molecular identification of cryptic diversity in species of cis-Andean *Mylossoma* (Characiformes: Serrasalmidae)

Nadayca T. B. Mateussia,b,c, Carla Simone Pavanellia,b,c and Claudio Oliveirab

aColeção Ictiológica, Núcleo De Pesquisas Em Limnologia, Ictiologia E Aquicultura, Universidade Estadual De Maringá, Maringá, Brazil; bLaboratório De Biologia E Genética De Peixes, Departamento De Morfologia, Universidade Estadual Paulista, Distrito De Rubião Junior, Botucatu, Brazil; cPrograma De Pós-Graduação Em Ecologia De Ambientes Aquáticos Continentais, Universidade Estadual De Maringá, Maringá, Brazil

ABSTRACT

Mylossoma is a Serrasalmidae genus with only two current valid species in the cis-Andean region but with several available names, today considered as junior synonymous. Morphological information combined with single-locus DNA sequences of cytochrome c oxidase I gene analysed by Barcode Index Number and General Mixed Yule Coalescent model were used in the present study to help the recognition of Operational Taxonomic Units (OTUs) in cis-Andean *Mylossoma* and discuss species boundaries within the genus. Five OTUs were recognized based on both morphological and molecular approaches. The analysis using the Barcode Index Number resulted in five OTUs, with *M. duriventre* being split in one unity in the Amazon, one in the Orinoco, one in Paraná-Paraguay and one in Tocantins-Araguaia which is coherent with our morphological results.

Introduction

Mylossoma is a Serrasalmidae genus with only three valid species, one trans-Andean: *M. acanthogaster* from Maracaibo Lake and two cis-Andean: *M. aureum* and *M. duriventre* from Amazon, Orinoco, Tocantins-Araguaia and Paraná-Paraguay river basins. Despite of the well-established monophyly of *Mylossoma*, problems in the species recognition still exist (Machado-Allison & Castillo 1992). Considering the wide distribution of cis-Andean *Mylossoma*, in the present work we used partial sequences of the gene cytochrome c oxidase I mitochondrial gene (COI) and morphological information to test the hypotheses that this group represents more than two Operational Taxonomic Units (OTUs).

Material and methods

A total of 64 fishes were collected at 17 sites along the cis-Andean South America in accordance with local laws. Total DNA was obtained from muscle samples (DNeasy Blood & Tissue kit). COI segments were amplified with the primers Fish F1 and Fish R2 (Ward et al. 2005). The amplification was performed in a thermal cycler PCR using 25 μl of a solution containing 16.1 μl of distilled water, 2.5 μl dNTP (8 mM), 2.5 μl of 10× buffer, 1.2 μl of each primer (10 μM) and 0.5 μl DNA Polymerase (5 units/μl). Each PCR cycle consisted basically of denaturation for 5 min at 95°C, annealing for 45 s at 52°C and extension for 1 min at 68°C. This cycle was repeated 30 times and the final step included a final extension for 5 min at 68°C. The DNA was marked with the Big Dye Terminator Cycle Sequencing Standard Version 3.1 Kit (Applied Biosystems) and sequenced on an automated DNA sequencer. Consensus sequences were obtained from the forward and reverse sequences using Geneious 4.8 program (Kearse et al. 2012).

OTUs were identified using traditional morphological identification, the Barcode Index Number (BIN) (Ratnasingham & Hebert 2013) and the General Mixed Yule Coalescent program (GMYC) (Pons et al. 2006) with two models: (1) Birth–Death and (2) Yule. Ultrametric trees were constructed with relaxed molecular clock using a lognormal time distribution through BEAUTi and BEAST programs (Drummond et al. 2012). A total of 100,000,000 trees were sampled each 10,000 generations. All topologies sampled below the asymptote (2,000,000 generations) were discarded as part of a burn-in procedure. The remaining trees were used to build a majority consensus tree in TreeAnnotator program (Rambaut & Drummond 2011). The clusters were identified with GMYC program, using the APE and SPLITS packages in R-studio program (2012).

Results and discussion

Barcode sequences with more than 500 pb were obtained for 64 specimens. After alignment and edition, the final matrix had 675 characters, of which 545 positions were conserved and 130 were variable. Sequences were deposited in the BOLD (BMYL002-14/066-14; BMYL067-15/068-15) and GenBank (KR070896–KR070959). *Mylossoma aureum* and different groups of *M. duriventre* differ between 1.4 and 9.0% of
K2P + gamma distance (Table 1). The threshold time obtained in the GMYC analysis was -2.85×10^{-3} T.

Our results indicate that BIN and GMYC approaches (Birth–Death model) agree with the occurrence of only one OTU in *Mylossoma aureum* (Figure 1) but the Yule model shows the presence of two groups, both from Amazonas River Basin, separated by a genetic distance of 0.0042. This small genetic difference should be studied more carefully in the future. *Mylossoma aureum* was described by Spix and Agassiz (1829) and can be differentiated from other *Mylossoma* species by the absence of anal spines, with ventral spines not attached to the anal fin. Thus, in this case both methods (molecular and morphological) can differentiate the species.

Our data suggest that the widely distributed *M. duriventre* represents more than one OTU. The Birth–Death model suggests the occurrence of four OTUs. Two of these OTUs (groups 2 and 5 – Figure 1) were divided when we used the Yule model, but the genetic distance between the group 2a and 2b was 0.0052 and the genetic distance between group 5a and 5b was 0.0047. The groups 3 and 4 were divided when we used the Yule model and also in the BIN analysis. A perfect correlation was observed between the groups identified using the BIN model and their geographic distribution. Thus, group 2 represents the samples from the Orinoco River basin, group 3 from the Paraná-Paraguay rivers Basin, group 4 from the Tocantins-Araguaia rivers Basin and group 5 from Amazon River basin. *Mylossoma duriventre* was described by Cuvier (1818), but actually under this name we have seven junior synonymous (Jégu 2003). A taxonomic review should be performed to analyse the correct species attributions for the OTUs.

During the speciation process, the affected characters are highly diversified, in order that the changes do not occur at the same time or on a regular order and boundaries between new species become increasingly evident as time goes on (Queiroz 2007). However, at the beginning of this process – known as Grey Zone – the boundaries between species are hardly identified, making the limits between species very subjective and dependent on species concepts applied (Queiroz 2007). The results obtained for *Mylossoma* indicate that the
genetic change may precede or not the morphological change. Morphological change preceding substantial genetic change can be observed in the case of M. duriventre groups 3 and group 4, which present low genetic divergence ($d = 0.0141$) but can be differentiated morphologically. Although their genetic divergence is low when compared to other species, according to Ward (2009) among fishes divergences ranging from one to 1.5% are much more likely to be congeners that conspecifics. The case of genetic change preceding the morphology change can be observed in M. duriventre group 2 and M. duriventre group 5, which were separated into more than one OTU with over 7% of K2P distance and cannot be clearly separated morphologically (our unpublished data). Also, these OTUs do not appear as a monophyletic group. In this case, the existence of cryptic species is evident, since the morphological data do not agree with genetic data. This pattern found in M. duriventre groups 2 and 5, can be caused by convergence related to selective pressures triggered by similar environmental conditions.

Conclusions

Our data demonstrate the efficacy of DNA barcoding for discriminating known species and to flag new ones. We justify the use of DNA barcode sequences as part of the formal description of species, since these data can be useful when morphological characters are insufficient or too weak to define species.

Acknowledgments

The authors are grateful to Gleisy Avelino Santos for her help during the extraction and sequencing procedures and to Valéria Nogueira Machado from Universidade Federal do Amazon and Dr. Mauro Nirchio from Universidade de Oriente for their donation of tissues.

Disclosure statement

The authors report no conflicts of interest and are alone responsible for the content and writing of the paper.

Funding information

This research was supported by the Brazilian agencies CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), CAPES/PROEX (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior/Programa de Excelência Acadêmica) and FAPESP (Fundaçao de Amparo à Pesquisa do Estado de Sao Paulo).

References