On the effects of hydroxyl substitution degree and molecular weight on mechanical and water barrier properties of hydroxypropyl methylcellulose films

Caio G. Otoni¹, Marco V. Lorevice¹,²,³, Márcia R. de Moura⁴, Luiz H.C. Mattoso⁵

¹ Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentation – Rua XV de Novembro, 1452, São Carlos, SP, 13560-970, Brazil
² PPG-CEM, Department of Materials Engineering, Federal University of São Carlos – Rodovia Washington Luís, km 235, São Carlos, SP, 13565-905, Brazil
³ PPGQ, Department of Chemistry, Federal University of São Carlos – Rodovia Washington Luís, km 235, São Carlos, SP, 13565-905, Brazil
⁴ Department of Physics and Chemistry, FEIS, São Paulo State University – Av. Brasil, 56, Ilha Solteira, SP, 15385-000, Brazil

A R T I C L E I N F O

Chemical compounds studied in this article: Hydroxypropyl methylcellulose (PubChem CID: 57503849)
Keywords: Biopolymer, Cellulose derivative, Cellulose ether, Hypermethoxyl, Cellulose, Food packaging, Edible film

A B S T R A C T

In line with the increasing demand for sustainable packaging materials, this contribution aimed to investigate the film-forming properties of hydroxypropyl methylcellulose (HPMC) to correlate its chemical structure with film properties. The roles played by substitution degree (SD) and molecular weight (Mw) on the mechanical and water barrier properties of HPMC films were elucidated. Rheological, thermal, and structural experiments supported such correlations. SD was shown to markedly affect film affinity and barrier to moisture, glass transition, resistance, and extensibility, as hydroxy substitution lessens the occurrence of polar groups. Mw affected mostly the rheological and mechanical properties of HPMC-based materials. Methocel® E4 M led to films featuring the greatest tensile strength (ca., 67 MPa), stiffness (ca., 1.8 GPa), and extensibility (ca., 17%) and the lowest permeability to water vapor (ca., 0.9 g mm kPa−1 h−1 m−2). These properties, which arise from its longer and less polar chains, are desirable for food packaging materials.

1. Introduction

Recently, there has been an increasing trend towards the use of biopolymers as film-forming materials (e.g., for food packaging applications) in an effort to reduce the environmental problems arising from the unrestricted exploitation of fossil fuels and the inadequate disposal of non-biodegradable materials (Azeredo & Waldron, 2016; Garavand, Rouhi, Razavi, Cacciotti, & Mohammadi, 2017). Cellulose is a widely available homopolysaccharide. It is made up of β-1,4-glucopyranoside units, linked by 1,4-glycosidic bonds, and arranged as long, linear, unbranched chains. These aspects, in addition to high occurrence of hydroxyl groups (three per anhydroglucose ring – provide cellulose with extremely strong intermolecular interactions, which in turn result in fibrous aspect and high stiffness as well as in insusceptibility and insolvability in water and most organic solvents (Zhang, Zhang, Tian, Zhou, & Lu, 2013), characteristics that are undesirable from the polymer processing standpoint.

In order to increase the processability of cellulose as a film-forming matrix, cellulose derivatives have been produced by the partial substitution of hydroxyl groups by bulkier, less reactive groups. Different cellulose ethers have been demonstrated to be suitable film-forming matrices for food packaging applications, including methylcellulose (Bertolino et al., 2016), hydroxypropyl cellulose (Cavallaro, Donato, Lazzara, & Miloìto, 2011; Cavallaro, Lazzara, Konnova, Fakhruullin, & Lvov, 2014), and hydroxypropyl methylcellulose (HPMC) (Alzate, Miramont, Flores, & Gerschenson, 2017; Moghimi, Allahmadi, & Rafati, 2017). HPMC stands out because it is also water soluble, odorless, tasteless (Burdock, 2007), generally recognized as safe (GRAS) by the United States Food and Drug Administration (US FDA) (GRAS Notice No. GRN 000213, 2007), and allowed for direct (e.g., as an additive) and indirect (e.g., as a food-contacting packaging material) food applications by US FDA (21 CFR 172.874, 2011) and European Union...
2. Experimental

2.1. Materials

Three HPMC (CAS No. 9004-65-3; EU No. E464; INS No. 464; NAS No. 0534) grades were kindly donated by The Dow Chemical Company (São Paulo, Brazil): Methocel® E15 (average methoxyl content/hydroxypropyl content (M/HP): 3.05), Methocel® K4M (average M/HP: 2.26), and Methocel® E4M (average M/HP: 3.05). The SD, MS, and methoxyl and hydroxypropyl contents of the HPMC grades are compiled in Table 1. Ultrapure water (ρ = 18.2 MΩ), deionized on a Milli-Q system (Barnstead Nanopure Diamond, USA), was used in all experiments. Hydroxypropyl cellulose (HPC) solutions having weight average molecular weights of 12,000; 20,500; 50,500; 86,300; 153,500; and hydroxypropyl cellulose (HPC) samples having weight average molecular weights of 12,000; 20,500; 50,500; 86,300; 153,500; and 205,600; 388,000; 637,000; and 865,000 g mol⁻¹ were purchased from American Polymer Standards Co. (Mentor, OH, USA).

2.2. Molecular weight

The molecular weights of the different HPMC grades were determined through high-performance size exclusion chromatography (HP-SEC) on a liquid chromatograph (model SCL-10A, Shimadzu Co., Japan) equipped with differential refractive index detector (model RID-20A, Shimadzu Co.) and UV–vis spectrophotometric detector (model SPD-10AV, Shimadzu Co.). The mixture NaNO₃ 0.1 M/ethylene glycol 0.1% was used as eluent. A 50 mm x 6 mm (10 μm) pre-column (Shodex OHpak KB-G) as well as two 8 mm ID x 300 mm (13 μm) columns (Shodex OHpak KB–806 M) were associated in series, filled with poly(hydroxy methacrylate) gel, and used in HP-SEC runs. Standard HPC, cellulbiose, glucose, and ethylene glycol samples were used to build a standard curve. Runs were performed with injection volume of 20 μL, temperature of 35 °C, and flow equal to 1.0 mL min⁻¹. Data acquisition and treatment were carried out in CLASS-LC10 software (version 1.21).

2.3. Rheological measurements

Aqueous HPMC solutions at 1, 2 or 3% (wt.) were analyzed on a rotational rheometer (model MCR 301, Anton Paar GmbH, Austria) operating with concentric cylinder geometry (DG26.7) and in steady shear rates ranging from 0.01 to 10,000 s⁻¹, at 20 °C.

2.4. Film casting

HPMC powders were solubilized in distilled water under magnetic stirring for 12 h to form 2% (wt.) film-forming solutions (FFS). The solutions were degassed under vacuum and spread with a controlled thickness over level poly(ethylene terephthalate) supports, where they were allowed to dry at 25 ± 2 °C for 24 h. Dried films were equilibrated at 50% RH for at least 48 h prior to testing.

2.5. Fourier-transform infrared spectroscopy (FT-IR)

The infrared spectra of HPMC films were obtained on a FT-IR spectrometer (model VERTEX 70, Bruker Optik GmbH, Germany) equipped with an ATR module and operating in reflectance mode. The samples were screened within the spectral region from 4000 to 6000 cm⁻¹ with a resolution of 2 cm⁻¹.

2.6. Thermogravimetry

Film samples (5–6 mg) were accurately weighed in a platinum pan and heated from 25 to 600 °C at a rate of 10 °C min⁻¹, within an atmosphere comprising synthetic air (21% O₂) flowing at 40 mL min⁻¹. Sample weight was monitored by a high-precision balance within an atmosphere comprising nitrogen flowing at 60 mL min⁻¹ as a function of temperature on a TA Q500 (TA Instruments, Inc., New Castle, USA) equipment in order to obtain thermogravimetric (TG) and derivative TG (DTG) curves.

2.7. Differential scanning calorimetry (DSC)

Film samples (3–4 mg) were precisely weighed in aluminum pans and heated from −80 to 240 °C at a rate of 10 °C min⁻¹, in an atmosphere with nitrogen flowing at 50 mL min⁻¹. Heat flow was monitored as a function of temperature on a DSC Q100 (TA Instruments, Inc.) calorimeter.

Table 1

<table>
<thead>
<tr>
<th>HPMC</th>
<th>SD</th>
<th>M (%)</th>
<th>MS</th>
<th>HP (%)</th>
<th>Mₘₑ (g mol⁻¹)</th>
<th>Mₘᵦ (g mol⁻¹)</th>
<th>Mₑ/Mₘᵦ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methocel® E15</td>
<td>1.9</td>
<td>28–30</td>
<td>0.23</td>
<td>7–12</td>
<td>51,097</td>
<td>15,481</td>
<td>3.30</td>
</tr>
<tr>
<td>Methocel® E4M</td>
<td>1.9</td>
<td>28–30</td>
<td>0.23</td>
<td>7–12</td>
<td>351,490</td>
<td>80,890</td>
<td>4.35</td>
</tr>
<tr>
<td>Methocel® K4M</td>
<td>1.4</td>
<td>19–24</td>
<td>0.21</td>
<td>7–12</td>
<td>331,893</td>
<td>75,211</td>
<td>4.41</td>
</tr>
</tbody>
</table>
2.8. Mechanical properties

Films were shaped in at least six specimens per treatment according with ASTM D882–12 (ASTM, 2012) and submitted to uniaxial tensile test. Films were stretched at 10 mm min⁻¹ by flat grips initially separated by 100 mm (L₀) on a DL3000 universal testing machine (EMIC Equipamentos e Sistemas de Ensaios Ltda., São José dos Pinhais, Brazil) equipped with a 10-kgf load cell. The mechanical attributes engineering tensile strength (σₚ), percent elongation at break (εₑ), and Young’s modulus (E) were determined by Eqs. (1)–(3), respectively, wherein F, L, and A₀ are the maximum load, the ultimate specimen extension (at break), the initial specimen cross-sectional area (i.e., width * thickness). Thickness was taken as the average of at least three random measurements throughout sample gauge length, measured to the nearest 0.001 mm with a digital micrometer (Mitutoyo Corp., Kanagawa, Japan).

\[
\sigma_p = \frac{F}{A_0} \tag{1} \\
\varepsilon_e = \left(\frac{L - L_0}{L_0} \right) \times 100 \tag{2} \\
E = \lim \frac{F}{L/\varepsilon_e} \tag{3}
\]

Dynamic mechanical thermal analyses have been performed to provide further insights on the mechanical and thermal behaviors of HPMC films. Rectangular (12.0–13.0 mm in length, 6.4–6.8 mm in width, and 0.023–0.033 mm in thickness) specimens were stretched in oscillatory mode at amplitude of 0.1% and frequency of 1 Hz on a DMA Q800 (TA Instruments, Inc.) operating at tension mode with temperature ramping at 2 °C min⁻¹ from 60 to 250 °C.

2.9. Water vapor permeability (WVP)

WVP was determined in accordance with the gravimetric modified cup method based on ASTM E96-92 (McHugh, Avena-Bustillos, & Krochta, 1993). Films were shaped into circles and sealed with silicone grease onto 100 mm (L₀) poly(methyl methacrylate) (PMMA) cups having 100-mm² openings that were then topped with symmetrically screwed, open PMMA rings. Test cups were filled with 6 mL of distilled water and placed in cabinets with controlled RH (lower than 30%, maintained silica) and temperature (30 ± 1 °C). After steady state of water vapor transmission rate was reached, cups were periodically weighed within 24 h in 2-h intervals. At least four replicates of each film were used for WVP determination.

2.10. Dynamic vapor sorption (DVS)

Adsorption/desorption isotherms in/from HPMC films were obtained at 25 °C on a DVS-1 system (Surface Measurement Systems Ltd., UK). Films were previously dehydrated in desiccators at 25 °C and the weights of ca. 5-mg samples were monitored while RH was varied from 0 to 98% and then from 98 to 0% in 7% intervals.

2.11. Statistical treatment of data

Quantitative data were submitted to analysis of variance followed by Tukey’s mean comparison test, both at 5% of significance.

3. Results and discussion

3.1. Molecular weight and rheological aspects

The size and size distribution of HPMC chains were determined by HP-SEC. The obtained standard curve was \(M_W = 5.322 \times 10^{-4} (10 \rightarrow 1)^3 + 2.295 \times 10^{-3} (x \rightarrow 10)^2 - 0.3644 (x \rightarrow 10) + 7.3559; R^2 = 0.9983 \), wherein \(M_W \) is the logarithm of the molecular weight – in g – and \(t \) is retention time – in min. The obtained chromatograms are presented in Supplementary Fig. S1, whereas molecular weight data are compiled in Table 1.

It can be observed that HPMC Methocel® E4 M and Methocel® K4M have remarkably longer chains than HPMC Methocel® E15. Indeed, the designations 15 and 4M are related to the viscosities of 2% (w/v) aqueous HPMC solutions at 20 °C, as disclosed by the manufacturers: 12–18 and 3000–5600 mPa s. This is in accordance with the rheological behaviors of the HPMC solutions produced here (Fig. 1), which in turn are direct consequent behaviors of their molecular weights.

As expected, solutions comprising higher HPMC contents presented greater steady shear viscosity, regardless of the HPMC grade. SD affected the steady shear viscosity, which can be attributed to branching and intermolecular interactions that have been demonstrated to affect the flow behavior of cellulose derivatives (Borges et al., 2015). Molecular weight, in turn, had a pronounced effect on the steady shear viscosity of HPMC solutions, particularly at low shear rates. This is indicated by the steady shear viscosity values of solutions comprising longer HPMC chains, which are ca. two orders of magnitude greater than their shorter analogues (Fig. 1). Longer chains experience greater entanglement levels, being capable of offering resistance to flow and, therefore, leading to increased viscosity. It is also noteworthy the shear thinning-to-Newtonian transition in HPMC Methocel® E15. At low shear rates, the highly entangled chains of polymer solutions offer high resistance to flow, resulting in high viscosity. As shear rates increase, the macromolecules are gradually unravelled, bringing about shear thinning behavior. At sufficient shear levels, entanglements are scarce and chains are aligned towards flow direction, situation in which polymer solutions may present Newtonian behavior. Provided that it is easier to disentangle shorter chains, this transition was exclusively observed in HPMC Methocel® E15 because of its lower molecular weight.

3.2. Fourier-transform infrared spectroscopy (FT-IR)

Fig. 2 shows the FT-IR spectra of the HPMC films. All spectra presented bands close to 2900 cm⁻¹ (at 2972, 2902, and 2836 cm⁻¹, more specifically) attributed to the axial deformation of the C–H bonds in aliphatic chains (Sakata & Yamaguchi, 2011), that is, to –CH₃ arising from the substitution of hydroxyl groups by methoxyl and hydroxypropyl ones. Absorptions related to the axial deformation of C–O–C bonds, typical in cellulose ethers, may be observed from 900 to 1300 cm⁻¹ (Anuar, Wui, Ghodgaonkar, & Taib, 2007; Zaccaron, Oliveira, Guiotto, Pires, & Soldi, 2005). Bands at wavenumbers ranging from 1250 to 1460 cm⁻¹ (herein observed at 1315, 1374, 1410, and 1452 cm⁻¹) are assigned to the angular deformation of C–H bonds.
3.3. Thermal properties

The TG and DTG curves of the produced films show three well defined weight loss stages (Fig. 3).

The first stage took place between 30 and 100 °C, with maximum weight loss rates at 51–60 °C. It is attributed to intermolecular dehydration, i.e., physical desorption of free moisture within the hygroscopic matrix (Ford, 1999; Li, Huang, & Bai, 1999). Films based on Methocel® E15 and Methocel® E4M grades presented weight losses not higher than 1% at this stage, whereas those based on HPMC Methocel® K4M lost 4.7% of their original masses (the DTG peak temperatures and sample weights after each weight loss stage are presented in Supplementary Table S1). This reflects the higher equilibrium moisture of the less substituted sample, which therefore comprise a higher hydroxyl content. Feller and Wilt (1990) stated that, for films based on cellulose ethers, the lower the SD, the greater the equilibrium moisture. This was corroborated by determinations of the moisture contents of HPMC-based films at 105 °C in oven drying until constant weight was achieved: Methocel® K4M (20.6 ± 1.8%) was higher (p < 0.05) than Methocel® E4M (7.0 ± 0.2%) and Methocel® E15 (9.3 ± 2.4%), the latter not differing among themselves (p > 0.05).

The films were thermally stable up to ca. 200 °C, when the second weight loss stage began, although the weight loss rates were maximum at much higher temperatures: 330–345 °C. This stage may be assigned to the oxidative decomposition of cellulose ethers, involving simultaneous processes of intramolecular dehydration and demethylation (Li et al., 1999; Yin, Luo, Chen, & Khutoryanskiy, 2006). Finally, at temperatures higher than 400 °C, the compounds resulting from the thermal cleavage or scission at the previous stage (which implied in ca. 83–87% weight loss) underwent thermal oxidation and ignition (Li et al., 1999).

As shown in Fig. 3, three endothermal events were identified when HPMC films were heated. The first thermal event at ca. ~18 °C may be related to either i) the melting of water that is weakly linked to polymer chain (type II water) and that presents remarkable supercooling, therefore freezing and thawing at low temperatures (Ford, 1999) or ii) secondary thermal transitions, i.e., the onset of conformational changes (rotation, particularly) in small segments of the main chain as well as in side groups (Gómez-Carracedo, Álvarez-Lorenzo, Gómez-Amoza, & Concheiro, 2003). The ductile behaviors of the films (Fig. 4) assayed at temperatures lower than their glass transitions temperatures support the second hypothesis.

The subsequent thermal event showed maximum heat flows between 80 and 100 °C and is attributed to the evaporation of moisture adsorbed to the highly hydrophilic films. This has been previously reported for HPMC samples (Ford, 1999). The peak temperatures (T_{max}) as well as the areas of the endothermic peaks (ΔH), presented in Supplementary Table S1, correlate well with equilibrium moisture, corroborating this hypothesis. Considering water enthalpy of vaporization (2257 J g$^{-1}$), sample weight, and the area of the endothermic peaks, the amount of water evaporated can be calculated: HPMC Methocel® K4M: 15.8%; HPMC Methocel® E4M: 10.3%; HPMC Methocel® E15: 9.5%. These data correlate well with those obtained in oven drying at 105 °C, follow the same trend of those obtained in TG, and are again a consequence of the higher occurrence of hydroxyl groups in HPMC Methocel® K4M, leading to greater water holding capacity.

![Fig. 2. Fourier-transform infrared spectroscopy (FT-IR) FT-IR absorption spectra of films based on different hydroxypropyl methylcellulose grades.](image)

![Fig. 3. Thermal aspects. Thermogravimetric (TG) and derivative TG (left) and differential scanning calorimetry (right) curves of films based on hydroxypropyl methylcellulose Methocel® E15 (black), HPMC Methocel® E4M (red) or HPMC Methocel® K4M (blue). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)](image)
The third thermal event was assigned to the glass transition of the samples. The glass transition temperature (T_g), taken as the average among the onset and offset temperatures, was higher in films based on HPMC Methocel® K4M ($T_g = 207.9 \degree C$) than in films based on HPMC Methocel® E4M ($T_g = 176.5 \degree C$) and HPMC Methocel® E15 ($T_g = 172.4 \degree C$). These values are similar to those previously reported in the literature: 172–175 °C for HPMC Methocel® E15 (Masilungan & Lordi, 1984); 191–196 °C for HPMC Methocel® K4M (Gómez-Carracedo et al., 2003; Nyamweya & Hoag, 2000); and 162–184 °C for HPMC Methocel® E4M (Gómez-Carracedo et al., 2003; McPhillips, Craig, Royall, & Hill, 1999). The slightly higher T_g of films based HPMC Methocel® E4M when compared to those made up of HPMC Methocel® E15 is a consequence of the longer chains of the former (Table 1), which feature lower free volume available for conformational changes and thus requiring higher energy input for chains to acquire mobility. The remarkably higher T_g of films based on HPMC Methocel® K4M are attributed to the lower SD of such grade, as the higher hydroxyl content leads to increased intermolecular interaction through hydrogen bonds (Gómez-Carracedo et al., 2003).

3.4. Mechanical properties

The mechanical attributes of the studied HPMC films are summarized in Table 2, whereas their typical mechanical profiles upon testing are presented in Fig. 4.

Films based on HPMC Methocel® E4M were remarkably more resistant and extensible ($p < 0.05$) than those made up of HPMC Methocel® E15. This is a consequence of the longer chains of the former (Table 1), implying more molecules among the few crystalline domains and leading to a stronger anchoring effect on the aggregate state. As a result, the resistance, extensibility, and toughness of the material are increased. The greater level of physical entanglement arising from the longer chains of HPMC Methocel® E4M also contribute to the improved mechanical resistance of its films when compared to those based on grades of lower molecular weights.

HPMC Methocel® E4M-based films also presented higher tensile strength ($p < 0.05$) than those made up of HPMC Methocel® K4M. This is attributable to the steric effect that methoxyl groups provide HPMC chains with, once they are bulkier than the original hydroxyl groups. This anchor-like action required a higher input of mechanical energy to break the films during a tensile assay, explaining the increased tensile strength.

Young’s modulus was not influenced by SD once this mechanical property was equal ($p > 0.05$) for films made up of HPMC Methocel® E4M and Methocel® K4M. Molecular weight, on the other hand, affected Young’s modulus, as suggested by the stiffer ($p < 0.05$) films based on HPMC Methocel® E4M in comparison to those made up of Methocel® E15. Again, longer polymer chains tend to experience decreased free volume and, as a consequence, limited mobility. In this sense, deformation is hampered, especially at the predominantly elastic region of the viscoelastic regime, leading to increased Young’s modulus. Oscillatory tests have been carried out to provide further insight on the mechanical and thermal properties of HPMC-based films (Supplementary Fig. S3).

3.5. Water barrier properties

The driving force for water vapor diffusion is the RH gradient from the interior of the test capsules towards chamber atmosphere. Because all capsules were held within the same chamber, the final RH was equal for all specimens. Therefore, to allow proper comparison, the RH values inside the capsules must also be the same, condition which was achieved here (Table 2).

Molecular weight did not affect the WVP of HPMC films, whereas SD had a pronounced effect on this variable. Films made up of HPMC Methocel® K4M presented higher ($p < 0.05$) WVP values than those based on the more substituted grades. This is a straightforward consequence of the higher occurrence of hydroxyl groups in the former, leading to a higher capacity of interaction with water molecules and, therefore, providing films with increased hydrophilicity. This outcome is in line with the higher affinity to moisture of films based on HPMC Methocel® K4M, corroborating the results obtained through oven drying, DSC, and TG.

DVS was carried out to further elucidate the hygroscopicity of the HPMC films. The adsorption and desorption isotherms are presented in Fig. 5.

All films presented affinity to water molecules, as indicated by the higher masses in desorption cycles than in their adsorption analogues for a given RH, leading to hysteresis. This phenomenon is believed to arise from the adsorption of water molecules to hydroxyl groups as well as to different availabilities of these polar groups at different RH values (Salmén & Larsson, 2018). At low RH, hydrogen bonding is the main interaction involved in moisture adsorption (Enrione, Hill & Mitchell, 2007). In this sense, the initial portion of the adsorption curve corresponds to the attachment of water molecules to the hydrophilic groups of the HPMC, notably the hydroxyls. Indeed, in this region, the slopes of the curves assigned to the more substituted HPMC grades (i.e., Methocel® E4M and Methocel® E15) are similar and lower than that of the less substituted grade (i.e., Methocel® K4M). This finding is also in line with WVP data as well as moisture contents determined through oven drying, DCS, and TG. After a certain RH, the isotherms of the E grades

![Fig. 4. Uniaxial tensile test. Typical mechanical behaviors of films based on different hydroxypropyl methylcellulose grades evidencing their ductile behaviors upon stretching.](image-url)

Table 2

<table>
<thead>
<tr>
<th>HPMC Methocel®</th>
<th>Thickness (μm)</th>
<th>σf (MPa)</th>
<th>εB (%)</th>
<th>E_1 (GPa)</th>
<th>E_2 (GPa)</th>
<th>E_3 (GPa)</th>
<th>WVP (g mm kPa $^{-1}$ h$^{-1}$ m$^{-2}$)</th>
<th>RH (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E15</td>
<td>25.0 ± 3.8a</td>
<td>30.83 ± 6.43b</td>
<td>6.96 ± 1.56b</td>
<td>1.45 ± 0.15b</td>
<td>0.754 ± 0.285b</td>
<td>72.7 ± 3.4b</td>
<td>76.1 ± 1.6b</td>
<td></td>
</tr>
<tr>
<td>K4M</td>
<td>43.5 ± 3.3b</td>
<td>52.13 ± 3.33b</td>
<td>11.89 ± 1.98b</td>
<td>1.74 ± 0.08b</td>
<td>1.532 ± 0.164b</td>
<td>76.1 ± 1.6b</td>
<td>76.1 ± 1.6b</td>
<td></td>
</tr>
<tr>
<td>E4M</td>
<td>30.1 ± 2.6a</td>
<td>67.28 ± 8.39a</td>
<td>17.37 ± 3.32a</td>
<td>1.76 ± 0.16a</td>
<td>0.923 ± 0.151a</td>
<td>76.3 ± 1.8a</td>
<td>76.3 ± 1.8a</td>
<td></td>
</tr>
</tbody>
</table>

a- Mean values ± standard deviations followed by different letters within the same column are significantly different ($p < 0.05$).
Table 3
Dynamic vapor sorption data. Parameters of the Brunauer-Emmett-Teller (BET) and Guggenheim-Anderson-de Boer (GAB) models fitted to films based on different hydroxypropyl methylcellulose (HPMC) grades.

<table>
<thead>
<tr>
<th>HPMC</th>
<th>BET</th>
<th>GAB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E15</td>
<td></td>
<td>4.765</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.994</td>
</tr>
<tr>
<td>K4M</td>
<td></td>
<td>3.799</td>
</tr>
<tr>
<td>E4M</td>
<td></td>
<td>0.986</td>
</tr>
</tbody>
</table>

4. Conclusions

In summary, we confirmed our hypothesis that both chain length and backbone pendant group affected the mechanical and water barrier properties of HPMC films. Thermal and rheological properties also showed influence of HPMC chemical structure. SD had a pronounced effect on the affinity and barrier to moisture, glass transition, tensile resistance, and extensibility of HPMC films. This effect has been attributed to the reduced polarity provided by methoxyl substitution. Molecular weight, in turn, affected mostly the rheological behavior of HPMC solutions as well as the mechanical properties of its films. This outcome arises from the higher level of physical entanglement and reduced free volume of longer chains. Considering food packaging applications, the trend towards more mechanically resistant and less permeable films guide the choice of HPMC Methocel® E4M as the optimum film-forming matrix among the studied HPMC grades. Further studies are suggested to investigate the role played by other substitution degrees as well as hydroxypropyl substitution on the physical-mechanical properties of HPMC-based films.

Funding

This work was supported by São Paulo Research Foundation (FAPESP) [grant numbers 2013/14366-7 and 2014/23098-9]; and National Council for Scientific and Technological Development (CNPq) [grant number 402287/2013-4].

Acknowledgements

The authors are thankful to the financial support given by FAPESP (grants #2013/14366-7 and 2014/23098-9), CNPq, SISNANO/MCTI, FINEP, CAPES (grant #33001014005-D-6), and Embrapa AgroNano research network. They are also thankful to the experimental support by Beatriz Lodi. Prof. Elisabete Frollini (IQSC/USP) is acknowledged for HP-SEC experiments. Dr. Roberto Avena-Bustillos and Dr. Tara McGhugh (WRRC/ARS/USDA) are also acknowledged for DVS runs. Finally, the authors thank Paulo Martins at The Dow Chemical Company for kindly providing Methocel® samples.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.carbpol.2018.01.016.

References

ingredient. *Food and Chemical Toxicology, 45*(12), 2341–2351.

