FISEVIER

Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: http://www.elsevier.com/locate/jalcom

Investigation of structural and optical properties of CaTiO₃ powders doped with Mg²⁺ and Eu³⁺ ions

Larissa H. Oliveira ^{a, *}, Julia Savioli ^b, Ana P. de Moura ^a, Içamira C. Nogueira ^b, Maximo S. Li ^c, Elson Longo ^a, José A. Varela ^a, Ieda L.V. Rosa ^b

- ^a Institute of Chemistry, State University of São Paulo, 14800-900, Araraguara, São Paulo, Brazil
- ^b Department of Chemistry, Federal University of São Carlos, 13565-905, São Carlos, São Paulo, Brazil
- ^c Institute of Physics, University of São Paulo, P.O. Box, 13566-590, São Carlos, São Paulo, Brazil

ARTICLE INFO

Article history: Received 20 January 2015 Received in revised form 18 May 2015 Accepted 19 May 2015 Available online 14 June 2015

Keywords:

A. Ceramics

- B. Chemical synthesis
- C. Optical properties
- C. Order-disorder effects

ABSTRACT

In this work, $CaTiO_3$ powders doped with Mg^{2+} ions and $CaTiO_3$ powders co-doped with Mg^{2+} and Eu^{3+} ions were prepared by the polymeric precursor method (PPM). These powders were characterized by different characterization techniques to study the influence of Mg^{2+} doping as well as Mg^{2+} and Eu^{3+} co-doping in structural and optical properties of $CaTiO_3$ perovskite-type structure. The Rietveld refinement and Micro-Raman analyses suggested the substitution Mg^{2+} and Eu^{3+} ions in the A-site of $CaTiO_3$ perovskite. The influence of Mg^{2+} doping can be detected by the displacement of calcium and oxygen atomic positions when compared to the non-doped $CaTiO_3$ powder. When Eu^{3+} ions are added to the A-site of this perovskite the excess of positive charge can be compensated by the formation of calcium vacancies. Luminescence data showed that $Ca_{1-x}Mg_xTiO_3$ and $Ca_{1x}Mg_{x/2}Eu_{2y/3}TiO_3$ powders are potential materials for fabrication of lighting devices based on near-UV and blue LED using an excitation wavelength of 397 and/or 450 nm.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

CaTiO₃ belong to the perovskite class materials (ABO₃) and it is also a chemistry and thermally stable ceramic oxide, which is widely studied due to its dielectric and photoluminescent properties [1,2]. CaTiO₃ has an orthorhombic structure and space group *Pbnm* which remains stable from 23 to 1100 °C [3] and it has a dielectric permittivity of approximately 180 at room temperature that changes with experimental conditions. This ceramic oxide is also a good candidate to be applied in electronic microwave devices due to its high quality factor (Qu = 8000 at 1.5 GHz) specially when in solid solution with $Sr(Mg_{1/3}Nb_{2/3})O_3(SMN)$ (Qu = 20000 at 1.5 GHz) or $MgTiO_3$ (Qu = 8000 at 7.5 GHz) materials. The CaTiO₃ based solid solution such as $CaTiO_3$ —LaAlO₃ can also be applied as high performance capacitors [4—6].

Among to these systems, we highlighted the CaTiO₃–MgTiO₃, which presents outstanding dielectric properties allowing its application in resonators dielectric devices, filters and antennas

operating in microwave range frequency [7]. Moreover, the dielectric properties such as dielectric permittivity (k), quality factor (Q \times f) and stabilization temperature (τ_f) are tunable by CaTiO₃/MgTiO₃ ratio in this solid solution and depends on the partial pressure of O_2 used during the sintering procedure [8]. In order to use them in miniaturized electronic devices, these systems have also been synthesized as thin films and multilayer heterojunctions. In another study, the dependency of composition heterogeneity and dielectric properties of $Mg_{0.93}Ca_{0.07}TiO_3-Ca_{0.30}Li_{0.14}Sm_{0.42}TiO_3$ heterostructure was investigated [9].

CaTiO₃ and MgTiO₃ matrixes exhibited a photoluminescence emission in the visible region of the electromagnetic spectrum. These findings of perovskites-type structures have reactivated the investigation of their luminescent mechanisms due to continuous request for new phosphor materials as compact light sources and photonic devices to obtain short wavelength sources that can be pumped with diode lasers [10]. CaTiO₃ doped with rare earth (RE) ions [12–15] presents various applications in the fields of optoelectronic devices and have attracted a lot of attention because of their promising luminescent properties, friendly environment and well-known chemical stability for being applied in field emission

Corresponding author.

E-mail address: larissahelena2009@gmail.com (L.H. Oliveira).

displays and white-light emitting diodes (wLEDS) devices [15].

In order to enhance the luminescent properties many researchers have concentrated on varying the concentration of RE ions as well as charges compensators like Al³⁺, In³⁺, Ga³⁺, Mg²⁺, Zn²⁺ and Li⁺ ions. In CaTiO₃:Pr³⁺ doped Li⁺ thin films [16], Li⁺ ions increased the emission quantum efficiency and also promoted some changes in the morphology as well as particles grain size. Gasparotto et al. [17] studied the photoluminescent properties of LiTaO₃ powders co-doped with Eu³⁺ and Mg²⁺ prepared by the polymeric precursor method. The presence of Mg²⁺ also increased the luminescence intensity of the emission bands due to local lattice distortion effects as well as luminescence mechanisms associated to the energy transfer from the host lattice to $\mbox{\it RE}^{3+}$ ions. The same effect was observed in RE doped alkaline-earth stannates such as Tb–Mg–SrSnO₃, where an intense white luminescence was observed. Due to capacity of these systems to amplify light, they can be potential candidates for application in integrated optoelectronic devices [18].

Based on the potential application of CaTiO₃-doped systems, we investigated the influence of Mg²⁺ doping as well as Mg²⁺ and Eu³⁺ co-doping in the crystalline structure of CaTiO₃ matrix. In this work, Ca_{1-x}Mg_xTiO₃ powders with x=0.0, 0.005, 0.01 and 0.02 mol of Mg²⁺ ions and Ca_{1-x}Mg_{x/2}Eu_{2y/3}TiO₃ powders with x=0.000, 0.001, 0.002, 0.003 and 0.004 mol of Mg²⁺ and Eu³⁺ ions were prepared by PPM [19] and characterized by X-Ray diffraction (XRD), micro-Raman spectroscopy (MR) and Ultraviolet—visible (UV—vis) absorbance spectroscopy. The photoluminescent properties (PL) were studied by emission spectra with excitation centered in the host lattice. However, the PL properties of Ca_{1-x}Mg_{x/2}Eu_{2y/3}TiO₃ matrices were investigated by emission and excitation spectra of the Eu³⁺ ion. The lifetimes of the Eu³⁺⁵D₀ \rightarrow ⁷F₂ transition ($\lambda_{\rm exc}=397, \lambda_{\rm em}=617$ nm) were also evaluated.

2. Experimental procedure

2.1. Preparation of the titanium citrate solution

Titanium citrate solution was prepared by adding an amount of citric acid in 1 L of deionized water at 60 °C. Obeying a titanium/citric acid molar ratio of 1:3, 40 mL of titanium isopropoxide ($[\text{Ti}(OC_3H_7)_4]$) was also added to the above solution. The resulting mixture remained under constant stirring and heating until its complete homogenization. After filter, this citrate solution was subjected to a gravimetric analysis, where a concentration of 1.4 mmol/g of TiO₂ was obtained.

2.2. Preparation of $Ca_{1-x}Mg_xTiO_3$ and $Ca_{1-x}Mg_{x/2}Eu_{2y/3}TiO_3$ powders

 $Ca_{1-x}Mg_xTiO_3$ powders were prepared following the experimental procedure described below: In a Becker vessel containing 10 mmol of titanium citrate at 60 °C, 1 -x mol of $Ca(NO_3)_2 \cdot 4H_2O$ was added under constant stirring. After complete dissolution, stoichiometric quantities of x = 0.00; 0.005; 0.01 and 0.02 mol of $Mg(NO_3)_2.6H_2O$ were also added to this system.

For $Ca_{1-x}Mg_{x/2}Eu_{2y/3}TiO_3$ powders charge and mass balance was performed [20]. The necessary amounts of europium (z) and magnesium (y) are equal when charge balance is considered (3z = 2y) and when mass balance is considered totalize an amount of x=0.000, 0.001, 0.002, 0.003 and 0.004 mol of Mg^{2+} and Eu^{3+} ions (3z + 2y = x). Thus, 1 – x mol of $Ca(NO_3)_2 \cdot 4H_2O$, y=x-3z/2 mol of $Ca(NO_3)_2 \cdot 4H_2O$ was added to the titanium citrate solution.

The temperature was raised to 90 $^{\circ}$ C and ethylene glycol was added to the reactional mixture using a mass ratio (citric acid/ethylene glycol) of 40:60. The solvent (water) was evaporated

resulting in a polymeric resin. The polymeric resin was dried in a conventional oven at 350 °C for 8 h. Then, the resulting powder was annealed in a tubular oven at 800 °C for 8 h using a heating rate of 10 °C/min under $\rm O_2$ flux.

2.3. Characterizations

The as-prepared powders were structurally characterized by XRD in a Rietveld routine using a Rigaku-DMax/2500PC (Japan) with Cu-K α radiation ($\lambda = 1.5406 \text{ Å}$) and in the 2θ range from 10° to 130° with a scanning rate of 0.02°/min. MR spectra were collected using a 514.5 nm line of a Ar laser (output 8 mM) in a Jobin-Yvon model T64000 spectrometer. Uv-vis absorption spectra were performed using Cary 5G equipment. PL measurements were performed in a 139 Thermal Jarrel-Ash Monospec 27 monochromator and a Hamamatsu R446 photomultiplier. The 350 nm exciting wavelength of a krypton ion laser (Coherent Innova) was used keeping a nominal output power of 200 mW. Photoluminescence properties of Ca_{1-x}Mg_{x/2}Eu_{2v/3}TiO₃ powders were investigated monitoring the f-f intraconfigurational transitions of Eu³⁺ ions. Excitation and emission spectra were collected in a Jobin Yvon-Fluorolog (model #FL3-222) spectrofluorometer using a Xenon lamp (ozone free) as excitation source. Lifetime data of the Eu³⁺ $^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition were collected using a Jobin Yvon phosphorimeter (model # FL 1040). For decay curves acquisition was used the emission wavelength set at 617 nm and excitation wavelength set at 397 nm. All the measurements were performed at room temperature.

3. Results and discussion

3.1. X-ray diffraction (XRD) and structural refinement Rietveld analysis

In this work, we synthesize $Ca_{1-x}Mg_xTiO_3$ powders with x = 0.0; 0.005; 0.01 and 0.02 mol of Mg²⁺ ions to analyze the influence of Mg²⁺ doping in the crystalline structure of CaTiO₃ matrix. The codoping effect of Mg²⁺ and Eu³⁺ ions were also analyzed inCa₁₋ $_{x}Mg_{x/2}Eu_{2y/3}TiO_{3}$ powders with x = 0.000, 0.001, 0.002, 0.003 and 0.004 mol of Mg²⁺ and Eu³⁺ ions. Fig. 1 (a) and (b) presents the XRD patterns of Ca_{1-x}Mg_xTiO₃ and Ca_{1-x}Mg_{x/2}Eu_{2y/3}TiO₃ powders prepared by the PPM, respectively. As it can be seen, these powders crystallized in a CaTiO₃ orthorhombic phase and space group *Pbnm*, in accordance to the Inorganic Crystal Structure Database (ICSD) card number 74-212. $Ca_{1-x}Mg_xTiO_3$ powders with x = 0.005 and 0.01, presented a rutile TiO₂ secondary phase with a tetragonal structure and space group P42/mnm according to the ICSD card number 36-212 (●). On the other hand, Ca_{1-x}Mg_xTiO₃ composition with x = 0.02 presented a trigonal MgTiO₃ secondary phase with space group R-3H as observed, according to the ICSD card number 55-285 (\spadesuit), probably indicating that the solubility limit of Mg²⁺ ions in the CaTiO₃ matrix was achieved in the range of 0.01 and 0.02% of Mg²⁺ ions. None secondary phases were detected in the $Ca_{1-x}Mg_{x/2}Eu_{2y/3}TiO_3$ powders indicating that both Eu^{3+} and Mg^{2+} ions were incorporated to the CaTiO₃ matrix.

The average of crystallite sizes were estimated by Scherrer's equation using the full width at half maximum (FWHM) of the most intense peak at 2θ ~33.2. As reported in the literature [21], the Scherrer equation (1) is described as follows:

$$D = \frac{0.9\lambda}{R\cos\theta} \tag{1}$$

D is the average crystallite size, λ the X-ray wavelength (0.15406 nm), θ the Bragg angle and B is the FWHM. The values of

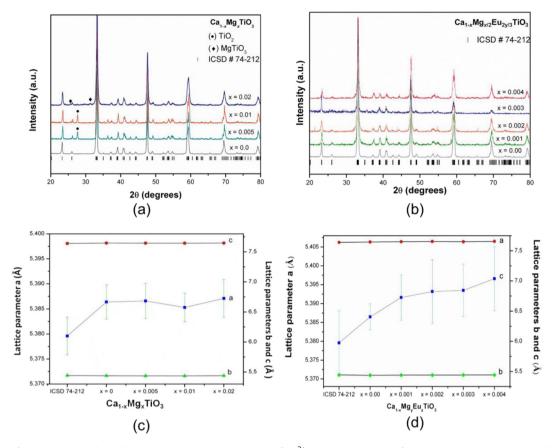


Fig. 1. XRD patterns of $Ca_{1-x}Mg_x/iO_3$ powders with x=0.000, 0.005, 0.01 and 0.02 mol of Mg^{2+} ions (a) XRD patterns of the $Ca_{1x}Mg_x/iO_3$ powders with x=0.000, 0.001, 0.002, 0.003 and 0.004 mol of Mg^{2+} and Eu^{3+} ions (b), lattice parameters a, b and c of $CaTiO_3$ matrix as function of Mg^{2+} doping (c) and lattice parameters a, b and c of $CaTiO_3$ matrix as function of Mg^{2+} and Eu^{3+} co-doping (d), respectively.

crystallite size of $Ca_{1-x}Mg_xTiO_3$ and $Ca_{1-x}Mg_{x/2}Eu_{2y/3}TiO_3$ powders are presented at Tables 1 and 2, respectively. As can be seen, the Mg^{2+} doping and Mg^{2+} and Eu^{3+} co-doping promoted a decrease in crystallite size. This behavior can be associated to the replacement of Ca sites into the perovskite structure by the Mg and Mg and Eu atoms in these systems. Thus, Rietveld analyses were employed in order to estimate the influence of the doping on the lattice parameters of $Ca_{1-x}Mg_xTiO_3$ and $Ca_{1-x}Mg_x/2Eu_{2y/3}TiO_3$ powders.

Rietveld measurement was performed through the GSAS (General Structure Analysis System) program [22]. The background was corrected using a Chebyschev polynomial of the first kind. The diffraction peak profiles were better fitted by Thompson—Cox—Hastings pseudo-Voigt (pV-TCH) function and by asymmetry function described by Finger et al. [23].

The lattice parameters (a, b and c), unit cell volume (V), rotation angle (α) between adjacent [TiO₆] clusters and the correlation parameters (R_{wp}, R_{Bragg}, χ^2) of both Ca_{1-x}Mg_xTiO₃ and Ca_{1-x}Mg_{x/2}Eu_{2y/3}TiO₃ powders are listed at Tables 1 and 2, respectively. The

Rietveld data show a good relation between the observed XRD patterns and the theoretical ones. The quantative analysis of phases showed that the calculated percentage of TiO_2 phase in $Ca_{1-x}Mg_xTiO_3$ powders with x=0.005 and 0.01 was 7.06% and 6.52%, respectively. Moreover, the percentage of $MgTiO_3$ phase in $Ca_{1-x}Mg_xTiO_3$ powders with x=0.02 was 0.91%.

These results demonstrated that $\rm Mg^{2+}$ doping has a strong influence on the crystallinity of the host structure, hence, the lattice parameter increases as a function of the $\rm Mg^{2+}$ ions concentration. This behavior was associated to the difference of ionic radii between the $\rm Ca^{2+}$ and $\rm Mg^{2+}$ ions as well as repulsions caused by the replacement of $\rm Ca^{2+}$ by $\rm Mg^{2+}$ ions in the A site of the perovskite structure, since both presents a ionic character with radial orientation. This effect changes the chemical environment of $\rm CaTiO_3$ matrix, resulting in a $\rm TiO_2$ secondary phase. Besides that, when the solubility limit is reached, it was observed the formation of $\rm MgTiO_3$ instead of $\rm TiO_2$ phase. These results are in accordance to the crystalline size values obtained by Scherrer's equation.

Table 1 Lattice parameters (a, b and c), rotation angle (α) between adjacent [TiO₆] clusters, unit cell volume (V), crystallite size and correlation parameters (R_{wp} , R_{Bragg} and χ^2) of $Ca_{1-x}Mg_xTiO_3$ systems obtained by Rietveld refinement method.

Ca _{1-x} Mg _x TiO ₃	a (Å)	b (Å)	c (Å)	α	V (Å ³)	Crystallite size (nm)	R _{wp} (%)	R _{Bragg} (%)	χ^2
ICSD# 74-212	5.3796	5.4426	7.6401	156.8°	223.7	_	_	_	
x = 0.0000	5.3865 (8)	5.4374 (8)	7.6464 (11)	156.3°	223.9 (80)	59.64	8.44	3.14	1.31
x = 0.005	5.3864 (21)	5.4349 (20)	7.6444 (34)	156.8°	223.8 (14)	46.12	23.25	8.63	1.30
x = 0.01	5.3842 (30)	5.4335 (25)	7.6420 (4)	155.5°	223.6 (14)	43.69	24.13	7.70	1.36
x = 0.02	5.3871 (13)	5.4387 (14)	7.6467 (20)	156.5°	224.0	38.62	8.3	3.28	1.21

Table 2 Lattice parameters (a, b and c), rotation angle (α) between adjacent [TiO₆] clusters, unit cell volume (V), crystallite size, Mg/Eu ratio and correlation parameters (R_{wp} , R_{Bragg} and χ^2) of $Ca_{1x}Mg_{x/2}Eu_{2y/3}TiO_3$ systems obtained by Rietveld refinement method.

$Ca_{1-x}Mg_{x/2}Eu_{2y/3}TiO_3$	a(Å)	b(Å)	c(Å)	α	$V(\mathring{A}^3)$	Mg/Eu	Crystallite size (nm)	R _{wp} (%)	R _{Bragg} (%)	χ^2
ICSD# 74-212	5.3796	5.4426	7.6401	156.8°	223.7	_	_	_	_	
x = 0.0000	5.3865 (8)	5.4374 (8)	7.6464 (11)	156.3°	223.9 (80)	0.0	59.64	8.44	3.14	1.31
x = 0.0001	5.3916 (12)	5.4395 (6)	7.6509 (11)	157.9°	224.7 (90)	2.2	49.88	9.65	8.43	1.37
x = 0.0002	5.3932 (14)	5.4398 (31)	7.6551 (15)	156.54°	224.6 (90)	2.1	40.26	10.29	7.16	1.43
x = 0.0003	5.3935 (14)	5.4414 (12)	7.6504 (10)	157.21°	224.5 (80)	2.2	113.08	12.35	7.08	1.11
x = 0.0004	5.3966 (17)	5.4417 (9)	7.6562 (17)	153.95°	224.8 (80)	1.5	42.12	12.98	9.38	1.29

Unlike the Mg^{2+} doping, Table 2 demonstrates that Mg^{2+} and Eu^{3+} do not affect significantly the crystalline structure of host matrix. The slight differences in the c lattice parameter observed for $\mathrm{Ca}_{1-x}\mathrm{Mg}_{x/2}\mathrm{Eu}_{2y/3}\mathrm{TiO}_3$ powders (Fig. 1(d)), probably indicates that both ions are capable of replace the Ca^{2+} ions in CaTiO_3 matrix acting as a luminescence centers [24]. This is only possible due to a small difference in ionic radii of Eu^{3+} (94.7 pm) and Mg^{2+} (57 pm) together when compared to Ca^{2+} ions (100 pm), in coordination number of 6 [25]. Moreover, $\mathrm{Ca}_{1-x}\mathrm{Mg}_{x/2}\mathrm{Eu}_{2y/3}\mathrm{TiO}_3$ system with x=0.004 presented the highest lattice parameter and unit cell volume values, probably indicating the formation of a solid solution. The same behavior was verified in $\mathrm{Sr}_{1+x}\mathrm{Sm}_{1-x}\mathrm{Al}_{1-x}\mathrm{Ti}_x\mathrm{O}_4$ systems prepared by the solid state reaction [24]. These results are also in accordance to the crystallite sizes obtained for these systems.

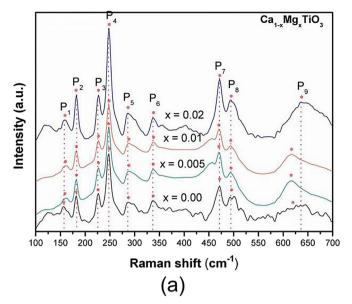
From Rietveld data, the influence of $\mathrm{Mg^{2+}}$ doping into $\mathrm{CaTiO_3}$ can be noticed by atomic displacements in the Ca, Ti, O atomic positions (x, y and z) when compared to the non-doped $\mathrm{CaTiO_3}$ (Table 3). Moreover, the highest changing was observed for calcium and oxygen (O1) positions, indicating that magnesium atoms probably promoted distortions along the Ca–O linkages. The ideal $\mathrm{CaTiO_3}$ perovskite structure with space group *Pbnm*, presents the titanium atoms, as lattice formers, in an octahedral coordination to oxygen atoms ([TiO_6]), while calcium atoms as lattice modifiers, in a twelve-fold coordination to oxygen atoms ([CaO_{12}]). As there is the interconnection of [MgO_{12}] and [CaO_{12}] clusters in the perovskite structure, it was possible to conclude that the distortions along [CaO_{12}] clusters caused by the [MgO_{12}] ones can promote the deformation of the Ca–O bonds. This phenomenon is more evident

Table 4 Lifetime values (τ) of Ca_{1-x}Mg_yEu₂TiO₃ powders with x=0.001,0.002,0.003 and 0.004 mol of Mg²⁺ and Eu³⁺ ions obtained from decay curves ($\lambda_{exc}=397$ nm; $\lambda_{em}=617$ nm).

$Ca_{1-x}Mg_{x/2}Eu_{2y/3}TiO_3$	τ (ms)
x = 0.001	0.94
x = 0.002	0.89
x = 0.003	1.06
x = 0.004	1.01

when a second dopant (Eu^{3+} ions) are added in the A site of $CaTiO_3$ perovskite, where more evident displacement in the calcium (Ca) and oxygen (O1) positions is observed (Table 4). Therefore, we can attribute this behavior the increase in the number of distorted [CaO_{12}] clusters into the $CaTiO_3$ orthorhombic structure.

Mg²⁺ doping and of Mg²⁺ and Eu³⁺ co-doping has a strong influence in the crystalline structure of CaTiO₃. In both cases, major changes in lattice parameters and atomic positions are related to the Ca atoms, suggesting that substitution of the A site of perovskite lead to distortions and strains in the host lattice. Thus, MR spectroscopy can be used in order to determine the degree of structural defects or asymmetric—symmetric into the CaTiO₃ lattice.


3.2. Micro-Raman (MR) spectroscopy analysis

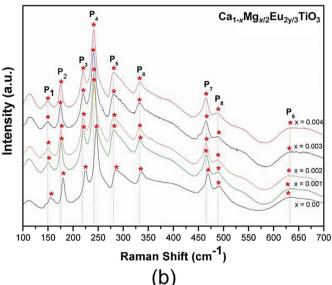

Fig. 2 presents the MR spectra of $Ca_{1-x}Mg_xTiO_3$ powders with x = 0.0; 0.005; 0.01 and 0.02 mol of Mg^{2+} ions and $Ca_{1-x}Mg_{x/2}Eu_{2y/3}TiO_3$ powders with x = 0.000, 0.001, 0.002, 0.003, 0.004 mol of

 Table 3

 Positions of Ca, Ti and O atoms (x, y and z) obtained by Rietveld refinement method for $Ca_{1-x}Mg_xTiO_3$ and $Ca_{1x}Mg_{x/2}Eu_{2y/3}TiO_3$ powders.

Atoms	$Ca_{1-x}Mg_xTiO_3$								
	x = 0.000	x = 0.0	05	<i>x</i> = 0.01	x = 0.02				
Ca (x,y,z)	0.9929 (30),	0.9933	(40),	0.9901 (28)	0.9930 (30),				
	0.03366 (14),	0.0345	2 (10),	0.03515 (15),	0.03438 (7),				
	0.25	0.25		0.25	0.25				
Ti (x,y,z)	0, 0.5, 0	0, 0.5, 0)	0, 0.5, 0	0, 0.5, 0				
O1 (x,y,z)	0.0724 (6),	0.0713	. ,	0.076 (4),	0.07151 (9)				
	0.484 (14),	0.4821	(20),	0.4856 (16),	0.4823 (17),				
	0.25	0.25		0.25	0.25				
O2 (x,y,z)	0.7119 (4),	0.7134		0.7097 (3),	0.7122 (3),				
	0.2870 (4),	0.2901	` '	0.2924 (6)	0.2871 (1)				
	0.03639 (25) 0.037		5 (8)	0.0341 (23)	0.0376 (9)				
Atoms	$Ca_{1-x}Mg_{x/2}Eu_{2y/3}TiO_3$								
	x = 0.000	x = 0.001	x = 0.002	x = 0.003	x = 0.004				
Ca (x, y, z)	0.9929 (30),	0.9924 (9),	0.9971 (11),	0.9899,	0.9947,				
	0.03366 (14),	0.0320 (4),	0.03068 (31),	0.02889,	0.02973,				
	0.25	0.25		0.25	0.25				
Ti (x,y,z)	0, 0.5, 0	0, 0.5, 0	0, 0.5, 0	0, 0.5, 0	0, 0.5, 0				
O1(x,y,z)	0.0724 (6), 0.0665 (16),		0.0710 (14),	0.0714,	0.0815,				
	0.484 (14),	0.4813 (15),	0.04805 (12),	0.4983,	0.4965,				
	0.25	0.25	0.25	0.25	0.25				
O2(x,y,z)	0.7119 (4),	0.7026 (10),	0.7079 (8),	0.7117 (17),	0.7130 (15),				
	0.2870 (4),	0.2834 (12),	0.2837 (10),	0.2805 (16),	0.2862 (13),				
	0.03639 (25)	0.0351 (7)	0.0354 (5)	0.0376 (9)	0.0366 (8)				

Fig. 2. MR spectra of $Ca_{1-x}Mg_xTiO_3$ (a) and $Ca_{1x}Mg_{x/2}Eu_{2y/3}TiO_3$ (b) powders prepared by the polymeric precursor method.

 Mg^{2+} and Eu^{3+} ions in the range of 100 and 700 cm⁻¹.

Literature reports 24 Raman active modes for orthorhombic $CaTiO_3$ perovskite structure and space group *Pbnm* with four clusters per unit cell (Z = 4), represented by equation (2) below [26]:

$$\Gamma_{\text{(Raman)}} = 7A_g + 7 B_{1g} + 5 B_{2g} + 5B_{3g}$$
 (2)

For CaTiO $_3$ powder prepared by PPM only nine Raman active modes (P $_1$, P $_2$, P $_3$, P $_4$, P $_5$, P $_6$, P $_7$, P $_8$ and P $_9$) was observed in Fig. 2. P $_1$ Raman mode (at 156 cm $^{-1}$) is attributed to the vibration mode of the Ca $_1$ Ca $_1$ Ca $_2$ Ca $_3$ Ca $_1$ Ca $_3$ Ca $_3$ Ca $_3$ Ca $_4$ Ca $_3$ Ca $_4$ Ca

For $Ca_{1-x}Mg_xTiO_3$ powders (Fig. 2(a)), P_1 and P_9 Raman modes are shifted to lower wavenumbers as a function of Mg^{2+}

concentration, indicating a probable presence of structural defects and strains into CaTiO₃ matrix, which is able to modify the stretching, torsional and bending vibrations of the metal-oxygen bonds. The displacement observed for P_1 Raman mode might be ascribed to distortions along [CaO₁₂] clusters after the introduction of Mg^{2+} ion in these systems. This affect indicates a probable occupancy of the A site (Ca²⁺ ions) position by these ions in the CaTiO₃ crystalline structure. Moreover, such distortions modify the electronic density of the [TiO₆] clusters as well as its dipole moment. As a consequence, P_9 Raman mode is also shifted from its usual position [30,31]. From the extended X-ray absorption fine structure (EXAFS) data, Hanajiri et al. [32] also show that doping ions (Ce³⁺ and Nd³⁺) content can also modifies the Ti–O distances in CaTiO₃ matrix.

 $Ca_{1-x}Mg_{x/2}Eu_{2y/3}TiO_3$ powders present Raman active modes at 149 (P₁), 175 (P₂) 224 (P₃), 246 (P₄), 285 (P₅), 469 (P₇), 489 (P₈) and 629 (P₉) cm⁻¹, respectively. From Fig. 2 (b), significant differences were observed for P₁ Raman mode. As described above, this behavior can be associated to the presence of dopants (Eu³⁺ and Mg^{2+} ions) in the A site of CaTiO₃ matrix. Moreover, this effect enhances the distortion degree of [CaO₁₂] and [TiO₆] clusters in the lattice, shifting the P₂, P₃, P₄, P₅, P₆ modes to lower wavenumbers (Fig. 2(b)). MR data showed that disorder degree at short range along the Ti–O linkages might be due to the symmetry break of [CaO₁₂] clusters caused by structural defects.

The structure and chemistry of this perovskite is associated to distortion from the ideal structure, inducing redistribution on state of densities along the CaTiO₃ unit cell. There are several types of lattice defects that are associated with this redistribution.

From X-ray absorption spectroscopy technique (XAS), Milanez et al. [33] indentified two types of charged Titanium complex clusters in CaTiO₃ matrix; the [TiO₅ V_O^Z] and [TiO₆] clusters randomly distributed into its crystalline structure. Moreover, [TiO₅ V_O^Z] were associated to oxygen vacancies ($V_O^Z = V_O^X$, $V_O^Z = V_O^Z$), where the double-ionized oxygen vancies ($V_O^Z = V_O^Z$) who mainly participates from the conduction mechanism. The charge density is strong influenced by interaction between [TiO₅ V_O^Z] – [TiO₆] clusters. However, Lazaro et al. [34] showed that charge density into CaTiO₃ matrix is not only affected by the structural disorder in the network former, but also by structural disorder in the network modifier, thus, this phenomenon was associated to the presence of [CaO₁₁ V_O^Z] and [CaO₁₂] complex clusters in the A-site of this perovskite.

For CaTiO₃ powders prepared by microwave assisted hydrothermal method, Moreira et al. [35] observed that the distortion degree of (α) angle between [TiO₆] complex clusters is influenced by experimental conditions. Oliveira et al. [31], also showed that distortion degree can also affected by doping elements, such as Cu^{2+} ions, in the A-site of CaTiO₃ matrix.

Recently, these structural defects were associated to the nature of lattice formers and modifiers, doping elements, experimental conditions and so on. Other phenomenon can be observed when $CaTiO_3$ matrix is doped with rare earth elements such as Eu^{3+} or Pr^{3+} ions. The substitution of Ca^{2+} by Eu^{3+} ions is responsible by accumulation of positive charge in host matrix. These structural defects may hamper the process of energy transfer from host matrix to rare earth ions [27]. In principle [38], if two Eu^{3+} ions occupy two Ca^{2+} sites, it will generate one Ca^{2+} vacancies, according to charge compensation. The more Eu^{3+} ions were doped into $CaTiO_3$ matrix, more Ca^{2+} vacancy is offered.

The same behavior was verified for Pr^{3+} -doped $CaTiO_3$ powders [37], which it was associated to Ti^{3+} defects as well as oxygen vacancies in the crystalline structure. A part of Pr^{3+} red emission can be reabsorbed in the broad $d \rightarrow d$ absorption band of Ti^{3+} ions. The oxygen vacancies species are neutral and ionized centers,

contributing to the conduction mechanism in the matrix. The captured electrons in conduction band contributes to non-radiative processes, competing with the energy transfer from matrix to the excited levels of Pr^{3+} ions, corroborating to a decrease in the intensity of the $4f \rightarrow 4f$ emission. The excess of positive charge can be compensated by intertitals defects, when Ti^{4+} sites are substituted by Al^{3+} ions, improving its optical properties. Mazzo et al. [39] also noticed an improvement in local order-disorder degree by creation of cations or oxygen vacancies with substitution of Eu^{3+} ions in both A and B sites of $CaTiO_3$ matrix. This factor also provided significant changes in local order-disorder degree around Ca and Ca clusters.

Based on these papers, we believe that symmetry break along [TiO₆] and [CaO₁₂] clusters is mainly caused by disorder into the lattice modifiers (Ca atoms) due to distorted [CaO₁₂] clusters and/or Ca²⁺ vacancies in Ca_{1-x}Mg_xTiO₃ and Ca_{1-x}Mg_{x/2}Eu_{2y/3}TiO₃ powders. These species are strongly related to the formation of [CaO₁₂] $_d^i \leftrightarrow$ [CaO₁₂] $_o^i$ clusters (o = ordered, d = disordered) and $V_{Ca}^z = V_{Ca}^x + V_{Ca}^x + V_{Ca}^x$ species in CaTiO₃ matrix, respectively. These species are neutral and ionized centers, creating electron—hole pairs (hole (h•)—electron (e⁻)-polarons) in the Ca_{1-x}Mg_xTiO₃ and Ca_{1-x}Mg_{x/2}Eu_{2y/3}TiO₃ powders, contributing to the conduction mechanism in the matrix [35].

3.3. UV-vis absorbance spectroscopy

In this work, the band gap energy (E_{gap}) of the $Ca_{1-x}Mg_xTiO_3$ with x=0.00, 0.005, 0.01 and 0.02 of Mg^{2+} and $Ca_{1-x}Mg_yEu_zTiO_3$ powders with x=0.000, 0.001, 0.002, 0.003 and 0.004 were measured by Kubelka-Munk method [40]. The band gap energy is associated to the electronic transitions, which occurs from the located states in the conduction band (CB) to the located states in the valence band (VB). A direct band gap is related to the electronic transitions that occur from localized states in the same Brillouin region [35], while the indirect band gap is associated to localized states in a different Brillouin region. The band gap (E_{gap}) and the absorption coefficient (α) of a semiconductor oxide are associated according to the equation (3):

$$\alpha h \nu = C_1 \left(R_{\infty} \left(h \nu - E_{gap} \right)^n \right) \tag{3}$$

where α is the linear absorption coefficient of the material, $h\nu$ is the photon energy, C_1 is a proportional constant, $E_{\rm gap}$ is the optical band gap and n is a constant associated to the different types of electronic transitions ($n=\frac{1}{2}$ for direct allowed, n=2 for indirect allowed, n=3/2 for direct forbidden and n=3 for indirect forbidden). $E_{\rm gap}$ values were measured considering a direct allowed electronic transition in equation (3) and the values were evaluated by the extrapolation of the linear portion of the curve considering linear regression of r=0.99. For $Ca_{1-x}Mg_xTiO_3$ powders (Fig. 3(a)) were founded a $E_{\rm gap}$ values of 3.51 (x=0.000), 2.96 (x=0.005), 2.89 (x=0.01) and 3.44 (x=0.02), respectively.

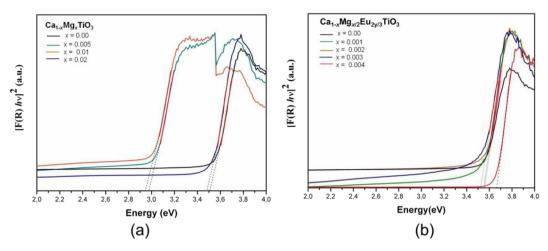
The calculated band structures [35,34,33,41] show that the electronic transition for CaTiO₃ powders occurs inside [TiO₆] octahedral clusters since 2*p* orbitals of oxygen atoms in valence band and 3*d* orbitals of the titanium atoms can be associated with the conduction band. These electronic states are located in the same Brillouin region. However, for Ca_{1-x}Mg_xTiO₃ powders 3s orbitals states of Mg atoms will be associated to the conduction band [42,43], so a decrease of the optical gap is observed.

The different band gap values indicate the existence of various intermediary levels between the CB and VB, which is affected by Mg²⁺ concentration in the A-site of CaTiO₃. This factor can favor or inhibit the formation of structural defects, which are able to control

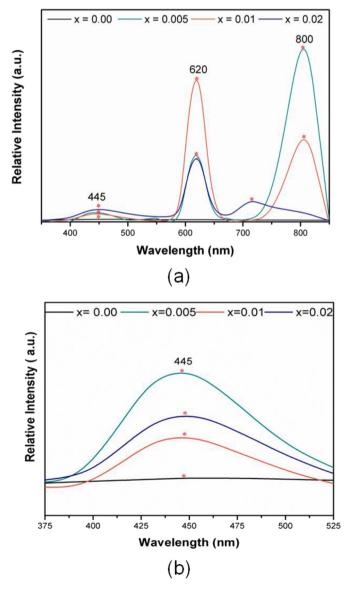
the degree of structural order—disorder of the material and consequently, the number of intermediary energy levels within band gap [44]. Thus, decrease in the bandgap can be attributed to defects, such as distortions along Ca—O linkages which yield localized electronic levels in the band gap. Moreover, the presence of TiO_2 secondary phase can be responsible for the conductive character observed for $\text{Ca}_{1-x}\text{Mg}_x\text{TiO}_3$ powders with x=0.005 and x=0.01 of Mg^{2+} ions.

Ca_{1-x}Mg_{x/2}Eu_{2y/3}TiO₃ powders with x=0.001, 0.002, 0.003 and 0.004 presented E_{gap} values of 3.51 eV, 3.55 eV, 3.52 eV and 3.66 eV, respectively. In the Ca_{1-x}Mg_yEu_zTiO₃ powders, when the concentration of Mg²⁺ and Eu³⁺ increases from 0.000 to 0.003, E_{gap} values are practically constant. Absorbance measurements for these samples suggests that the density of localized states in the band gap did not change as Mg²⁺ and Eu³⁺ ions were added to the CaTiO₃ matrix. The x=0.004 powder presented an increase in the E_{gap} when compared to the other samples. This behavior can be associated to the formation of a solid solution, being in accordance to the Rietveld refinement analysis.

3.4. Photoluminescence measurements


Since Canham et al. [45] studies, the PL spectroscopy has been the objective of several studies and it is considered a powerful technique to understand the carrier recombination and quantitative characterization of crystals and heterointerfaces [36]. The proposed model by Anicete-Santos et al. [46] considered photoluminescent emission recurrent from radiative recombination of (h*)–electron (e $^-$)-polarons in the existing energy levels between BV and BC, which is associated with the presence of imperfections or defects in the crystal lattice. To evaluate the effect of Mg doping in Ca_{1-x}Mg_xTiO₃ prepared by the PPM, the photoluminescence response for all powders was studied under excitation centered in the host matrix ($\lambda = 350$ nm, room temperature).

PL emission of $Ca_{1-x}Mg_xTiO_3$ powders (Fig.4(a)) covers the visible and infrared region of the electromagnetic spectrum. Three broad bands emissions are observed: one situate at 445 nm (blue region) associated to CaTiO₃ matrix, a broad band at 625 nm (red region) ascribed to MgTiO₃ [47] phase and a broad band at 800 nm (infrared region) associated to the presence of rutile TiO₂ [48].


The obtained results showed that all these systems presented a PL emission band characteristic of a multiphotonic process, i.e., a system in which relaxation occurs by several paths involving the participation of numerous states within the bandgap of the material. Thus, the decomposition of these broad bands can be used to get the information of which electronic transitions group is influencing the PL response (Fig. 5). The decomposition of the CaTiO₃ emission band was performed using the deconvolution method by PeakFit [49] Program (version 4.05). The Gaussian function was successfully used to fit the PL peaks and tuning parameters, including the peak positions and its corresponding areas.

From deconvolution method, it was verified that the PL emission of $Ca_{1-x}Mg_xTiO_3$ powders are composed by three components; a violet component with a maximum situated at around 420 nm, a blue component with a maximum at around 450 nm and the green component with a maximum at 505 nm. Besides that, PL curves is centered at the blue region of the electromagnetic spectrum, and $Ca_{1-x}Mg_xTiO_3$ (x=0.01) powder presented the highest percentage (74.5%). This observation confirmed that the PL response is directly ascribed to localized states in the band gap due to structural defects in the $Ca_{1-x}Mg_xTiO_3$ crystalline structure. The blue emission (more energetic) indicates the redistribution of energetic states, which is related to the insert of deep defects between conduction and valence bands.

MR and Rietveld analyses showed that the introduction of Mg²⁺

 $\textbf{Fig. 3.} \ \ \text{UV-vis absorption spectra of } Ca_{1-x}Mg_xTiO_3 \ (a) \ \ \text{and} \ \ Ca_{1x}Mg_{x/2}Eu_{2y/3}TiO_3 \ (b) \ \ \text{powders prepared by the polymeric precursor method.}$

Fig. 4. PL spectra of $Ca_{1-x}Mg_xTiO_3$ powders with x = 0.000, 0.005, 0.01 and 0.02 mol of Mg^{2+} ions with an excitation wavelength of 350 nm centered in CaTiO₃ matrix.

ions in the A-site of CaTiO₃ induced the symmetry break in [CaO₁₂] clusters corroborating to modifications in charge density along the Ca-O linkages. As a result, distorted [CaO₁₂] clusters ([CaO₁₂]) $_d \leftrightarrow [CaO_{12}]_d$ (o = ordered, d = desordered)) are formed in the CaTiO₃ orthorhombic structure. The presence of these species can increase the number of [MgO_{12}] $_d$ and [CaO_{12}] $_d$ complex clusters in Ca_{1-x}Mg_xTiO₃ powders. Also, these kinds of clusters cause the formation of intermediary levels within band gap. The electronic transitions between [MgO_{12}] $_d$ and [CaO_{12}] $_d$ states can be classified as charge transference processes, and the PL response is an indication that the number of these energy levels within the band gap is enhanced by Mg^{2+} doping. Therefore, photoluminescence response can be a result from charge transference from [CaO_{12}] $_d$ to [MgO_{12}] $_d$ species in Ca_{1-x}Mg_xTiO₃ powders. This phenomenon can be represented by the Kroger-Vink [50] notation at equation (4)

$$[CaO_{12}]_0^X + [CaO_{12}]_d^X \rightarrow [CaO_{12}]_0' + [CaO_{12}]_d'$$
 (4)

$$[MgO_{12}]_{o}^{x} + [CaO_{12}]_{o}^{\cdot} \rightarrow [MgO_{12}]_{d}^{\cdot} + [CaO_{12}]_{d}^{\cdot}$$

Eu³⁺ ions is one of the most interesting ions to study site selection spectroscopy technique because of its optical properties are very sensitive to its local environment. The intensity and splitting of the spectral lines provide useful information concerning the local site symmetry, size of cations and properties of chemical bonds [51].

The monitoring of Eu^{3+} optical properties as function of concentration in $Ca_{1x}Mg_{x/2}Eu_{2y/3}TiO_3$ powders is very important for understanding the nature of lattice modifiers as well as the order-disorder degree in orthorhombic structure. Thus, PL response of $Ca_{1x}Mg_{x/2}Eu_{2y/3}TiO_3$ powders were performed by the emission and excitation spectra centered on the 4f-4f Eu^{3+} transitions and the obtained results are discussed above.

Fig. 6 shows excitation spectra of the $Ca_{1x}Mg_{x/2}Eu_{2y/3}TiO_3$ powders monitored under emission wavelength of 617 nm at room temperature. In the 350–550 nm spectral range, some narrow bands are visualized due to electronic transitions from the ground 7F_0 fundamental state to the excited 5G_6 one at 362 nm, 5H_4 at 376 nm, 5L_6 at 397 nm, 5D_2 at 465 nm and 5D_1 at 533 nm states [52]. The main electronic transition is assigned to the 7F_0 fundamental state to the 5L_6 excited state at 397 nm. Below 350 nm none broad band attributed to the cluster—cluster charge transference was observed.

Fig. 7 presents the emission spectra of Ca_{1-x}Mg_{x/2}Eu_{2v/3}TiO₃

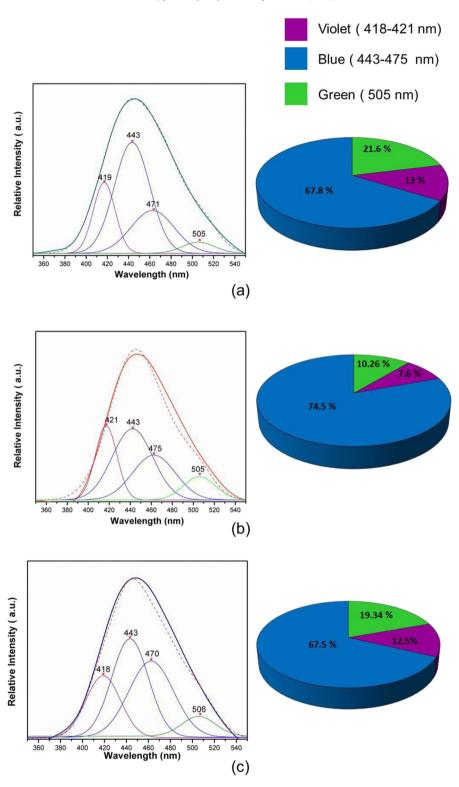
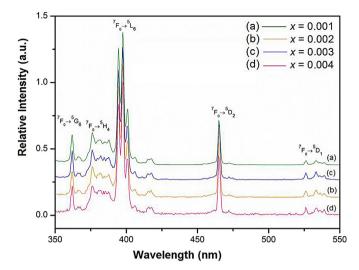



Fig. 5. Decomposition of PL emission spectra of $Ca_{1-x}Mg_xTiO_3$ powders with x = 0.005 (a), 0.01(b) and 0.02 (c) mol of Mg^{2+} ions, respectively.

powders with x = 0.001, 0.002, 0.003 and 0.004 of Mg²⁺ and Eu³⁺ ions monitored under excitation wavelength of 397 nm. During the emission process all the electrons in excited 5D_0 state, returns to the ground states by the radiative decay process. This energy is emitted in the visible range of electromagnetic spectrum. The group of emission lines at 583, 592, 617, 656 and 697 nm are assigned to the emission transitions from 5D_0 excited states to the 7F_1 (J=0,1,2,3

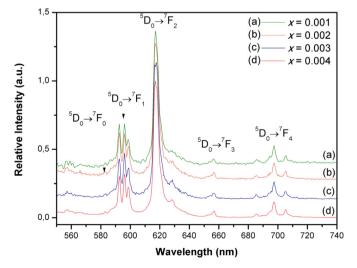

and 4) ground states, respectively [11,53]. Analyzing these emission spectra, the $^5D_0 \rightarrow ^7F_1$ transition at 583 nm is composed by three Stark components. Moreover, $^5D_0 \rightarrow {}^7F_2$ transition at 617 nm is the most intense band in all emission spectra indicating that ligand field strongly perturbs the Eu³⁺ ions [54]. The relative intensity of these bands did not modify with the concentration of Eu³⁺ ions.

Fig. 6. Excitation spectra of $Ca_{1x}Mg_{x/2}Eu_{2y/3}TiO_3$ powders with x=0.001 (a), 0.002 (b), 0.003(c) and 0.004 (d) obtained using an emission wavelength of 617 nm, at room temperature.

The intensity of the ${}^5D_0 \rightarrow {}^7F_2$ transition can be changed by chemical interaction around the rare earth ion, while the magnetic dipole ${}^5D_0 \rightarrow {}^7F_1$ transition at 590 nm, is independent of the crystalline field [55]. Considering the ratio between the intensities of these two transitions, the local symmetry of Eu³⁺ sites can be measured and the larger value of this ratio can be associated to a more distortion degree from the inversion symmetry [56].

In this work, ${}^5D_0 \rightarrow {}^7F_2 \ (A_{02})/{}^5D_0 \rightarrow {}^7F_1 \ (A_{01})$ ratio was measured and the correspondent 2.18, 1.75, 2.16 and 2.73 values were obtained for the $Ca_{1x}Mg_{x/2}Eu_{2y/3}TiO_3$ powders with x=0.001; 0.002; 0.003 and 0.004, respectively. These results showed that Eu^{3+} ions are located at low symmetry sites, i.e., Eu^{3+} ions are located in a distorted or asymmetric cation environment in CaTiO₃ matrix. Therefore, we believe that distorted cation environment around Eu^{3+} ions can be attributed to double ionized calcium vacancies in the A-site of $CaTiO_3$ crystalline structure. For $Ca_{1-x}Mg_xTiO_3$ powders, the PL emission can be mainly attributed to charge transference between $[CaO_{12}]_d \rightarrow [MgO_{12}]_d$ clusters. Thus, we

Fig. 7. Emission spectra of $Ca_{1x}Mg_{x/2}Eu_{2y/3}TiO_3$ powders with x=0.001 (a), 0.002 (b), 0.003 (c) and 0.004 (d) mol of Mg^{2+} and Eu^{3+} ions obtained using an excitation wavelength of 397 nm, at room temperature.

believe that ${\rm Mg}^{2+}$ ions in the ${\rm Ca_{1x}Mg_{x/2}Eu_{2y/3}TiO_3}$ powders can increase the number of $[{\rm MgO_{12}}]_d$ clusters in these systems. As a consequence, there is a formation of mono-ionized calcium vacancies in ${\rm CaTiO_3}$ matrix. Based on this hypothesis, the ${\rm Ca_{1x}Mg_{x/2}Eu_{2y/3}TiO_3}$ improved luminescence response is due to the presence of $[V_{Ca}O_{12}]$ as well as $[V_{Ca}'O_{12}]$ species in ${\rm CaTiO_3}$ structure. The charge compensation are represented by the Kroger-Vink [50] notation at equation (5) below

$$2[EuO_{12}]^x+\left[V_{Ca}^xO_{12}\right]\rightarrow 2[EuO_{12}]^{\mbox{\tiny \star}}+\left[V_{Ca}^{''}O_{12}\right]$$

$$[V_{Ca}^{x}O_{12}] + [MgO_{12}] \rightarrow [V_{Ca}O_{12}] + [MgO_{12}]^{x}$$
(5)

 $Ca_{1x}Mg_{x/2}Eu_{2y/3}TiO_3$ decay curves of Eu^{3+} $^5D_0 \rightarrow ^7F_2$ transition (not shown), presented a mono-exponential feature when this ion when the excitation and emission wavelength was set at 397 and 617 nm, respectively. As the Mg/Eu increases, the lifetime values enhanced for 0.000 < x < 0.002 systems. However, x = 0.003 system presented the highest lifetime indicating that the best concentration of Mg^{2+} and Eu^{3+} in $CaTiO_3$ was 0.3% mol. On the other hand, the x = 0.004 system presented a decrease in the lifetime value. In this system, the Eu^{3+} emission quenching can be attributed to high concentration of Eu^{3+} in this system. With increasing the Eu^{3+} concentration, the distance between Eu^{3+} ions become closer, and thus the probability of energy transfer between these species is higher [57].

4. Conclusions

In summary, $Ca_{1-x}Mg_xTiO_3$ and $Ca_{1x}Mg_{x/2}Eu_{2y/3}TiO_3$ powders were prepared by the polymeric precursor method. Rietveld and MR analyses confirmed the substitution of Ca^{2+} by Mg^{2+} and Ca^{2+} by Mg^{2+} and Eu^{3+} ions in the A site of $CaTiO_3$ matrix. Such substitutions were associated to structural defects such as distortions and/or calcium vacancies into its crystalline structure. Photoluminescence study showed that the Ca_{1-x}Mg_xTiO₃ powders presented a broad emission band centered at 450 nm (blue region) and the PL response was associated to symmetry break in [CaO₁₂] clusters corroborating to modifications in charge density along the Ca-O linkages. Excitation, emission and decay curves of Ca_{1x}Mg_{x/} ₂Eu_{2v/3}TiO₃ powders were also studied. The emission spectra presented the Eu³⁺ characteristic $^5D_0 \rightarrow ^7F_J$ (J = 0, 1, 2, 3 and 4) electronic transition sharp bands. The calculus of the relative area (A₀₂/ A_{01}) of ${}^5D_0 \rightarrow {}^7F_2$ (A_{02}) and ${}^5D_0 \rightarrow {}^7F_1$ (A_{01}) 4f transitions of Eu³⁺ ions indicated the presence of Eu³⁺ ions in low symmetry sites. The Eu³⁺ in the A-site of CaTiO₃ crystalline structure induced the formation of double ionized calcium vacancies. Moreover, the luminescence data showed that Mg²⁺ and Eu³⁺ co-doping increased the concentration of calcium vacancies into CaTiO₃ matrix, improving its optical properties.

Acknowledgments

The authors appreciate the support of the following Brazilian research financing institutions CAPES, CNPq and FAPESP.

References

- [1] A. Boudali, A. Abada, M. Driss Khodja, B. Amrani, K. Amara, F. Driss Khodja, et al., Calculation of structural, elastic, electronic, and thermal properties of orthorhombic CaTiO₃, Phys. B Condens. Matter 405 (2010) 3879–3884, http://dx.doi.org/10.1016/j.physb.2010.06.020.
- [2] B. Yan, K. Zhou, In situ sol–gel composition of inorganic/organic polymeric hybrid precursors to synthesize red-luminescent CaTiO₃:Pr³⁺ and CaTi_{0.5-} Zr_{0.5}O₃:Pr³⁺ phosphors, J. Alloys Compd. 398 (2005) 165–169, http:// dx.doi.org/10.1016/j.jallcom.2004.08.109.

- [3] B.J. Kennedy, C.J. Howard, B.C. Chakoumakos, Phase transitions in perovskite at elevated temperatures - a powder neutron diffraction study, J. Phys. Condens. Mater. 11 (1999) 1479–1488, http://dx.doi.org/10.1088/0953-8984/11/ 6/012
- [4] E.A. Nenasheva, L.P. Mudroliubova, N.F. Kartenko, Microwave dielectric properties of ceramics based on CaTiO₃—LnMO₃ System (Ln–La, Nd; M–Al, Ga), J. Eur. Ceram. Soc. 23 (2003) 2443–2448, http://dx.doi.org/10.1016/ S0955-2219(03)00188-2.
- [5] E. Cockayne, B.P. Burton, Phonons and static dielectric constant in CaTiO₃ from first principles, Phys. Rev. B 62 (2000) 3735–3743, http://dx.doi.org/10.1103/ PhysRevB.62.3735.
- [6] X.M. Chen, L. Li, X.Q. Liu, Layered complex structures of MgTiO₃ and CaTiO₃ dielectric ceramics, Mater. Sci. Engeneering B 99 (2003) 255–258, http://dx.doi.org/10.1016/S0921-5107(02)00493-2.
- [7] B.D. Lee, H.R. Lee, K.H. Yoon, D.H. Kang, Effect of Stacking layers on the microwave dielectric properties of MgTiO₃/CaTiO₃ multilayered thin films, J. Am. Ceram. Soc. 88 (2005) 1197–1200, http://dx.doi.org/10.1111/j.1551-2916.2005.00247.x.
- [8] H.-K. Shin, H. Shin, S.-T. Bae, S. Lee, K.S. Hong, Effect of oxygen partial pressure during liquid-phase sintering on the dielectric properties of 0.9MgTiO₃-0.1CaTiO₃, J. Am. Ceram. Soc. 91 (2007) 132–138, http://dx.doi.org/10.1111/ i1551-2916 2007 02016 x
- [9] J.Y. Cho, K.H. Yoon, E.S. Kim, Correlation between arrangement of dielectric layers and microwave dielectric properties of Mg_{0.93}Ca_{0.07}TiO₃—(-Ca_{0.3}Li_{0.14}Sm_{0.42})TiO₃ ceramics, J. Am. Ceram. Soc. 32 (2003) 1330—1332, http://dx.doi.org/10.1111/j.1151-2916.2003.tb03471.x.
- [10] F.C.D. Lemos, D.M.A. Melo, J.E.C. da Silva, Photoluminescence of Er³⁺ doped in PbTiO₃ perovskite-type obtained via polymeric precursor method, Opt. Commun. 231 (2004) 251–255, http://dx.doi.org/10.1016/ j.optcom.2003.12.035.
- [11] W. Sun, Y. Gu, Q. Zhang, Y. Li, H. Wang, CaTiO₃:Eu³⁺ layers coated SiO₂ particles: core-shell structured red phosphors for near-UV white LEDs, J. Alloys Compd. 493 (2010) 561–564, http://dx.doi.org/10.1016/j.jallcom.2009.12.155.
- Compd. 493 (2010) 561–564, http://dx.doi.org/10.1016/j.jallcom.2009.12.155.
 P. Boutinaud, E. Tomasella, A. Ennajdaoui, R. Mahiou, Structural characterization and luminescent properties of CaTiO₃:Pr³⁺ thin films deposited by radio frequency sputtering, Thin Solid Films 515 (2006) 2316–2321, http://dx.doi.org/10.1016/j.tsf.2006.03.037.
- [13] A.T. de Figueiredo, V.M. Longo, S. de Lazaro, V.R. Mastelaro, F.S. De Vicente, A.C. Hernandes, et al., Blue-green and red photoluminescence in CaTiO₃:Sm, J. Lumin 126 (2007) 403–407, http://dx.doi.org/10.1016/j.jlumin.2006.08.100.
- [14] P.J. Dereń, R. Mahiou, R. Pazik, K. Lemanski, W. Stręk, P. Boutinaud, Upconversion emission in CaTiO₃:Er³⁺ nanocrystals, J. Lumin 128 (2008) 797–799, http://dx.doi.org/10.1016/j.jlumin.2007.11.057.
- [15] B. Marí, K.C. Singh, P. Cembrero-Coca, I. Singh, D. Singh, S. Chand, Red emitting MTiO₃ (M = Ca or Sr) phosphors doped with Eu³⁺ or Pr³⁺ with some cations as co-dopants, Displays 34 (2013) 346–351, http://dx.doi.org/10.1016/ j.displa.2013.07.003.
- [16] H.K. Yang, J.W. Chung, B.K. Moon, B.C. Choi, J.H. Jeong, K. Jang, et al., Photo-luminescence characteristics of Li-doped CaTiO₃:Pr³⁺ thin films grown on Si (100) substrate by PLD, Thin Solid Films 518 (2010) 6219–6222, http://dx.doi.org/10.1016/j.tsf.2010.03.171.
- [17] G. Gasparotto, S. a. M. Lima, M.R. Davolos, J.A. Varela, E. Longo, M. a. Zaghete, Luminescence properties of Eu³⁺- and Mg²⁺-doped LiTaO₃ obtained via the polymeric precursor method, J. Lumin 128 (2008) 1606–1610, http:// dx.doi.org/10.1016/j.jlumin.2008.03.005.
- [18] K. Goto, Y. Nakachi, K. Ueda, Photoluminescence properties of Pr doped and Tb-Mg codoped CaSnO₃ with perovskite structure, Thin Solid Films 516 (2008) 5885-5889, http://dx.doi.org/10.1016/j.tsf.2007.10.060.
- [19] M.D. Pechini, 1967. Method of Preparing Lead and Alkaline Earth Titanates and Niobates and Coating Method Using the Same to Form a Capacitor, U.S. Pat. No 3,330.697.
- [20] S.W. Baertschi, B.W. Pack, C.S. Hoaglund Hyzer, M.A. Nussbaum, Assessing mass balance in pharmaceutical drug products: new insights into an old topic, TrAC Trends Anal. Chem. 49 (2013) 126–136, http://dx.doi.org/10.1016/ j.trac.2013.06.006.
- [21] D.L. Dorset, X-ray Diffraction: A Practical Approach, Microsc. Microanal. 4 (1998) 513–515, http://dx.doi.org/10.1017/S143192769800049X.
- [22] R.B. Larson, A.C. Von Dreele, General Structure Analysis System (GSAS), Los Alamos National Laboratory, 2004. Report No. LAUR, 86.
- [23] L.W. Finger, D.E. Cox, A.P. Jephcoat, A correction for powder diffraction peak asymmetry due to axial divergence, J. Appl. Crystallogr. 27 (1994) 892–900, http://dx.doi.org/10.1107/S0021889894004218.
- [24] M.M. Mao, X.C. Fan, X.M. Chen, Effect of A-Site Ionic Radius on the Structure and Microwave Dielectric Characteristics of Sr_{1+x}Sm_{1-x}Al_{1-x}Ti_xO₄ Ceramics, Int. J. Appl. Ceram. Technol. 7 (2010) E156–E162, http://dx.doi.org/10.1111/ i.1744-7402.2010.02492.x.
- [25] B.Y.R.D. Shannon, M. H. N.H. Baur, O.H. Gibbs, M. Eu, V. Cu, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. A32 (1976) 751.
- [26] P. McMillan, N. Ross, The Raman spectra of several orthorhombic calcium oxide perovskites, Phys. Chem. Min. 16 (1988) 21–28, http://dx.doi.org/ 10.1007/BF00201326.
- [27] U. Balachandran, N.G. Eror, Laser-induced Raman Scattering in Calcium Titanate, Solid State Commun. 44 (1982) 815–818, http://dx.doi.org/10.1107/ S0567739476001551.

- [28] T. Hirata, K. Ishioka, M. Kitajima, Vibrational spectroscopy and X-ray diffraction of Perovskite compounds $Sr_{1-x}M_xTiO_3$ (M = Ca, Mg; $0 \ge x \ge 1$), J. Solid State Chem. 124 (1996) 353–359, http://dx.doi.org/10.1006/jssc.1996.0249.
- [29] H. Zheng, I.M. Reaney, G.D.C.C. de Györgyfalva, R. Ubic, J. Yarwood, M.P. Seabra, et al., Raman spectroscopy of CaTiO₃-based perovskite solid solutions, J. Mater. Res. 19 (2004) 488–495, http://dx.doi.org/10.1557/ jmr.2004.19.2.488.
- [30] Y. Li, S. Qin, F. Seifert, Phase transitions in A-site substituted perovskite compounds: the $(Ca_{1-2x}Na_xLa_x)TiO_3$ ($0\le x\le 0.5$) solid solution, J. Solid State Chem. 180 (2007) 824–833, http://dx.doi.org/10.1016/j.jssc.2006.12.012.
- [31] L.H. Oliveira, A.P. de Moura, T.M. Mazzo, M.A. Ramírez, L.S. Cavalcante, S.G. Antonio, et al., Structural refinement and photoluminescence properties of irregular cube-like (Ca_{1-x}Cu_x)TiO₃ microcrystals synthesized by the microwave-hydrothermal method, Mater. Chem. Phys. 136 (2012) 130–139, http://dx.doi.org/10.1016/j.matchemphys.2012.06.042.
- [32] Y. Hanajiri, T. Matsui, Y. Arita, T. Nagasaki, H. Shigematsu, T. Harami, EXAFS analyses of CaTiO₃ doped with Ce, Nd and U, Solid State Ionics 108 (1998) 343–348, http://dx.doi.org/10.1016/S0167-2738(98)00061-7.
- [33] J. Milanez, A.T. de Figueiredo, S. de Lazaro, V.M. Longo, R. Erlo, V.R. Mastelaro, et al., The role of oxygen vacancy in the photoluminescence property at room temperature of the CaTiO₃, J. Appl. Phys. 106 (2009) 043526, http://dx.doi.org/10.1063/1.3190524.
- [34] S. De Lazaro, J. Milanez, A.T. De Figueiredo, V.M. Longo, V.R. Mastelaro, F.S. De Vicente, et al., Relation between photoluminescence emission and local orderdisorder in the CaTiO₃ lattice modifier, Appl. Phys. Lett. 90 (2007) 10–12, http://dx.doi.org/10.1063/1.2713359.
- [35] M.L. Moreira, E.C. Paris, G.S. do Nascimento, V.M. Longo, J.R. Sambrano, V.R. Mastelaro, et al., Structural and optical properties of CaTiO₃ perovskite-based materials obtained by microwave-assisted hydrothermal synthesis: an experimental and theoretical insight, Acta Mater. 57 (2009) 5174–5185, http://dx.doi.org/10.1016/j.actamat.2009.07.019.
- [36] Y. Wu, Z. Sun, K. Ruan, Y. Xu, H. Zhang, Enhancing photoluminescence with Lidoped CaTiO₃: Eu³⁺ red phosphors prepared by solid state synthesis, J. Lumin 155 (2014) 269–274, http://dx.doi.org/10.1016/j.jlumin.2014.06.051.
- [37] J. Tang, X. Yu, L. Yang, C. Zhou, X. Peng, Preparation and Al³⁺ enhanced photoluminescence properties of CaTiO₃:Pr³⁺, Mater. Lett. 60 (2006) 326–329, http://dx.doi.org/10.1016/j.matlet.2005.08.047.
- [38] W. Yang, J. Hu, Synthesis and luminescence properties of hexagonal CaTiO₃:
 Eu³⁺ nanosheets, J. Lumin 145 (2014) 144–147, http://dx.doi.org/10.1016/j.jlumin.2013.07.041.
- [39] T.M. Mazzo, I.M. Pinatti, L.R. Macario, W. Avansi, M.L. Moreira, I.L.V. Rosa, et al., Europium-doped calcium titanate: optical and structural evaluations, J. Alloys Compd. 585 (2014) 154–162, http://dx.doi.org/10.1016/j.jallcom.2013.08.174.
- [40] P. Kubelka, F. Munk, Ein beitrag zur optik der farbanstriche, Tech. Phys. 12 (1931) 593–601.
- [41] F.M. Pontes, C.D. Pinheiro, E. Longo, E.R. Leite, S.R. De Lazaro, J.A. Varela, et al., The role of network modifiers in the creation of photoluminescence in CaTiO₃, Mater. Chem. Phys. 78 (2003) 227–233, http://dx.doi.org/10.1016/S0254-0584(02)00230-4.
- [42] T. Mizoguchi, M. Yoshiya, J. Li, F. Oba, I. Tanaka, H. Adachi, Electron-energy-loss near edge structures of six-fold-coordinated Zn in MgO, Ultramicroscopy 86 (2001) 363–370, http://dx.doi.org/10.1016/S0304-3991(00)00127-3.
- [43] X. Qiu, L. Li, J. Zheng, J. Liu, X. Sun, G. Li, Origin of the enhanced photocatalytic activities of semiconductors: a case study of ZnO doped with Mg²⁺, J. Phys. Chem. C 112 (2008) 12242–12248, http://dx.doi.org/10.1021/jp803129e.
- [44] M.A.P. Almeida, L.S. Cavalcante, J.A. Varela, M. Siu Li, E. Longo, Effect of different surfactants on the shape, growth and photoluminescence behavior of MnWO₄ crystals synthesized by the microwave-hydrothermal method, Adv. Powder Technol. 23 (2012) 124–128, http://dx.doi.org/10.1016/ i.apt.2011.10.004.
- [45] L.T. Canham, Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers, Appl. Phys. Lett. 57 (1990) 1046, http:// dx.doi.org/10.1063/1.103561.
- [46] M. Anicete-Santos, E. Orhan, M.A.M.A. De Maurera, L.G.P. Simões, A.G. Souza, P.S. Pizani, et al., Contribution of structural order-disorder to the green photoluminescence of PbWO₄, Phys. Rev. B Condens. Matter Mater. Phys. 75 (2007) 1–11, http://dx.doi.org/10.1103/PhysRevB.75.165105.
- [47] E.A.V. Ferri, J.C. Sczancoski, L.S. Cavalcante, E.C. Paris, J.W.M. Espinosa, A.T. de Figueiredo, et al., Photoluminescence behavior in MgTiO₃ powders with vacancy/distorted clusters and octahedral tilting, Mater. Chem. Phys. 117 (2009) 192–198, http://dx.doi.org/10.1016/j.matchemphys.2009.05.042.
- [48] J. Shi, J. Chen, Z. Feng, T. Chen, Y. Lian, X. Wang, et al., Photoluminescence characteristics of TiO₂ and their relationship to the photoassisted reaction of water/methanol mixture, J. Phys. Chem. C 111 (2007) 693–699, http:// dx.doi.org/10.1021/jp065744z.
- [49] PEAKFIT, SeaSolve Software Inc 4.12.
- [50] F.A. Kroger, H.J. Vink, Relations between the concentrations of imperfections in solids, J. Phys. Chem. Solids 5 (1958) 208–223, http://dx.doi.org/10.1016/ 0022-3697(58)90069-6.
- [51] P.F.S. Pereira, A.P. de Moura, I.C. Nogueira, M.V.S. Lima, E. Longo, P.C. de Sousa Filho, O.A. Serra, E.J. Nassar, I.L.V. Rosa, Study of the annealing temperature effect on the structural and luminescence properties of SrWO₄:Eu phosphors prepared by a non-hydrolitic sol-gel process, J. Alloys Compd. 526 (2012) 11–21.

- [52] E.E. Teotonio, M.C.F. Felinto, H.F. Brito, O.L. Malta, A.C. Trindade, R. Najjar, et al., Synthesis, crystalline structure and photoluminescence investigations of the new trivalent rare earth complexes (Sm³+, Eu³+ and Tb³+) containing 2-thiophenecarboxylate as sensitizer, Inorganica Chim. Acta 357 (2004) 451–460, http://dx.doi.org/10.1016/j.ica.2003.08.009.
- [53] D.T.M. Huong, N.H. Nam, L. Van Vu, N.N. Long, Preparation and optical characterization of Eu³⁺-doped CaTiO₃ perovskite powders, J. Alloys Compd. 537 (2012) 54–59, http://dx.doi.org/10.1016/j.jallcom.2012.05.087.
- [54] H. Liang, F. Xie, Luminescence of a conjugated polymer containing europium (III) chelate, J. Lumin. 144 (2013) 230–233, http://dx.doi.org/10.1016/ j.ilumin.2013.08.014.
- [55] I.L.V. Rosa, L.H. Oliveira, C.K. Suzuki, J. a Varela, E.R. Leite, E. Longo, SiO₂-GeO₂
- soot preform as a core for Eu_2O_3 nanocoating: synthesis and photophysical study, J. Fluoresc. 18 (2008) 541–545, http://dx.doi.org/10.1007/s10895-007-0297-7
- [56] M.G. Ha, J.H. Lee, J.S. Bae, J.P. Kim, K.S. Hong, H.-S. Yang, Photophysical properties of highly efficient red-emitting CaTiO₃:Eu³⁺ phosphors under near ultra-violet excitation, Curr. Appl. Phys. 11 (2011) 1379–1383, http:// dx.doi.org/10.1016/j.cap.2011.04.008.
- [57] M. Shivram, S.C. Prashantha, H. Nagabhushana, S.C. Sharma, K. Thyagarajan, R. Harikrishna, et al., CaTiO₃:Eu³⁺ red nanophosphor: low temperature synthesis and photoluminescence properties. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 120 (2014) 395–400, http://dx.doi.org/10.1016/j.saa.2013.09.114.