Stability of small-amplitude periodic solutions near Hopf bifurcations in time-delayed fully-connected PLL networks

Diego P. Ferruzza Correa, Átila M. Bueno, José R. Castilho Piqueira

1. Introduction

Networks of oscillators have been studied for decades because their models can represent dynamics in a very wide range of fields as astronomy, biology, neurology, economics, population dynamics, and the stock market (see [1–7] and references therein). Much of the research has focused into understand the influence that changes in the parameter space have over the dynamics. We are interested in studying the influence of the lag between nodes in the stability of the network synchronization. There is a considerable body of literature on time-delayed networks, for example; in [3] and [8] are explored conditions for the global exponential stability; in [9] is addressed an statistical approach including analysis of noise influence in linearly-coupled oscillators, in [10] are studied Hopf and Bogdanov-Takens bifurcations in a small neural network; in [11] different kind of solutions including amplitude death, spatiotemporal, phase-locked, standing-waves and synchronized oscillations are studied considering the time-delay along with a distance-dependent coupling, in [12] is addressed a comparative study of three different models for a fully-connected N-node network and it is also shown the existence of multiple eigenvalues forced by symmetry, in [13] is presented a stability criterion for the synchronization in a two-node network.

© 2016 Elsevier B.V. All rights reserved.
2. The full phase model

The general model for a N-node, fully-connected, second-order oscillator network in terms of the i-th node output phase $\phi_i(t)$, is:

$$\dot{\phi}_i(t) + \mu \dot{\phi}_i(t) - \mu - \frac{K\mu}{N-1} \sum_{j=1}^{N} f(\phi_i, \phi_j) = 0, \quad i = 1, \ldots, N,$$

(1)

where the sumatory term represents the coupling function and the remaining terms represent the local inner second-order dynamics in each node. The coupling function for a PLL oscillator is given by:

$$f(\phi_i, \phi_j) = \sin(\phi_j(t - \tau) - \phi_i(t)) + \sin(\phi_j(t - \tau) + \phi_i(t)).$$

(2)

we consider that all signals coming from the other $N - 1$ nodes are affected by a lag τ; thus, $f : \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$; $\mu, K, \tau \in \mathbb{R}^+$ are parameters, and $N \in \mathbb{N} - \{1\}$.

The equilibria ϕ^\pm, in Eq. (1), are:

$$\phi^+(n) = \frac{1}{2} \left(\arcsin \left(-\frac{1}{R} \right) + 2n\pi \right),$$

$$\phi^-(n) = \frac{1}{2} \left(\pi - \arcsin \left(-\frac{1}{R} \right) + 2n\pi \right),$$

(3)

$n \in \mathbb{Z}, \: K \geq 1$. For our analysis, we consider three main assumptions:

(a) The critical eigenvalue λ of the linearization of (1) at equilibria crosses the imaginary axis with non vanishing velocity, i.e. $\text{Re} (\lambda'(\phi^\pm)) \neq 0$.

(b) The purely imaginary eigenvalue $\lambda = \pm i\omega$ is simple.

(c) The linearization of (1) at equilibria has no eigenvalues of the form $\pm \omega, \: k \in \mathbb{Z} - \{1, -1\}$.

The Taylor expansion of (1) at equilibria is:

$$\delta \dot{\phi}_i + \mu \delta \dot{\phi}_i - \frac{K\mu}{N-1} \sum_{j=1}^{N} \sum_{r=1}^{\infty} \left(\frac{1}{r!} \left(\delta \phi_i \frac{\partial}{\partial \phi'_i} + \delta \phi_{j} \frac{\partial}{\partial \phi'_j} \right)^r f(\phi_i, \phi_j) \right)_{\phi'_i = \phi^\pm, \: \phi'_j = \phi^\pm} = 0.$$

(4)

where $\phi_{j\tau} := \phi_j(t - \tau)$. Truncate the series up to the third-order term:

$$\dot{\phi}_i + \mu \dot{\phi}_i = \frac{K\mu}{N-1} \sum_{j=1}^{N} \left((\phi_{j\tau} - \phi_i) + (\phi_{j\tau} + \phi_i) \cos 2\phi^\pm - \frac{1}{2}(\phi_{j\tau} + \phi_i)^2 \sin 2\phi^\pm - \frac{1}{6} \left((\phi_{j\tau} - \phi_i)^3 + (\phi_{j\tau} + \phi_i)^3 \cos 2\phi^\pm \right) \right),$$

(5)

$i = 1, \ldots, N$. Here for the sake of notation we changed $\delta \phi_i \rightarrow \phi_i$.

The vector field form \(\dot{x} = G(x; \chi; \eta) \), \(G : \mathbb{R}^{2N} \times \mathbb{R}^{2N} \times \mathbb{R}^3 \rightarrow \mathbb{R}^{2N} \), can be obtained by choosing \(x_1^{(i)} = \phi_i \) and \(x_2^{(i)} = \bar{\phi}_i \), then the restriction \(G\big|_i \) or \(\dot{x}^{(i)} = G^{(i)}(x_i, \chi_i; \eta) \) gives:

\[
\begin{align*}
 x_1^{(i)} &= x_2^{(i)} \\
 x_2^{(i)} &= -\mu x_1^{(i)} + \frac{K\mu}{N-1} \sum_{j=1}^{N} \left[(-1 + \cos 2\phi^+)x_1^{(i)} + (1 + \cos 2\phi^+)x_1^{(i)} \right] \\
 &\quad - \frac{1}{6} \left[\left(x_1^{(i)} - x_1^{(i)}\right)^3 + (x_1^{(i)} + x_1^{(i)})^3 \cos 2\phi^+ \right], \\
\end{align*}
\]

Following [17,21], we can represent the dynamics in (6) by the abstract differential equation:

\[
\frac{d}{dt} x(t) = A(\eta)x(t) + \mathcal{F}(x(t), \eta).
\]

We define \(X := C([\tau, 0], \mathbb{R}^{2N}) \) the Banach space of continuous functions from \([\tau, 0]\) into \(\mathbb{R}^{2N} \) equipped with the usual norm

\[
\|\vartheta\| = \sup_{-\tau \leq \theta \leq 0} |\vartheta(\theta)|, \quad \vartheta \in C([\tau, 0]).
\]

\(x_t \), in (7), lies in \(X \) and satisfies \((T(t)\varphi)(\theta) = (x_t(\varphi))(\theta) = x(t + \theta)\). \(T(t) \) is a semigroup of family of operators, \(\theta \in [\tau, 0] \), and \(\eta \) is a vector of parameters. The linear operator \(A(\eta) \in \text{Mat}(2N) \) is:

\[
(A(\eta)\vartheta) = \begin{cases} \frac{\partial}{\partial \theta} (\theta) & , -\tau < \theta \leq 0, \\
A(0)(\vartheta)(0) + A(\eta)(\vartheta)(-\tau) & , \theta = 0. \end{cases}
\]

where \(A(0) := \frac{\partial G}{\partial x} |_{\phi^=} \), \(A(\eta) := \frac{\partial G}{\partial x} |_{\phi^=} \) and,

\[
(\mathcal{F}(\chi))(\theta) = \begin{cases} \frac{\partial x}{\partial \theta} (\theta) & , -\tau \leq \theta < 0, \\
F(x(0), x(-\tau), \eta) & , \theta = 0. \end{cases}
\]

\(F = (f^{(1)}, \ldots, f^{(N)})^T \), \(f^{(i)} = (f^{(i)}_1, f^{(i)}_2) \), \(f^{(i)}_1 = 0 \), and \(f^{(i)}_2 = \frac{K\mu}{N-1} \sum_{j=1}^{N} \left[(-1 + \cos 2\phi^+)x_1^{(i)} + (1 + \cos 2\phi^+)x_1^{(i)} \right] \\
\quad - \frac{1}{6} \left[\left(x_1^{(i)} - x_1^{(i)}\right)^3 + (x_1^{(i)} + x_1^{(i)})^3 \cos 2\phi^+ \right].
\]

In order to build the decomposition of the infinite-dimensional space we need two tools: the adjoint operator associated to the linear part of the linearization, and an inner product via a bilinear form. Associated to the linear part of (7) the formal adjoint equation is

\[
\frac{dy}{dt}(t, \eta) = A_0^T(\eta)y(t, \eta) + A_1^T(\eta)y(t + \tau, \eta).
\]

The strongly continuous semigroup \((T^*(t)\psi)(\theta) = (y_\tau(\psi))(\theta) = y(t + \theta), \psi \in X^* := C([0, \tau], \mathbb{R}^{2N})\). The natural inner product has the form [22]:

\[
\langle x, y \rangle = \bar{x}^T(0)y(0) + \int_{-\tau}^{0} \bar{x}^T(s + \tau)A_\tau(\eta)y(s)ds,
\]

\(x \in X \) and \(y \in X^* \); thus, we have [17]:

1. \(\lambda \) is an eigenvalue of \(A(\eta) \) if and only if \(\bar{\lambda} \) is an eigenvalue of \(A^*(\eta) \).
2. If \(\phi_1, \ldots, \phi_d \) is a basis for the eigenspace of \(A(\eta) \) and \(\psi_1, \ldots, \psi_d \) is a basis for the eigenspace of \(A^*(\eta) \), construct the matrices \(\Phi = (\phi_1, \ldots, \phi_d) \) and \(\Psi = (\psi_1, \ldots, \psi_d) \). Define the bilinear form:

\[
\langle \Psi, \Phi \rangle = I.
\]
3. The fixed point space S_N

Due to the S_N-symmetry of (1) the space where solutions ϕ_1 lie can be decomposed into the fixed point subspace where symmetry-preserving solutions emerge and a subspace with symmetry-breaking solutions, this was shown in [12]. We analyze stability of the small-amplitude periodic solutions near Hopf bifurcations in the fixed point space, these bifurcations satisfy assumptions (a)-(c) for $K > 1$. In this subspace Eq. (6) has the form:

\[
\begin{align*}
\dot{x}_1 &= x_2 \\
\dot{x}_2 &= -\mu x_2 + K\mu (-1 + \cos 2\phi^+) x_1 + K\mu \left\{(1 + \cos 2\phi^+) x_1 - \frac{1}{2} (x_{1\tau} + x_1)^2 \sin 2\phi^+ - \frac{1}{6} [(x_{1\tau} - x_1)^3 + (x_{1\tau} + x_1)^3 \cos 2\phi^+] \right\}.
\end{align*}
\]

(13)

then matrices $A_0(\eta)$ and $A_\tau(\eta)$ in (11) become:

\[
A_0(\eta) = \begin{pmatrix} 0 & 1 \\ K\mu (-1 + \cos 2\phi^+) & -\mu \end{pmatrix},
\]

(14)

\[
A_\tau(\eta) = \begin{pmatrix} 0 & 0 \\ K\mu (1 + \cos 2\phi^+) & 0 \end{pmatrix},
\]

(15)

and F in (9) takes the form $F = (f_1, f_2)^T$ with $f_1 = 0$ and f_2:

\[
f_2(x_t, \eta) = K\mu \left\{-\frac{1}{2} (x_{1\tau} + x_1)^2 \sin 2\phi^+ - \frac{1}{6} [(x_{1\tau} - x_1)^3 + (x_{1\tau} + x_1)^3 \cos 2\phi^+] \right\}.
\]

(16)

We need the complex eigenfunctions $A_s(\theta) = i\omega s(\theta)$, $A^* n(\theta) = i\omega n(\theta)$, associated to the critical eigenvalues $\lambda = i\omega$, and $\lambda = -i\omega$ with $s(\theta) = s_1(\theta) + is_2(\theta)$ and $n(\theta) = n_1(\theta) + in_2(\theta)$. These eigenfunctions can be computed solving the boundary value problem $\frac{d}{d\theta} s_{1,2}(\theta) = \pm i\omega s_{1,2}(\theta)$, and $\frac{d}{d\theta} n_{1,2}(\theta) = \pm i\omega n_{1,2}(\theta)$, which after substituting the operator $A(\eta)$ becomes:

\[
\begin{align*}
A_0(\eta)s_1(0) + A_\tau(\eta)s_1(-\tau) &= -i\omega s_2(0) \\
A_0(\eta)s_2(0) + A_\tau(\eta)s_2(-\tau) &= i\omega s_1(0)
\end{align*}
\]

(17)

and

\[
\begin{align*}
A_0^T(\eta)n_1(0) + A_\tau^T(\eta)n_1(-\tau) &= i\omega n_2(0) \\
A_0^T(\eta)n_2(0) + A_\tau^T(\eta)n_2(-\tau) &= -i\omega n_1(0),
\end{align*}
\]

(18)

with general solutions:

\[
\begin{align*}
s_1(\theta) &= \cos(\omega \theta) c_1 - \sin(\omega \theta) c_2 \\
s_2(\theta) &= \sin(\omega \theta) c_1 + \cos(\omega \theta) c_2 \\
n_1(\theta) &= \cos(\omega \theta) d_1 - \sin(\omega \theta) d_2 \\
n_2(\theta) &= \sin(\omega \theta) d_1 + \cos(\omega \theta) d_2.
\end{align*}
\]

(19)

The coefficients $c_1 = [c_{11} c_{12}]^T$, $c_2 = [c_{21} c_{22}]^T$. $d_1 = [d_{11} d_{12}]^T$. $d_2 = [d_{21} d_{22}]^T$ can be obtained by considering the boundary conditions

\[
\begin{align*}
\begin{pmatrix} A_0(\eta) + \cos(\omega \tau) A_\tau(\eta) \\ \omega l + \sin(\omega \tau) A_\tau(\eta) \end{pmatrix}^T \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} &= 0 \\
\begin{pmatrix} A_0^T(\eta) + \cos(\omega \tau) A^T_\tau(\eta) \\ -\omega l - \sin(\omega \tau) A^T_\tau(\eta) \end{pmatrix}^T \begin{pmatrix} d_1 \\ d_2 \end{pmatrix} &= 0,
\end{align*}
\]

(20)

the “orthonormality” condition $(s, n) = l$, and setting $c_{11} = 1$ and $c_{21} = 0$, see [14,23] for more details.

It is also possible to decompose the solution $x_\eta(\theta)$ to Eq. (7) into $x_\eta(\theta) = y_1(t) s_1(\theta) + y_2(t) s_2(\theta) + w_\tau(\theta)$, where y_1 and y_2 lie in the center subspace, such that $y_{1,2}(t) = \langle n_{1,2}(0), x_\theta(0) \rangle$, and w_τ in the infinite-dimensional component subspace, thus, we have

\[
\begin{align*}
\dot{y}_1 &= \omega y_2 + n_1^T(0) F \\
\dot{y}_2 &= -\omega y_1 + n_2^T(0) F \\
\dot{w} &= A(\eta) w + \mathcal{F}(x_\eta, \eta) - n_1^T(0) F s_1 - n_2^T(0) F s_2,
\end{align*}
\]

(21)

(22)

where

\[
\mathcal{F} = \begin{cases} 0 & , \ \ \ \ \ \ \ \ \ \ \dot{\theta} \in [-\tau, 0) \\
F(y_1(t) s_1(0) + y_2(t) s_2(0) + w(t)(0)) & , \ \ \ \ \ \ \dot{\theta} = 0.
\end{cases}
\]

(23)
3.1. The center manifold

Following [14, 18, 24] we know that \(w(t) \) can be approximated by the second-order expansion:

\[
 w(y_1, y_2) = \frac{1}{2} (h_1(\theta) y_1^2 + 2h_2(\theta) y_1 y_2 + h_3(\theta) y_2^2),
\]

thus, by differentiating and substituting Eq. (22) keeping up to second order terms, we obtain:

\[
 w = -\omega h_2 y_1^2 + \omega (h_1 - h_3) y_1 y_2 + \omega h_2 y_2^2 + 0(y^3),
\]

and from Eq. (22),

\[
 \frac{dw}{dt} = A(\eta) w + \mathcal{F}(w + y_1 s_1 + y_2 s_2) - (d_{12}s_1 + d_{22}s_2)f_2.
\]

From the definition of \(A(\eta) \), equivalent to (11), we see that

\[
 A(\eta) w = \begin{cases} \frac{1}{2} (h_1 y_1^2 + 2h_2 y_1 y_2 + h_3 y_2^2), & \theta \in [-\tau, 0) \\ A_0(\eta) w(0) + A_T(\eta) w(-\tau), & \theta = 0, \end{cases}
\]

then, from Eqs. (24) to (27) we can obtain the unknown coefficients \(h_1, h_2, \) and \(h_3 \) solving:

\[
\begin{align*}
 h_1 &= 2(-\omega h_2 + f^{20}(d_{12}s_1(\theta) + d_{22}s_2(\theta))), \\
 h_2 &= \omega (h_1 - h_3) + f^{21}(d_{12}s_1(\theta) + d_{22}s_2(\theta))), \\
 h_3 &= 2(\omega h_2 + f^{22}(d_{12}s_1(\theta) + d_{22}s_2(\theta))).
\end{align*}
\]

and,

\[
\begin{align*}
 A_0(\eta) h_1(0) + A_T(\eta) h_1(-\tau) &= 2(-\omega h_2(0) + f^{20}(d_{12}s_1(0) + d_{22}s_2(0))), \\
 A_0(\eta) h_2(0) + A_T(\eta) h_2(-\tau) &= \omega (h_1(0) - h_3(0)) + f^{21}(d_{12}s_1(0) + d_{22}s_2(0))), \\
 A_0(\eta) h_3(0) + A_T(\eta) h_3(-\tau) &= 2(\omega h_2(0) + f^{22}(d_{12}s_1(0) + d_{22}s_2(0))).
\end{align*}
\]

where \(f^{20} = \frac{1}{2} \frac{\partial^2 f}{\partial y_1^2} \bigg|_0, f^{11} = \frac{\partial^2 f}{\partial y_1 \partial y_2} \bigg|_0, \) and \(f^{22} = \frac{1}{2} \frac{\partial^2 f}{\partial y_2^2} \bigg|_0. \)

Eq. (28) is written as the inhomogeneous differential equation:

\[
 \frac{dh}{d\theta} = Ch + p \cos(\omega \theta) + q \sin(\omega \theta)
\]

where

\[
\begin{align*}
 h := \begin{pmatrix} h_1 \\ h_2 \\ h_3 \end{pmatrix}, & \quad C := \omega \begin{pmatrix} 0 & -2I & 0 \\ I & 0 & -I \\ 0 & 2I & 0 \end{pmatrix}_{6 \times 6}, \\
 p := \begin{pmatrix} f^{20}p_0 \\ f^{21}p_0 \\ f^{22}p_0 \end{pmatrix}, & \quad q := \begin{pmatrix} f^{20}q_0 \\ f^{21}q_0 \\ f^{22}q_0 \end{pmatrix}, \\
 p_0 := \begin{pmatrix} d_{12} \\ c_{22}d_{22} \end{pmatrix}, & \quad q_0 := \begin{pmatrix} d_{22} \\ -c_{22}d_{12} \end{pmatrix}.
\end{align*}
\]

with general solution:

\[
 h(\theta) = e^{C\theta} K + M \cos(\omega \theta) + N \sin(\omega \theta).
\]

After substituting the general solution into (30) we solve for \(M \) and \(N \), and then from the boundary value problem we solving for \(K \),

\[
\begin{pmatrix} C & -\omega I \end{pmatrix} \begin{pmatrix} M \\ N \end{pmatrix} = -\begin{pmatrix} p \\ q \end{pmatrix}
\]

\[
 Ph(0) + Qh(-\tau) = p - r,
\]
where
\[
P := \begin{pmatrix} A_0 & 0 & 0 \\ 0 & A_0 & 0 \\ 0 & 0 & A_0 \end{pmatrix} - \mathcal{C},
\]
\[
Q := \begin{pmatrix} A_r & 0 & 0 \\ 0 & A_r & 0 \\ 0 & 0 & A_r \end{pmatrix},
\]
and \(r := (0 \ f_2^{j_0} 0 \ f_2^{j_1} 0 \ f_2^{j_01})^T \).

The expressions for \(w_1(0) \) and \(w_1(-\tau) \), necessary in (23), are:
\[
w_1(0) = \frac{1}{2} \left((M_1 + K_1)y_1^2 + 2(M_3 + K_3)y_1y_2 + (M_5 + K_5)y_2^2 \right),
\]
\[
w_1(-\tau) = \frac{1}{2} \left(e^{-c_\tau}K_1 + M_1 \cos(\omega \tau) - N_1 \sin(\omega \tau) \right)y_1^2
\]
\[+2(e^{-c_\tau}K_3 + M_3 \cos(\omega \tau) - N_3 \sin(\omega \tau) \right)y_1y_2
\]
\[+(e^{-c_\tau}K_5 + M_5 \cos(\omega \tau) - N_5 \sin(\omega \tau) \right)y_2^2 \right).
\]

Note that we only need \(w_1(\dot{\theta}) \) since the nonlinear function in (16) only depends on \(\dot{x}_1 \); then by substituting (35) into (21) we obtain:
\[
\dot{y}_1 = \omega y_2 + g_1(y_1, y_2; \eta)
\]
\[
\dot{y}_2 = -\omega y_1 + g_2(y_1, y_2; \eta),
\]

or
\[
\dot{y}_1 = \omega y_2 + a_{20}y_1^2 + a_{11}y_1y_2 + a_{02}y_2^2 + a_{30}y_1 + a_{21}y_1y_2 + a_{12}y_1y_2^2 + a_{03}y_2^2.
\]
\[
\dot{y}_2 = -\omega y_1 + b_{20}y_1^2 + b_{11}y_1y_2 + b_{02}y_2^2 + b_{30}y_1 + b_{21}y_1y_2 + b_{12}y_1y_2^2 + b_{03}y_2^2.
\]

In [20] is computed the coefficient \(a \) which determines stability of the normal form (37),
\[
a = \frac{1}{16} \left[g_2^{11} \left(g_2^{02} + g_2^{02} \right) \right] + \frac{1}{16} \left[g_1^{11} \left(g_1^{02} + g_1^{02} \right) - g_1^{11} \left(g_1^{02} + g_1^{02} \right) - g_2^{02}g_2^{02} + g_2^{02}g_2^{02} \right],
\]
where \(g_i^{ji} = \frac{\partial^{i+j}}{\partial y_i \partial y_j} g_0(0, 0) \). Periodic orbits near Hopf bifurcation at the critical eigenvalue \(\lambda = i\omega \) will be stable if \(a < 0 \) and unstable if \(a > 0 \).

4. Numerical results

We reproduce some of the computations for the Hopf bifurcations curves in the fixed point space for the case \(K > 1 \) presented in [12] in order to compute the coefficient \(a \) for small-amplitude periodic solutions near these bifurcation curves using results obtained in the previous section. Fig. 1 shows the symmetry-preserving Hopf bifurcation curves in the parameter space \((\mu, \tau) \) for \(K = 1.05 \) for both cases: bifurcations with \(\text{Re}(\lambda') > 0 \) (black curves), and with \(\text{Re}(\lambda') < 0 \) (red curves).
Fig. 2. Coefficient \(a \) (Eq. (38)) computed for the Hopf bifurcation curves in \(\text{Fix}(S_0) \) for \(K = 1.05 \) (see Fig. 1). Figure (a): curves in plane \((\mu, a)\), figure (b): curves for \(a \) in the parameter space \([\mu, \tau]\).

Fig. 3. (a) Branch of periodic solutions emerging from point \(A = (\mu, \tau) = (0.15, 7.46197) \). (b) Periodic solution profile at \(\mu = 0.15, \tau = 7.5315, T = 12.0364 \) seg. (point \(\text{psol} \)). (c) Floquet multipliers for the periodic solution \(\text{psol} \).

These curves correspond to the equilibrium \(\phi^{-}(n) \) in Eq. (3), and each lobe correspond to a different value of \(n \in \mathbb{N} \). We choose three testing point for numerical simulation \(A = (\mu, \tau) = (0.15, 7.46), B = (0.3, 11) \), and \(C = (0.421, 7.10) \).

Fig. 2a shows the coefficient \(a \) computed using Eq. (38) in the parameter space \((\mu, \tau)\) for \(K = 1.05 \) related to the Hopf bifurcations curves shown in Fig. 1; the black curves correspond to stability of periodic orbits near Hopf bifurcations with \(\text{Re}(\lambda') > 0 \), as we can see also in Fig. 2b all these curves are under the plane \(a = 0 \), therefore, all these periodic solutions are stable; the red curves correspond to stability of periodic orbits near Hopf bifurcations with \(\text{Re}(\lambda') < 0 \), these periodic orbits are unstable for \(\mu < \mu_c(n) \), and stable for \(\mu > \mu_c \). Fig. 2a also shows points \(A, B, \) and \(C \); small amplitude periodic orbits are stable at points \(A \) and \(C \) whilst at point \(B \) they are unstable.

In order to confirm our results we computed branches of periodic solutions near the Hopf bifurcations points \(A, B, \) and \(C \) using DDE-BIFTOOL [25,26] along with the Floquet multipliers for a specific periodic solution chosen in the branch (Figs. 3–5).
Fig. 4. (a) Branch of periodic solutions emerging from point $B = (\mu, \tau) = (0.3, 11.001518)$. (b) Periodic solution profile at $\mu = 0.3$, $\tau = 11.3744$, $T = 12.8506$ seg. (point $psol$). (c) Floquet multipliers for the periodic solution $psol$.

Fig. 5. (a) Branch of periodic solutions emerging from point $C = (\mu, \tau) = (0.421, 7.101329)$. (b) Periodic solution profile at $\mu = 0.421$, $\tau = 7.00$, $T = 8.8704$ seg. (point $psol$). (c) Floquet multipliers for the periodic solution $psol$.

Fig. 3. (a) shows a branch of periodic solutions with small amplitude emerging from the Hopf bifurcation point $A = (\mu, \tau) = (0.15, 7.46)$; Fig. 3-(b) shows the periodic solution profile $psol$ at $\tau = 7.5315$; Fig. 3-(c) shows the Floquet multipliers related to $psol$. It is clear that this periodic solution is stable since there is no Floquet multiplier outside the unity circle.
For the point $B = (\mu, \tau) = (0.3, 11)$, the branch of periodic solutions is shown in Fig. 4-(a). Fig. 4-(b) shows the profile of the periodic solution $psol$ chosen at $\tau = 11.3744$. This solution is unstable because there is a Floquet multiplier outside the unity circle, see Fig. 4-(c).

Finally, the branch of periodic solutions near the Hopf bifurcation point $C = (\mu, \tau) = (0.421, 7.10)$ is shown in Fig. 5-(a); the periodic solution chosen in the branch is at $\tau = 7.00$, its profile is shown in Fig. 5-(b); all the Floquet multipliers shown in Fig. 5-(c) are within the unity circle, therefore the solution is stable.

5. Conclusions

The reduction of the infinite-dimensional space onto the center manifold in normal form was applied to the fixed point space for the full phase model in order to analyze the stability of small-amplitude periodic orbits near simple Hopf bifurcations. For the case $\text{Re}\{\lambda^*\} > 0$ we found that stable ($\alpha < 0$) periodic orbit can emerge, and for the case $\text{Re}\{\lambda^*\} < 0$ unstable ($\alpha > 0$) periodic orbits can emerge for $\mu < \mu_c(n)$, and stable ($\alpha < 0$) periodic orbits for $\mu > \mu_c(n)$. The numerics show that our analytical results are correct.

Although we computed the coefficient α for a specific value of K the procedure shown is valid for all the parameter space where simple Hopf bifurcations emerge.

Finally, it is important to spotlight some points for further research: First, analyze the nature of the solutions at the special point $\mu = \mu_c(n)$ at which the coefficient α changes sign. Second, analyze the case $K = 1$, degenerate Hopf bifurcations codimension 2 may appear (pure imaginary and zero eigenvalue), where fold-Hopf and Bautin bifurcations (generalized Hopf bifurcations) could emerge; and third, the stability of the symmetry-breaking degenerate Hopf bifurcations which have multiplicity $N - 1$.

Acknowledgment

We would like to thank the Escola Politécnica da Universidade de São Paulo and FAPESP for their support.

References