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This paper presents an investigation about the dynamic response of a three-degree of freedom airfoil with 
hardening nonlinearity in the pitching stiffness and free-play nonlinearity in the control surface stiffness 
using bifurcation and HOS analysis. An experimental apparatus was conceived to test an airfoil aeroelastic 
responses when nonlinearities of varying intensities are present. A numerical model is also used to 
simulate at the same conditions of the experimental tests. It is based on the classical theory for the linear 
unsteady aerodynamics with corrections for arbitrary motions coupled to a three-degree of freedom 
typical aeroelastic section, where the hardening effect is modeled by means of rational polynomial 
function, while the free-play is represented by hyperbolic functions combination. Aeroelastic responses 
are analyzed from numerical and experimental results. Hopf bifurcations are identified and diagrams of 
amplitudes versus airspeeds are used to investigate the conditions in which the system is supercritical or 
subcritical. Higher-order spectra analysis is also used to check on frequency couplings, thereby allowing 
to identify quadratic- and cubic-like nonlinear behavior. The study of the phenomena associated with the 
hardening, free-play and their intensity variation effects may be useful in the mitigation of undesired 
responses of aeroelastic systems.

© 2016 Elsevier Masson SAS. All rights reserved.
1. Introduction

The aeroelasticity is a multidisciplinary field of engineering sci-
ence that deals with the mutual interaction between structural dy-
namics and unsteady aerodynamic loading [1]. Aeroelastic systems 
may behave nonlinearly, therefore exhibiting phenomena such as 
bifurcations, limit cycle oscillations (LCO), and chaos [2,3]. The 
source of the nonlinearities can be in structural dynamics and/or 
the unsteady aerodynamic loading and may be difficult to predict. 
Nonlinear unsteady aerodynamic loading can be the result of sep-
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arated flows (viscous effects) or shock excursion (compressibility 
effects). Structural nonlinearities can arise from geometrical of ma-
terial related effect, and classified as concentrated or distributed. 
Concentrated structural nonlinear effects can be incorporated into 
numerical models through the elastic restoring forces or moments 
representations, being the most common form of nonlinear inclu-
sion to aeroelastic models. Typical concentrated structural nonlin-
ear representations can be given by polynomial fitting functions, 
nonlinear damping effects, free-play, and hysteresis.

The literature in this field is quite vast, demonstrating that 
nonlinear aeroelastic problems in the aviation are of increasing 
importance in aircraft design. For example, the limit cycle os-
cillations have caused persistent aeroelastic problems in aircraft, 
such as the F-16, where the existence of hardening nonlinearity in 
wings’ pitching moment stiffness was observed [4,5]. O’Neil and 
Strganac [6] have developed an experimental test that provides 
direct measurements from the typical aeroelastic section with cu-
bic nonlinearity in the pitch and plunge motion. They examined 
the sensitivity of the response to system parameters and provided 
important conclusions on the effect of smooth nonlinear effect 
in aeroelastic response of airfoils. Recently, Vasconcellos et al. [7]
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Fig. 1. Hopf bifurcation behavior.

have shown that the hyperbolic tangent function combination ap-
proach for modeling discontinuous nonlinearities is appropriate for 
detecting different nonlinear behaviors, including the experimen-
tally observed LCO, chaos and transitions.

It is known that the system behavior is directly related to the 
nonlinearities involved, for example, system under free-play shows 
subcritical behavior [8–11]. The Hopf bifurcation appears when a 
stable system becomes unstable at certain parameter variation and 
the attractor becomes a LCO. There are two types of Hopf bifurca-
tion: the supercritical Hopf bifurcation, where stable LCO appears 
after an unstable critical location, and subcritical Hopf bifurcation, 
where an unstable LCO is created among a stable critical location. 
Fig. 1 illustrates the possible behavior of the Hopf bifurcations. Su-
percritical bifurcations are sometimes called safe because the am-
plitude of the limit cycles grows up gradually as the parameter is 
increased after the bifurcation point [3]. In contrast, the subcritical 
bifurcations are called dangerous because in a subcritical system it 
is also possible that large-amplitude limit cycles suddenly appear 
as the parameter is varied. Typically subcritical behavior causes 
bistable behavior, i.e, there are different solutions when the flow 
velocity is increased and decreased near the bifurcation point.

Bifurcation analysis can be used to determine quantitative and 
qualitative changes in the system features, such as the number 
and type of solutions, under the variation of one or more param-
eters [12]. An example of this approach for a nonlinear aeroelastic 
system is given in Ref. [10] that analyzed changes in typical aeroe-
lastic section behavior characterized by a cubic structural nonlin-
earity. It has been shown that the stability of the system is deter-
mined by the influence of the different nonlinear couplings.

In this paper, an investigation on the combined influence of 
hardening and free-play nonlinearities on the bifurcation response 
of a typical nonlinear section is presented. Numerical and ex-
perimental results are presented, thereby allowing comparisons 
and conclusions of the nonlinear features. Hardening nonlineari-
ties with varying intensities in airfoil pitching motion and free-play 
(different gap values) in the control surface hinge were considered. 
Numerical model includes classical linear unsteady aerodynamics, 
while the equations of motion incorporates nonlinearities in the 
respective stiffness values. Traditional time integration method is 
used in aeroelastic simulations. The experimental apparatus was 
designed to allow two-dimensional typical section behavior in 
plunge, pitch and control surface motions, and the tests were per-
formed using a open-circuit, blower-type low-speed wind tunnel. 
Bifurcation analysis comparing both numerical and experimental 
results was carried out. Higher-order spectral (HOS) analysis was 
performed to investigate the quadratic and cubic forms of nonlin-
ear couplings due to the combined hardening and free-play effects.

The paper content includes a description of the mathematical 
model and the structural nonlinear representations, followed by 
the theoretical aspects of higher-order spectra analysis. A descrip-
tion of the experimental apparatus and test set-up is presented, 
where the main parameters used for numerical simulations are 
also presented. Then, bifurcation analysis results and higher-order 
spectra investigation for couplings are discussed and concluding 
remarks are presented.
Fig. 2. Typical aeroelastic section representation.

2. Mathematical model

2.1. Aeroelastic equations

The mathematical model for typical section with three-degree 
of freedom (cf. Fig. 2) is derived admitting the basic principles 
given in Refs. [1,13], and the formulation is detailed in Ref. [7]. 
The resulting set of aeroelastic equations is,
⎡
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where b is the semi-chord of the airfoil, U is the airspeed, h(t), 
α(t), and β(t) are the plunge (positive downwards), pitch and con-
trol surface (trailing edge movable tab) displacements, respectively, 
ξ(t) = h(t)

b is the non-dimensional plunge displacement, a is the 
distance in x-direction of the elastic axis position from the ref-
erence system origin in proportion of the airfoil semi-chord, c is 
the distance in x-direction of the control surface hinge position 
from the reference system origin also proportional to the airfoil 
semi-chord, xα and xβ are the dimensionless distances from elas-
tic axis respectively to the airfoil and the control surface centers of 
gravity (CG), rα and rβ are the airfoil (with respect to the elastic 
axis) and control surface (with respect to the hinge line) radius of 
gyration, respectively, kh , kα , and kβ are the plunge, pitch, and con-
trol surface stiffness values, respectively, mW is the wing (airfoil) 
weight, mT is the total weight of the aeroelastic device consid-
ering all moving masses not immersed in the flowfield, di, j are 
added structural damping factors with respect to each airfoil mo-
tion (Rayleigh approach), L(t) is the unsteady lift force, Mα(t) and 
Mβ(t) are the unsteady pitch and hinge aerodynamic moments, 
respectively, F (α) and F (β) are functions representing the nonlin-
earities related to pitch and control surface motions, respectively.
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Fig. 3. Representations for hardening in pitching (rational polynomial approximation) and free-play in control surface deflections (hyperbolic tangent functions combination).
Unsteady aerodynamic loads modeling is based on the gener-
alized Theodorsen formulation [13], in which the convolution of 
Wagner function is used to expand the Theodorsen function (har-
monic motions) in order to account for arbitrary airfoil motions. 
Details on this approach can be obtained from Ref. [7,11], as well 
as the final aeroelastic set of equations given in the state space 
form, that is,

ẋ(t) = A(x(t)) x(t) , (2)

where, A(x(t)) is the state matrix, x(t) = [ ξ(t) α(t) β(t) ξ̇ (t)
α̇(t) β̇(t) xa(t) ẋa(t) ]T is the state vector, and xa(t) is an added 
aerodynamic state.

2.2. Nonlinear representation

Functions F (α) and F (β) in Eq. (1) are used to feed that aeroe-
lastic set with the respective terms to account for nonlinearities 
in pitch and control surface responses. Here the hardening and 
free-play effects are combined for those motions (cf. Fig. 3), being: 
(i) for pitching motion only hardening nonlinearity is considered, 
while, (ii) free-play is only affecting the control surface motion.

The hardening nonlinearity function in pitching (F (α)) has 
been obtained using the rational polynomials approximation (RP) 
[14] from the experimentally measured restoring pitching moment 
curve (cf. Fig. 3(a)). The RP approximation approach leads to the 
following ratio of polynomials form,

F (α) = a3α
3 + a2α

2 + a1α + a0

b2α2 + b1α + b0
, (3)

where a0 to a3, and b0 to b2 are real-valued coefficients obtained 
numerically from measured experimental data.

For the free-play nonlinearity representation in the restoring 
torque of control surface, hyperbolic tangent functions combina-
tion is used as proposed and validated by Vasconcellos et al. [11]. 
This function is given by:

F (β) = 1

2
[1 − tanh(ε(β + δ))] (β + δ)

+ 1

2
[1 + tanh(ε(β − δ))] (β − δ), (4)

where δ denotes the lower and the upper freeplay boundaries, and 
ε is a variable which affects the smoothness of the function, where 
the higher is ε the free-play discontinuity is better represented
(cf. Fig. 3(b)).
Fig. 4. Time series divided into Sn segments.

2.3. Higher-order spectra

Higher-order spectra (HOS) moments are Fourier transforms of 
higher-order correlation functions that can be used to obtain more 
information about nonlinear coupling. This section presents the 
basic background of HOS analysis based on Refs. [12,15–17]. The 
Fourier or frequency spectra is an important tool that can help to 
identify and differentiate features of nonlinear systems related to 
stationary signals such as limit cycle oscillations and chaotic mo-
tions. The Fourier transform of a signal x(t) is defined as

X( f ) =
∞∫

−∞
x(t)e−2iπ f tdt , (5)

where f denotes the frequency and X( f ) is a complex quantity.
The power spectrum (Sxx) for a discretely sampled data is ob-

tained from

Sxx( f ) = lim
T →∞

1

T
E[X( f ) X∗( f )] , (6)

where X( f ) is the Fourier transform (amplitude spectrum), E[·]
denotes the expected value calculated by the arithmetic average 
estimator, and the superscript (∗) denotes complex conjugate. (See 
Fig. 4.)

The auto-bispectrum and auto-trispectrum are similarly obtained 
from

Sxxx( f1, f2) = lim
T →∞(

1

T
)E[X( f1 + f2) X∗( f1) X∗( f2)] , (7)

Sxxxx( f1, f2, f3)

= lim (
1

)E[X( f1 + f2 + f3) X∗( f1) X∗( f2) X∗( f3)] . (8)

T →∞ T
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Fig. 5. Experimental apparatus.
In nonlinear systems, frequency components can interact to 
form new components at their sum or difference frequency [15]. 
When interacting the phase of the new component is related to the 
phases of the primary interacting modes, therefore by inspecting 
the phase relation it is possible to identify any nonlinear coupling.

The basis of HOS analysis in detecting nonlinear couplings 
among frequency modes relies on the fact that quadratic inter-
action of two frequency components ( f1 and f2) and their sum 
components ( f1 + f2) leads to large values for auto-bispectrum. 
Similarly, the cubic interaction of three frequency components ( f1, 
f2, and f3) yields a large value for the auto-trispectrum.

The auto-bispectrum and auto-trispectrum are usually normal-
ized with respect to the amplitudes of the individual spectral com-
ponents to yield the auto-bicoherence and auto-tricoherence. There-
fore, based on the Schwartz inequality, are defined respectively as,

b2
xxx( f1, f2) = |Sxxx( f1, f2)|2

E[|XT ( f1 + f2)|2]E[|XT ( f1) XT ( f2)|2] , (9)

t2
xxxx( f1, f2, f3)

= |Sxxxx( f1, f2, f3)|2
E[|XT ( f1 + f2 + f3)|2]E[|XT ( f1) XT ( f2) XT ( f3)|2] ,

(10)

where 0 < b2
xxx( f1, f2) < 1 and 0 < t2

xxxx( f1, f2, f3) < 1.
If b2

xxx( f1, f2) = 1, then the pair of frequency components at 
f1 and f2, as well as their sum f1 + f2, are quadratically cou-
pled. If b2

xxx( f1, f2) = 0, frequency components are not coupled, 
and partially coupled if 0 < b2

xxx( f1, f2) < 1. A two dimensional 
plot of cut-off planes from auto-bicoherence can reveal regions 
in which the frequencies are coupled. Similarly, a unit value of 
auto-tricoherence indicates perfect cubic phase coupling, zero val-
ues indicates no coupling, and values between zero and one indi-
cates partial coupling. In this case, to observe the coupling levels 
it is necessary to plot a three dimensional surface representing a 
tridimensional cut-off region. Table 1 shows a summary on HOS 
analysis and possible nonlinear interactions.

3. Experimental set-up and parameters

The aeroelastic tests were performed with a rigid wing (span 
of 0.8 m) fixed to an elastic suspension that allows analogy to a 
three-degree of freedom typical airfoil section (plunge, pitch, and 
control surface). Fig. 5 depicts the experimental apparatus pre-
pared to be tested in the open-section blower-type wind tunnel 
(500 × 500 mm).
Table 1
Higher order spectral analysis technique.

Nonlinear Interaction

Auto-bicoherence b2
xxx( f1, f2) = 1 Quadratic phase coupling

0 < b2
xxx( f1, f2) < 1 Partial quadratic coupling

b2
xxx( f1, f2) = 0 No quadratic coupling

Auto-tricoherence t2
xxxx( f1, f2, f3) = 1 Cubic phase coupling

0 < t2
xxxx( f1, f2, f3) < 1 Partial cubic coupling

t2
xxxx( f1, f2, f3) = 0 No cubic coupling

Fig. 6 shows a sketch of the aeroelastic system. It is observed 
that the plunge motion is restrained by four elastic steel beams 
(two on the top and two on the bottom). Those beams also are 
responsible for connecting the model to a support frame appropri-
ately located in front of the wind tunnel flow. The pitch stiffness 
is set by the two springs connected by a support device and each 
one in the opposite side of a nonlinear cam. This assembly is de-
picted in the photos presented in Fig. 7. The nonlinear cam was 
designed to allow for varying the intensity of the hardening non-
linearity. Control surface stiffness is provided by a piano wire and 
free-play adjustment gear, as depicted in Fig. 8. The measurements 
of the three-degree of freedom are done using encoders (angular 
and linear ones). The dSPACE® DS1104 R&D Controller Board sys-
tem together with Simulink® were used in the signal acquisition 
and processing.

In the numerical simulations, uncoupled frequencies were used. 
The uncoupled plunge, pitch, and control surface frequencies were 
assessed by individually restraining two motions and performing 
the modal test for the other motion. A summary of the aeroelastic 
model parameters assumed in the numerical simulation is given in 
Table 2.

Structural damping is an important quantity and impacts the 
system’s response. Here, the damping matrix in Eq. (1) is ac-
counted for by using the Rayleigh approach,

di, j = a0mi, j + a1ki, j , (11)

where mi, j and ki, j are the mass and stiffness matrices elements 
(cf. Eq. (1)) before nonlinear deformations occur, respectively, and 
factors a0 and a1 are the so-called Rayleigh factors.

The Rayleigh factors can be evaluated by the solution of a pair 
of simultaneous equations if the damping ratios ζm and ζn associ-
ated with two specific frequencies (modes) ωm and ωn are known, 
that is,
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Fig. 6. Sketch of the experimental model.

Fig. 7. Details of the nonlinear pitch cam assemble.
Fig. 8. Details of the control surface free-play adjustment device.
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The damping ratios in Table 2 were used to evaluate di, j with 
Eq. (11). Here, the following ratios were admitted: ζm = ζα , ζn =
ζβ , ωm = ωα , and ωn = ωβ . Aeroelastic experiments and numerical 
simulations were performed considering hardening nonlinearity in 
pitching and free-play nonlinearity in the control surface hinge. 
Combinations of the nonlinearities were admitted and based in 
three different intensities of hardening and two sizes for the free-
play gaps.

The three intensities of the hardening nonlinearity in pitching 
were obtained by adjusting the pitch spring sizes using the respec-
tive support as illustrated in Figs. 6 and 7. The hardening effects 
vary from large, medium, and small increasing in restoring pitching 
moment, denoted as hardening 3, 2, and 1, respectively. The restor-
ing moment curve with respect to the pitch angle was assessed 
and the rational polynomial approximation was used to fit these 
curves. Fig. 9 presents both experimentally acquired restoring mo-
ment curves for the different hardening, as well as the respective 
polynomial fittings. Table 3 presents the respective RP approxima-
tion coefficients for each hardening intensity.
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Table 2
Experimental values used for the numerical model.

Variables Description Values

b Semi-chord (m) 0.125
a Distance from semi-chord to elastic axis (nondimensional) −0.5
c Hinge line location measured from mid-chord (nondimensional) 0.5
ρ Air density (kg/m3) 1.078
mW Wing mass (kg) 1.5
mT Total mass (kg) 4.3723
ωh Decoupled plunge natural frequency (rad/s) 27.3268
ωα Decoupled pitch natural frequency (rad/s) 12.11
ωβ Decoupled control surface natural frequency (rad/s) 50.2761
xα Nondimensional distance between elastic axis and CG of wing 0.66
xβ Nondimensional distance between hinge line and CG of flap 0.0028
rα Nondimensional rotational inertia term about elastic axis 0.7303
rβ Nondimensional rotational inertia term about hinge line 0.0742
μ Nondimensional mass ratio 28.3467
ζh Plunge modal damping ratio 0.1275
ζα Pitch modal damping ratio 0.3697
ζβ Flap modal damping ratio 0.0106
U f Linear flutter velocity (Numeric) (m/s) 11.465
U∗

f Critical flutter velocity (Experiment) (m/s) 12.0 ≤ U∗
f ≤ 12.20

Table 3
Rational polynomial coefficients for three different intensities of hardening nonlinearities.

a3 a2 a1 a0 b2 b1 b0

Hardening 3 7.281 3.01 × 10−2 1.33 × 10−2 −1.44 × 10−4 1.0 6.39 × 10−3 1.91 × 10−2

Hardening 2 6.313 −4.58 × 10−2 3.64 × 10−2 −2.48 × 10−4 1.0 −1.06 × 10−2 2.54 × 10−2

Hardening 1 6.403 −4.76 × 10−3 1.26 × 10−1 −3.03 × 10−4 1.0 2.61 × 10−7 6.37 × 10−2
Fig. 9. Restoring pitch moment subjected to hardening effects of three intensities.

As far as free-play nonlinearity is concerned, two gap values 
were considered, that is, 2.0 and 4.0 degrees, and referred from 
now on as 2δ = 2◦ and 2δ = 4◦ , respectively.

4. Hopf bifurcation analysis

Hopf bifurcation is a typical phenomenon in nonlinear aeroelas-
tic systems, where limit cycle oscillations (LCOs) are observed at a 
particular airflow velocity. The bifurcation onset can be either ob-
served experimentally or simulated numerically. Here, the numer-
ically predicted linear flutter velocity is taken as the reference to 
compare the measured and numerically predicted limit cycle oscil-
lations. To assess the linear flutter condition, the eigenvalues of the 
state matrix in Eq. (2) are inspected against the air velocity. The 
first eigenvalue presenting positive real part determines the critical 
flutter velocity. The numerical flutter velocity, U f , is 11.465 m/s 
and the experimental flutter velocity, U∗
f , was approximated to 

be in the interval 12.0 < U∗
f < 12.2 m/s, thereby representing an 

error in between 4.45 to 6.0%. As such, we compare LCO charac-
teristics at normalized velocities, which are obtained by dividing 
the numerical velocities by U f = 11.465 m/s and the experimen-
tal ones by U∗

f = 12.10 m/s. The normalized flutter velocity is then 
referred as the critical velocity, Uc .

4.1. Influence of hardening nonlinearity

Fig. 10 depicts the amplitudes of the limit cycle oscillations 
for each of the three-degree of freedom from the numerical sim-
ulations and experimental results for varying levels of nonlinear 
hardening in the pitch motion only. No free-play effect is included 
to this analysis. Three different hardening intensities were imposed 
as previously presented in Fig. 9 and Table 3.

The results reveal a subcritical behavior, where the system ex-
hibits limit cycle oscillations at airspeeds that are smaller than the 
critical flutter speed. In the numerical results, limit cycle oscilla-
tions are observed at U = 0.945Uc for all hardening curves. Near 
the onset of oscillations, the plunge amplitudes are approximately 
0.4, 0.45, and 0.5 cm for the numeric hardening 3, 2, and 1, respec-
tively, indicating an increase in the plunge oscillation amplitude 
as the hardening nonlinearity is decreased. The amplitude of pitch 
and surface control motions for the bifurcation onset are 3.2◦ , 3.6◦ , 
3.9◦ , and 0.6◦ , 0.68◦ , are 0.76◦ for the hardening 3, 2 and 1, re-
spectively. The amplitudes of these motions are also larger at the 
smaller nonlinear hardening effects. In the experimental measure-
ments, the bifurcation onset is close to 0.97Uc , since the accuracy 
of the tunnel does not allow capturing the precise instability onset 
point. Similar variations in the amplitudes of all motions are noted 
as the level of hardening nonlinearity is enhanced.

Fig. 11 shows comparisons of the measured and simulated time 
series and calculated power spectra for the hardening 3 case at 
U = 1.18Uc . The plots show good agreement between the experi-
mental and numerical results for all degrees of freedom (plunge, 
pitch, and control surface deflection). From power spectra, it is 
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Fig. 10. Bifurcation diagrams for numerical and experimental results for hardening nonlinearities at different velocities.
observed that the experimental and numerical results yield the 
fundamental frequencies �exp = 2.87 Hz and �num = 2.93 Hz for 
the oscillations. It is also possible to observe that the numerical 
model captures both even and odd (2�, 3�, 4�, 5�, . . .) super-
harmonics that result from the hardening nonlinearity influence 
and some asymmetry in the pitch stiffness.

In general, the numerical model is validated, showing good 
agreement, as far the amplitude and the frequency of the oscil-
lations of all degrees of freedom under different free stream veloc-
ities.

4.2. Influence of free-play nonlinearity

Fig. 12 depicts the aeroelastic system oscillations amplitudes of 
each d.o.f. for the numerical simulations and experimental results 
with combined hardening and free-play nonlinearities. The harden-
ing 3 case is considered and two different free-play sizes 2δ = 2◦
and 2δ = 4◦ were assumed in these experiments and simulations. 
Subcritical bifurcations were observed in all cases. Although the 
numerical simulations show the effect of free-play nonlinearity 
increasing the unstable region, one could make the following ob-
servations. First, it is clear that increasing the gap size results 
in a decrease in the onset of LCO. This can best be observed in 
Fig. 12(c). Furthermore, the increase in gap increases the oscilla-
tion amplitudes of the control surface significantly. On the other 
hand, its effect on the amplitudes of the pitch and plunge motion 
are much smaller. The numerical simulations indicate the need for 
adjustments or, perhaps, adding extra effects on free-play model-
ing.

5. HOS analysis

To understand how the nonlinearities influence the aeroelastic 
system and to identify the sources of harmonics, HOS analysis was 
applied to the experimental results. The auto-spectrum was used 
to identify the frequency content of the system, while the auto-
bispectrum was used to detect quadratic-like nonlinear behavior. 
Finally, the auto-trispectrum was used to assess the cubic-like non-
linear behavior, which is expected since hardening effect was in-
duced to the device through its nonlinear pitch cam (cf. Fig. 7).

For the particular case of the apparatus to introduce harden-
ing effect in the experiment, it is reasonable to conclude that it is 
unlikely to build a experimental device without symmetries. The 
auto-bicoherence confirms the phase coupling between the funda-
mental frequency and their even superharmonic frequencies, there-
fore used to verify typical quadratic-like nonlinear effect. Fig. 13
shows the auto-bicoherence contour plot and the power spectrum 
of the pitch motion experimental signals for the system under 
flutter velocity condition (1.0Uc ). These results consider the sys-
tem under the hardening 3 nonlinear curve, which presents some 
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Fig. 11. Experimental and numerical time histories with respective power spectra of plunge, pitch and control surface motions (hardening 3 and airspeed 1.18Uc ).
asymmetry. It is possible to see in the bicoherence contour plot 
the phase coupling between the fundamental harmonic with it-
self to generate the first (2.73 Hz + 2.73 Hz = 5.46 Hz) and other 
superharmonics. This system under this velocity also presents the 
subharmonic frequency (0.7 Hz as in Fig. 13(b)), which is coupled 
with the higher frequencies. The source of the quadratic coupling 
could be the admittance of a static position for the wing section 
or a small deformation in the pitch direction.
Fig. 14 shows the auto-tricoherence (contour level is set in 0.8) 
contour plot and the respective projections for the pitch mo-
tion experimental results, when the flow velocity is 1.0Uc and 
1.08Uc , respectively. The nonlinear cubic coupling between the 
fundamental frequency with itself generating the odd superhar-
monics, which was expected since the system is characterized by 
a hardening nonlinearity in the pitch. It is observed the interac-
tion between the high frequencies increases as the airspeeds also 
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Fig. 12. Bifurcation diagrams for numerical and experimental results for free-play nonlinearities combined with hardening 3 nonlinearity in pitching at different velocities.

Fig. 13. Contour plot of the (a) autobicoherence (cut-off of 0.8) and (b) power spectrum density for the pitch motion when 1.0Uc .
increase (cf. Fig. 14). Moreover, the subharmonic frequency (0.7 Hz 
in the f2 × f3 projection) disappears. This happens because of the 
strong energy transfer between the coupled frequencies for high 
airflow velocities, which increases the effect of the hardening non-
linearity.
6. Concluding remarks

This paper has presented a study on the influence of structural 
nonlinearities in a three-degree of freedom typical aeroelastic sec-
tion through inspection of bifurcation diagrams and HOS analysis. 



D.A. Pereira et al. / Aerospace Science and Technology 50 (2016) 44–54 53
Fig. 14. Auto-tricoherence surface contours and respective projections for the pitching motion in two airspeeds.
The numerical simulations and experimental results have focused 
on examining the combined effects of hardening in pitching mo-
tion and free-play in the control surface hinge on the system’s 
response. As observed, the hardening nonlinearity is responsible 
for the appearance and amplitude level of LCOs. The free-play leads 
to the appearance of subcritical behavior and increases the region 
of dangerous LCO. In addition to that, it was observed that the 
linear parameters can play a role in determining the type of bi-
furcation instability. The HOS analysis confirmed the presence of 
quadratic and cubic nonlinearities and confirms the complexity on 
the system’s response. Further work is planned to enhance the un-
derstanding of how different related nonlinearities can avoid the 
subcritical behavior through a proper parameter set.
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