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Abstract This paper updates the SCVI (Socio-Climatic Vulnerability Index) maps developed
by Torres et al. (2012) for Brazil, by using the new Coupled Model Intercomparison Project
Phase 5 (CMIP5) projections and more recent 2010 social indicators data. The updated
maps differ significantly from their earlier versions in two main ways. First, they show
that heavily populated metropolitan areas – namely Belo Horizonte, Brasília, Salvador,
Manaus, Rio de Janeiro and São Paulo – and a large swath of land across the states of
São Paulo, Minas Gerais and Bahia now have the highest SCVI values, that is, their
populations are the most vulnerable to climate change in the country. Second, SCVI
values for Northeast Brazil are considerably lower compared to the previous index
version. An analysis of the causes of such difference reveals that changes in climate
projections between CMIP3 and CMIP5 are responsible for most of the change between
the different SCVI values and spatial distribution, while changes in social indicators have
less influence, despite recent countrywide improvements in social indicators as a result of
aggressive anti-poverty programs. These results raise the hypothesis that social reform
alone may not be enough to decrease people’s vulnerability to future climatic changes.
Whereas the coarse spatial resolution and relatively simplistic formulation of the SCVI may
limit how useful these maps are at informing decision-making at the local level, they can
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provide a valuable input for large-scale policies on climate change adaptation such as those of
the Brazilian National Policy on Climate Change Adaptation.

1 Introduction

Current climatic projections indicate that considerable changes may occur in the climate of
Brazil during the twenty-first century (Torres and Marengo 2014; Magrin et al. 2014).
Considering that in Brazil the production of food, commodities and energy is highly
dependent on climate and that a considerable part of the population is in a socially vulnerable
situation (i.e. with overall low human development levels and/or living in risky areas), it is
expected that climate change will likely have strong negative social impacts (Magrin et al.
2014). Examples of climate-driven high social and economic costs are evident in the current
severe four-year drought that has negatively affected water availability in large cities in
Southeast Brazil (Coutinho et al. 2015) and caused relentless suffering in Northeast Brazil
(Lindoso et al. 2014).

While climate change mitigation has been on the agenda of the Brazilian govern-
ment for several years (IPEA 2011), effective long term adaptation planning has
lagged. In this context, the development of decision support efforts to map priority
areas for action or for the development of long-term adaptation policies is of crucial
importance in a country of continental dimensions such as Brazil. This is particularly
relevant in the context of rapid social change as a result of anti-poverty programs
implemented in the country in the past 15 years. These programs may influence the
level of vulnerability of households and communities to climate change, particularly in regions
of high climate exposure such as large metropolitan areas in the Southeast and parts of the
Brazilian Amazon and semi-arid Northeast Brazil (Eakin et al. 2014; Di Giulio and
Vasconcellos 2014).

On the one hand vulnerability indices and indicators may be helpful because they bring
together and summarize a large array of information that compares relative dimensions of risk
across large spatial areas. They may also help public officials understand the relative impor-
tance of different social policies in modulating climate-driven risk (Eakin et al. 2014). By
informing how effective policies are at decreasing socio-climatic vulnerability over time, such
indicators can facilitate incremental refinements of strategies that seek to improve adaptive
capacity and resilience in highly vulnerable areas (Ranger 2013; Walker et al. 2013). On the
other hand, the development of such indicators is fraught with challenges that limit their
usability. Frequently identified problems with indicators include lack of robust metrics, cross
scale aggregation and standardization; lack of data availability and access; and compounded
uncertainty (Eakin and Luers 2006; Vincent 2007; Barnett et al. 2008; Hinkel 2011; Preston et
al. 2011; Ranger and Surminski 2013; Ranger 2013; Sherbinin 2014). The limitations of
indicators are particularly acute where data and resources are not adequate to develop the best
measurements recommended by scientists, especially in less developed regions (Ranger and
Surminski 2013).

Yet, the proliferation of vulnerability indicators and hotspots mapping around the world
(Barnett et al. 2008; Sherbinin 2014) suggests that in spite of these recognized challenges, they
may hold promise in supporting decision-making. In this article, we argue that it is precisely in
their ability to synthetize complex information in an accessible format that the value of
indicators is to be found, if not as precise tools for specific decision-making such as identifying
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vulnerable groups or monitoring adaptation measures (for extensive reviews of the indicators
literature see Hinkel 2011 and Sherbinin 2014), then perhaps as support for broader scale
decision-making such as priority mapping and long term risk communication (Sherbinin 2014)
and understanding relative drivers/importance of vulnerabilities and capacities (Eakin et al. 2014).
For example, by providing information across time and space about changing vulnerabilities,
such maps can support decision-making regarding where investment in human development at
the household level (i.e. education, health and income) can make a difference relative to
other areas where specific large scale risk management interventions at the institutional level
(e.g. public works/infrastructure, plannedmigration) may be necessary to decrease vulnerability
in the long run (Eakin et al. 2014).

In this study, we seek to contribute to this discussion by updating the SCVI (Socio-Climatic
Vulnerability Index) map developed by Torres et al. (2012) for Brazil, exploring the differ-
ences between the SCVI map published by Torres et al. (hereafter, SCVI-1) and the updated
SCVImap (hereafter SCVI-2), and discussing potential policy implications of these differences.
We use climatic data from the Coupled Model Intercomparison Project Phase 5 (CMIP5)
and explore a number of more recent social indicators (2010) to elaborate and analyze the
new SCVI map (SCVI-2). In the next sections, we describe the creation of the SCVI maps
and discuss their potential implications for decision-making. In section 2, we describe the
method and data used for developing the new SCVI. In section 3, we carry out a
sensitivity analysis of our indices across the two SCVI maps (SCVI-1 and SCVI-2) and
compare them. We conclude with a brief discussion of our results and implications for policy
and decision-making.

2 Creating a new suite of SCVI maps for Brazil

To understand overall vulnerability at the country level we follow IPCC’s general definition
of vulnerability that combines exposure, sensitivity and adaptive capacity (IPCC 2014). To
account for exposure we use the Regional Climate Change Index (RCCI) developed by
Giorgi (2006) and applied to South America by Torres and Marengo (2014). The RCCI is a
qualitative index that summarizes a large amount of data from climate projections in a clear
and reliable way and on a relative basis. It highlights regions where climate change
(changes in mean and inter-annual variability of surface temperature and precipitation) will
be more pronounced in a given territorial domain. To account for sensitivity and adaptive
capacity, we use socio-economic indicators often found in the literature (Sherbinin 2014)
and based on the 2010 Brazilian census, namely population density and human development
index.

In 2012, the SCVIwas built by coupling the RCCI (using climate projections from CMIP3 –
Coupled Model Inter-comparison Project Phase 3) with a high-resolution map of population
density (Goldewijk et al. 2010) and Brazil’s human development index at the municipality
level (MHDI) based on the 2000 census (Torres et al. 2012). The SCVI-1 shows that although
the Center-West and North regions of Brazil presented the most severe climate change
projections, Northeast Brazil (due to low MHDI values) and major Brazilian cities (due to
high population density) showed the highest levels of socioeconomic vulnerability. Since then,
both a new set of global climate projections from CMIP5 – which were used in the IPCC Fifth
Assessment Report (AR5) – and more recent data on MHDI and Brazil’s population density
have become available.
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2.1 SCVI

The SCVI is an index that aggregates information on the intensity of climate change with social
factors that may influence the vulnerability of the population in a given region (Torres et al.
2012) and is defined as:

SCVI j ¼ CI j*

ffiffiffiffiffiffiffiffiffiffiffiffiffi
∏
n

i¼1
Fi j

n

s

where CIj represents any climate change index available for the study area (in our case, the
RCCI described in the next section), whereas the right hand term represents the geometric
mean of i normalized social indicators (Fi) representing both sensitivity (population density)
and adaptive capacity (MHDI). The SCVI is calculated for each grid point j of the studied
domain. As in Torres et al. (2012), the social indicators used in this update are population
density (Goldewijk et al. 2010) and the MHDI (PNUD et al. 2013). While in Torres et al.
(2012), the social indicators were based on the 2000 data, this update uses 2010 census data.

The methodological change that was carried out in the calculation of MHDI from census
data between the years 2000 and 2010 (see PNUD et al. 2013) would restrict a direct
comparison between the two SCVI versions (see section 3 below). Therefore, we recalculated
the SCVI-1 with climate data from CMIP3, the population density for the year 2000 and the
MHDI-2000 calculated by the same method used for the MHDI-2010. Population density has
a spatial resolution of five arc-minutes, while MHDI is presented at the municipality level. The
formulation of SCVI implies that the socio-climatic vulnerability will be more pronounced in
locations where the population density is high and the MHDI is low, in agreement with Torres
et al. (2012). As such, in the SCVI population density represents both the geographic location
and people’s sensitivity in a given location, whereas the inverse of MHDI represents a lack of
adaptive capacity in a population. We acknowledge the limitations of using HDI as a measure
of exposure at the spatial resolution employed here, but it is apparently the most consistent and
coherent indicator available at the municipality scale covering entire Brazil.

Both the RCCI and SCVI were calculated for a horizontal regular grid of 1° × 1° latitude/
longitude. The preparation of data and calculation of SCVI-2 followed the same procedures
described in the study by Torres et al. (2012). The definitions of vulnerability and adaptation
used in this study are the same as those used by the IPCC (2007/2014), meaning that the
resulting SCVI map denotes areas where people are more or less exposed and/or are more
sensitive/susceptible to climate change and have difficulty coping or adapting to climate
change. Like the RCCI, the SCVI is a qualitative index, meaning that the information is not
contained in the absolute value of the index but instead in the comparison of their values
between regions in the considered study area. Thus, low values of these indices do not indicate
an absence of climate change and socio-climatic vulnerability, rather, they represent lower
values on a relative basis.

2.2 RCCI

The Regional Climate Change Index is based on several variables representing climate change:
1) change in temperature in a given specific region relative to the change in global mean
temperature (or regional warming amplification factor - RWAF, dimensionless); 2) change in
average rainfall (ΔP, % of current climate value); and 3) changes in the interannual variability
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of temperature (ΔσT, % of current climate value) and precipitation (ΔσP, % of the value of the
present climate). All changes addressed in this study relate to projections for the period of
2071–2100 relative to 1961–1990. All these variables were calculated for austral summer
(DJF) and winter (JJA), as done by Xu et al. (2009) (for further details see Giorgi (2006);
Torres et al. (2012), and Torres and Marengo (2014)).

Thus, the RCCI is ultimately defined for each location or grid point j as:

RCCI j ¼ n ΔP j

�� ��� �þ n Δσp j

���
���

� �
þ n RWAF j

� �þ n ΔσT j

�� ��� �h i
DJF

þ n ΔPj

�� ��� �þ n Δσp j

���
���

� �
þ n RWAF j

� �þ n ΔσT j

�� ��� �h i
JJA

where n is an empirical factor that assumes the value 0, 1, 2, or 4, depending on the magnitude
of the change involved (Table 1). For example, assuming a hypothetical location (or grid point)
j that presents for austral summerΔP=2%,ΔσP=18%, RWAF=1.2, andΔσT=16%; and for
austral winter ΔP=14%, ΔσP=8%, RWAF=1.4, and ΔσT= −20%. Therefore, consulting
Table 1, the RCCI assumes the dimensionless value:

RCCI ¼ 0þ 2þ 1þ 4½ �DJF þ 2þ 1þ 2þ 4½ �JJA ¼ 16:

The same procedure is carried out for all grid points in the domain of the study, and the
RCCI values are compared among locations to identify, on a relative basis, the regions in
which climate change may be more prominent.

The variables ΔP, ΔσP e ΔσT can assume positive and negative values, so the absolute
values are included in the RCCI calculation. This is due to the fact that both of the signals may
cause impacts in different ways; for example, a region may be vulnerable to floods due to
increased precipitation or to droughts due to lower precipitation.

The interannual standard deviation of temperature is used as a measure of σT, and the
coefficient of variation is used as a measure of σP. Both σT and σP are calculated for the
selected thirty-year periods following the detrending of the data, in order to obtain
unbiased variability estimates (Giorgi 2006). The coefficient of variation is used as a
measure of interannual precipitation variability because it removes the dependency of the
standard deviation on the mean for zero-bounded variables such as rainfall (Räisänen 2002;
Giorgi 2006).

The RCCI version used in this update comprises simulated (1961–1990) and projected
(2071–2100) monthly means of near-surface air temperature and precipitation from a set of 24
general circulation models (GCM) of CMIP5 (See IPCC 2013; Torres and Marengo 2014).
The climate projections of CMIP5 that were used in IPCC-AR5 (IPCC 2013) were delineated
using a new generation of climate forcing scenarios, called representative concentration
pathways (RCPs) (Moss et al. 2010).

Table 1 Values of the factors n
used in the definition of RCCI n |ΔP| |ΔσP| RWAF |ΔσT|

0 <5 % <5 % <1.1 <5 %

1 5–10 % 5–10 % 1.1–1.3 5–10 %

2 10–15 % 10–20 % 1.3–1.5 10–15 %

4 >15 % >20 % >1.5 >15 %
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The spatial resolutions of the CMIP3 models used in the first version of the RCCI (hereafter
RCCI-CMIP3) ranged from approximately 1° to 5° latitude/longitude, while the CMIP5
models used by Torres and Marengo (2014) to update RCCI (hereafter RCCI-CMIP5) have
a slightly more refined spatial resolution (between 1° and 3° latitude/longitude). Relevant
developments in the GCMs used in CMIP5 were: a) improvements in the atmosphere-ocean
coupling, b) inclusion of the carbon cycle, c) the use of more comprehensive radiative forcing
due, among other processes, to a more accurate modeling of the indirect effects of aerosols,
and d) the use of time series of volcanic and solar forcing in most models (Taylor et al. 2012;
Knutti and Sedlácek 2013 Sillmann et al. 2013).

For the RCCI calculation, all climate variables and statistics were computed as follows: 1)
the change was calculated for each model simulation; 2) when available, different runs using
the same model were averaged; 3) the results were interpolated to a 1° latitude/longitude
spatial resolution; 4) the ensemble average over the different available models was obtained;
and 5) the different forcing scenarios were averaged. Steps 4 and 5 were ignored when a
sensitivity test was conducted to assess variance in SCVI related to the different climate models
and forcing scenarios.

As shown in Torres and Marengo (2014), the highest RCCI values in Brazil in the updated
version are concentrated in southern Amazon and northern Mato Grosso regions, and the
western portion of the state of Minas Gerais. Analyzing the RCCI-CMIP5 maps, a noticeable
difference appears in the Brazilian states of Maranhão, Piauí, the northwest region of Pará, and
in the states of Acre, Amazonas, and Roraima, when compared with the RCCI-CMIP3 results
(Fig. 1). However, outside these regions, the RCCI pattern is fairly comparable between the
two multi-model sets, which demonstrates a relatively good agreement between the CMIP3
and CMIP5 results.

Fig. 1 a Regional climate change index using CMIP3 data from Torres et al. (2012). b Regional climate change
index using CMIP5 data from Torres and Marengo (2014). Panel (a) also shows Brazil macro-regions: N: North,
CW: Center-West, NE: Northeast, SE: Southeast, S: South. Panel (b) also shows Brazilian States: AC: Acre, AL:
Alagoas, AM: Amazonas, AP: Amapá, BA: Bahia, CE: Ceará, DF: Distrito Federal, ES: Espírito Santo, GO:
Goiás, MA: Maranhão, MG: Minas Gerais, MS: Mato Grosso do Sul, MT: Mato Grosso, PA: Pará, PB: Paraíba,
PE: Pernambuco, PI: Piauí, PR: Paraná, RJ: Rio de Janeiro, RN: Rio Grande do Norte, RO: Rondônia, RR:
Roraima, RS: Rio Grande do Sul, SC: Santa Catarina, SE: Sergipe, SP: São Paulo, TO: Tocantins
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3 Comparative analysis and sensitivity test

To assess the causes of differences between SCVI-1 and SCVI-2, a cell-to-cell comparison was
performed between the two index versions through the following steps:

& A new map of SCVI was calculated using social indicators from SCVI-2 (population
density and MHDI from year 2010) and climate data from SCVI-1 (RCCI-CMIP-3). The
resulting map is referred to as comparison map 1 (CM1)

& The standard deviation and the difference (in percentage) between:

a. CM1, and SCVI-1 (in which the underlying difference between the maps was solely
the socio-economic indicators)

b. SCVI-2 and SCVI-1 (in which underlying difference between the maps were both
climatic data and socio-economic indicators).

Additionally, we conducted a test of robustness of our proxy indicators for (1) social
adaptive capacity and (2) of the variability associated with the >300 climate projections used
to calculate this updated version of SCVI. For (1), we explored specifically the robustness of
using MHDI as an indicator of adaptive capacity to climate change by identifying a set of other
20 variables that scholars have theorized to be related to vulnerability and which were
available for Brazil. These included the GINI index, access to adequate water supply, access
to electricity, etc. (see complete list of variables in Supplementary Material document). Next
we replaced MHDI with each of these variables and calculated 20 different versions of SCVI.
The results of this test is shown in SM-Figure 1 and are also briefly discussed in the next
session. For (2), the climate projections variability analysis, we calculated the RCCI for each
and every climate model and forcing scenario and with the subsequent calculation of SCVI
(with fixed 2010 population density and MHDI) and separately extracted the standard
deviation from this set of SCVImaps. The results of this climate projection variability analysis
are shown in Fig. 2b.

4 Results and discussion

Figure 2 shows that the main differences between the original and updated versions of SCVI
are twofold. First there is a pronounced decrease in the SCVI for the Northeast Brazil region.
Second, there is an increase observed for the swath of land running from the São Paulo
metropolitan area through the state of Minas Gerais and up to Salvador (capital of the state of
Bahia). The levels of vulnerability in this strip of land are the highest in Brazil according to the
updated version of the index. In general, in this update, all Brazilian state capitals showed high
SCVI values, except Porto Alegre (in the state of Rio Grande do Sul), Florianópolis (in the state
of Santa Catarina), Boa Vista (in the state of Roraima), and Palmas (in the state of Tocantins)
(Table 2).

As in the SCVI-1, these high values for the metropolitan areas are a result of the high
population density found in these locations. While several metropolitan regions have higher
MHDI values when compared with other regions of Brazil, their high population densities
encompass huge social inequalities as shown by the example of the city of São Paulo: whereas
some neighborhoods have HDI values typical of Scandinavian countries (e.g. Moema =0.955;
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Norway = 0.955), other parts of the city have HDI similar to many of the poorest countries in
Latin America (e.g. Parelheiros =0.670; Bolivia =0.667) (PNUD et al. 2013; UNDP 2014).
These social inequalities, inherent to many Brazilian metropolitan areas, make them particu-
larly vulnerable to climate change problems such as floods and outbreaks of infectious diseases
(Patz et al. 2005).

From the perspective of the five Brazilian macro-geographical regions, Southeast Brazil has
the highest average SCVI value, primarily due to moderate values of RCCI and high population
density. Table 3 illustrates this perspective. The high values in the SCVI-2 found in the axis of
São Paulo-Campinas-Ribeirão Preto-São José do Rio Preto in the state of São Paulo is
particularly worrisome since this is a region with a population of more than 30 million people
(in 2010) in the process of fast economic expansion. The severe drought currently affecting a
large portion of the state of São Paulo and particularly the metropolitan region of São Paulo
city is, however, a glaring example of how economic prosperity does not necessarily mean low
vulnerability to climate change and how it may actually mask hidden tradeoffs between

Fig. 2 a SCVI calculated with social data for the year 2000 and climatic data from CMIP3, and (b) updated
SCVI calculated with social indicators for the year 2010 and climatic data from CMIP5. In panel (b) hatching
indicates regions where climate projection-related uncertainty is high, given that mean SCVI values are small
compared to the variability of climate projections (less than one standard deviation); stippling indicate regions
where climate projection-related uncertainty is low given that SCVI mean is large compared with variability of
climate projections (higher than two standard deviations). Uncertainty related to socio-economic indicators of
vulnerability is relatively low in the entire map given that mean SCVI values are large compared with variability
of socio-economic indicators (higher than two standard deviations; see Supplementary Material for details) and,
as such, no hatching or stippling related to social indicators were applied to panel (b)

Table 2 SCVI values for major
metropolitan regions in Brazil. This
table illustrates changes in the vulner-
ability ranking of these metropolitan
regions given that a direct comparison
between the two SCVI versions must
be approached with care due to the
relative nature of SCVI values

Metropolitan regions SCVI-1 SCVI-2

Belo Horizonte 3.0 3.1

Brasília 3.0 2.4

Salvador 3.0 2.3

Manaus 3.5 2.1

Rio de Janeiro 2.4 1.4

São Paulo 1.7 1.2
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development and risk management (Eakin et al. 2014; Agrawal and Lemos 2015). Similarly
the region that extends from the north of Minas Gerais to the metropolitan area of Salvador,
pointed here as having high socio-climatic vulnerability, hosts approximately 10 million
people and is known for its high social inequality and sensitivity to drought (Ribeiro and
Galizoni 2003).

The robustness analysis on the use of MHDI as an indicator of vulnerability/adaptive
capacity (described in section 3) revealed that there is a relatively low uncertainty related to
social indicators in Brazil (see Fig. 2 and Supplementary Material). This analysis also provides
first-order indications of the type of actions necessary to reduce people’s vulnerability to
climate change, such as providing people with an adequate water supply (SM-Figure 1.o).

Although MHDI values have significantly increased throughout Brazil between 2000 and
2010 (PNUD et al. 2013), the comparison of SCVI-1 and SCVI-2 also described in section 3
shows that areas of no consensus between the two index versions, particularly in Northeast
Brazil, arose mainly from changes between the two RCCI versions, that is, due to changes in
the set of climatic projections occurred between CMIP3 and CMIP5 (Fig. 3). Despite the fact
that climate change indices such as RCCI and mixed indices, such as SCVI, are potentially
useful in communicating climate change, social vulnerability and risk in a more concise and
clear way, the comparison between these two sets of indexes demonstrates they are very
susceptible to updates in climatic projections derived from constant (and necessary) revisions/
changes/updates in climate models.

As discussed by Torres and Marengo (2014), because several studies have identified a slight
improvement in the climatological representation of South America in CMIP5 (Blázquez and
Nunes 2012; Jones and Carvalho 2013), the relative consistency between the two different
generations of GCMs and the better representation in CMIP5 of observed climate conditions
increases the reliability of the presented projections. However, periodic changes in instruments
conceived to enhance science-policy communication – as is the case of SCVI – can undermine
the confidence of decision-makers considering different policy options. In this case, even if
several of these changes are limited to a small region or a few pixels, they may represent
millions of people and substantial amounts of resources at stake.

Furthermore, the considerable change in MHDI between 2000 and 2010 – mainly in
Northeast Brazil (PNUD et al. 2013) suggests that higher levels of human development at
the local level were not enough to change the SCVI values significantly (Figs. 3a and c). While
the discrepancies between SCVI-1 and SCVI-2 may be due to the differences in climate
projections, they call attention to the possibility that recent social gains from anti-poverty

Table 3 Mean values of updated SCVI (dimensionless); RCCI CMIP5 (dimensionless); municipal human
development index (MHDI-2010, dimensionless); and estimated demographics (average population density in
inhabitants/km2 per grid cell in 2010) for each macro-region of Brazil used as input in this update. Figures in
brackets are those published by Torres et al. (2012) with the exception of the MHDI row. In this row, the values in
brackets represent the MHDI 2000 calculated by PNUD et al. (2013). Geographical location of Brazilian macro-
regions can be seen in Fig. 1a

North Northeast Central West Southeast South

SCVI 0.24(0.32) 0.60(0.94) 0.39(0.41) 0.76(0.77) 0.23(0.28)

RCCI 11.83(15.99) 8.59(13.01) 16.06(17.71) 11.29(12.86) 3.38(4.81)

MHDI 0.608(0.443) 0.590(0.422) 0.690(0.551) 0.698(0.589) 0714(0.603)

Demography 4(3.82) 37.21(33,48) 8.04(7.52) 89.92(80.45) 50.20(45.18)
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programs may be offset by climatic change (World Bank 2010; Eakin et al. 2014). Here the
limitations of this kind of mapping in exposing the complex relationship between poverty,
development interventions and climate vulnerability become more salient. Yet, they can
generate a number of valuable hypotheses for scholars of vulnerability and decision-makers
that need to be explored to inform future policy. This is especially true in terms of the different
kinds of capacities (e.g. human development vs. risk management) and their relative impor-
tance in decreasing the overall impact of climate events (Eakin et al. 2014). For example, since
the late 1990s the Brazilian government has embarked on an ambitious anti-poverty program
(called Bolsa Família) that transfers cash to all families under a certain level of income
provided they keep their kids in school and vaccinate them as infants. While gains in terms

Fig. 3 a Standard deviation between SCVI-1 and CM1 (CM1 is an SCVI variant calculated from the intersection
of social data for the year 2010 and CMIP3 climate data; see section 3 for details). This map highlights the
influence of social indicators on the differences between SCVI-1 (Torres et al. 2012) and SCVI-2 (presented in
this study). b Standard deviation between SCVI-1 and SCVI-2, the comparison of this map with (a) shows the
influence of the new CMIP5 climate data on the differences between the SCVI versions. c Difference between
CM1 and SCVI-1 (in that order); (d) Difference between SCVI-2 and SCVI-1 (in that order).
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of MHDI have been significant in all aspects of human development across all Brazilian states
(income, life expectancy and education) (PNUD et al. 2013), in the state of Ceará, one of the
poorest in the Brazilian Northeast, the ability of poor households in the program to prepare and
respond to drought (measured by food security) has been limited mostly because their lack of
access to risk management assets such as irrigation and access to water. This suggests that the
new policy approaches that focus on household human development while phasing out
emergency interventions (such as distribution of food baskets) may be necessary but insuffi-
cient to respond to severe drought events (Eakin et al. 2014). While our hotspots map shows
that Northeast Brazil is among the most vulnerable regions in Brazil despite an increase in
MHDI (see Table 3), it does not show the details of the relationship between poverty, social
interventions and vulnerability described in the example above well enough to inform specific
policy at the household level.

However, our results – especially in terms of the relative impact of climate and social
variables in explaining vulnerability – raise the hypothesis that social reform alone may not be
enough to decrease people’s overall vulnerability to forthcoming climatic changes. In this
sense hotspot maps can expose the potential inadequacy of current policies and more effec-
tively communicate changing trends – not only for Northeast Brazil but also true for wealthier-
though-unequal regions such as São Paulo. Given that this study presents and analyzes a
situation in which the climate of 2050 affects a population with a level of exposure, sensitivity
and adaptive capacity as of 2010, one should expect that profound and somewhat unpredict-
able changes in social indicators may occur between now and 2050.

Nevertheless, exercises such as the one described in this paper, which expose not only the
current average vulnerability of human populations but also the level of uncertainty associated
with current indicators and climate models, enable scholars to reinforce the need for policy
makers to design adaptive policy that place risk front and center when planning for develop-
ment in the next few years (Agrawal and Lemos 2015).

5 Concluding remarks

The use of the latest generation of climate projections and social indicators significantly
changes the SCVI for Brazil with the most vulnerable populations located in several cities
and particularly in the rural areas of the states of São Paulo, Minas Gerais, and Bahia (rather
than most of the Northeast Brazil region, as seen in the previous SCVI version). The observed
changes between the two versions of the index are derived primarily from the new climate data
from CMIP5 used in IPCC-AR5.

Our study suggests that climate change indicators/indexes have to be considered cautiously
by decision-makers seeking to design and implement policy in response to climate change
impacts. On the one hand, it indicates that this kind of exercise can be useful for understanding
the relative importance of different drivers of vulnerability and the impact that social welfare
policies can have in reducing vulnerability. On the other hand, it shows how the improvement
of data and models is necessary but can become a confounding issue in terms of science
usability. Above all, both scientists and decision-makers must consider that social vulnerability
is an extremely complex concept, which is defined primarily at the local level; highly
aggregated analysis such as the one depicted here needs to be understood in this context. In
this sense, the maps produced in this study can then be taken as a first-order assessment of the
problem of climate change adaptation at the national level, potentially providing valuable input
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for the forthcoming Brazilian National Policy on Climate Change Adaptation, under develop-
ment by the federal government – especially regarding actions to promote adaptation in the
most vulnerable human populations and communities. However, a careful explanation of its
limitations and uncertainties need and should be a part of any conversation with policy makers
seeking to decrease vulnerability at the national level.
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