Biocide glass based on Nb$_2$O$_5$-SiO-CaO-Na$_2$O system

Felipe A. Santosa,b, Antônio C. Silvaa, Claudinei Santosb,w, Bruno G. Simbac, José F. Bartoloméd, Teresa Durand, Elisa Fernandez-Garciae, Sizue O. Rogeroa, Sonia R.H. Mello-Castanhoa

a IPEN/CNEN, Av. Lineu Prestes, 2242, Cidade Universidade, São Paulo-SP, 05508-000 Brazil
b UERJ/FAT, Rod. Presidente Dutra, km 298, Resende-BJ, 27537-000 Brazil
c UNESP/FEG, Av. Ariberto Pereira da Cunha, 333, Portal das Colinas, Guaratinguetá-SP, 12516-410 Brazil
d ICMM, CSIC, Sor Juana Inés de la Cruz, 3, Cantoblanco, Madrid, 28049 Spain
e CINN/CSIC-UD-PA, Avd. de la Vega, 4–6, El Entrego, Asturias, 333490 Spain

Abstract

In this work, glasses based on SiO$_2$-CaO-Na$_2$O system containing different Nb$_2$O$_5$ contents were developed. Glasses were melted at 1500 °C and quenched in a metallic mould. Citotoxicity tests were performed using neutral red uptake methodology and indicated normal cell growth, which enables the use as biomaterial. Biocide activity was evaluated through glass incubation in bacterial suspension (E-coli) at 37 °C under shaking. The composition with higher content of SiO$_2$ and lower content of Nb$_2$O$_5$ presented higher biocide activity and the coefficient of thermal expansion indicate thermal compatibility with stainless steel 316 L and titanium alloys.

1. Introduction

The request for biomaterials which interact and provide proper feedback to bodily environment is increasing. Therefore, the need for alternative materials development, from the process or biological points of view, is a necessity. In this context, glass and glass-ceramic are interesting alternatives due to their chemical and structural possibilities [1].

Many of recurrent problems related to a prosthesis introduction in a human body occur during postsurgical period and in general, they are caused by accidental introduction of contaminant organisms during surgery or even later through bacteria migration from other places in a patient body which might present infections condition [2,3]. Thus, biocompatible coating, capable to contribute in osseointegration associated to biocide activity, would result in a decrease in problems associated to surgical and postsurgical procedures. Previous studies lead to glassy systems development whose compositions present biocide activity, with great potential for applications in metallic prostheses [4,5].

The surface coating of a specific implant with bioglass associated to biocide activity can lead to a significant impact on patient life quality, reducing risks associated to prostheses replacement due to infections, which is currently one of the most concerning and important factors in implantology. The purposeful use of niobium (Nb) in this study is based on recent studies which indicate it to be an interesting alternative for biomedical applications, once the biological feedback of Nb in osseointegration is plenty satisfactory [6,7].

In this work, glasses based on Nb$_2$O$_5$-SiO$_2$-CaO-Na$_2$O system were developed and characterized by their biocompatibility and antibacterial activity, aiming to examine the possibility of their use as coating in metallic implants.

2. Experimental procedure

CaCO$_3$, Na$_2$CO$_3$, K$_2$CO$_3$, SiO$_2$, Al$_2$O$_3$ and Nb$_2$O$_5$ were used as starting materials. Table 1 shows both glass composition studied in this work [8,9]. The powders were mixed using isopropyl alcohol and dried at 90 °C–24 h. The glass melting was done in a platinum crucible at 1500 °C–4 h. The liquid glass was poured into a metallic mould and casting bars of 15 × 15 × 50 mm3 were obtained. Immediately after casting the specimens were annealed and then cooled down to room temperature (3 °C/min). Samples were grinded in an agate mortar and sieved down to 30 μm.

The powders were analyzed by X-Ray diffraction with 2θ from 10°–80°, exposure time of 3 s/point and step of 0.05°. Cytotoxicity was performed according to ISO 10,993–5, by the neutral red uptake methodology (negative control: high density polyethylene; positive control: natural rubber latex film). Further details of this experiment are obtained in Santos et al. [10]. FTIR Spectroscopy

Corresponding authors.

http://dx.doi.org/10.1016/j.matlet.2016.07.117
0167-577X © 2016 Elsevier B.V. All rights reserved.

Please cite this article as: F.A. Santos, et al., Biocide glass based on Nb$_2$O$_5$-SiO$_2$-CaO-Na$_2$O system, Mater Lett (2016), http://dx.doi.org/10.1016/j.matlet.2016.07.117
Table 1

<table>
<thead>
<tr>
<th>Composition</th>
<th>T15CNb (wt%)</th>
<th>T20CNb (wt%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>43.71</td>
<td>39.47</td>
</tr>
<tr>
<td>Nb₂O₅</td>
<td>14.52</td>
<td>16.52</td>
</tr>
<tr>
<td>Na₂O</td>
<td>25.25</td>
<td>23.14</td>
</tr>
<tr>
<td>CaO</td>
<td>13.68</td>
<td>18.06</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.92</td>
<td>0.91</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>1.84</td>
<td>1.81</td>
</tr>
<tr>
<td>Others</td>
<td>0.09</td>
<td>0.09</td>
</tr>
</tbody>
</table>

(Thermo Nicolet-Nexus 870FTIR) analyses and dilatometry (Bahr Thermoanalyse-DIL802) were performed in order to determine the coefficient of thermal expansion.

In order to examine biocide activity, tests in triplicate were performed following the ISO 22196 standard method [11], in which the substances were incubated in bacterial (Escherichia coli) suspension (37 °C) under shaking. The number of useful microorganisms was determined through 48 h stage dilution after plating. G1 powder (70.2 wt%-SiO₂:1.06-B₂O₃:15.8-Na₂O:7.1-CaO:3.2-MgO:1.71-Al₂O₃:0.05-K₂O:0.02-Fe₂O₃:0.86 wt%-others) was tested as negative control [12].

3. Results and discussion

Fig. 1 presents XRD patterns for glasses. The figure shows no continuous or discrete sharp peaks but exhibits a broad halo, which reflects the characteristics of an amorphous glass structure. Fig. 2 presents FTIR spectra for T15CNb and T20CNb allowing to identify chemical species and, mostly, functional groups as result of interaction between relative energy and the infrared beam over them [13–15].

In Fig. 2a is observed a heterogeneous distribution Q⁴⁺ species in the silica network. The silica Q⁴⁺-regions (1 and 8) may be indicative of liquid pure-silica, segregated in the molten glass. It is also observed the distributions of Q³ to Q¹ species (4, 5, 6 and 7); which indicate a structural distribution can easily accommodate both, NaO, CaO and niobium, as indicated by the peaks assigned to the silica-metal bonds (2). The accommodation of niobium in the silica network would be metastable due to unbalanced loads in the vitreous network. The intensity of the peaks Na-Si bond (9) indicates a structural distribution can easily accommodate both, NaO, CaO and niobium, as indicated by the peaks assigned to the silica-metal bonds (2). The accommodation of niobium in the silica network would be metastable due to unbalanced loads in the vitreous network. This fact is indicative of the precarious accommodation in the vitreous of the Nb³⁺ network. It also observes the tendency to glass corrosion, although the humidity, as indicated by the presence of structural water (10). However, in Fig. 2b, there is greater intensity in peaks related to metal-silicates, “3”, looking more interaction between metals; On the other hand Na⁺ is less required to offset loads of the structure. These results indicate the orderly and stable incorporation of Nb³⁺ in the glass network.

Fig. 3 shows the results of cytotoxicity and biocide activity for samples T15CNb and T20CNb. It is possible to observe in Fig. 3a that both samples presented non cytotoxic behaviour also evidencing a small cell growth comparing to initial amount and a slight difference in cell growth in T15CNb compared to T20CNb.

It can be seen in Fig. 3b that only sample T15CNb presented high biocide activity (Escherichia coli) once it showed a reduction in bacteria colony forming units (CFU) of approximately 5 log reduction. T20CNb did not present considerable reduction.

Silva et al. [16], observed that when a secondary modifier oxide (Si-O-R-O-Si e.g.) is introduced it appears to be the behaviour of some Nb₂O₅ present in glasses from this work, it occurs a unbalanced loads on the network, where Na⁺ is more required for compensation of loads in this network than in those, where the glassy networks are homogeneous with only a primary former. In this situation, when placing Ca⁺ in order to unify two segments of the glassy network, it can find each of its bonding with different energy becoming unstable and consequently unifying the network weakly [17–20]. That would be according to Ca⁺ leaching mobility which is essential for glasses biocide activity [4].

In this work, it can be noticed once again a higher leaching resistance in samples with high contents of CaO and Nb₂O₅. It is possible to attribute this behaviour to structural ordering, where part of niobium oxide would act as a glassy network secondary former and part of it as network modifier. With exceeded niobium, the amount acting as network modifier is more significant. This distribution could help in equilibrium between these oxides loads and SiO₂ and in the opposite way, when observed in SiO₂/B₂O₃, biocide glass [4] the niobium presence would make Na⁺ less required.

Once the Nb₂O₅ content addition could improve the ability of former and modifier, simultaneously, the difference in binding energy between both Ca⁺ is smaller and this less stable. Consequently, Ca⁺ mobility is also lower, reducing biocide effect. However it is suggested to have a limit of Nb₂O₅ content in order to reach biocide behaviour.

Dilatometer indicated coefficient of thermal expansion around 14 × 10⁻⁶ K⁻¹ for T20CNb and 17 × 10⁻⁶ K⁻¹ for T15CNb which are closer to the value for stainless steel 316 L 16 × 10⁻⁶ K⁻¹ than to the titanium, 9.7 × 10⁻⁶ K⁻¹, showing less possibility of cracks between layers and so, higher compatibility between surfaces when coating materials are put on stainless steel.

4. Conclusions

Glass based on SiO-CaO-Na₂O-Nb₂O₅ system can be potential coating for metallic implants. Thermal analyses indicated that coefficients of thermal expansion vary between 14 and 17 × 10⁻⁶ K⁻¹, allowing good compatibility with stainless-steel and important differences with titanium implants which can be minimized along special cares during coating process. Nb₂O₅ addition to SiO-CaO-Na₂O system allowed the development of bio-compatible materials with non cytotoxic behaviour. Biocide activity demonstrated the glassy system has biocide potential, however sensitive to compositional variations, which indicates the percentage of Nb₂O₅ added to SiO-CaO-Na₂O matrix has a limit for the glass produced to show high biocide activity.
Acknowledgements

This study was realized with financial support by FAPESP, Brazilian Bureau (process number 2012/17646-8).

References

