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Abstract
The analog parameters of In0.53Ga0.47As and In0.7Ga0.3As nTFETs with solid state Zn diffused
source are investigated from room temperature down to 10 K. The In0.7Ga0.3As devices are
shown to yield a higher on-state current than the In0.53Ga0.47As counterparts, and, consequently,
a higher transconductance due to the lower bandgap. At the same time, the In0.7Ga0.3As devices
present higher output conductance values. The balance between these two factors results in a
higher intrinsic voltage gain (AV) for In0.7Ga0.3As nTFETs at low gate bias and similar AV for
both devices at high gate voltage. The transconductance is reduced at low temperature due to the
increase of the bandgap, while the output conductance is decreased (improved) upon cooling,
which is related to the reduction of the drain dependence of the BTBT generation rate. The
temperature influence is more pronounced in the output conductance than in the
transconductance, resulting in an increase of the intrinsic voltage gain at low temperatures for
both devices and bias.

Keywords: TFET, low temperature, analog parameters, current conduction mechanisms

(Some figures may appear in colour only in the online journal)

Introduction

In tunnel field-effect transistors (TFET), which are essentially
gated p-i-n diodes, the carrier injection mechanism is band-to-
band tunneling (BTBT) [1]. TFETs are promising alternatives
for low power/low voltage applications due to the fact that
the BTBT mechanism can overcome the theoretical sub-
threshold swing (SS) limit imposed by thermal diffusion
(60 mV dec–1 at 300 K) for metal-oxide-semiconductor field-
effect transistors (MOSFET) [2–4]. TFETs with a steep SS
below 60 mV dec–1 have already been experimentally
demonstrated in [5].

Despite the fact that BTBT improves the switching speed
of a transistor, Si-based TFETs present a very low on-state
current (ION) due to the large and indirect bandgap of Si. The

use of different source/channel materials with lower bandgap,
as SixGe1−x alloys [6–9] and III–V materials [10, 11], has
been studied as a method for increasing ION.

Besides the strong potential for low power digital
applications, recent studies have shown promising results for
analog applications of TFETs [12–20]. The encouraging
analog performance of TFETs is a result of the BTBT
mechanism, which results in a very low output conductance
(gD) when compared to the gD of a MOSFET [21]. For
analog applications low values of gD are important because
it implies in lower influence of the drain voltage, resulting in
a more constant drain current independent of the output
charge. The lower gD for TFETs holds as long as its channel
length is sufficiently long to avoid drain induced barrier
thinning [22].
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TFETs are typically more sensitive to defects than
MOSFETs, since trap-assisted-tunneling (TAT) and Shock-
ley-Read-Hall generation (SRH) are important current com-
ponents in the off state. A study of the influence of
temperature (T) on TFETs enables to identify which of the
conduction mechanisms is dominant [23]. SRH and TAT
generation are thermally activated, implying that they reduce
exponentially with lower T, while BTBT exhibits only a small
temperature influence, mainly caused by temperature-depen-
dent bandgap narrowing. At extremely low temperatures the
TAT and SRH mechanism are suppressed, making it possible
to analyze separately the BTBT.

Aware of the TFETs potential for analog applications, in
this work, some important analog parameters of InGaAs
TFETs are investigated in order to analyze its performance,
from 300 K down to 10 K, for 2 different splits, one con-
sisting of an In0.53Ga0.47As channel, taken as the reference,
and the other has an In0.7Ga0.3As channel, with a reduced
bandgap to boost ION. The analog parameters analyzed in this
work are the transconductance in saturation (gm), output
conductance, transistor efficiency (gm/IDS) and the intrinsic
voltage gain (AV).

Device characteristics

The studied devices are n-type InXGa1−XAs homojunction
TFETs with x=0.53, 0.7, fabricated by using Zn solid-
source diffusion of the source [25]. The device follows the
gate first approach from the University of Tokyo [11, 24], and
it was optimized by Alian et al [25].

Two different splits were analyzed, one device with an
uniform In0.53Ga0.47As channel and the other with an extra
8 nm layer of In0.7Ga0.3As on top of the In0.53Ga0.47As mat-
erial [25]. A schematic representation of the device is shown
in figure 1.

The gate stack is composed of 1 nm Al2O3/3 nm HfO2

with TiN as the metal gate. This results in an estimated
equivalent oxide thickness of 1.5 nm. The drain is doped
with Si (N++) in situ during the MBE growth, and the source
is doped with Zn (P++) using spin-on glass diffusion at
500 °C for 1 min. The transistor gate width (W) and length (L)
are 400 μm and 5 μm, respectively.

The DC measurements were performed at temperatures
of 300, 200, 100 and 10 K, using a LakeShore CPX probe
station and a HP4156 precision parameter analyzer.

Analysis and discussion

Figure 2 presents the experimental normalized drain current
(IDS/W) and the normalized gate current (IGS/W), as a
function of the gate voltage (VGS) for In0.53Ga0.47As and
In0.7Ga0.3As nTFETs, for VDS=1.0 V at temperatures ran-
ging between 300 and 10 K. The on-state current for the
In0.7Ga0.3As device is higher than for the In0.53Ga0.47As
counterpart due to the higher BTBT current for the higher In
content channel. This increase is caused by the smaller
bandgap, better electrostatic coupling and also can be related
to higher active doping concentration [26], which reduce the
tunneling length.

Taking into account the effect of the temperature
reduction, one can observe that, in contrast to a MOSFET
where the mobility increases, all the current conduction
mechanisms decrease with lower temperature, resulting in
both lower ION and IOFF currents in the TFETs. However, the
IOFF decreases relatively more than the ION. This behavior can
be explained by the different temperature dependence of each
current conduction mechanism of the TFET. The temperature
dependence is represented by the equations (1)–(3), which
are, respectively, the simplified current model of the, TAT
and BTBT mechanism [27–29].
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Figure 1. Schematic cross section of the InXGa1−XAs nTFET.

Figure 2. Experimental normalized IDS and IGS as a function of VGS,
for the In0.53Ga0.47As and In0.7Ga0.3As devices at temperatures
ranging between 300 and 10 K.
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where J is the current density, C1sRH, C1TAT and C1BTBT are
pre-exponential constants for the simplification of the
expressions, Eg is the bandgap, Ed is the defect energy level,
Ei is the intrinsic energy level, k is the Boltzmann constant, ξ
is the total electric field and C2BTBT is an exponential con-
stant for the JBTBT simplification.

One can immediately notice that the SRH and TAT
components, which are responsible for the IOFF, are expo-
nentially depending on T, resulting in a high variation with
the temperature. In contrast, the BTBT current, which governs
ION, has only an indirect influence of the temperature, which
is caused by the bandgap increase at lower T. This results in a
smaller relative variation of the BTBT components when
compared with the TAT and SRH ones.

This smaller relative variation can also be observed in the
activation energy (EA), presented in figure 3, which represents
the logarithm variation of the current as a function of the
inverse temperature. One can notice that for lower VGS, for
which SRH and TAT mechanism are dominants, EA is higher,
indicating high temperature dependence. On the other hand,
for high VGS, region where BTBT is the dominant mech-
anism, EA presents low values due to its low relative temp-
erature dependence. When comparing both different devices
(In0.53Ga0.47As and In0.7Ga0.3As) it is noticeable that the
In0.7Ga0.3As device is less temperature dependent, i.e., pre-
sents higher BTBT component, caused by its lower tunneling
length.

From figure 2 it is also possible to observe that for
temperatures below 100 K the SRH and TAT components of
the current are so reduced that the IOFF starts to be limited by
the gate current IGS. The dominant conduction mechanism of
IGS for very thin gate dielectrics is the direct tunneling across
the oxide bandgap (Fowler-Nordheim), therefore, its current
density can be modeled by the equation (4) [30–32]. This
conduction mechanism causes lower temperature dependence
of IGS, which is caused mainly by the bandgap variation, than
in the SRH and TAT mechanisms, resulting in a limitation of
the IOFF by the IGS at low temperatures.
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where JG is the gate current density, C1F-N and C2F-N are the
pre-exponential and exponential constants, respectively, for
the simplification of the expressions.

Figure 4 presents the normalized gm/W as a function of
the temperature for both studied devices. The devices in
figure 4(a) are biased at a drain voltage (VDS) of 0.5 V, and in
figure 4(b) at VDS=1.0 V. Both graphs also show data for
two different gate biases, VGS=0.5 V and VGS=1.0 V.
From this figure one observes that the transconductance in the

Figure 3. Extracted activation energy as a function of VGS, for the
In0.53Ga0.47As and In0.7Ga0.3As devices.

Figure 4. Experimental gm as a function of the temperature for the In0.53Ga0.47As and In0.7Ga0.3As devices, with VDS=0.5 V (a) and
VDS=1.0 V (b).
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In0.7Ga0.3As device is always higher than for the
In0.53Ga0.47As channel due to its lower bandgap.

For most experimental conditions in figure 4, gm
decreases with lower T. However, for VGS=1.0 V and
VDS=0.5 V the gm in the In0.7Ga0.3As device tends to
increase slightly at low temperatures. This could be related to
the high series resistance (long channel device—5 μm), which
decreases at low temperatures. The In0.7Ga0.3As nTFET at
this bias condition has a very high current), which means that
the BTBT tunnel event is very efficient, and so it is likely that
the channel series resistance starts to become observable, such
that the reduction of the series resistance can result in an ION
improvement at low T.

When comparing the impact of temperature for the dif-
ferent splits, it is noticeable that the In0.7Ga0.3As device is less
influenced than the In0.53Ga0.47As counterpart. This lower
temperature influence, which can also be observed in the EA

curve (figure 3), is caused by the higher BTBT component in
this device, owing to its lower bandgap. For higher VGS in
both splits, where BTBT is even stronger, the same effect is
noticed, resulting in a smaller temperature dependence com-
pared to lower VGS values.

The transistor efficiency (gm/IDS) as a function of nor-
malized IDS for VDS=1.0 V, at temperatures ranging from
300 K down to 10 K, is presented in figure 5. For low IDS
values gm/IDS is inversely proportional to the SS, which is
presented in figure 5—inset. In this region, where gm/IDS
exhibits its highest values, the In0.7Ga0.3As nTFET is better
performing than the In0.53Ga0.47As one, due to the smaller
SRH and TAT influence, which enhances the SS.

Considering high IDS values, the gm/IDS is more
dependent on the gm. In this region, as the gm is higher for
the In0.7Ga0.3As than for the In0.53Ga0.47As channel, it also
corresponds with higher gm/IDS. In addition to the pre-
dominance at high currents of the BTBT, which is very
weakly temperature dependent, both gm and IDS decrease at

low temperature in the same way, resulting in a very small
variation of the gm/IDS with temperature.

For VGS=0.5 V the high temperature dependence can
also be observed in the IDS as a function of VDS (figure 6), and
as the In0.53Ga0.47As device has a higher bandgap, it is even
more influenced by temperature. The plateau of this curve,
i.e., the output conductance (figure 6), is also an important
figure of merit in analog performance.

Figure 7 shows that for high VGS values (VGS=1.0) an
increase of gD is observed, which is caused by the VDS

dependence of the effective energy window of overlap at the
source–channel junction [33]. Energy window of tunneling is
the energy window where the tunneling occurs, which is
limited by the valence band of the source, the conduction
band of the channel and the drain, and also the fermi levels of
them. For high VDS (figure 7(b)), this effective energy win-
dow is wider than for low VDS (figure 7(a)), resulting in less
VDS dependence and reaching a saturation like region.

To better understand the effect of the temperature on the
gD, numerical simulations were performed using Sentaurus
Device simulator [34]. The simulations were performed for
the uniform In0.53Ga0.47As channel device, considering the
Dopant-dependent SRH, Schenk non-local TAT, non-local
BTBT, and bandgap narrowing models, which parameters
where obtained in [35]. Figure 8 compares the simulated and
experimental IDS as a function of VGS for the In0.53Ga0.47As
nTFET, showing a good match between the experimental and
the simulations. Among others, the output conductance has
been obtained (figure 9), where the same tendency as the
experimental result (gD reduction for low temperatures) was
observed.

Figure 10(a) presents the simulated energy band diagram
(EC, EV) of a tilted cross section, which crosses the regions
with highest BTBT generation (figures 10(b) and (c)), for
three VDS values, at room temperature and at 100 K. From this
figure one can derive that due to the slight increase of the
bandgap at lower T, the tunneling length increase. This
behavior is more clearly shown in the zoom in of this graph,
shown in the inset of figure 10.

Figure 5. Experimental normalized gm/IDS as a function of IDS, for
the In0.53Ga0.47As and In0.7Ga0.3As devices at temperatures ranging
between 10 and 300 K. SS as a function of the temperature is shown
in the inset graph.

Figure 6. Experimental normalized IDS as a function of VDS, for the
In0.53Ga0.47As and In0.7Ga0.3As devices at temperatures ranging
between 10 and 300 K.
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Figure 10(d) shows the BTBT generation rate at source/
channel junction. One can observe from this figure that as a
consequence of the small tunneling length increase at low
temperature, the BTBT generation rate is reduced, which in
turns results in a reduction of the BTBT current.

From figure 10(d) it is also possible to observe a
reduction of the VDS influence on the BTBT generation rate
and, consequently, the BTBT current, at low temperatures,
resulting in an improvement (reduction) of gD, as can be
found in figure 9.

An important figure of merit for the analog characteristics
of transistors is the intrinsic voltage gain, obtained by
equation (5). Figure 11 presents the experimental AV as a
function of the temperature for both In0.53Ga0.47As and
In0.7Ga0.3As devices, with VDS biased at 0.5 V (figure 11(a))
and 1.0 V (figure 11(b)). It is possible to observe that for low
VGS the In0.7Ga0.3As presents higher AV than the
In0.53Ga0.47As one due to the higher influence of BTBT
caused by the lower bandgap. However, for high VGS at low
VDS this In0.7Ga0.3As device seems to suffer more from the
series resistance, due to its higher current, resulting in a lower
gm and AV and also more influenced by the temperature.
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The Av analysis shows that there is a competition of
factors between the gm degradation and gD improvement
(decrease) at low temperatures. For VGS=1.0 V, as gm
experiences less relative influence of the temperature, the
influence of the temperature on gD is the predominant factor
in AV, resulting in its increase for low temperatures.

For low VGS and at VDS=0.5 V, this competition of
factors results in an AV almost independent on temperature,
because in this bias regime the gm is more affected by the
temperature due to the lower influence of BTBT. For higher

Figure 7. Experimental gD as a function of the temperature for the In0.53Ga0.47As and In0.7Ga0.3As devices, with VDS=0.5 V (a) and
VDS=1.0 V (b).

Figure 8. Experimental and simulated normalized IDS as a function
of VGS, for the In0.53Ga0.47As device. Simulated normalized IDS as a
function of VDS, for the In0.53Ga0.47As device at different
temperatures.

Figure 9. Simulated gD as a function of the temperature for the
In0.53Ga0.47As device.
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Figure 10. Simulated conduction energy and valence energy as a function of the distance of a tilted cross section (a), which cut crosses the
maximum values of electron and holes BTBT generation rate (b) and (c). BTBT generation rate as a function of the cut distance for
VDS=0.4 and 0.6 V (d).

Figure 11. Experimental AV as a function of the temperature for the In0.53Ga0.47As and In0.7Ga0.3As devices, with VDS=0.5 V (a) and
VDS=1.0 V (b).
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VDS, as the gD is very low, a very high AV can be observed,
however, the temperature influence is even higher.

Conclusion

This work presents an experimental study, complemented by
numerical simulations, of the analog parameters behavior of
spin-on-glass Zn-diffused InxGa1−xAs nTFETs down to 10 K.
For In-70% the bandgap is lower, resulting in an increase of
drain current and transconductance due to the BTBT dom-
inance. However, it also presents a higher gD than for the
In0.53Ga0.47As channel. This behavior generates a competition
between the influence of gm and gD, resulting in higher AV for
In0.7Ga0.3As for low VGS bias and in a similar AV for both
devices at high VGS values.

In this device technology, at temperatures lower than
100 K the reduction of SRH and TAT is so pronounced that
the gate current dominates IOFF, resulting in marginal temp-
erature dependence below 100 K of IOFF. The reduction of the
temperature causes a degradation of gm, however, it presents
a higher BTBT component, which is less temperature
dependent. The temperature influence on gD was observed
experimentally and also in the simulations and it is related to
the reduction of the drain dependence of the BTBT generation
rate. The temperature influence is more pronounced in gD
than in gm, resulting in an increase of AV at low temperatures.
For lower drain and gate bias (0.5 V) the AV presents less
temperature sensitivity for both devices analyzed, which
could be a good option for some applications.
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