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Abstract In the few decades, the study of electro-

mechanical systems which are capable to extract

energy from an operating system in the environment

has been of most importance. In this work, we present

the extraction of energy from a simple portal frame

structure excited by a harmonic force, where the

energy harvesting is computed by using of a nonlinear

piezoelectric material. The dynamical response of the

system is examined, when there is 2:1 internal

resonance between the symmetric and the sway mode,

resulting the saturation phenomenon and vibration

energy transfer between the symmetric (vertical)

mode and the horizontal (sway) mode. An evaluation

of the energy available for harvesting, in each of the

considered modes, is computed.

Keywords Energy harvesting � Nonlinear

dynamics � Portal frame structure � Saturation

phenomenon

1 Introduction

Recently, there has been much interest in the concepts

of electro-mechanical systems that are able to scav-

enge, or harvest energy from their operating environ-

ment. As the kinetic energy is a source of energy easily

found in the environment, devices that converts kinetic

energy into electrical energy have been widely

studied, and special attention has been devoted to

devices that use piezoelectric elements as a means of

energy transduction.

Many researchers have recently explored this kind

of energy harvesting based on piezoelectric materials.

Piezoceramics can be used as a lot of devices, for

example, as piezomagnetoelastic structure and harvest

energy from an ambient vibration [1–6]. A vast and

important study of piezoelectric energy harvesting can

be found at [7–13]. These authors explored the re-use

of wasted vibration energy in the environment, which

is a very important subject, nowadays, to some

applications, including renewable energy.
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It is known in the literature about energy harvesting

that there is a certain nonlinearity in the material

related to the d31 coefficient. Specifically, there is a

nonlinear relation between the strain and the electric

field of the piezoelectric material [12, 13].

The nonlinearity of the piezoelectric material was

identified experimentally by [14]. Due to the signifi-

cant contribution of the nonlinearity of the piezoelec-

tric material, an approximation was proposed by [15],

in order to model a nonlinear piezoelectric relation.

Recently, a complete revision of these properties was

presented by [16]. Many authors introduced the

nonlinear piezoelectric coupling on their works and

showed that the energy harvesting can be more or less

efficient; in special we mention the works [17–20]. The

analysis of the nonlinear piezoelectric factor will be

discussed, in this work.

Some kind of structures of two-degrees-of-freedom

are specially coupled with an associated quadratic

nonlinearity. Moreover, these structures may possess

2:1 internal resonance, and when they are subjected to

an external resonance due to an external excitation,

saturation phenomenon is presented.

Saturation phenomenon is when a system partially-

transfer vibration energy of the excited mode to

another one. The phenomenon has been proposed as a

control device and a means for transferring vibration

energy from one region of a system to another, where

it may be easier for harvesting. Thus, we will analze

the possible use of these features, using a two-degrees-

of-freedom simple portal frame, as support structure.

The occurrence of saturation phenomenon was

presented in a problem of a ship motion because of its

nonlinear coupling of pitch and roll modes [21]. The

investigation of a nonlinear control method based on the

saturation phenomenon in systems coupled with quad-

ratic nonlinearities, was treated in more details by

[22–26]. The implementation of an active saturation

control was proposed in [27–30] and studied by [31–36].

In addition, saturation phenomenon was used to

suppress steady-state vibrations of a system by con-

necting it to a second-order controller using quadratic

position coupling terms [34]. We also remark that a

number of authors have shown that the saturation-based

on nonlinear control method for a nonlinear problem

requires an adaptive frequency-tuning mechanism,

because the frequency of the nonlinear system changes

with the amplitude. Hence, the controller will become

out of tune with the system to be controlled [37–40].

In earlier work, a model of an energy harvester

based on a simple portal frame structure was presented

[17]. The system was considered a non-ideal system

(NIS), due to a full interaction of the structure motions,

with the energy source, a DC motor with limited

power supply. The nonlinearities presented in the

piezoelectric material were considered in the piezo-

electric coupling mathematical model. In addition, the

system was found to be a bi-stable Duffing oscillator

presenting chaotic behaviour. Moreover, in [18] a

portal frame structure was controlled using a Nonlin-

ear Energy Sink (NES) [42], and after addition of

piezoelectric elements, energy harvesting was consid-

ered. The results showed that the harvested energy

with a NES passive controller was improved, since the

system was forced to a periodic orbit.

Afterwards, the analysis of the saturation phe-

nomenon with the piezoelectric material coupled to a

two-degrees-of-freedom portal frame structure was

analyzed by [19, 20].

There is a great necessity of study the saturation

phenomenon in the structure and the nonlinearity

presented in the piezoelectric material. With the

saturation phenomenon the structure may behave like

periodically or chaotically. A vast study of the

vibration modes was performed in order to find out

the best periodic configuration in order to harvest

energy. The nonlinearities presented in piezoelectric

material can be the energy harvesting more or less

efficient. It will be important because it will be possible

to simulate a most real problem of energy harvesting.

The results obtained, in this paper, showed numer-

ical simulations of these phenomena and energy

harvesting, using a nonlinear piezoelectric material

as a means of energy transduction coupled to a column

of a two-degrees-of-freedom portal frame structure.

Extensive analysis of the system was carry out in order

to evaluate the energy available for harvesting in each

of the considered modes. Hence, this paper was

carefully organized as follows:

Section 1 is an introduction of the topic of satura-

tion phenomenon and piezoelectric material discussed

in this paper,

Section 2 is the modelling of the system in

question. The equations of motion were developed

by the method of energy of Lagrange. After that, the

analysis of the vibration energy transferred was

performed in order to see the saturation phenomenon

as studied by [19–36], Section 3 discussed about the
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frequency of the external force, because it is an

important factor of the saturation.

Section 4 was carried out an overview of the

piezoelectric coupling considering some cases of the

use of the frequency. In a first moment, in Sect. 4.1,

the case of sole linear piezoelectric coefficient was

considered. In the following, in Sect. 4.2, it was

considered the nonlinear piezoelectric coefficient

mixing the variation of three parameters discussed

that are the frequency, linear piezoelectric coefficient

and nonlinear piezoelectric coefficient,

Section 5 was performed a vast study of the ampli-

tude of the external force to the case of a fixed value of

the sole linear piezoelectric coefficient. Analysis of

stability and range of the parameter versus initial

velocity condition was carefully made out in order to

summarize the stability of the system and to obtain the

best stable value of the initial velocity condition.

Following with the new initial condition, in Sect. 5.1,

the influence of the sole linear piezoelectric coupling

versus amplitude was performed, obtaining the best

value of the linear coupling. Hence, in Sect. 5.2, the

influence of the nonlinear piezoelectric coefficient to the

linear piezoelectric coefficient versus amplitude was

considered. We showed stability, behaviour and energy

harvesting analysis comparing every result obtained

here to Sect. 5.1. As it is being considered the nonlinear

piezoelectric coefficient we have the most real possible

result of energy harvesting, this section becomes the

most significant study of Sect. 5,

Finally, Sect. 6 we have the conclusions of this

work, describing all the conclusions, benefits and

disadvantages of each section.

2 The engineering problem: modelling

and derivation of the governing equations

of motion, energy transfer process

between the two vibrating modes

and the vibrating system

Considering the portal frame of the Fig. 1, consisting

of two columns clamped in their bases with height

h and a horizontal beam pinned to the columns at both

ends with length L. Both columns and beam have

flexural stiffness EI. The mass at mid-span of the beam

is M. We consider that m represent the masses of the

columns. The structure is modelled as a lumped mass

system with two-degrees-of-freedom. The coordinate

q1 is related to the horizontal displacement (sway

mode), with natural frequency x1, and q2 is related to

the vertical displacement (first symmetrical mode),

with natural frequency x2. The generalized coordi-

nates qi are the displacements of the mass at the mid-

span of the beam M.

The linear stiffness of the columns and the beam

can be evaluated by a Rayleigh-Ritz procedure using

cubic trial functions. Geometric nonlinearity is intro-

duced by considering the shortening due to bending of

the columns and of the beam. We can approximate the

length of the columns and beam, respectively, as the

equations below.

u ¼ 3

h3

hx2

2
� x3

6

� �
; 0� x� h

v ¼ 12

L3

x3

3
� L2x

4

� �
; 0� x� L

2

Nodal displacements, shown in Fig. 1, are

u1 ¼ q1 u2 ¼ u1 þ
B

4v2
1

u3 ¼ u1 �
B

4
v2

1

v1 ¼ q2 v2 ¼ �A

2
u2

1 v3 ¼ �A

2
u2

1

ð1Þ

The constants A and B and the stiffness of the beam

and columns, respectively kb and kc are calculated by

the Rayleigh method, whose integers are below.

Fig. 1 The physical model of a simple portal frame. a Static

position. b Dynamic position
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kc ¼ EI

Z h

0

ðu00Þ2
dx kb ¼ 2EI

Z L=2

0

ðv00Þ2
dx

A ¼
Z h

0

ðu0Þ2
dx B ¼ 2

Z L=2

0

ðv0Þ2
dx

As the length of the beam is approximated by half of

its value, the calculus of its stiffness and constant B

need to be multiplied by 2. Hence, we have A ¼ 6=5h

and B ¼ 24=5L. The stiffness of the beam is kb ¼
48EI=L3 and the stiffness of the columns is

kc ¼ 3EI=h3. Our generalized coordinates are the

displacements of the mass at the mid-span of the beam

‘‘M’’. Using displacements of Eq. (1), the kinetic

energy is

T ¼ 1

2
M _u2

1 þ _v2
1

� �
þ 1

2
mð2 _u2

1Þ ð2Þ

Introducing the generalized coordinates q1 and q2 in

Eq. (2), the kinetic energy becomes

T ¼ 1

2
M _q2

1 þ _q2
2

� �
þ 1

2
mð2 _q2

1Þ ð3Þ

The system has a coupled electrical circuit at the

column which is excited by an internal voltage (back-

emf) proportional to the mechanical velocity. The

circuit consists of a resistor R, the charge Q, a

capacitor Cp and the dimensionless piezoelectric

contribution is given by dðq1Þ ¼ hð1 þHjq1jÞ
[15–20], where h is the linear piezoelectric coefficient

and H is the nonlinear piezoelectric coefficient.

The potential energy of the system is given by

the strain energy of the structure, the work of the

weight of the masses of the beam and columns and

by electrical potential of the circuit with the

contribution of the piezoelectric and the capacitor,

resulting

U ¼ 1

2
kcðu2

2 þ u2
3Þ þ

1

2
kb v1 �

v2 þ v3

2

� �2

þ � � �mgðv2 þ v3Þ þMgv1 �
dðq1Þ
Cp

Qðu2 þ v2Þ

þ 1

2

Q2

Cp

ð4Þ

Substituting the Eq. (1) in (4), in terms of the general

coordinates q1, q2 and Q, we have

U ¼ðkc � mgAÞq2
1 þ

1

2
kbðq2 þ Aq2q

2
1Þ þMgq2

� � � � dðq1Þ
Cp

Q q1 þ
B

4
q2

2

� �
þ 1

2

Q2

Cp

ð5Þ

Now, we consider energy dissipation of the system,

comprising the structural damping defined by a

Rayleigh function and the resistor of the electrical

circuit. Then it follows

D ¼ 1

2
c1 _q

2
1 þ

1

2
c2 _q

2
1 þ

1

2
R _Q2 ð6Þ

The mechanical system is excited by a harmonic force

which has amplitude F0 and external frequency xn,

namely

S ¼ F0 cosxnt ð7Þ

The Lagrangian function is defined by Eq. (8). Sub-

stituting Eqs. (3) and (5) into (8), we have the

Lagrangian of Eq. (9).

Lðq; _q; tÞ ¼T � U ð8Þ

L ¼ 1

2
Mð _q2

1 þ _q2
2Þ þ

1

2
mð2 _q2

1Þ � ðkc � mgAÞq2
1

� � � � 1

2
kbðq2 þ Aq2q

2
1Þ �Mgq2

þ � � � dðq1Þ
Cp

Q q1 þ
B

4
q2

2

� �
� 1

2

Q2

Cp

ð9Þ

Now, using Euler–Lagrange, that is Eq. (10), we have

the governing equations of motion of the system that

are Eqs. (11), (12) and (13).

d

dt

oL

o _qi

� �
� oL

oqi
þ oD

o _qi
¼ Fext i ¼ 1; 2; 3 ð10Þ

ð2mþMÞ€q1 þ 2ðkc � mgAÞq1 þ kbAq1q2 þ c1 _q1

¼ � � � dðq1Þ
Cp

Q ð11Þ

M €q2 þ kbq2 þ c2 _q2 ¼ F0 cosxnt �Mg� Akb

2
q2

1þ

� � � dðq1Þ
Cp

B

2
Qq2 ð12Þ
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R _Q� hð1 þHjq1jÞ
1

Cp

q1 þ
B

4
q2

2

� �
þ Q

Cp

¼ 0

ð13Þ

Next, a dimensionless process was carried out, result-

ing the equations of the system as follows

x001 þ l1x
0
1 þ x1 þ a1x1x2 ¼ hð1 þHjx1jÞd1V ð14Þ

x002 þ l2x
0
2 þ x2

2x2 þ a2x
2
1 þ G0 ¼ E0 cosXs

þ � � � hð1 þHjx1jÞd2Vx2

ð15Þ

V 0 � hð1 þHjx1jÞðd3x1 þ d4x
2
2Þ þ d3V ¼ 0 ð16Þ

where

x1 ¼ q1

h
x2 ¼ q2

L
V ¼ Q

q0

s ¼ x1t

x1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðkc � mgAÞ

2mþM

r
�dðx1Þ ¼

h

q0

dðq1Þ G0 ¼ g

x2
1L

l1 ¼ c1

ð2mþMÞx1

l2 ¼ c2

Mx1

x2 ¼ 1

x1

ffiffiffiffiffi
kb

M

r

a1 ¼ AkbL

ð2mþMÞx2
1

a2 ¼ Akbh
2

2Mx2
1L

X ¼ xn

x1

d1 ¼ q2
0

x2
1h

2ð2mþMÞCp

d2 ¼ Bq2
0

2Mx2
1hCp

d3 ¼ 1

RCpx1

d4 ¼ BL2

4RCpx1h
E0 ¼ F0

Mx2
1L

ð17Þ

The external frequency X was set near resonance with

the first symmetrical mode. Frequency x2 is also set

twice the frequency of the sway mode as 2x1 ¼ x2, in

order to have modal coupling in the nonlinear adopted

model. The conditions below are necessary to satura-

tion phenomenon occurs [19–36, 40, 41], which will

be seen in the next section.

x2 ¼ 2x1 þ r1

x2 ¼ xn þ r2

l1; l2 � 1

r1; r2 � 1

where r is a detuning factor, and l1 and l2 are

dampings.

The calculation of the harvested power for the

portal frame system are given by the Eqs. (17) and

(18) that describe the dimensional and dimensionless

harvested power, respectively.

P ¼ R _Q2 ð18Þ

P ¼ R0V
02 ð19Þ

where R0 ¼ Rðx1q0Þ2
.

The average power of the system can be calculated

by the Eq. (19), as in [15–20].

Pavg ¼
1

T

Z T

0

PðsÞds ð20Þ

In the following, the numerical simulation results were

performed using the software MATLAB, considering

all the parameters of the Table 1

On the other hand, the parameters related to

external excitation frequency xn, linear piezoelectric

coefficient h and the nonlinear piezoelectric coeffi-

cient H will be varied, accordingly.

The most interesting of saturation phenomenon is

the transferring of the vibration energy of modes, so

that one of the modes has higher amplitude at steady

state. In this case, as the first symmetrical mode was

excited, the vibration energy will be transferred from

this mode to the sway mode. This energy transfer is a

nonlinear phenomenon, which may eventually occur

Table 1 Adopted system parameters

Parameters Values Means

gðm=s
2Þ 9.81 Gravity acceleration

M (kg) 2.00 Beam mass

m (kg) 0.50 Column mass

c1 (Ns/m) 1.55 Column damping

c2 (Ns/m) 3.14 Beam damping

EIðnm2Þ 128 Linear stiffness

L (m) 0.52 Beam length

h (m) 0.36 Column length

F0 (N) 40 External excitation amplitude

RðkXÞ 100 Piezoelectric resistance

CpðlFÞ 1 Piezoelectric capacitance

xn (rad/s) Varied External excitation frequency

h Varied Linear piezoelectric coefficient

H Varied Nonlinear piezoelectric coefficient
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when a system possess a 2:1 internal resonance.

Saturation phenomenon is called when the process of

energy transfer ends and the vibration energy keeps

changed itself [21–26]. Hence, the first step is to verify

the energy transferring of the symmetric mode to the

sway mode.

Note that the total mechanical energy of the sway

mode, and the symmetric mode and the total energy of

the electrical system are given, respectively, by the

Eqs. (21), (22) and (23), according to [43, 44].

Ex1
¼ ðkc � mgAÞx2

1 þ
1

2
ðM þ 2mÞx021 ð21Þ

Ex2
¼ 1

2
kbx

2
2 þMgx2 þ

1

2
Mx022 ð22Þ

EV ¼ 1

2Cp

V2 ð23Þ

The total energy of the electromechanical system is

given by the sum of Eqs. (21), (22) and (23), i.e.,

Etotal ¼ Ex1
þ Ex2

þ EV .

To analyze the energy transfer between the two

vibrating modes and the electrical part, the algebraic

relations of the energy percentage, are considered and

defined by the relations (24).

E%x1
¼ Ex1

Etotal

E%x2
¼ Ex2

Etotal

E%V ¼ EV

Etotal

ð24Þ

Through the numerical values of Table 1, neglecting

the use of the piezoelectric material and considering a

small initial condition to the sway mode, we will vary

the frequency of the external force in order to see the

commented phenomena. The following Fig. 2a–f

show an analysis of the energy transfer and the

appearance of the saturation phenomena.

The adopted portal frame model was analyzed

firstly, assuming xn ¼ 100 rad/s whose frequency

value does not occur the energy transfer. Figure 2a, d

show the mechanical energy percentage and we see

that the energy transfer starts to occur at the beginning

of the simulation, however, after a long time the

energy of the sway mode decays to approximately zero

while the mechanical energy of the symmetric mode

goes to approximately 100% of the system’s energy.

Assuming now that the frequency of

x2 ¼ xn ¼ 148 rad/s, which is the condition to satu-

ration phenomenon occurs. Figure 2b, e show the

mechanical energy of the two modes. The energy

transfer phenomenon occurred at transient state.

However, differently of the Fig. 2a, d, at steady state,

the energy of the first symmetric mode was partially

transferred to the sway mode, i.e., the saturation

phenomenon occurred.

Next, it was coupled the piezoelectric material to

analyze the energy transfer among the two modes and

the charge, considering just its linear part with

coefficient h ¼ 0:3. Figure 2c, f show the mechanical

energy percentage among the three coordinates, and,

in comparison to Fig. 2b, e, the sway mode has a little

less energy, as expected, because it was transferred to

the piezoelectric device.

In the next sections, we analyzed the influence of

the external frequency in order to verify the amount of

harvested energy and the range of the external

frequency, which occurs the energy transfer and

saturation phenomena. In addition, the linear piezo-

electric coefficient, nonlinear piezoelectric coeffi-

cient, and the influence of the amplitude of the

external force were analyzed in order to verify the

amount of energy harvested.

Therefore, the next section shows some analysis the

influence of the external force frequency.

3 Frequency of the external force

A careful look at the governing equations of motion

[Eqs. (14), (15) and (16)] we may see that the system

has a limited number of parameters to study. However,

some parameters are important to improve the energy

harvesting of the considered system. The study of the

influence of these parameters is the most important

feature of this work.

The frequency of the external force is a parameter,

which has a great influence on the energy harvesting

from the system, because of saturation and energy

transfer phenomena. When the vibrating system is set

with 2:1 internal resonance, there will be a range of

values that occurs both phenomena and, consequently,

it will be possible to harvest energy from the

piezoelectric material coupled to the column of the

portal frame. Thereby, a parametrical analysis of the

frequency of the external force related to the average

2588 Meccanica (2017) 52:2583–2602
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power is carried out, using the parameters of the

Table 1 and adopting linear piezoelectric coefficient

h ¼ 0:3 and neglecting the nonlinear contribution.

Figure 3 shows the analysis of the frequency

related to de average power. As expected, there is

energy harvesting when the external force frequency is

in a range where saturation phenomenon occurs. This

range goes from, approximately, 144 to 151.2 rad/s, as

shown in Fig. 3a. Analyzing Fig. 3b, we verify that

this dimensional range represents the dimensionless

range, which goes from, approximately 1.946 to 2.044.

As the condition to saturation phenomenon happens is

x2 ¼ Xþ r, in Fig. 3b we can see the detuning factor

actuating at this condition, and conclude that there is

an internal resonance 2:1 as x2 ¼ 2x1. In addition, the

maximum harvested power is obtained when fre-

quency is X ¼ 2:041, that is, at steady state, 38.96,

approximately.

In order to study the global dynamic of the system, a

bifurcation diagram is built for the external force

frequency. Figure 4a shows a bifurcation diagram of

the sway mode, and note that, for the same range of the

frequency values (1.946–2.044) in Fig. 3b, the satu-

ration occurs. Besides, it is possible to observe a

Fig. 2 Energy percentage of the sway mode (red line),

symmetric mode (black line) and electrical energy (blue line).

a Full time with xn ¼ 100 rad/s. b Steady state with

xn ¼ 148 rad/s. c Steady state considering linear piezoelectric

coefficient h ¼ 0:3 and xn ¼ 148 rad/s; average instantaneous

energy percentage of the sway mode (red line), symmetric mode

(black line) and electrical energy (blue line). d With

xn ¼ 100 rad/s. e With xn ¼ 148 rad/s. f Considering linear

piezoelectric coefficient h ¼ 0:3 and xn ¼ 148 rad/s. (Color

figure online)

Fig. 3 Frequency of the external force versus average harvested

power. a Dimensional frequency. b Dimensionless frequency
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changed behaviour of the sway mode, i.e., when

saturation phenomenon takes place, the portal frame

system becomes period-2. Figure 4b shows a bifurca-

tion diagram of the first symmetric mode. We observe

that, in the same range of the frequency values (red

area 1), its behaviour also becomes period-2.

As the range of the frequency to have the saturation

phenomenon is known, the next section will show the

contribution of the piezoelectric coefficient, in order to

see the amount of harvested energy.

4 Piezoelectric coupling

The piezoelectric device, as commented before, was

coupled to one of the columns of the portal frame. It

will be used as a means of energy transduction through

the vibration of the column, because of saturation

phenomenon. However, the piezoelectric material

possesses different values of piezoelectric constants.

In this section, these constants will be analyzed in

dimensionless form to obtain its influence on amount

of harvested power by varying it.

The material is considered as a nonlinear device,

considering its relations as �dðx1Þ ¼ hð1 þHjx1jÞ,
where h is the linear coefficient and H is the nonlinear

coefficient, as showed in modelling section. In the

following, some analysis of the linear and nonlinear

piezoelectric coefficients were discussed.

4.1 Linear piezoelectric coupling

Starting in this subsection, the case of the sole linear

piezoelectric coefficient is carried out.

Firstly, saturation phenomenon will not be consid-

ered in order to compare the amount of power when

there is saturation. Then, setting the external force out

of resonance, for example xn ¼ 100 rad/s

ðX ¼ 1:1315Þ, the linear piezoelectric coupling is h ¼
0:3 and the nonlinear H ¼ 0 and considering the other

parameters of the Table 1, numerical simulations were

performed.

Figure 5a shows the time histories of the two

modes, and it is possible to see that there is no energy

transfer between the two modes. Figure 5b shows the

almost motionless amplitude of the sway mode.

Hence, it will has a little amount of harvested power,

due to this almost motionless movement. We can see,

too, the periods of the two modes without saturation

phenomenon. Figure 6a shows a superposition of the

Poincare map (the red dot) and the phase plane for the

sway mode and we may observe that this mode has

period-1. Figure 6b shows a superposition of the

Poincare map (the red dot) and the phase plane for the

symmetric mode and we observe that this mode has

period-1 too. That is interesting to the maintaining of

the energy harvesting because the system is periodic.

Figure 7a shows the time history of the harvested

power. Because of the almost motionless movement of

the sway mode, we verified a low harvested power,

remembering that is due to the fact that the piezoelec-

tric ceramic bar is coupled to the columns of the portal

frame. Figure 7b shows the average power in the red

line at steady state that is approximately only

7:7 � 10�7.

Next, saturation is considered setting the external

frequency as x2 ¼ xn ¼ 148 rad/s ðX ¼ 2:0Þ (the

symmetrical mode natural frequency), which is one of

the conditions of the phenomenon. As discussed

before, partial vibration energy will be transferred to

the column, improving the energy harvesting.

Fig. 4 Bifurcation diagram of the coordinates related to the

varying of the external force frequency. a Sway mode.

b Symmetric mode
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Figure 8a shows the saturation phenomenon and

energy transfer from the first symmetric mode to the

sway mode. Figure 9a, b show the Poincare maps of

the two modes of the system. Figure 9a indicates that

the sway mode with saturation has period-2 and

Fig. 9b shows that the symmetric mode is period-2

too, at steady state. Thus, energy harvesting is

possible. In Fig. 8b we observe that there is a lot

more harvested power than in Fig. 7 where saturation

does not actuate. The red line in Fig. 8b shows the

average power at steady state to be approximately

31.37. We can see a great improvement of energy

harvesting in the system from approximately 7:7 �
10�7 to 31.37 harvested power, but less energy than in

the case of ðX ¼ 2:041Þ, which the average harvested

power is 38.96.

As linear piezoelectric coefficient was presented, in

the next topic will be discussed the influence of the

nonlinear piezoelectric coefficient in the behaviour of

the vibrating system and in the energy harvesting.

4.2 Nonlinear piezoelectric coupling

The nonlinear piezoelectric coupling has relevant

contributions to the system, but it depends on the value

of the linear piezoelectric coupling. This coupling

makes the system comes close to a real moviment of

the system coupled to the piezoelectric material, so

that we can simulate a real problem. Looking at the

relation of piezoelectric coefficient, the nonlinear

Fig. 5 a Time histories of the two modes. b Approximation of the sway modes curve, xn ¼ 100 rad/s, h ¼ 0:3, H ¼ 0

Fig. 6 a Poincare map (red dot) and phase plane for the sway

mode at steady state. b Poincare map (red dot) and phase plane

for the symmetric mode at steady state, xn ¼ 100 rad/s,

h ¼ 0:3, H ¼ 0. (Color figure online)

Fig. 7 Time history of the power harvested in signs (black line) and average (red line). a Transient state. b Steady state, xn ¼ 100 rad/

s, h ¼ 0:3, H ¼ 0. (Color figure online)
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coefficient is the angular coefficient of strain curve

adjustment of the piezoelectric material. It goes from

zero (0) to one (1). To access what happens to the

system with the nonlinear coefficient, an analysis of its

two parameters in relation to the harvested power was

carried out.

First, a parametrical analysis of the linear piezo-

electric coefficient neglecting the nonlinear part

versus power was performed seeking the maximum

and minimum amounts of power. Figure 10a shows

the parametrical analysis of the linear piezoelectric

coefficient with H ¼ 0. The value of the linear

coefficient, which gives the maximum average power,

is h ¼ 0:423.

In order to see what happens to the behaviour of the

system varying this parameter, a bifurcation diagram

was built. Figure 10b shows a bifurcation diagram of

the linear piezoelectric coefficient related to the sway

mode with H ¼ 0. The behaviour of the sway mode

from h � 0 to h � 0:446 is period-2. After that, the

systems movement continue to be period, but tends to

get unstable near h ¼ 0:454. Figure 10c shows a

bifurcation diagram of the linear piezoelectric coeffi-

cient related to the symmetric mode with H ¼ 0. The

same periodic behaviour continues and also period-2

to the same range of values of the linear piezoelectric

coefficient.

Next, a parametrical analysis of the nonlinear

piezoelectric coefficient related to the average har-

vested power at steady state was validated, consider-

ing the value of maximum power of the linear

coefficient, which is h ¼ 0:423. Figure 11a displays

this analysis keeping the linear piezoelectric coeffi-

cients value when the average power is maximum

(h ¼ 0:423. It shows that the maximum value of the

average power corresponds to the nonlinear piezo-

electric coefficient H ¼ 0. Higher the value of the

nonlinear coefficient until H ¼ 1, lower will be the

average harvested power. A bifurcation diagram to the

nonlinear piezoelectric coefficient related to the sway

mode and symmetric mode is shown in Fig. 11b, c,

respectively. They show that the system continue to be

period-2.

Now, we analyzed the influence of the nonlinear

piezoelectric coefficient in the system through time

histories of the displacements and Poincar maps.

Considering the found values of the piezoelectric

coefficients, that are h ¼ 0:423 and H ¼ 1, we showed

the harvested power with saturation phenomenon and

how the system behaves in the next figures.

In the case of the sole linear piezoelectric coupling

with maximum average power value (h ¼ 0:423 and

H ¼ 0). Figure 12a shows the time history of the two

modes and we can observe the system behave like the

system of Fig. 8. It has the energy transfer in the

beginning and get the steady state after that. Fig-

ure 12b shows the harvested power with transient and

Fig. 8 a Time histories of

the two modes. b Time

history of the power

harvested, xn ¼ 148 rad/s,

h ¼ 0:3, H ¼ 0

Fig. 9 a Poincare map (red dots) and phase plane for the sway

mode at steady state. b Poincare map (red dots) and phase plane

for the symmetric mode at steady state, xn ¼ 148 rad/s,

h ¼ 0:3, H ¼ 0. (Color figure online)
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steady state (black sign) and the average harvested

power (red line). The red line shows that the average

power at steady state is 50.80, approximately. The

Poincare maps of Fig. 13a, b show that the system

keeps to be period-2.

Next, we will consider the contribution of the

nonlinear piezoelectric coefficient on the system

behaviour, using the value H ¼ 1. Figure 14a shows

how saturation behaves with the nonlinear piezoelec-

tric coefficient H ¼ 1. This should be compared to

Fig. 12a.

Figure 15a, b show the Poincare maps of the

system, and we see that the behaviour continues to be

period-2 in the two modes as predicted in bifurcation

diagrams in Fig. 11b, c.

Figure 14b shows the harvested power with tran-

sient and steady state. We can see that there are less

harvested power in comparison to Fig. 12b. The red

line shows the average harvested power of the system,

and the value now is approximately 10.78, lower than

the linear case (50.80).

Fig. 10 Linear piezoelectric coefficient analysis. a Parameter versus average harvested power. b Bifurcation diagram related to the

sway mode. c Bifurcation diagram related to the symmetric mode

Fig. 11 Nonlinear piezoelectric coefficient analysis. a Parameter versus average harvested power. b Bifurcation diagram related to the

sway mode. c Bifurcation diagram related to the symmetric mode

Fig. 12 Time histories of the case of the sole linear

piezoelectric coefficient. a Displacements of the two modes. b
Harvested power, xn ¼ 148 rad/s, h ¼ 0:423, H ¼ 0
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The contribution of the nonlinear piezoelectric

coefficient will depend on the value of the linear

piezoelectric coefficient. It can be positive or

negative. A good way to see the influence of the

nonlinear piezoelectric coefficient on the harvested

power is analyzing the results of Fig. 16. With the

nonlinear piezoelectric coefficient, we can observe

how the system will behave similar the real and

having a good improve on the harvested power.

Figure 16 allows some conclusions about the

studied influence of the nonlinear piezoelectric

parameters on the harvested power. We can see

that in the acceptable interval of the linear

piezoelectric coefficient, that is 0� h� 0:408,

power has a little gain increasing the nonlinear

piezoelectric parameter up to H ¼ 1. When

h[ 0:409, power decreases with the nonlinear param-

eter up to H ¼ 1. Table 2 shows a brief explanation of

the Fig. 16.

Following of the previous analysis of the

piezoelectric parameters, Fig. 17 show the influ-

ence of varying the parameters in 20% around h ¼
0:3 and H ¼ 1, to see the sensibility of the parameters.

The average power changes very slowly, then the

system does not change suddenly its harvested power,

then we can predict how much gain of power the

system will have depending on the piezoelectric

parameters.

With all the analysis of the piezoelectric coeffi-

cients, frequencies and energy transfers, in the next

section, will be discussed an important issue to the

energy harvesting, that is the amplitude of the external

force.

Fig. 13 Poincare map (red dots) and phase planes (black line)

of the case of the sole linear piezoelectric coefficient. a Related

to the sway mode at steady state. b Related to the symmetric

mode at steady state, xn ¼ 148 rad/s, h ¼ 0:423,H ¼ 0. (Color

figure online)

Fig. 14 Time histories of the case of the sole linear

piezoelectric coefficient. a Displacements of the two modes. b
Harvested power, xn ¼ 148 rad/s, h ¼ 0:423, H ¼ 1

Fig. 15 Poincare map (red dots) and phase planes (black line)

of the case of the sole linear piezoelectric coefficient. a Related

to the sway mode at steady state. b Related to the symmetric

mode at steady state., xn ¼ 148 rad/s, h ¼ 0:423, H ¼ 1.

(Color figure online)

Fig. 16 Analysis of the nonlinear piezoelectric coefficient

versus linear coefficient versus average power; a surface, b
coloured contour of the surface. (Color figure online)
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5 Influence of the amplitude of the external force

on the energy harvesting

The amplitude of the external force is also, of course, a

parameter which has a foremost influence on the

energy harvesting of the system. The higher the value

of the force, the higher will be the energy harvesting.

The next simulations were used parameters of the

Table 1, except for the force which will be varied.

Adopting linear piezoelectric coefficient h ¼ 0:3,

nonlinear piezoelectric coefficient H ¼ 0 and the

external force frequency as xn ¼ 148 rad=s

ðX ¼ 2:0Þ.
First, it is important to study the behaviour and

stability of the vibrating system related to the

increasing of the amplitude of the external force.

However, the initial conditions has a great influence of

the system. According to some values of the initial

conditions, it will have a few limited values of the

amplitude to be considered. Then, Fig. 18a shows a

surface which varied the initial velocity conditions of

the sway mode with the amplitude related to the

maximum displacement. The analysis through the

results of the surface represent the final amplitude of

the displacement at steady state of each parameter

relation, i.e., each point represents the same attractor.

The peaks of the surface means the steady state

response tends to infinite, i.e., it can cause some

damage depending on the structure’s size due to high

amplitudes of displacement. Therefore, these peaks

are considered as a unstable behaviour of the system.

Figure 18b shows the contour of the surface which

varied the initial velocity condition related to the

force. The best configuration to harvest energy with a

big interval of the amplitude is when the initial

condition of the velocity of the horizontal coordinate is

x02 ¼ 0:2273.

It is important to say that the dependence of the

initial condition is only to the variation of the

amplitude of the external force. Hence, the next

numerical simulations will be performed considering

x02 ¼ 0:2273. Next, the analysis of the amplitude of

the external force is performed related to the average

harvested power.

Figure 19 shows an analysis of the amplitude

related to the average harvested power, a dimensional

analysis (Fig. 19a) and a dimensionless analysis

(Fig. 19b), and we see, as expected, that the higher

the force amplitude, the more energy will be har-

vested. Because of the sensibility of the parameters,

the acceptable dimensional range of values of the

amplitude to this system is from F0 � 0 to

Table 2 Brief of the Fig. 16

N� h H Average power Brief explanation

1 0.401 0 48.613 Best gain of power

2 0.401 1 52.162

3 0.408 0 49.547 Less gain than before

4 0.408 1 49.882

5 0.409 0 49.677 Loss of power

6 0.409 1 48.953

Fig. 17 Analysis of the nonlinear piezoelectric coefficient

versus linear coefficient versus average power in an error of

approximately 20%; a surface, b coloured contour of the

surface. (Color figure online)

Fig. 18 Variation of the initial velocity of the horizontal

movement and the amplitude of the external force related to the

maximum displacement of the horizontal movement. a Surface.

b Contour of the surface. xn ¼ 148 rad/s, h ¼ 0:3, H ¼ 0
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F0 � 408:4 N. After that, the system gets unstable.

The same dimensional range to the dimensionless

analysis is from E0 � 0 to E0 � 0:0717. In relation to

the harvested power, the higher the external force

amplitude the higher will be the harvested power.

In a few words, Table 3 shows some values of the

average power related to the external force amplitude,

showing its influence on the energy harvesting with

only the linear piezoelectric coefficient. The ampli-

tude will be varied from 10 to 400 because, with values

of the amplitude higher than approximately 400, the

system becomes unstable. Hence, we see that the

higher the amplitude of the external force the higher

will be the maximum horizontal displacement at

steady state, the less will be the maximum vertical

displacement and the higher will be the average

harvested power, except at higher amplitudes as we

see to F0 [ 150 N, approximately, that is when the

vertical displacement begins to increase.

It is worth to study different combination of

parameters with the amplitude of the external force.

One of them is the piezoelectric coupling, because of

its directly influence on the energy harvesting. There-

fore, the next subsection discussed the combination of

the amplitude and piezoelectric parameters.

5.1 Linear piezoelectric coupling

versus amplitude

The interesting to combine the amplitude with the

piezoelectric coefficient is that both parameters are

strongly linked to the energy harvesting. Therefore,

the influence of these two parameters on energy

harvesting was validated.

The surface and its coloured contour shown in

Fig. 20a, b, respectively, present the influence of the

external force amplitude with the linear piezoelectric

coupling related to the harvested power, varying the

amplitude in the interval 0�E0 � 0:07 and the linear

piezoelectric coefficient 0� h� 0:35. We observe that

higher the amplitude higher will be the average power.

However, to low amplitudes we can observe some

decreases of power with the increasing of the linear

piezoelectric coefficient as to E0 ¼ 0:005.

In addition, there are many values that the

behaviour is unstable. It is possible to see in Fig. 20c,

which shows the contour of the variation of the

amplitude and linear piezoelectric parameters related

to the maximum horizontal displacement of the

system. The green and white spaces in the contour

represent the unstable behaviour. The unique value of

Fig. 19 External force amplitude analysis. a Dimensional

analysis. b Dimensionless analysis, xn ¼ 148 rad/s, h ¼ 0:3,

H ¼ 0

Table 3 Effect of external force amplitude (xn ¼ 148 rad/s, h ¼ 0:3, H ¼ 0)

Ext. force amplitude F0 (N) Ext. force amplitude E0 Max. hor. disp. Max. ver. disp. Average power

10 0.0018 0.0267 0.0268 3.0253

40 0.0070 0.0851 0.0261 31.3688

120 0.0211 0.1563 0.0253 105.8645

236.4 0.0415 0.2228 0.0263 213.2714

250 0.0439 0.2294 0.0266 225.7571

400 0.0702 0.2933 0.0305 362.7876
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the linear piezoelectric coefficient that there is no

instability along the 0�E0 � 0:07 amplitude’s inter-

val is when h ¼ 0:3 (red line in Fig. 20c), the default

linear piezoelectric coefficient used in this work.

Besides, the piezoelectric material contains a

nonlinear contribution, which is very important to

consider. In next subsection, we will show the

influence of the nonlinear part to the combination of

the amplitude and piezoelectric coupling.

5.2 Linear and nonlinear piezoelectric coefficient

versus amplitude

The contribution of the nonlinear piezoelectric coef-

ficient is very important because it approximates to the

experimental curve of piezoelectric strain. Hence, the

next numerical simulations will show the nonlinear

contribution of the piezoelectric coefficient, consider-

ing its value fixed to H ¼ 1. Now we will observe the

most real effect of the piezoelectric material with the

increasing of the amplitude of the external force.

Figure 21a, b show a surface and a contour,

respectively, of the analysis of the amplitudes interval

0�F0 � 400 N (0�E0 � 0:07) with the initial veloc-

ity conditions interval 0� x02 � 0:3. We observe a

better description of the stable and unstable area. The

whole white space is when the system is stable. The

peaks in the surface, Fig. 21a, represents the

unstable behaviour, while the blue area represents

the stable behaviour of the system. The whole colored

space, which are in the delimited contour area,

Fig. 21b, is unstable. The interesting is that the initial

condition of Sect. 5.1, which is x02 ¼ 0:2273, and has

a stable behaviour varying the amplitude

0�F0 � 400 N, approximately, considering now the

nonlinear piezoelectric coefficient H ¼ 1, the ampli-

tude varies in a smaller interval, that is the red dotted

line in Fig. 21b.

Therefore, after the analysis of the stability con-

sidering the nonlinear contribution of the piezoelectric

material, we will consider the same initial condition

x02 ¼ 0:2273, and linear piezoelectric coefficient h ¼
0:3 to the next simulations, in order to compare the

behaviour of the system and the harvested power

considering only the case of the sole linear piezoelec-

tric coefficient (Sect. 5.1) and now considering the

nonlinear piezoelectric coefficient H ¼ 1.

Firstly, the analysis of the amplitude of the external

force related to the harvested power is performed in

Fig. 22. The stable interval of the dimensional and

dimensionless amplitude is 0�F0 � 236:4 N

Fig. 20 Analysis of the amplitude of the external force versus

linear piezoelectric coefficient versus average power neglecting

the nonlinear piezoelectric coefficient. a Surface. b Contour of

the surface; c analysis of the maximum displacement of the

horizontal movement; xn ¼ 148 rad/s, H ¼ 0

Fig. 21 Variation of the initial velocity of the horizontal

movement and the amplitude of the external force related to the

maximum displacement of the horizontal movement. a Surface.

b Contour of the surface. xn ¼ 148 rad/s, h ¼ 0:3, H ¼ 1
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(Fig. 22a) and 0�E0 � 0:0415 (Fig. 22b), respec-

tively. The harvested power has a linear gain with the

increase of the amplitude, and the maximum amount

of harvested power is 299.57.

An overview of the influence of the nonlinear

piezoelectric coefficient H ¼ 1, in the variation of the

external force amplitude is in Table 4. We observe

that, with the nonlinear piezoelectric coefficient, the

vertical displacement always increase, as the horizon-

tal displacement, and as the average harvested power.

A good way to see the influence of the nonlinear

piezoelectric coefficient is comparing Table 3 with

Table 4, carrying out some conclusions about the

energy harvesting. Table 5 shows this comparison of

the harvested power obtained with the sole linear case

(fixed h ¼ 0:3, H ¼ 0) to the nonlinear case ðH ¼ 1Þ.
The comparison n� 1 is related to low amplitudes of

the external force. When considering the case of the

sole linear piezoelectric coefficient the harvested

power is 3.0253 and considering both linear and

nonlinear piezoelectric coefficient the harvested

power is 2.9502, so we have loss of power. To high

amplitudes we have gain of power as we can see at the

comparisons n� 2–5. The most important is, the gain of

power at the highest amplitudes is very big. The

system can provide more than 80 of gain of power,

approximately.

Lastly, it was performed an analysis of the linear

piezoelectric coefficient versus the amplitude of

external force. It is important to see, in general, the

stability and the optimum harvested power of the

system, still considering the nonlinear contribution

fixed in H ¼ 1.

Figure 23 show a surface and their coloured

contours related to the analysis of the external force

versus linear piezoelectric coefficient related to the

average power and the maximum displacement of the

horizontal motion, both considering the effect of the

nonlinear piezoelectric coefficient fixed in H ¼ 1.

From the surface and its coloured contour in Fig. 23a,

b , respectively, the average power keeps increasing

with the increase of the amplitude and linear piezo-

electric coefficient. However, the peak of power is not

when the two parameters are the highest. The contour

of Fig. 23c shows the regions of stability of the

system. The behaviour of the system is unstable in all

the regions in the delimited area. Nevertheless, inside

the white space out of the delimited area is stable. The

best configuration of stable behaviour and energy

harvesting is between the red lined area. This area is

described in Table 6.

Table 6 shows the best configuration of a stable be-

haviour of the system. The amplitude of the external

Fig. 22 External force amplitude analysis. a Dimensional

analysis. b Dimensionless analysis, xn ¼ 148 rad/s, h ¼ 0:3,

H ¼ 1

Table 4 Effect of external force amplitude (xn ¼ 148 rad/s, h ¼ 0:3, H ¼ 1)

Ext. force amplitude F0 (N) Ext. force amplitude E0 Max. hor. disp. Max. ver. disp. Average power

10 0.0018 0.0259 0.0259 2.9502

40 0.0070 0.0846 0.0846 35.3240

120 0.0211 0.1564 0.1564 134.2954

180 0.0316 0.1943 0.1943 216.7544

236.4 0.0415 0.2251 0.2251 299.5666
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force and linear piezoelectric coefficient can be

linearly varied from zero (0) to the values of the

Table 6 that are the two red lines of the contour in

Fig. 23b. Between these two red lines, there is an area

of other values that are stable too. The behaviour of

this area is all periodic. Related to the average power,

the maximum amount of power provided is when we

have the highest values of the amplitude combined to

the linear piezoelectric coefficient. In this case, is

when E0 ¼ 0:0653, h ¼ 0:2654, that power is

404.0131.

We see that, with the nonlinear piezoelectric

coefficient, the system has a greater area to be

worked with stable and periodic behaviour than

neglecting the nonlinear coefficient. While the

highest amount of power of the sole linear case is

362.7876 with E0 ¼ 0:0717 and h ¼ 0:3, in the

nonlinear case the highest amount of power is

404.0131 with a smaller value of amplitude and linear

piezoelectric coefficient, which corresponds to the last

line of Table 6.

6 Conclusions

In this work, we showed the saturation phenomenon,

vibration energy transfer and the energy harvesting for

a simple portal frame structure considering a nonlinear

piezoelectric contribution. As the system is sensible to

its parameters, extensive numerical analysis was

presented. In addition, we showed the importance of

the saturation on the improvement of the energy

harvested in the system.

Still in the first section, we analyzed the energy

transfer phenomenon in different ways. Firstly we

Table 5 Comparison of harvested power neglecting and considering the nonlinear piezoelectric coefficient. Considering linear

h ¼ 0:3, xn ¼ 148 rad/s)

N� Amplitude of the

external force F0 (N)

Amplitude of the

external force E0

Nonlinear piezoelectric

coefficient H
Average power % Gain/loss

1 10 0.0018 0 3.0253 -2.48 #-
10 0.0018 1 2.9502

2 40 0.0070 0 31.3688 ?12.61 "?
40 0.0070 1 35.3240

3 120 0.0211 0 105.8645 ?26.86 "?
120 0.0211 1 134.2954

4 180 0.0316 0 161.3566 ?34.33 "?
180 0.0316 1 216.7544

5 236.4 0.0415 0 213.2714 ?40.46 "?
236.4 0.0415 1 299.5666

Fig. 23 Analysis of the amplitude of the external force versus

linear piezoelectric coefficient versus average power neglecting

the nonlinear piezoelectric coefficient. a Surface. b Contour of

the surface; c analysis of the maximum displacement of the

horizontal movement; xn ¼ 148 rad/s, H ¼ 1

Table 6 Best stable configuration of amplitude versus linear

piezoelectric coefficient (with H ¼ 1)

E0ðF0(N)) h Average power

0.06812 (387.9510N) 0.2138 276.7696

0.0653 (371.8908N) 0.2654 404.0131
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considered just the two modes of vibration of the

structure, then the piezoelectric material coupled to

the columns. We could see the energy transfer

phenomenon when there is saturation phenomenon,

and also there is energy transferred to the piezoelectric

coupling.

The frequency of the external force is a fundamen-

tal factor in order to the saturation phenomenon occurs

and to the system keeps periodic. We showed a range

of frequency values that the saturation occurred and

some of those values can improve the energy harvest-

ing. Table 7 represents a resume of the external force

frequency topic.

Following the frequency analysis, the piezoelectric

analysis was performed in order to harvest energy

from the vibration of the columns. We observed that it

was obtained great values and gains of power. The

behaviour of the system kept periodic and it was able

to harvest energy.

After, nonlinear piezoelectric coefficient was con-

sidered, fixed at H ¼ 1, in order to see its influence to

the energy harvesting. To the case of the frequency

analysis, it was observed gains and losses of power, it

will depend on the linear piezoelectric coefficient.

Table 8 shows values of the linear piezoelectric

coupling combining to the nonlinear piezoelectric

coupling, resuming the entire frequency analysis

topic.

In the section of the amplitude of the external force

analysis, it was an extended section because its

importance for the energy harvesting. As expected,

the higher the amplitude, the higher the energy

harvesting. However, the system can easily become

unstable depending on the initial conditions. With

different initial conditions, there was a different one

which the system could use a great range of amplitude

without become unstable, that was x02 ¼ 0:2273. The

new initial condition provided an improvement to the

energy harvesting because the system was opened to

high values of the amplitude as we showed in the topic.

Although, varying the linear piezoelectric coefficient,

we could see that at low amplitudes, higher the linear

coefficient, lower the harvested power.

After that, the analysis of the amplitude considering

the nonlinear piezoelectric contribution was per-

formed in order to see its influence in the energy

harvesting. The same analysis of stability was per-

formed too, showing that there was a greater gamma of

variation of amplitude with linear piezoelectric coef-

ficient related to the average power. Also, we could see

the influence of the nonlinear coefficient to the amount

of harvested power. We observed a great improvement

Table 7 Resume of external force frequency topic

Saturation phenomenon External force frequency Average harvested power

�ð2x1 ¼ x2 6¼ XÞ 100 rad/s (X ¼ 1:1315) 7:7702 � 10�07

?ð2x1 ¼ x2 ¼ XÞ 148 rad/s ðX ¼ 2:0Þ 31.3688

?ð2x1 ¼ x2 � Xþ rÞ 152 rad/s ðX ¼ 2:044Þ 38.7119

Table 8 Resume of the

piezoelectric couplings

topic

Linear coupling h Nonlinear coupling H Average harvested power Gain/loss

0.001 0 0.0024 "?
1 0.0029

0.3 0 31.3688 "?
1 35.3240

0.409 0 49.677 #-

1 48.953

0.423 (max. linear stable) 0 50.7971 #-

1 10.7774
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of the harvested power from the system. In general, the

resume of the last section is in Table 9.
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