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A B S T R A C T

In the last years, the Brazilian Fuel Quality Monitoring Program drastically reduced the number of analyzed fuel
samples as consequence of the current economic crisis in the country. The impoverishment of the monitoring
program may lead to an increase in cases of gasoline adulteration, nonetheless, it also strengthens the search for
faster and less costly methodologies for the fuel quality monitoring. Thus, this study aimed the development of a
rapid analytical method to detect the adulteration of gasoline with organic solvents through ultra-fast gas
chromatography with flame ionization detector (UFGC-FID) associated with the supervised pattern recognition
method, Partial Least Square Discriminant Analysis (PLS-DA). The sample set consisted of 171 Brazilian common
gasoline (i.e., with ethanol in its composition) and 171 adulterated gasoline prepared in laboratory using 19
different solvents in the concentration range of 2–10% (v/v). The chromatographic method required only
2.85 min and the chromatograms presented 125 peaks on average. The PLS-DA model was developed with 3
latent variables and provided correlation coefficients close to 0.99 and correct discrimination of 100% of cali-
bration and validation samples. Therefore, the developed UFGC-FID/PLS-DA method provided a sensitive, fast
and automated alternative method for the detection of adulterants in the monitoring of gasoline quality.
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1. Introduction

Brazil has experienced the biggest recession in its history and sev-
eral sectors of production and services were inevitably affected by the
economic crisis [1]. In 2015, the Fuel Quality Monitoring Program
(PMQC) was also subject to budget cuts and, as consequence, the
number of fuel samples analyzed per year reduced by 80% [2]. In the
same year, the number of non-conforming samples, i.e. samples with
physicochemical parameters outside the specifications regulated by the
National Petroleum Agency (ANP), increased 0.7%, which is the largest
increase since the appearance of the PMQC [3].

The composition of gasoline has great importance in engine per-
formance and the emission of pollutants [4]. Gasoline is a complex
mixture consisting mainly of paraffinic, olefinic and aromatic hydro-
carbons ranging from 4 to 12 carbon atoms and, in a lower con-
centration, substances containing oxygen and sulfur [5]. The final
composition of the gasoline depends on several factors such as the
nature of the crude oil, the process that was used to obtain it, the
presence of additives (detergents, dispersants, octane improvers, etc)
and the local legislation that specifies the maximum content of me-
thanol, benzene, sulfur, aromatic and olefin hydrocarbons [6,7]. In
Brazil, anhydrous ethanol is a mandatory additive to replace tetraethyl
lead in gasoline composition [6,8] and its concentration varies between
20% (v/v) and 27% (v/v) according to economic and production factors
[6,7,9].

Unfortunately, reducing fuel monitoring provides greater opportu-
nities for illegal adulteration of gasoline. Due to the complexity of ga-
soline composition, several miscible solvents can be added to this fuel
without causing major changes in its physicochemical properties
[10,11]. The gasoline adulteration is commonly practiced using low-
cost solvents, such as kerosene, white spirit, naphtha, thinner, rubber
solvent, or lower-value fuels such as diesel and ethanol, however, the
use of hexane, toluene, and xylenes has also been reported by authors
[6,12,13]. Therefore, an effective quality control of commercial gaso-
line is highly necessary for today's economic scenario, since the addi-
tion of these compounds or mixtures to gasoline can lead to engine
malfunction, increase in fuel consumption, tax evasion, and environ-
mental damage caused by the intensification of CO and NOx emissions
[12–15].

The quality of the gasoline can be verified by several routine tests.
For example, distillation curves may reveal whether the gasoline has
been adulterated with higher or lower boiling solvents. According to
Takeshita et al. (2008) [6], the presence of only 2% (v/v) of diesel fuel
in gasoline composition can be easily detected by the final boiling point
(FBP) of the distillation curve. However, a sample of gasoline can
present non-conform results even without the addition of adulterants,
as well as being adulterated and presenting physicochemical para-
meters within specifications [16,17]. For this reason, the ANP invested
in the strategy of adding an isotopic marker to the solvents that are sold
in Brazil [12]. If the gasoline sample presented the marker in the result
of the official gas chromatographic (GC) method, the adulteration of
gasoline was done with some type of solvent [10]. Although the marker
monitoring has been an efficient methodology, insertion of new mar-
kers periodically into the solvent market requires large financial re-
sources and, additionally, the marker detection is a laborious process
since chromatographic analysis requires about 20min per sample
[10,12,17].

Many researchers have dedicated efforts to develop alternative
methods to improve the gasoline quality monitoring. Many of these
methods are based on spectroscopic techniques, such as FTIR
[9,14,17–19], NIR [9,20,21], HS-MS [5,20], NMR [22–24], Raman
[25,26], or GC methods [11,12,16,27–33] associated with chemometric
techniques. However, few studies are devoted to detecting adulterants
in gasoline through alternative methods [12,14,16–18,27,34]. Tanaka
et al. (2011) [34] attempted to discriminate adulterated and un-
adulterated samples using the gasoline physicochemical parameters,

such as atmospheric distillation temperatures, research octane number
(RON) and composition, however, the SIMCA model correctly classified
only 77.1% of the prediction samples. The FTIR/LDA method devel-
oped by Pereira et al. (2006) [17] was able to correctly classify 96% of
adulterated samples with four different solvents (kerosene, thinner,
light and heavy naphtha). The FTIR/SIMCA method of Teixeira et al.
(2008) [14] obtained satisfactory results with correct discrimination of
100% of samples adulterated with diesel, kerosene, turpentine, and
thinner, in the concentration range of 0–50% (v/v). Skrobot et al.
(2005, 2007) [16,27] carried out two studies on the identification of
adulterants (thinner, kerosene, light and heavy naphtha) in gasoline
using gas chromatography with flame ionization detector (GC-FID)
combined with unsupervised (HCA and PCA) and supervised (KNN and
LDA) pattern recognition methods. The GC-FID analysis required
75min for each sample and the supervised methods presented low
sensitivity (89.3%), therefore, the method was unsuitable for routine
quality monitoring [16,27]. Pedroso et al. (2008) [12] developed a
sophisticated method for quantifying adulterants (white spirit, kero-
sene, and paint thinner) using comprehensive two-dimensional gas
chromatography with flame ionization detection (GC×GC-FID) and
second-order multivariate calibration (multi-way partial least squares
regression, N-PLS). The second-order data obtained from 40min chro-
matographic analyses resulted in models with accuracy (RMSEP)
ranged from 3.3% (v/v) to 8.2% (v/v), depending on the adulterant. In
this study, no pattern recognition models were developed to detect the
presence of adulterant prior to quantification [12].

The use of fast, automated and accurate methods for the routine
analysis of fuel quality is crucial for the improvement of monitoring
programs since there is a reduction in the consumption of analysis time,
expenditures on inputs and manual labor. In this perspective, this paper
proposes an analytical method for detection of several adulterants in
gasoline using ultra-fast gas chromatography with flame ionization
detector (UFGC-FID) associated with a supervised pattern recognition
method, Partial Least Square Discriminant Analysis (PLS-DA).

2. Material and methods

2.1. Samples

The gasoline samples used in this work were acquired from a la-
boratory specialized in fuel analysis, Cempeqc (Center for Monitoring
and Research of the Quality of Fuels, Biofuels, Crude Oil and
Derivatives), which collects fuel samples in the state of São Paulo,
Brazil. From 424 analyzed samples of gasoline, we selected 171 samples
to construct a representative sample set of conforming and non-
conforming gasoline. Since the physicochemical parameters may be out
of specification even without the adulteration of gasoline, it was im-
portant to use a substantial number of nonconforming samples to avoid
false positives after modeling. The physicochemical parameters of the
171 selected samples and the number of nonconformities are shown in
Table 1.

Since the detection of low concentrations of solvent in gasoline is
the greatest challenge for conventional methods [15], the adulterated
samples set was prepared by adding solvents to the selected gasoline
samples in the concentration range of 2–10% by volume. The adul-
teration was carried out with hydrocarbon (7 aliphatics; 5 aromatics; 1
cyclic; and 5 mixtures of hydrocarbon groups) and oxygenated (ether
and dialcohol) solvents (Table 2). Nine samples were prepared using
each solvent, totaling 171 adulterated samples.

2.2. Ultra-fast gas chromatographic analysis

Chromatograms of the 342 samples were obtained using an ultra-
fast gas chromatograph (UFGC), Trace GC Ultra (Thermo Scientific),
equipped with a direct resistive heating module, split/splitless injector,
and high-frequency FID (300 Hz). The capillary chromatographic
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column used for separation was a Thermo Scientific PH5 (5% phenyl;
95% dimethylpolysiloxane, 5m×0.10mm id× 0.40 μm) surrounded
by a resistor to provide high heating rates. The samples were injected
by an AS3000 autosampler with a 5 μL syringe and the injection volume
was 0.1 μL. The temperature of the injector and the detector were set at
270 °C. The flow of the gases used by the detector were 45mLmin−1 for
hydrogen, 30 mLmin−1 for nitrogen (make-up gas), and 350mLmin−1

for synthetic air. Hydrogen was used as carrier gas due to the high
diffusion coefficient and its flow was kept constant at 0.5 mLmin−1. As
the samples were not diluted in any solvent prior to injection, the split
rate used was 1:500. The column temperature programming started at
40 °C, held for 0.60min, and raised at a rate of 100 °Cmin−1 to 250 °C,
maintained for 0.15min. The chromatographic analysis time was
2.85min per sample.

2.3. Chemometric analysis

The data were collected using ChromQuest software (Thermo
Scientific) and then transferred to Matlab 2013a (Mathworks) with PLS
toolbox 7.3.1 (Eigenvector Research Inc.), where the alignment and

chemometric analyses were performed using a Windows 8 PC running
on an Intel Core i7 3632QM 2.20 GHz processor with 8.0 Gb of RAM.
The obtained chromatograms were exported as vectors for the modeling
and, as the data acquisition rate was about 10 points per second, each
chromatogram consisted of 1711 variables. Thus, the combination of all
vectors resulted in a 342 × 1711 data matrix.

The first step prior to modeling was the alignment of the chroma-
tograms. The displacements of the peaks were corrected using the
Correlation Optimized Warping (COW) algorithm [35]. Firstly, the
alignment requires a reference chromatogram containing peaks which
show a relatively consistent maximum. The algorithm searches for
peaks in the mean chromatogram by identification of positions with a
clear inflection point as a peak maximum [36]. Then, the chromato-
grams are divided into windows, which are aligned with the respective
reference chromatogram windows. The size of the chromatograms will
be extended or compressed according to the defined slack and, finally,
the number of points of each window will be equalized to the reference
window [35]. Different values for the slack and window size parameters
were tested and evaluated visually to provide the best alignment.

After the correction of peak displacement, the samples were divided
into a calibration set (230 samples) for the development of the multi-
variate model and validation set (112 samples) to test the model. The
Onion algorithm was used to select the samples with less covariance
(based on distance from the mean) for each set and, consequently, to
obtain greater sample representativeness in both sets [37,38]. The 1:1
ratio of unadulterated and adulterated samples was maintained at ca-
libration and validation.

From the premise that gasoline samples are composed mainly of
hydrocarbons in the range of C6–C12 [39] and that the compounds
have different response factors using FID [40], the data were autoscaled
prior to modeling to equalize the impact of all variables [41].

The Partial Least Square Discriminant Analysis (PLS-DA) was used
to develop the pattern recognition model. The PLS-DA is based on the
PLS algorithm, however, it uses the encoded classes as dependent
vector, y, rather than continuous numbers such as the concentration of
an analyte [42]. The PLS method maximizes the relationship between
the dependent variable and the scores and, consequently, the latent
variables (LV) represent the directions that best discriminate the
classes. When the application involves discrimination of only two
classes, the PLS1 method is employed. In this paper, we labeled the
classes as −1 (unadulterated) and +1 (adulterated) to center the va-
lues of y, making the algebraic derivations simpler, and the threshold

Table 1
Physicochemical parameters of the gasoline samples, the number of nonconformities and specifications of ANP Regulation 40/2013.

Parameter Method Unit Specification Gasoline samples set

min max average standard deviation nonconforming samples

Relative density D1298 g cm−3 not specified 0.7128 0.7765 0.7430 0.0075

Distillation curve
10% evaporated D86 °C 65.0, max. 46.3 60 53.9 1.6
50% evaporated °C 80.0, max. 69.5 74.3 72.1 0.9
90% evaporated °C 190, max. 134.6 180.9 158.8 6.9
Final boiling point °C 215, max. 168.8 265.6 202.4 8.7 8
Residue % v/v 2, max. 0 1.7 0.9 0.3

Octane number
Motor octane number Correlation to D2699

D2700
– 82, min. 81.4 84.4 82.4 0.4 7

Research octane number – not specified 89.1 101.6 96.7 1.5
Anti-knocking index – 2, min. 86.2 92.1 89.6 0.8 1

Composition
Benzene Correlation to D1319 % v/v 1.0, max. 0 0.6 0.4 0.1
Saturates % v/v not specified 37.7 76.1 48.2 5.9
Olefins % v/v 25, max. 0 22.6 12.5 4.7
Aromatics % v/v 35, max. 8.5 26.3 14.7 2.3

Anhydrous ethanol D5501 % v/v 25 ± 1 22 31 25.2 1.6 55

Table 2
Solvent used in adulterated gasoline sample set.

Classification Solvent

Hydrocarbon Aliphatic Light aliphatic DT solvent (Carbosolv)
Light aliphatic SB solvent (Carbosolv)
Medium aliphatic AD solvent (Carbosolv)
Solvent A-4070 (Carbosolv)
n-heptane 99.5% P.A (Vetec Química Fina)
n-hexane 95% P.A (Vetec Química Fina)

Aromatic Aromatic solvent AB-9 (Carbosolv)
Benzolum crystallisabile (ECIBRAS)
Toluene 99,9% P.A. (J.T. Baker)
Xylol 98% P.A. (Vetec Química Fina)
Ethylbenzene 99,8% P.A. (Acros Organic)

Cyclic Cyclohexane 99% P.A. (Vetec Química Fina)
Mixture White spirit (Thinsol Química)

Halogen free solvent (Carbosolv)
Rubber solvent
Heavy naphtha
Kerosene

Oxygenated Ether Ethyl ether (Isofar)
Dialcohol Ethylene glycol 99,5% P.A. (Carlo Erba)
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probability value was set at 50%. The number of LV was chosen based
on root mean square errors of cross-validation (RMSECV) values of the
two classes in order to minimize the prediction errors and avoid model
overfitting [43,44]. More details on PLS-DA method can be found in the
Ref. [42].

3. Results and discussion

3.1. Samples

According to the PMQC statistics, between 2007 and 2016, the
average of nonconforming samples in the country was equal to 1.7%
and the main nonconformities were related to the content of anhydrous
ethanol (41%), distillation temperatures (31%), and octane number
(11%) [3]. In this work, the sample set consisted of 38% of non-
conforming samples and the nonconformities were 1% related to anti-
knock index, 10% to motor octane number, 11% to final boiling point
and 77% to anhydrous ethanol content. The selection of many non-
conforming samples was due to the objective of this work, which is to
identify the presence of adulterants regardless of the sample con-
formity. In addition, ethanol was not used as an adulterant, since 19%
of the samples used had an ethanol content above the amount specified
by the legislation. Other works found in the literature have already
shown the possibility of discriminating gasoline samples according to
conformity through GC-FID [30] or mid-infrared [19] combined with
the chemometric techniques, therefore, it was not the focus of the
current paper.

3.2. UFGC-FID analysis

3.2.1. Chromatographic separation
The main reason for the use of gas chromatography in solvent de-

tection by the marker method is to obtain the information of individual
compounds in gasoline [20,23]. However, a proper identification of the
marker requires a good chromatographic resolution, which is not an

easy task since gasoline is a mixture of hundreds of compounds. A good
separation of the gasoline compounds by conventional GC requires a
long analysis time, thus the detection of solvents in gasoline becomes a
costly process [23]. Since the UFGC system uses smaller columns with
reduced internal diameter and resistive heating system, the chromato-
graphic analyses are much faster than conventional GC and provide
satisfactory resolutions [45]. Unlike the detection of solvents in gaso-
line by the marker method, chemometric tools allows the adulteration
detection through the whole chromatogram, that is, there is no need for
high-resolution [33].

The analyzed samples presented an average of 125 chromatographic
peaks, i.e., many gasoline compounds were not separated by the de-
veloped UFGC method since gasoline typically has more than 230
compounds [47]. Nevertheless, the class discrimination can be per-
formed by pattern recognition methods even when there is no high
chromatographic resolution. Therefore, a satisfactory separation of the
gasoline compounds for the classification model could be achieved in
only 2.85min through the UFGC-FID.

3.2.2. Peak alignment
Variations in the retention time of the analytes are very common to

occur in chromatographic analyses due to oscillations of instrumental
parameters such as pressure, temperature, and gas flow [46]. Thus, the
application of pattern recognition or regression methods is highly de-
pendent on peak alignment. The peak alignment was performed by the
COW algorithm and the mean chromatogram was taken as reference.
Different values of COW parameters were evaluated, and the best
alignment was obtained using slack and window size equal to 5 and 10,
respectively.

3.2.3. Comparison between class chromatograms
To evaluate the main differences between the chromatograms of

adulterated and unadulterated samples, the mean chromatogram of
each class was obtained, and the standard deviation of the means was
calculated (Fig. 1). The standard deviation of the means of the classes

Fig. 1. Means of the chromatograms of the adulterated samples and of the unadulterated samples and the standard deviation of the two means.
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reveals the peaks with greater difference of intensity between the
classes. The peak with the greatest difference was related to the re-
tention time of the ethanol (Fig. 1). This can be justified by the dilution
of the ethanol present in the mixture when other solvents are added to
the gasoline.

The adulteration of gasoline using pure solvents, such as benzene,
toluene, ethylbenzene and xylenes (BTEX), played an important role in
verifying the sensitivity of the developed model because these com-
pounds are important in gasoline composition and their sum may reach
up to 35% by volume [7]. The addition of pure solvents to the gasoline
resulted in the dilution not only of the ethanol but of the other gasoline
compounds. Thus, the more intense peaks of the gasoline samples
presented the highest standard deviation.

3.3. Chemometric analysis

3.3.1. Model development
The classification model was developed using the PLS-DA method

after the peak alignment by the COW algorithm. Although a 1:1 ratio of
adulterated and unadulterated samples was used in the model devel-
opment, this ratio is not a requirement to obtain a high sensitivity
model. The steps of the PLS-DA method provide an adjustment ac-
cording to the class distribution. The first step of the modeling is to
estimate the values of y by the PLS method. Thereafter, assuming the
values of y predicted have a normal distribution, the threshold value
(discriminant function) is calculated by the Bayesian method to obtain
the same prediction probability for both classes. If the number of
samples in each group is different, the threshold value is adjusted
[42,48,49]. As the classes were coded as −1 (unadulterated) and +1
(adulterated) and we used the same number of samples in each class,
the threshold was close to zero (0.018).

Autoscaling is a typical preprocessing of chromatographic data
when FID is used as detector because different compounds usually
present different response factors. In addition, autoscaling is useful to
equalize compounds with different variances of concentration [41].
However, regions of the chromatogram where there is no retention of
analytes, i.e. noisy variables for the model, are amplified using this
preprocessing. Therefore, the initial variables of the chromatograms
(between 0.00 s and 0.18 s) were excluded and the final matrix was
constituted of 1602 variables.

The number of latent variables (LV) was selected through the op-
timal values for each class to provide the minor prediction error for
both classes without generating an overfitting [44]. Fig. 2 reveals that 3
LVs is the most appropriate LV number for the modeling since the

addition of more LV does not significantly reduce the values of
RMSECV1 (unadulterated samples) and RMSECV2 (adulterated sam-
ples).

The scores plot with 3 LV (Fig. 3) shows that the classes were well-
separated in the 1st LV, which explained 55.62% of the X-Block var-
iance. The addition of the 2nd and 3rd LVs increased the distance be-
tween the groups providing a better discrimination ability to the model.

3.3.2. Model validation
The application of the alternative method in the analysis of un-

known samples depends on its accuracy and representativeness. The
accuracy of a PLS-DA model can be evaluated by the sensitivity (true
positive rate), the prediction error values and the correlation coeffi-
cients (r) [25,50]. Sensitivity equal to 100% indicates that the model
correctly classified all samples, while low prediction errors and high
correlation coefficients are indicative of how well fitted the model is.

The results in Table 3 were obtained by the cross-validation (ve-
netian blinds) and by the prediction of 112 samples (validation set) that
were not used in the model development. In both validations, the model
correctly predicted 100% of the samples and presented correlation
coefficients above 0.98. Given that the sample set consisted of 171
gasoline samples and 19 different adulterants, the developed model was
accurate representative for the monitoring of gasoline adulteration.
However, the constant addition of new samples to the prediction model
is an important practice to make the model more robust.

3.3.3. Evaluation of multivariate filters
The exclusion of the variables between 0.00 and 0.18 s resulted in a

less parsimonious modeling, but there was no significant reduction in
RMSE values and increase in correlation coefficients. To reduce RMSE
values and improve the model accuracy, multivariate filters were
evaluated as preprocessing. Multivariate filters such as Orthogonal
Signal Correction (OSC), Generalized Least Squares Weighting (GLSW)
and External Parameter Orthogonalization (EPO) aim to increase model
selectivity by reducing sources of unwanted variations or covariance
structures. Each filter has a different mathematical approach and de-
tailed information can be found in the Ref. [51–53]. Among the tested
filters, only the EPO with two principal components improved the PLS-
DA fit (rCV= 0.9878 and rpred= 0.9886), however, the increase in
correlation coefficients was not significant. Since the application of
these multivariate filters occurs in several stages, the calibration pro-
cess and the prediction of new samples requires more computational
processing and becomes more time-consuming. Therefore, we chose to
use only autoscale preprocessing and the x variables after 0.19 s, since
there was no increase in computational processing.

3.3.4. Model selectivity ratio
The selectivity ratio for Y plot is an indicative of which variables are

most important for the PLS1 discrimination. Firstly, the y values
(classes) are used as target to obtain a single predictive target-projected
through the PLS components. Then, the selectivity ratio plot is obtained
by calculating the ratio between explained and residual variance of the
x variables on the target-projected component [54]. The higher the
ratio, the greater the influence of the variable in the prediction. The
selectivity ratio plot, in Fig. 4, showed that the most important vari-
ables were related to the retention time of the ethanol peak. The se-
lectivity ratio also justifies the insignificant improvement when using
multivariate filters (OSC, GLSW or EPO) since most of the x variables
were useful in prediction. The variables after 2min did not present high
selectivity for Y, so the time of chromatographic analysis can be re-
duced by increasing the heating rate after 2min without decreasing the
performance of the model.

3.3.5. Model limitations
Although the sample set used in this study is representative in view

of the practice of adulteration of gasoline in Brazil, the classificationFig. 2. Latent variable number versus RMSECV values plot.
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model is limited to the physicochemical parameters of the calibration
samples, to the solvents used in the adulteration and to the Brazilian
gasoline composition, which has anhydrous ethanol. Changes in the
specifications of gasoline physicochemical parameters will require a
revalidation of the model. In addition, new samples should be peri-
odically added to the model to make it more robust and up-to-date with
the fuel trade.

The limitations mentioned above will be present in prediction
models independently of the instrumental technique used. In this per-
spective, the use of UFGC-FID associated to the PLS-DA method has
advantages such as speed, automation and sensitivity for the detection
of adulterants in commercial gasoline. Therefore, the method proposed
in this work is suitable for the routine monitoring of gasoline quality.

4. Conclusion

Ultra-fast gas chromatography associated with Partial Least Square
Discriminant Analysis provided a rapid and sensitive analytical method
for detecting adulterants in gasoline. Through chromatographic ana-
lyses of only 2.85min, it was possible to correctly discriminate 100% of
the adulterated samples from the unadulterated samples. The method
was sensitive to 19 different solvents in concentrations between 2 and
10% (v/v) and the discrimination ability was independent of the non-
conformities of the gasoline samples. According to the selectivity ratio
of the x variables for the prediction of Y, the time of chromatographic
analysis can be further reduced since the x variables after 2min are not

Fig. 3. Scores plot from PLS-DA model.

Table 3
Parameters of the PLS-DA model for adulterated and unadulterated gasoline dis-
crimination.

Parameter Value

Variables 1602
X block variance captured 73.77%
Y block variance captured 48.93%
Latent variables 3

unadulterated adulterated

Sensitivity (cal) 1.000 1.000
Sensitivity (CV) 1.000 1.000
Sensitivity (pred) 1.000 1.000
RMSEC 0.5096 0.5010
RMSECV 0.5072 0.5055
RMSEP 0.4990 0.5128
r (cal) 0.9893 0.9893
r (CV) 0.9871 0.9871
r (pred) 0.9883 0.9883

Fig. 4. Selectivity ratio for each variable from PLS-DA model.
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significantly useful for class discrimination. In view of the current need
to implement a fast and automated method for the detection of adul-
terants in gasoline, the method proposed here is fully adequate for the
monitoring of Brazilian gasoline quality.
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