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Abstract The present paper studies the lifetime of orbits
around a moon that is in orbit around its mother planet. In
the context of the inner restricted three-body problem, the
dynamical model considered in the present study uses the
double-averaged dynamics of a spacecraft moving around a
moon under the gravitational pulling of a disturbing third
body in an elliptical orbit. The non-uniform distribution of
the mass of the moon is also considered. Applications are
performed using numerical experiments for the Callisto–
spacecraft–Jupiter system, and lifetime maps for different
values of the eccentricity of the disturbing body (Jupiter)
are presented, in order to investigate the role of this param-
eter in these maps. The idea is to simulate a system with
the same physical parameters as the Jupiter–Callisto system,
but with larger eccentricities. These maps are also useful for
validation and improvements in the results available in the
literature, such as to find conditions to extend the available
time for a massless orbiting body to be in highly inclined or-
bits under gravitational disturbances coming from the other
bodies of the system.
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1 Introduction

The present study deals with the problem of using lifetime
maps for a qualitative study of a dynamical system that rep-
resents third-body effects in the context of the restricted
three-body problem with an inner massless body in an ec-
centric orbit. The study also intends to add the effects of
the gravitational field due to a central body with ellipsoidal
shape (J2 and C22), i.e., with a non-uniform gravitational
potential, in order to improve the analysis and make this in-
vestigation helpful for further analysis such as planning of
space missions. For practical purposes, an application of the
model which represents the physical forces mentioned pre-
viously is considered to study the motion of a spacecraft that
is assumed to be an inner body that is orbiting Callisto in
low-altitude orbits (∼100 km). Callisto is Jupiter’s fourth
Galilean moon, and it is used as the central body of our sys-
tem. The spacecraft orbiting this moon suffers the gravita-
tional pulling of Jupiter, considered as the external (outer)
disturbing body of the system. Indeed, since Jupiter is a very
massive disturbing body, the Kozai–Lidov effects appear for
orbits with high inclinations (Prado 2003), which is a dy-
namical behavior first discussed in the work of Kozai (1962)
and Lidov (1962) in the framework of the quadrupolar sec-
ular restricted three-body problem considering a massless
particle as the inner body of the system. This particle is as-
sumed to be orbiting a massive central body under the grav-
itational attraction of a massive external third body.

It is important to mention that the quadrupolar secular re-
stricted three-body problem presents two cases, which are
the inner and the outer restricted case. In the inner restricted
case, which corresponds to the dynamical architecture of
the present study, the conservation of the normal compo-
nent of the angular momentum enables the inner particle
to periodically exchange its eccentricity with inclination,
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which is known as the Kozai–Lidov mechanism. The “in-
ner” restricted three-body problem, as it is sometimes called
(Farago and Laskar 2010), is a precise approach for a dy-
namical system when the inner body has a small mass in
comparison with the other two bodies of the system (the cen-
tral and the external/outer ones). This restricted model is no
longer justified when in the presence of systems containing
higher values for the mass ratios between their three bod-
ies, which requires non-restricted models. For instance, it is
possible to mention applications in the investigation of triple
stars and triple asteroid systems (see for instance Carvalho
et al. 2016a,b; Naoz et al. 2011; Naoz 2016; Fang et al. 2011;
Prado 2014; Araujo et al. 2015). Despite not being the model
considered in the present study, it is worth to mention the op-
posite configuration, the one with a massless body orbiting a
massive inner binary system and which is called the “outer”
restricted problem (Ferrer and Osacar 1994; Farago and
Laskar 2010; Boué and Laskar 2009; Naoz et al. 2017). This
model can be used when modeling the dynamics of many
interesting problems, such as a spacecraft orbiting a binary
planetary or an asteroid system or even a planet orbiting a
binary star system (Giuliatti Winter et al. 2013; Naoz 2016).

Indeed, third-body perturbations have been object of
several studies for many decades. Kozai (1959) obtained
analytical expressions for the principal secular and long-
period terms of the disturbing function due to the lunisolar
gravitational attractions. Musen et al. (1965) expanded this
work including new terms in the disturbing function. Blitzer
(1959) estimated lunisolar disturbances due to secular terms
using methods of classical mechanics. Using the equatorial
elements of the Moon, Kaula (1962) obtained the general
terms of the disturbing function for the case of the lunisolar
perturbations. Giacaglia (1973) calculated the secular long-
and short-period terms of the disturbing body, expressed in
closed forms to eliminate the dependence on the true anoma-
lies of the perturbed and perturbing bodies. Hough (1981)
published a study considering the effects of lunisolar pertur-
bations on spacecraft orbits close to the critical inclinations
with respect to the geopotential (i = 63.4◦ and i = 116.6◦).

Later, Broucke (2003) developed a second-order theory
based on double-average techniques, extended by Prado
(2003) to the fourth order. Other work that is worth to be
checked is by Scheeres et al. (2001), Domingos et al. (2008)
and Liu et al. (2012). They have considered this issue in or-
der to develop approximated expressions for the third-body
potential in order to get models that can represent full mod-
els, which would require numerical integrations with a good
level of accuracy. These more recent papers have usually
taken advantage of averaging techniques to study the third-
body perturbations. Averaging methods have some advan-
tages over full methods. They are usually faster in terms
of computer time and effort. A more important point is
that they are much less sensitive to initial conditions of the

fast variables, as the initial true anomalies (f and fJ ) of
the spacecraft and third perturbing body. This approxima-
tion is valid when large number of revolutions are made by
the spacecraft. For instance, for a given semimajor axis of
a = 2510.3 km (orbit altitude ∼100 km), the spacecraft’s
orbital period around Callisto is around 2.59 hours, while
Jupiter’s orbital period around its moon is about 400.53
hours, i.e., near 154.64 times slower.

It is also important to cite the idea of developing life-
time maps to analyze models for the third-body perturbation,
as done in Gomes and Domingos (2016) to investigate the
models presented in Domingos et al. (2008, 2014). In this
work, Gomes and Domingos (2016) analyzed orbits around
the Moon. A similar idea is used in Carvalho et al. (2017) to
study some characteristics of orbits around the planet Mer-
cury.

Regarding applications in modern space exploration, a
system of planetary moons that has one of the largest num-
ber of celestial bodies with potential to be visited by space
missions is the system of Jupiter, which has the Galilean
moons, among others. A proposed mission that could visit
some of its moons requires orbits having low altitude and
high inclination to better map their gravity fields and sur-
faces. Recently, projects from the National Aeronautics
Space Administration (NASA) and the European Space
Agency (ESA) have been under development (NASA 2017;
ESA 2014). The scientific objectives proposed for Europa
and Ganymede, extended to Callisto, are: 1) characteriza-
tion of the ocean layers and detection of subsurface water
reservoirs; 2) topographical and geological analysis of the
surface; 3) study of the physical properties of the icy crusts;
4) characterization of the internal mass distribution; 5) dy-
namics and evolution of the interiors; 6) investigation of
Ganymede’s tenuous atmosphere; 7) study of Ganymede’s
intrinsic magnetic field and its interactions with the Jovian
magnetosphere. The three moons are believed to contain in-
ternal liquid water oceans, and therefore they can be consid-
ered central to understanding the habitability or not of icy
worlds.

In this context, the present paper proposes to use a model
that considers the eccentricity of the disturbing body, which
can be used to improve the results available in the litera-
ture by means of investigating the role of the eccentricity
of the disturbing body in the lifetime of low-altitude or-
bits around planetary moons. Different values (real and hy-
pothetical ones) for the eccentricity of Jupiter are adopted
in order to study in more detail the importance of this pa-
rameter. It means that hypothetical systems will be created,
using the same physical parameters as from the Jupiter–
Callisto system, but with hypothetical values for the eccen-
tricity. It is also important to remember that the classical
Keplerian/elliptical orbits are also disturbed by effects com-
ing from the fact that the celestial bodies are not perfect
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spheres and that they do not have homogeneous distributions
of mass. In order to improve the analysis, the effects due to
the terms J2 and C22 of the non-uniform gravitational po-
tential of Callisto are also considered.

The basic structure of this paper is shown next. In Sect. 1
an introduction to this subject is made; in Sect. 2 the equa-
tions of motion are obtained; in Sect. 3 the results of the nu-
merical simulations are described and analyzed, and, finally,
in Sect. 4, the conclusions are presented.

2 Equations of motion and disturbing
potentials

The motion of a spacecraft under the influence of the forces
coming from gravitational potentials can be described by the
Lagrange planetary equations (Kovalevsky 1967), as a func-
tion of the semimajor axis (“a”), eccentricity (“e”), inclina-
tion (“i), argument of the periapsis (“g”), longitude of the
ascending node (“h”), mean anomaly (“�”), mean motion
(“n”) and the disturbing potential R.

In the present study, this potential is considered as com-
posed of three terms that have the main roles in disturbing
the orbital motion of a celestial body: R2, which is the per-
turbation due to a third body present in the system we study,
as the case of a spacecraft orbiting the moon and that re-
ceives a perturbation from the Earth and the Sun; RJ2 , which
is the term that represents the flattening at the poles of the
central body of the system; RC22 , which is the term that de-
notes the elliptical shape of the equator of the central body.

It is necessary to obtain these equations of motion for the
present study, so one is required to obtain analytical expres-
sions for the disturbing forces.

2.1 Double-averaged third-body perturbation

The first force considered is the one responsible for the
disturbances caused by a third body in an inclined and
eccentric orbit. The spacecraft (mass m) is considered to
be orbiting a moon (mass m0), which is assumed to be
around a planet, with a mass mJ . The mean motion n ap-
pears in Kepler’s third law: G (m0 + mJ ) = μJ = nJ

2 aJ
3,

where G is the gravitational constant assumed to be equal
to 6.67259 × 10−11 kg−1 m3 s−2. It is assumed that the dis-
turbing body (planet) is in an elliptical and inclined orbit
around the central body (moon) and its orbital elements are
denoted by the subscript ‘J ’: aJ , eJ , gJ , hJ , iJ and fJ . The
disturbing function due to a third body is given by (Murray
and Dermott 2000)

R = G(m0 + mJ )

|�rJ − �r| = μJ

rJ

∞∑

k=0

(
r

rJ

)k

Pk

(
cos(S)

)
(1)

where r and rJ are the spacecraft and the disturbing body
orbital distances from the central body, respectively.

Then a simplified dynamical system is obtained by ex-
panding this disturbing potential up to second order (k = 2)
in the Legendre polynomials Pk . It is possible to eliminate
the fast angles of the problems (short-period terms), e.g. the
mean anomalies of the bodies to get a simplified double-
averaged model with potential to provide qualitative analy-
sis of the system. This system avoids sensibilities in initial
conditions for the orbital position of the two orbiting bodies,
along with the significant gain of computer processing time.
The disturbing function of the problem is averaged indepen-
dently over the mean anomalies of the spacecraft and the
third body. It is a good model when the spacecraft makes a
large number of revolutions. The standard definition for the
average used in this work is

〈F 〉 = 1

2π

∫ 2π

0
(F )d�. (2)

After averaging over the mean anomalies of the space-
craft (�) and the third body (�J ), the disturbing potential
takes the following form:

〈〈R2〉〉 = 1

4π2

∫ 2π

0

∫ 2π

0
(R2)d�d�J (3)

then it is possible to get the following model (Tresaco et al.
2016; Carvalho 2016):

〈〈R2〉〉 = −15

16
nJ

2aJ
2(A + B + C + D + E + F

+ G + H) (4)

with

A = 1

4
e2(cos(i) − 1

)2(cos2(iJ ) − 1
)

cos(2g − 2h + 2hJ ),

(5)

B = 1

4
e2(cos(i) − 1

)2(cos2(iJ ) − 1
)

cos(2g + 2h − 2hJ ),

(6)

C = e2

2
sin(i) sin(iJ )

(
cos(i) − 1

)
cos(2g − h + hJ ), (7)

D = e2

2
sin(i) sin(iJ )

(
cos(i) + 1

)
cos(2g + h − hJ ), (8)

E = − 3

10

(
e2 + 2

3

)(
cos2(i) − 1

)(
cos2(iJ ) − 1

)

× cos(2h − 2hJ ), (9)

F = − 3

10

(
e2 + 2

3

)
sin(2i) sin(2iJ ) cos(2h − 2hJ ), (10)

G = 1

2
e2[(cos2(i) − 1

)(
cos2(iJ ) + 1

)

+ 2 sin2(i) sin2(iJ )
]

cos(2g), (11)

H = − 3

10

(
e2 + 2

3

)[(
cos2(iJ ) + 1

)
cos2(i)

+
(

cos2(iJ ) − 5

3

)
+ 2 sin2(i) sin2(iJ )

]
, (12)
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where the subscript J denotes variables referred to the dis-
turbing body (Jupiter in our numerical experiments) and nJ

is the mean motion of this body. The original disturbing
functions are given in terms of the true anomalies. To com-
pute the double integral in the averaging process, which is
presented in terms of mean anomalies, the following well-
known relations were used (see Brouwer and Clemence
1961):

sin(f ) =
√

1 − e2 sin(E)

1 − e cos(E)
, (13)

cos(f ) = cos(E) − e

1 − e cos(E)
, (14)

r = a
(
1 − e cos(E)

)
, (15)

d� = (
1 − e cos(E)

)
dE, (16)

with E denoting the eccentric anomaly of the spacecraft.
Analogous orbital parameters carrying the subscript J rep-
resent parameters referred to the third body.

2.2 Perturbations due to central body non-uniform
shape

Since the orbits required for scientific missions around a
planetary moon are desired to be low altitude (∼100 km)
ones and also near-circular and near-polar, the present pa-
per concentrates in this type of orbits. It means that the
present study needs to take into account the perturbation
due to the non-uniform distribution of mass of the cen-
tral body. The effects due to planetary moon flattening at
the poles (J2) and due to the elliptic shape of its equator
(C22) are included, as addressed in previous work (Scheeres
et al. 2001; Paskowitz and Scheeres 2006; Lara and Rus-
sell 2006; Carvalho et al. 2012b,a; Vilhena De Moraes et al.
2016).

Considering the equatorial plane of the central body (here
a planetary moon) as the reference plane, the disturbing po-
tential related to its distribution of mass can be written in the
form

UM = −μ

r

[
6∑

n=2

(
Rp

r

)n

JnPn

(
sin(φ)

)

−
(

RB

r

)2

C22P22
(
sin(φ)

)
cos(2λ)

]
(17)

where μ is the gravitational constant of the body, RB is the
equatorial radius of the body, Pn are the Legendre polyno-
mials, Pnm the associated Legendre polynomials, the angle
φ is the latitude of the orbit with respect to the equator of
the body, the angle λ is the longitude measured from the
direction of the longest axis of the planet. Using spheri-
cal trigonometry, it is also possible to show that sin(φ) =
sin(i) sin(f + g).

The Legendre polynomial for the zonal term J2 and the
Legendre associated function for the sectoral term C22 can
be written in the form (Giacaglia et al. 1970)

P2
(
sin(φ)

) = 1

2

(
3s2 sin2(f + g) − 1

)
, (18)

P22
(
sin(φ)

)
cos(2λ)

= 6
(
ξ2 cos2(f ) + χ2 sin2(f ) + ξχ sin(2f )

)

− 3
(
1 − s2 sin2(f + g)

)
, (19)

with the shortcuts ξ = cos(g) cos(h) − c sin(g) sin(h), χ =
− sin(g) cos(h) − c cos(g) sin(h), s = sin(i) and c = cos(i).

Now, it is possible to write the potential given in Eq. (17)
as a function of the orbital elements. For this purpose, one
can use Eq. (18) for the zonal term J2 and the relation μ =
n2a3, such that

U20 = −1

2

a3

r3
εn2(3s2 sin2(f + g) − 1

)
. (20)

Analogously, it is possible to take Eq. (19) for the sectoral
perturbation (Giacaglia et al. 1970). Thus,

U22 = a3

r3
δn2(6ξ2 cos2(f ) + 6χ2(sin(f )

)2

+ 12ξχ sin(2f ) − 3 + 3s2 sin2(f + g)
)

(21)

where δ = C22R
2
B .

Since f is the true anomaly of the artificial satellite, one
can make the choice of working with a long-period dynam-
ical model, as done for the third-body potential. It requires
averaged disturbing potentials, so the concept of averaging
method (see Eq. (2)) is again applied for the models pre-
sented in Eqs. (20) and (21) to obtain a single-averaged
model where the short-period terms are eliminated. This fact
accelerates the integration of the equations of motion and
provides a qualitative analysis of the system by avoiding
sensibility related to the initial conditions. The development
of the equations is carried out in closed form to avoid ex-
pansions in eccentricity and inclination. For this purpose,
it is necessary to perform algebraic manipulations where
known equations from celestial mechanics are used, namely
Eqs. (22) and (23),

a

r
= (1 + e cos(f ))

(1 − e2)
, (22)

dl = 1√
1 − e2

r2

a2
df. (23)

After applying the averaging process in Eq. (20) and af-
ter some algebraic manipulations, the averaged disturbing
potential due to the flattening at the poles becomes

〈RJ2〉 = −1

4

εn2

(1 − e2)3/2

(
3 sin2(i) − 2

)
(24)
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where n is the mean motion of the spacecraft (see also Car-
doso dos Santos et al. (2015)). The parameter ε is given by

ε = J2RB
2. (25)

Now, using Eq. (21), the variables ξ and χ to develop the
potential due to the equatorial ellipticity of the central body,
we get

〈RC22〉 = −3

2

δn2

(1 − e2)3/2

(
cos2(i) − 1

)
cos(2h). (26)

The parameter δ is given by

δ = C22RB
2. (27)

In Eq. (26) the longitude of the ascending node h is re-
placed by the expression h = h0 − ωt given by Meyer et al.
(1994), Giacaglia (1973) and Sehnal (1960), where t is the
time and ω is the body’s rotation speed. This expression
h = h0 − ωt (see Fig. A1 in Meyer et al. 1994) relates
the longitude of the ascending node of the orbit with re-
spect to Callisto (h) to the inertial longitude of the ascending
node (h0).

2.3 Equations of motion

After obtaining the potentials for modeling the physical
system of our interest, the total disturbing potential R =
〈〈R2〉〉 + 〈RJ2〉 + 〈RC22〉 is replaced in the classical La-
grange planetary equations (Kovalevsky 1967) in order to
integrate the motion of the spacecraft under these grav-
itational effects. Note that in the second averaging pro-
cess the orbital elements of the spacecraft are constant,
so that 〈RJ2〉 + 〈RC22〉 = 〈〈RJ2〉〉 + 〈〈RC22〉〉 and, thefore
R = 〈〈R2〉〉 + 〈〈RJ2〉〉 + 〈〈RC22〉〉.

Those equations are shown below

da

dt
= 2

na

∂R

∂�
, (28)

de

dt
= −√

1 − e2

na2e

∂R

∂g
+ 1 − e2

na2e

∂R

∂�
, (29)

di

dt
= 1

na2
√

1 − e2sen(i)

(
∂R

∂g
cos(i) − ∂R

∂h

)
, (30)

dh

dt
= 1

na2
√

1 − e2sen(i)

∂R

∂i
, (31)

dg

dt
=

√
1 − e2

na2e

∂R

∂e
− cos(i)

na2
√

1 − e2sen(i)

∂R

∂i
. (32)

3 Results and discussions

The present paper intends to analyze the magnitude of the
effects of the third body’s eccentricity over a massless space-
craft orbiting a central body. The effects of J2 and C22 are

considered in this analysis and different values for the or-
bital eccentricity of the third body are assumed, such that
the results are able to provide some insights about the dy-
namics of a spacecraft around a body with elliptical shape
orbiting a massive body. The Jupiter–Callisto system is used
in the present study and the ideas developed here can be
extended to other systems, such as moons around massive
planets, asteroids (NEAs) and comets with significant close
approaches with respect to the Sun. The purpose of the
present investigation is attained by making lifetime maps for
different values of the eccentricity of the disturbing body.

This procedure helps the search for low-altitude near-
polar natural orbits around Callisto (as well for other bodies)
that survive for long periods of time, which we assume in the
present work as lifetimes longer than one year. This search
for orbits with longer lifetimes is made by mapping different
initial conditions for the orbital elements due to a spacecraft
orbiting the moon. Such orbits are affected by disturbances
due to the non-sphericity of the central body and especially
by the Kozai–Lidov mechanism (Kozai 1962; Lidov 1962)
coming from the third body (here assumed to be Jupiter).
This is a well-known effect, which allows a body to period-
ically exchange its inclination with eccentricity, which cre-
ates a significant decrease in the lifetimes to values of tens
or a few hundreds of days (Prado 2003) for the case of low-
altitude orbits (∼100 km). Although the effect coming from
the third body makes the eccentricity to grow, the disturbing
effects coming from the irregular shape of the central body
(J2 and C22) tends to counterbalance the third-body distur-
bances at some level. However, the term C22 sometimes can
contribute with the third body’s effect by counterbalancing
the effect of J2 (see Fig. 5). The final impact on the dy-
namics presents some increase in the orbit lifetimes in the
presence of significant values for these higher gravitational
inhomogeneities, especially considering J2. Besides, as seen
in previous work (see Carvalho et al. (2010) and the refer-
ences therein), the presence of coupling effects due to the
C22 perturbation may imply in lowering the periapsis alti-
tude due to the periodic oscillations produced in the eccen-
tricity. In order to provide useful information for mission-
planning purposes, it is necessary to incorporate the more
relevant disturbing effects in the dynamical model, which in
the present investigation justifies the presence of effects due
to J2 and C22, with their high- and same-order values.

Previous work (Scheeres et al. 2001; Broucke 2003;
Prado 2003) usually considered a circular planar double-
averaged model for the third-body perturbation, which is
a good approximation for the Galilean moons and other
moons of the Solar System. However, it is possible to have
some insights about the dynamics under the effects of a dis-
turbing body in eccentric orbit by means of creating hypo-
thetical systems with different values for its orbital eccen-
tricity (eJ ), in order to measure how strong is the impact
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of this parameter in the lifetimes of the orbits of a space-
craft around the central body, assumed to have an ellipsoidal
shape. Therefore, selecting hypothetical different eccentric-
ities for Jupiter’s orbit, and generating these lifetime maps
for a spacecraft orbiting Callisto considering these differ-
ent scenarios, is also an important opportunity to test the
present double-averaged model that considers the eccentric-
ity and the inclination of the disturbing body. Due to the
purpose of having a model which can also be useful for or-
biters around NEAS and comets, especially having in mind
these last ones as objects with rather eccentric orbits under
the massive Sun’s gravitational field, the investigation of the
role of disturber’s inclination (iJ ) is left for a next communi-
cation where other discussions including critical inclination
and other important issues can be more properly treated and
also with applications to different celestial bodies. As Cal-
listo’s motion around Jupiter is almost planar, and the same
happens with the majority of the moons with higher inter-
est for future space exploration, the discussion as regards
the role of the disturber’s inclination by mean of generating
lifetime maps is, presently, delayed.

In order to test this model for the third-body perturbation,
it was integrated and mapped orbits obtained under differ-
ent initial conditions for the inclination (i), varying between
30◦ and 150◦, and semimajor axis (a) varying between
2460.3 km and 2510.3 km, which corresponds, for a Cal-
listo radius of 2410.3 km, to averaged altitudes of 50 km and
100 km, respectively. The initial conditions for the other or-
bital elements of the spacecraft orbit are e = 0.01, g = 270◦
and h = 90◦.

The values for the gravity parameters (J2 = 3.27 ×
10−5 and C22 = 1.02 × 10−5) are taken from Ander-
son et al. (2001). The orbital parameters for the Jupiter–
Callisto system are (Source: http://ssd.jpl.nasa.gov/): ap =
1,882,700 km, ep = 0.0074, gp = 52.643◦, hp = 63.552◦,
ip = 0.192◦ and np = 21.5710728◦/day. The value for the
mean radius of Callisto RB = 2,410.3 km is taken from the
same source.

A first test of lifetime maps considering the models
presently introduced can be seen in Fig. 1, where the value
chosen for the orbital eccentricity of the spacecraft does not
impact the lifetime as significantly as the choice of a value
of the inclination when it is close to a polar orbit (i = 90◦).
The range available for the spacecraft’s orbital eccentric-
ity is small due to the fact that the spacecraft is only about
100 km of altitude (with critical eccentricity emax ∼ 0.0398),
which makes the values of the lifetime very sensible in such
dynamics. In this scenario, it creates fast collisions with the
surface of Callisto under small increases of the perturbations
over the orbital eccentricity. Therefore, Fig. 1 presents re-
sults for a lifetime map as a function of initial eccentricity
and initial inclination. It is possible to note in the results the
expected effect of the lifetimes decreasing with the increas-
ing of the value of the initial eccentricity. The Kozai–Lidov

effect is present in decreasing the lifetime of orbits closer
to 90◦ of inclination (darker colors are close to this angle).
Moreover, it is in order is to explain that the orbits do not
survive for initial eccentricities higher than e = 0.039 due
to the proximity of the spacecraft with Callisto and due to
the strong perturbations coming to the third body that in-
crease the value of the eccentricity, reaching the small value
of 0.039 in a short time, which corresponds to a distance of
the periapsis equal to the mean radius of Callisto.

The conservation of Hz = √
1 − e2 cos(i), i.e., the com-

ponent of the spacecraft’s orbital angular momentum, which
is parallel to Jupiter’s angular momentum, is shown in
Fig. 2. Indeed, under the regime of this restricted dynami-
cal model, the conservation of this quantity allows the con-
nection of the two parameters, orbital eccentricity and incli-
nation, as being “exchanged” or “traded”, one parameter by
the other. Therefore, for spacecrafts with orbits which are
near-circular and highly inclined, it is possible to occur that
they become very eccentric. Thus, this growth of the eccen-
tricity allows: 1) Impact with other bodies of the system;
2) Eccentricity increasing until the orbit reaches enough en-
ergy to escape from the system. For the more general case,
where the spacecraft is replaced by natural celestial bodies
orbiting others under a third-body perturbation, it is pos-
sible to occur the destruction of this celestial body due to
the tidal forces, once the increasing eccentricity will make
the celestial body’s periapsis to pass/cross inside the Roche
limit related to the more massive central body. Another im-
portant issue to mention is that the exchange of eccentricity
and inclination creates oscillations which generates impacts
in lower-altitude orbits, since they are closer to the central
body’s surface. These oscillations can be seen in Fig. 3. The
plots presented in this figure are in accordance with another
expected effect due to the Kozai–Lidov mechanism, which is
to cause a libration of the argument of the periapsis g around
angles g = 90◦ or g = 270◦. Figure 4 presents the compo-
nents of the eccentricity vector integrated for a period of 100
years. In fact, the plots in Fig. 3 help to interpret the results
in Fig. 4, with high-inclination orbits (i between 45◦ and
135 ◦) presenting a libration of the argument of periapsis in
the approximate interval of g = 243◦ and g = 297◦. This
behavior is a result of the Kozai–Lidov mechanism, which
makes g librate when the orbits are highly inclined. Orbits
with low-inclination present the argument of periapsis cir-
culating, which explain the circles and ellipses covering the
full range of 360◦ in the second and third plots in Fig. 4.

The following test was made for models considering dif-
ferent perturbing forces on the disturbing potential: (1) R2;
(2) R2 + J2; (3) R2 + J2 + C22. Figure 5 presents the re-
sults for lifetime maps considering these three scenarios.
From scenario (1), with perturbation coming from the third
body, until scenario (3) with the sum of the effects due to
the non-uniform distribution of mass of Callisto. The result

http://ssd.jpl.nasa.gov/
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for the scenario (2) present a map that is similar to those
referred to cases (1) and (3); however, with some signifi-
cant differences in the range of the inclination that produce
longer lifetimes. As expected, J2 acts as a natural protect-
ing mechanism by smoothing the disturbing effects com-
ing from the third body. This test was made considering the
real value of the eccentricity for the Jupiter–Callisto system
(ep = 0.0074). The results show the third-body disturbance
as the main perturbation in this system, especially due to the
mass of the disturbing body Jupiter and the smaller magni-
tude of the effects due to the gravity terms J2 and C22 of
Callisto. The presence of extra perturbations in the system,
as the case of terms like J2, have a role in precessing the
argument of the periapsis and the longitude of the ascending
node of the spacecraft’s orbit. However, it does not affect
the lifetimes of the orbit as in this double-averaged model,
since they are a function of the orbital eccentricity. The grav-
ity term C22 also acts as a protecting mechanism once it is
coupled with other orbital perturbations. As C22 is one of the
perturbations considered in our dynamics, Figs. 6 and 7 are
tests created to map lifetimes varying the initial value of the
longitude of the ascending node h0. In addition, intervals
with values for argument of periapsis (g0), inclination (i0)
and eccentricity (e0) are mapped. It clearly shows values for
this orbital parameter that can increase the lifetimes of the
orbits. We see, for example, that h0 = 90◦ is able to produce
a small increase in the polar orbits lifetime, e.g., i0 = 90◦. In
fact, the choice of h0 = 90◦ in the present numerical simu-
lations was made based on this result. Therefore, convenient
choices for the angles of the problem, as noted for the in-
clination and for the argument of periapsis of a spacecraft
orbiting Callisto, are very important regarding extending the
lifetimes of a space mission that intends to orbit this body.

Once orbits with high inclination are desired for space
mission applications and the effect due to C22 is coupled
in our dynamics, Fig. 7 shows tests made by creating life-
time maps considering variations in the initial value of the
longitude of the ascending node h0 and inclination i0. This
figure clearly shows, concerning the initial values for h0,
that this parameter can increase the lifetimes of the orbits.
For instance, h0 = 90◦ is able to produce a small increase in
a polar orbit. In fact, the choice for h0 = 90◦ in the present
numerical simulations was made based on this result. There-
fore, convenient choices for the angles of the problem of
a spacecraft orbiting Callisto are very important regarding
extending the lifetime of a space mission that intends to
orbit this body. The first plot presented in Fig. 6 justifies
the choice for h0 = 90◦ as the value that produces higher
values of lifetimes in high-inclination orbits, the orbits of
main interest for the present investigation. The second plot
in the same figure shows values with respect to the relation
g0 = kπ radians (with k an integer) as better choices to in-
crease the lifetime when one considers polar orbits. These

differences are highlighted in Fig. 7, where it is presented
lifetime maps as a function of the initial inclination i0 and
initial longitude of the node of the spacecraft’s orbit h0. It
also considers the cases for g0 = 270◦ and 180◦. This re-
sult appears similar to the ones presented in Condoleo et al.
(2016) considering the dynamics of a spacecraft orbiting
Callisto under the disturbing potentials R2 and J2.

Here, Figs. 8 to 10 represent some orbits integrated for
longer periods of time to provide some information as re-
gards the long-term dynamics. The results in these figures
are similar to those presented in Figs. 1, 2 and 4 of Prado
(2003). But these considered a Lunar orbiter. Figure 8 con-
firms the results presented in Fig. 1, where the choice of
different initial values for the eccentricity does not impact
the evolution of the inclination. Similar results appear when
other values for inclination are considered and for this rea-
son, they are omitted here. It is worth to mention that the
result presented in Fig. 9, where it is possible to verify that
the more circular the initial orbit is, the longer are the life-
times presented. Figures 8 to 10 present the expected ex-
change of eccentricity and inclination, which corresponds to
the previously mentioned conservation of the z-component
of the orbital angular momentum Hz = √

1 − e2 cos(i) (see
Fig. 2). As observed in the amplitude of the oscillations pre-
sented in these figures, the small changes in one parameter
will impact on the existence of small changes in the other as
well.

Next, the effects of the eccentricity are measured. To per-
form this task, all the parameters of the Jupiter–Callisto sys-
tem are kept constant, except for the eccentricity of the dis-
turbing body, which is Jupiter for this problem. It means
that hypothetical systems are used to measure the effects
of the eccentricity, without varying the other parameters,
such that it is possible to be sure that all the modifications
in the results are coming from the eccentricity of the pri-
maries. Figures 11 and 12 show a graphical general view
of the lifetimes. It also contribute to evaluate how signifi-
cant is this protecting mechanism due to the gravity terms
(J2 and C22), especially in the presence of a very mas-
sive third body (as the case of Jupiter). We choose differ-
ent values for the eccentricity of the disturbing body ep =
{0.1;0.2;0.3;04;0.5 and 0.6} in order to create Jupiter–
Callisto like systems which are able to show how much
the harmonics are able to help on increasing lifetimes un-
der extreme third-body perturbations. These results are pre-
sented in Figs. 11 and 12. It is worth of note the lifetime
maps presented in Fig. 11 very similar to the ones shown
in Fig. 5. It indicates that the significant magnitude of the
gravity terms J2 and C22 (∼10−5), is strong enough to nat-
urally protect the orbit against an increase of the lifetime
with a very massive disturbing body in a significantly ec-
centric orbit. Due to the fact that more eccentric orbits make
the spacecraft to pass closer to the disturbing body, and vice
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versa, it is expected an increase of the disturbing effects due
to its gravitational attraction. Naturally, as observed in the
lifetime maps presented in Figs. 11 to 12, when the eccen-
tricity eJ increases, the disturbing effects become stronger
and the lifetime of the orbits tend to decrease.

A first look at the results confirms the presence of the
expected Kozai–Lidov effects in reducing the lifetime of or-
bits with high values for the inclination. These results are
compatible with the ones shown in Prado (2003), which per-
formed a similar study for the particular value for the semi-
major axis of four radius of the moon considering only the
term R2. It is a high value of altitude for the orbit in compar-
ison with the ones presented in the present study, which are
in a range of values between 50 km and 100 km. Looking
at the results obtained using the real value for the eccen-
tricity of Callisto (Fig. 5), it is noted that orbits with initial
semimajor axis a0 above 2480 km usually present lifetimes
of about 300 days or more. Below this value, the lifetime
depends more significantly on the inclination of the orbit.
Figure 5 shows a general view of these lifetimes. In gen-
eral, for the cases with orbital inclination between ∼42◦
and ∼137◦, there are collisions before the time reached this
limit. Those results are very important when planning mis-
sions to minor bodies of the Solar System (planetary moons,
asteroids, comets) under the massive third-body perturba-
tion of the planets or Sun, since polar orbits are good can-
didates for surface observations, mapping and characteriza-
tion. In order to attain these scientific goals, high-inclination
orbits offer the best coverage. The results show the eccen-
tricity of the primaries impacting in reducing the lifetimes
of orbits, in particular in the ones closer to the moon. The
physical interpretation is not difficult. Larger eccentricities
of the primaries allow shorter distances for the perturbing
body, so the effects are larger when the moon is at the pe-
riapsis. Of course the planet is far way during the passage
of the moon near the apoapsis, which reduces the perturba-
tion. So, an analysis is required in order study the balance
of those effects, and the results show that there is an ex-
pected increase in the perturbation with the eccentricity ep ,
reducing the lifetimes of the orbits. The reductions are not
significant for ep = 0.1 due to the protecting mechanism of
J2 and C22, and also due to the fact that Callisto is the more
distant object among the Galilean moons. This is not a prob-
lem in this analysis, because new reductions are noted in
those minimum lifetimes when the eccentricity of the pri-
maries is 0.2, especially for a0 above 2500 km in the second
plot of Fig. 11. For values of ep = 0.4 and above, the plots
are very different, with blue color dominating the results. It
means that much smaller lifetimes (Fig. 12). These results
are expected, but a quantification is important, as done in
the present paper.

Indeed, a more rigorous exploration of these orbital pa-
rameters can be made using some values studied in Con-

doleo et al. (2016), where the authors explore some con-
ditions for freezing orbits around planetary satellites with
a disturbing potential taking into account the effects of the
third body and of the flattening at the poles (J2). Despite
the present study taking into account a more general model
with the presence of C22, the values presented in the work of
Condoleo et al. can be used as good initial guide on finding
initial conditions which produce longer lifetimes, despite the
existence of some extra disturbing potentials. For instance,
one of the conditions that the authors find to freeze a polar
orbit is to set g0 = 0◦ or g0 = 180◦, i.e., these values freeze
polar orbits when the potential R2 +J2 is taken into account.
This is the same result found in Figs. 6 and 7, now with
the additional effects due to C22. Therefore, some numeri-
cal explorations can be made by reproducing some previous
results considering g0 = 180◦ instead of g0 = 270◦. An ev-
idence of this effect of selecting this angle to increase the
lifetime of orbits can be observed by analyzing Figs. 13 to
14. In these cases g0 = 180◦ is able to protect significantly
the surviving time of the polar orbits, despite the increase
of the disturbance coming from the third body (Jupiter). It
is highlighted when a comparison of the results shown in
Figs. 13 and 14 is made with the results shown in Figs. 11
and 12. The lifetime map i0 vs. a0 considering eJ = 0.01 is
omitted in Fig. 13 due to similarity with the lifetime map for
the real value eJ = 0.0074 (first plot in Fig. 13), as happened
with the results for g0 = 270◦.

Figures 15 and 16 present the components of the eccen-
tricity vector considering the disturbing potential R2 + J2 +
C22. Different scenarios (g0 = 270◦ and g0 = 180◦) are as-
sumed and similar analysis can be done, as presented in
Fig. 4. It is also important to highlight such figures as use-
ful plots to identify the existence of libration and circulation
motions.

Finally, Figs. 17 and 18 show the orbit time as a function
of the inclination, for different values of initial semimajor
axis a0 and initial eccentricity e0. The results considering
again scenarios with g0 = 270◦ and g0 = 180◦ confirm the
relevance of the present discussion, especially regarding an
appropriate choice of the orbital parameters capable to ex-
tend the lifetimes of orbits. In all the cases, despite the se-
lection of different initial values for semimajor axis a0 and
eccentricity e0, the choice for g0 = 180◦ was able to extend
from tens up to hundreds of days the lifetimes of the orbits.
Considering the scenario for an Europa orbiter with a dy-
namical model under the disturbances of the averaged mod-
els for R2 and J2, one can check similar plots in Figs. 8 and
9 of Scheeres et al. (2001). In this work, the authors choose
to vary the initial argument of periapsis g0 instead of vary-
ing the initial semimajor axis a0 or the initial eccentricity e0

as an alternative method to find higher values to extend the
lifetime of a Galilean moon orbiter.
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4 Conclusions

In the context of the inner restricted three-body problem, the
present paper studied the lifetime of orbits for a spacecraft
traveling around the moon Callisto, which is in an eccentric
and almost planar orbit around Jupiter. This system is cho-
sen as a model for the application of similar studies to other
celestial bodies, especially minor bodies of the Solar Sys-
tem, which are potential candidates to receive a space mis-
sion in the future. One of the goals of the present study was
to investigate the impact of the massive disturbing body’s
orbital eccentricity in the lifetime of a spacecraft’s orbit
around a body with an ellipsoidal shape. The mathematical
model used here considers the effects of the third body in
elliptical and inclined orbits and the irregular shape of the
central body by using the terms J2 and C22.

For the simulations, the system Jupiter–Callisto is used to
give the basic physical data of masses, distances and shapes
of the bodies, but the eccentricity is set with different values
to show the importance of this parameter on more disturbed
dynamics, such as the case of comets that are in rather ec-
centric orbits around the Sun. During the investigation, val-
ues for some orbital elements were determined to increase
the lifetime of orbits around Callisto. These results are espe-
cially important concerning high-inclination orbits, the de-
sired ones for global mapping and characterization. How-
ever, as these orbits usually present shorter lifetimes due to
the Kozai–Lidov mechanism, the present investigation has
importance, because it helps to find the parameters which are
able to extend these lifetimes, increasing the available time
for space mission operations around these polar and quasi-
polar regions. The Kozai–Lidov effects clearly and strongly
appear in the systems simulated, showing the importance
of finding the combination of parameters (g0 = 180◦ and
h0 = 90◦) that was able to extend the lifetimes of the polar
orbits to higher values. Considering orbits with inclinations
above 90◦, some symmetries (which are not perfect in some
cases) are noted in the results around the polar orbit, which
means that orbits with inclination of 90◦ + x◦ and 90◦ − x◦
have very similar lifetimes.

Regarding the effects of the irregular shape of the moon,
they are not very large for this system. This is because Cal-
listo has a near spherical shape, with J2 = 3.27 × 10−5 and
C22 = 1.02 × 10−5. In a short-time orbit, the effects due to
these gravity terms are compared to the model considering
only the third-body perturbation. Hence, the effects will be
much stronger for bodies with more irregular shapes.

As expected, when considering the effects of hypotheti-
cal higher values for the orbital eccentricity of the massive
third body (Jupiter), the more eccentric the orbit, the larger
impact this body will produce on decreasing the lifetime of
the orbit. On the other hand, the more circular is the orbit,
the less affected it will be by the third-body perturbation.

Therefore, the general contribution of the present paper
is to show the lifetimes of orbits around moons in eccen-
tric orbits, generating maps that can be used for mission de-
signers. It confirms the lifetime maps as an efficient tool to
map and find the initial conditions that extend the surviv-
ing time of the orbits, especially those highly disturbed and
with high values of inclination. Of course, along with this
tool of the lifetime maps, other techniques can be used. For
instance, more details as regards the mathematical and phys-
ical aspects that lead to these dynamical behaviors might be
discussed. These aspects can be explored in a future com-
munication. Similar ideas can be extended to applications
in planetary physics. A good example of an interesting sys-
tem to be investigated using the present models and tech-
niques is the system composed of the dwarf planet Haumea,
two small moons and a recently discovered ring (Ortiz et al.
2017).
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Appendix

The present appendix shows the figures containing the re-
sults discussed in the text. The simulations and plots were
made with proper computer codes developed using the soft-
wares Maple and Gnuplot.

Fig. 1 Lifetime map (e0 vs. i0) considering the effects of
R2 + J2 + C22. Initial conditions: a0 = 2510.3 km, g0 = 270◦,
h0 = 90◦ and eJ = 0.0074. The vertical bar on the right gives the
value of the lifetimes in hundreds of days for an integration of 1000
days. Each unit corresponds to hundred days
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Fig. 2 Propagation of the z-component of the orbital angular mo-
mentum Hz = √

1 − e2 cos(i). Initial conditions: a0 = 2510.3 km,
g0 = 270◦, h0 = 90◦ and eJ = 0.0074. The effects are shown that are
due to R2. Numerical propagation for 6000 days

Fig. 3 Propagation of the eccentricity (e), inclination (i) and argument
of the periapsis (g) considering different values for the initial incli-
nation i0. Initial conditions: a0 = 2510.3 km, e0 = 0.01, g0 = 270◦,
h0 = 90◦ and eJ = 0.0074. The effects are shown that are due to R2.
Numerical propagation for 6000 days

Fig. 4 Propagation of the components of the eccentricity vector con-
sidering different values for i0 and with initial values a0 = 2510.3 km,
e0 = 0.01, h0 = 90◦ and eJ = 0.0074. The effects are shown of R2.
Simulations for g0 = 270◦ and numerical integration for 100 years
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Fig. 5 Lifetime maps (i0 vs. a0) as a function of semimajor axis and
inclination considering the effects of R2 and R2 +J2 +C22. It is the real
value for the eccentricity of Jupiter orbiting Callisto. Initial conditions:
e0 = 0.01, g0 = 270◦, h0 = 90◦ and eJ = 0.0074. The vertical bar on
the right gives the value of the lifetimes in hundreds of days for an
integration of 1000 days. Each unit corresponds to one hundred days

Fig. 6 Lifetime maps (g0 vs. h0), (i0 vs. g0) and (e0 vs. i0) for
g0 = 180◦, eJ = 0.0074 and considering the effects of R2 + J2 + C22.
The vertical bar on the right gives the value of the lifetimes in hun-
dreds of days for an integration of 1000 days. Each unit corresponds to
one hundred days
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Fig. 7 Lifetime maps (i0 vs. h0) for eJ = 0.0074 and considering the
effects of R2 + J2 + C22. Simulations for g0 = 270◦ and 180◦. The
vertical bar on the right gives the value of the lifetimes in hundreds
of days for an integration of 1000 days. Each unit corresponds to one
hundred days

Fig. 8 Propagation of the eccentricity (e), inclination (i) and argument
of the periapsis (g) considering different values for the initial inclina-
tion i0. Initial conditions: a0 = 2510.3 km, g0 = 270◦, h0 = 90◦ and
eJ = 0.0074. The effects are shown that are due to R2
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Fig. 9 Propagation of the eccentricity (e) considering different val-
ues for the initial eccentricity e0. Initial conditions: a0 = 2510.3 km,
i0 = 90◦, h0 = 90◦ and eJ = 0.0074. The effects are shown that are
due to R2. Simulations for g0 = 270◦ and 180◦

Fig. 10 Propagation of the eccentricity (e) considering different val-
ues for the initial inclination i0. Initial conditions: a0 = 2510.3 km,
e0 = 0.01, h0 = 90◦ and eJ = 0.0074. The effects are shown that are
due to R2. Simulations for g0 = 270◦ and 180◦
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Fig. 11 Lifetime maps (i0 vs. a0) for eJ = 0.1,0.2 and 0.3. Disturb-
ing effects: R2 + J2 + C22. Initial conditions: e0 = 0.01, g0 = 270◦
and h0 = 90◦. The vertical bar on the right gives the value of the life-
times in hundreds of days for an integration of 1000 days. Each unit
corresponds to one hundred days

Fig. 12 Lifetime maps (i0 vs. a0) for eJ = 0.4,0.5 and 0.6. Disturb-
ing effects: R2 + J2 + C22. Initial conditions: e0 = 0.01, g0 = 270◦
and h0 = 90◦. The vertical bar on the right gives the value of the life-
times in hundreds of days for an integration of 1000 days. Each unit
corresponds to one hundred days
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Fig. 13 Lifetime maps (i0 vs. a0) for eJ = 0.0074,0.2 and 0.3. Dis-
turbing effects: R2 +J2 +C22. Initial conditions: e0 = 0.01, g0 = 180◦
and h0 = 90◦. The vertical bar on the right gives the value of the life-
times in hundreds of days for an integration of 1000 days. Each unit
corresponds to one hundred days

Fig. 14 Lifetime maps (i0 vs. a0) for eJ = 0.4,0.5 and 0.6. Disturb-
ing effects: R2 + J2 + C22. Initial conditions: e0 = 0.01, g0 = 180◦
and h0 = 90◦. The vertical bar on the right gives the value of the life-
times in hundreds of days for an integration of 1000 days. Each unit
corresponds to hundred days
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Fig. 15 Propagation of the components of the eccentricity vector con-
sidering different values for i0 and with initial values a0 = 2510.3 km,
e0 = 0.01, h0 = 9◦ and eJ = 0.0074. The effects are shown of
R2 + J2 + C22. Simulations for g0 = 270◦ and numerical integration
for 100 years

Fig. 16 Propagation of the components of the eccentricity vector con-
sidering different values for i0 and with initial values a0 = 2510.3 km,
e0 = 0.01, h0 = 9◦ and eJ = 0.0074. The effects are shown of
R2 + J2 + C22. Simulations for g0 = 180◦ and numerical integration
for 100 years
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Fig. 17 Representation of orbit time vs. i0 considering different values
for a0 and for e0 = 0.01 and eJ = 0.0074. The effects are shown of
R2 + J2 + C22. Simulations for g0 = 270◦ and 180◦

Fig. 18 Representation of orbit time vs. i0 considering different values
for e0 and for a0 = 2510.3 km and eJ = 0.0074. The effects are shown
of R2 + J2 + C22. Simulations for g0 = 270◦ and 180◦
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