Comparative study of volumetric changes and trabecular microarchitecture in human maxillary sinus bone augmentation with bioactive glass and autogenous bone graft: a prospective and randomized assessment

Araçatuba Dental School, Universidade Estadual Paulista – UNESP, Araçatuba, São Paulo, Brazil

Abstract. The aim of this study was to compare the volumetric changes and the new bone microarchitecture in human maxillary sinuses augmented with bioactive glass (Biogran) alone, bioactive glass combined with autogenous bone graft (1:1), or autogenous bone graft alone. Twelve maxillary sinuses were grafted with bioactive glass (group 1), nine with bioactive glass mixed with autogenous bone graft 1:1 (group 2), and 12 with autogenous bone graft (group 3). Patients underwent cone beam computed tomography 15 days after the procedure to determine the initial volume of the graft (T1) and again 6 months later (T2). Biopsies were obtained at the time of dental implant placement and were subjected to micro-computed tomography. The volumetric change was 44.2% in group 1, 37.9% in group 2, and 45.7% in group 3 (P > 0.05). The trabecular microarchitecture results showed that the materials used in groups 1 and 2 were good bone substitutes. However, the addition of 50% bioactive glass to autogenous bone graft improved the microarchitecture of the graft. Furthermore, the results for volumetric changes indicated that bioactive glass, its association with autogenous bone graft in a 1:1 ratio, and autogenous bone graft alone have similar resorption.

Key words: maxillary sinus augmentation; bioactive glass; bioactive glass added to autogenous bone graft; bone graft resorption; trabecular bone microarchitecture.

Accepted for publication 29 November 2017
Available online 13 December 2017
The aim of maxillary sinus augmentation is to restore the ideal bone height, enabling dental implant placement. Some studies have proposed the use of bone substitutes to contribute to the maintenance of bone volume and new bone formation in the maxillary sinus. The autogenous bone graft is the most predictable and favourable for bone grafting because of its osteogenic, osteoinductive, and osteoconductive properties. However, the use of this graft implies the need for another surgical site, which can increase morbidity for the patient; therefore, it should be chosen for specific cases.

Other bone substitutes have been used to augment the maxillary sinus height, including allogeneic grafts, alloplastic grafts, and combinations of these with autogenous bone grafts. The ideal bone substitute has to work as a template for bone formation in three dimensions and should have certain properties: be biocompatible, promote osteogenic cell attachment, bond to the host bone without intermediary fibrous tissue, have an interconnected porous structure, be degradable, share the mechanical load with the host bone, and be sterilizable. Furthermore, it is important that the new bone formed is strong enough to anchor the dental implants and support the masticatory forces.

One of these biomaterials is bioactive glass, a bioactive ceramic with osteoconductive properties that was developed by Professor Larry Hench in 1969 and approved by the United States Food and Drug Administration in 1996. It has all of the necessary characteristics except porosity. A commercial form of this material is Biogran (Biomet 3i, Palm Beach Gardens, Florida, USA), a resorbable bioactive ceramic of 300–355 μm particle size and composed of silicon dioxide (SiO₂; 45%), calcium oxide (CaO; 24.5%), sodium oxide (Na₂O; 24.5%), and phosphorous pentoxide (P₂O₅; 6%).

It is important to evaluate the dimensional changes in bone grafts placed in the maxillary sinus, because shrinkage occurs during graft healing. Studies analysing bone graft remodelling after sinus floor augmentation with simultaneous implant placement have been performed previously. However, when it is not possible to install the dental implants simultaneously, cone beam computed tomography (CBCT) represents the best method for evaluating volumetric bone changes. This examination offers three-dimensional (3D) visualization, allowing real volumetric measurements to be obtained during the bone healing phase.

The new bone formation in the maxillary sinus can be analysed using histological measurements obtained from two-dimensional (2D) sections. Nevertheless, the 3D assessment of bone biopsies can also provide information on the trabecular bone structure and its microarchitecture. One means of analysing these parameters is micro-computed tomography (micro-CT), which is considered the ‘gold standard’ method because it is non-destructive and provides high-resolution images of the bone structure.

The aim of this study was to evaluate bioactive glass (Biogran) used alone or in combination with autogenous bone graft in a 1:1 ratio, compared to autogenous bone graft alone in maxillary sinus augmentation. The analyses were conducted through the assessment of volumetric bone changes on CBCT evaluation and the trabecular bone microarchitecture on micro-CT evaluation.

The study hypotheses were: (1) H₀ (null hypothesis), that bioactive glass will show less resorption than autogenous bone graft; (2) H₁ (alternative hypothesis 1), that the addition of 50% of autogenous bone graft to bioactive glass will improve the trabecular bone microarchitecture.

Materials and methods
Patients with an edentulous posterior maxilla were invited to participate in this study. The number of samples required in each group was determined by statistical power test, performed at the website http://www.lee.dante.br and based on the results of a previous study. The difference in the average to be detected was 11.9%, with a standard deviation of 9.57, at the significance level of 5% and with 80% power in a one-tailed hypothesis test.

The inclusion criteria encompassed patients with a maxillary sinus bone height (pristine bone) of less than 5 mm, who required bone grafting to allow dental implant placement. Patients were excluded if they presented any uncontrolled systemic diseases, periodontitis, any pathologies in the maxillary sinus, were smokers, or had received radiation treatment to the face, head, or neck.

CBCT scans were performed to evaluate all maxillary sinuses prior to treatment. The autogenous bone grafts were harvested from the mandibular symphysis or retromolar region. Anatomical structures next to these areas, such as tooth roots and the mandibular canal, were identified on CBCT scans.

Twenty-nine patients (35 maxillary sinuses) met the eligibility criteria and were invited to participate in this research. These patients were divided into three groups: group 1 comprised 11 patients (13 maxillary sinuses) grafted with bioactive glass alone (Biogran); group 2 comprised eight patients (10 maxillary sinuses) grafted with bioactive glass mixed with autogenous bone graft in a 1:1 ratio; group 3 comprised 10 patients (12 maxillary sinuses) grafted with autogenous bone graft alone (control group). There was no association between the side of the maxillary sinus and the grafting material used. Randomization was performed by drawing lots to decide which sites would be grafted with each material. This was done by a clinical assistant, who was not involved in the surgeries or in the data evaluation.

Surgical procedures
This prospective study was approved by the institutional ethics committee and was performed at Aracatuba Dental School from March 2014 to July 2016. The autogenous bone block grafts were harvested under local anaesthesia (lidocaine 2% with epinephrine 1:100,000; DFL, Taquara, RJ, Brazil) and milled with a bone crusher (Neodent, Curitiba, PR, Brazil), as recommended by Pereira et al. The maxillary sinus bone augmentation was performed in accordance with the surgical procedure of Boyne and James. Postoperatively, 500 mg of amoxicillin (EMS, São Paulo, SP, Brazil) three times per day was prescribed to reduce the chance of infection, as well as 500 mg paracetamol (EMS, São Paulo, SP, Brazil) four times per day for the management of pain. One patient in group 2 presented a maxillary sinus infection and was excluded from the study, and one patient in group 1 did not return for follow-up; thus, the final analysis included 12 maxillary sinuses for group 1, nine for group 2, and 12 for group 3.

Evaluation of the volumetric change
CBCT scans were obtained to determine the bone graft volume. The first scan was performed 15 days after the maxillary bone augmentation procedure, determining the initial volume (T1). The second scan was performed 6 months after the procedure (after 6 months of bone graft healing), determining the final volume.
(T2). This second scan was done during the planning for dental implant placement. The CBCT images were acquired using an i-CAT Classic CBCT unit (i-Cat; Imaging Sciences International, Hatfield, PA, USA), with settings of 120 kVp, 5 mA, and 20 s exposure. DICOM datasets were reconstructed using OsiriX software version 4.1.2, 32-bit (OsiriX Foundation, Geneva, Switzerland), with the image orientation and generation standardized as described by Spin-Neto et al.29,30.

Altogether, 54 examinations were accomplished and analysed: 27 in the early postoperative period (T1) and 27 in the late postoperative period (T2). Four hundred and eighty-nine slices were generated in the early postoperative period (T1) and 400 slices in the late postoperative period (T2). Standardization of the reduction in the distance between the slices, the slice thickness, and the adjustment of the contrast, exposure, and contour of the structures were performed according to Gorla et al.29, by a single researcher who had been trained in advance for this work. TIFF images (tagged image file format) were generated for each section of the CBCTs. The graft volume was calculated from the sum of all areas multiplied by the height, which was equivalent to the distance between the sagittal slices, and expressed in cubic millimetres (mm³). The resorption rate was calculated using the formula T1 – T2 and expressed as a percentage.

Micro-computed tomography evaluation
Biopsies were collected after 6 months of bone healing at the time of dental implant placement. The samples were harvested using a surgical guide and a 3.0 × 15 mm trephine bur (MK Life, Porto Alegre, RS, Brazil). They were then stored in a 10% formalin solution (pH 7) for 24 h, maintaining the apical orientation. After this, the samples were washed in running water for another 24 h and stored in 70% alcohol. Specimens were subjected to micro-CT scanning (SkyScan; Bruker microCT, Kontich, Belgium) in a horizontal position, maintaining the apico-coronal orientation; they were attached to the device tubes and sliced in 8.74-μm thick sections at an X-ray energy of 50 kV and 500 μA current. Images were captured with a camera with 12.45-μm pixel size, with a row count of 2672 and a column count of 4000. The rotation step was 0.5 with a 180° rotation and a frame average of 3. The filter used was aluminium (0.5 mm), in a moist medium, and the average scan duration was 41 min.

After these steps, the images were reconstructed using NRecon software v1.6.9.8 (Bruker microCT) with a smoothing of 1, a ring artefact correction of 3, a beam hardening correction of 5%, and an image correction variation from 0.0 to 0.11. The 3D and reconstructed images were analysed using CT-analysys software (CTAn) v1.12.4.0 (Bruker microCT). The images were opened, placed in the axial position, and 100 slices of the apical region of the samples were selected using the region of interest (ROI) tool and a circular (‘round’) format, with a size of 2.85 × 2.85 mm. The pristine bone was considered the most cortical bone of the sample according to the bone height determined by CBCT. The area selected had to include only the bone graft in the entire circumference and exclude the pristine bone region. Broken samples were not included in the analysis. Using the ‘binary selection preview’ tool, the histogram was standardized at 255% with an index of 70. After this, the ‘morphometry preview’ tool was used to analyse the 3D data (3D analysis) of the trabecular bone, defining the bone volume fraction (BV/TV), trabecular thickness (Tb.Th), trabecular number (Tb.N), and trabecular separation (Tb.Sp), as reported previously by Bouxsein et al.30. All of these analyses and the data collection were performed by a single researcher trained in advance for this work.

Statistical analysis
The Shapiro-Wilk test was used to determine whether the samples had a normal distribution. Comparisons between groups were done by analysis of variance (ANOVA) followed by Tukey’s multiple comparison test (SigmaPlot 12.3; Systat Software Inc., San José, CA, USA). The relationship between volume changes in the augmented bone and the time elapsed was evaluated using Pearson’s correlation coefficient. An a priori P-value of <0.05 was used for all tests.

Results

Results of the evaluation of volumetric change
All volumes were calculated in cubic millimetres. In group 1, the resorption rate ranged from 15.6% to 75.4%, with a mean rate of 44.0 ± 16.0% (Table 1). The resorption rate in group 2 ranged from 32.4% to 63.0%; however there was an augmentation of 5.8% in the bone volume in one case. The mean resorption rate in group 2 was 37.9 ± 18.9% (Table 2). Group 3 presented resorption rates ranging from 3.3% to 73.6% and a mean rate of 45.7 ± 18.5% (Table 3) (Fig. 1). There was no statistically significant difference between the groups regarding the resorption rate (all P > 0.05). The correlation between the periods evaluated was r = 0.81 for group 1, r = 0.88 for group 2, and r = 0.88 for group 3. This strong correlation indicates that the bone graft resorption was progressive during the healing period. With these results, the hypothesis H0 was accepted.

Results of the micro-computed tomography evaluation
The average remaining pristine bone was 3.0 ± 0.6 mm in group 1, 1.8 ± 0.9 mm in group 2, and 1.2 ± 0.4 mm in group 3. The bone volume fraction (BV/TV) was 52.06% in group 1, 57.09% in group 2, and 57.19% in group 3 (P > 0.05). The trabecular thickness (Tb.Th) was 0.14 mm.

Table 1. Bone graft volume after 15 days of maxillary sinus augmentation (T1), after 6 months (T2) and the resorption rate of group 1.

<table>
<thead>
<tr>
<th>Maxillary Sinus</th>
<th>T1 (mm³)</th>
<th>T2 (mm³)</th>
<th>Difference (mm³)</th>
<th>Resorption (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1L</td>
<td>1563.8</td>
<td>697</td>
<td>-866.8</td>
<td>-55.4</td>
</tr>
<tr>
<td>2L</td>
<td>1473</td>
<td>867.7</td>
<td>-605.3</td>
<td>-41.1</td>
</tr>
<tr>
<td>3L</td>
<td>1435.9</td>
<td>710</td>
<td>-725.9</td>
<td>-50.6</td>
</tr>
<tr>
<td>4R</td>
<td>394.6</td>
<td>333.1</td>
<td>-61.5</td>
<td>-15.6</td>
</tr>
<tr>
<td>5L</td>
<td>346.9</td>
<td>194.2</td>
<td>-152.7</td>
<td>-44</td>
</tr>
<tr>
<td>6R</td>
<td>483.4</td>
<td>249.6</td>
<td>-233.8</td>
<td>-48.4</td>
</tr>
<tr>
<td>7R</td>
<td>958.5</td>
<td>396.9</td>
<td>-561.6</td>
<td>-58.6</td>
</tr>
<tr>
<td>8R</td>
<td>727.9</td>
<td>545.5</td>
<td>-182.4</td>
<td>-25.1</td>
</tr>
<tr>
<td>9L</td>
<td>269.6</td>
<td>188.2</td>
<td>-81.4</td>
<td>-30.2</td>
</tr>
<tr>
<td>10R</td>
<td>1087.2</td>
<td>692.3</td>
<td>-394.9</td>
<td>-36.3</td>
</tr>
<tr>
<td>11R</td>
<td>1339.3</td>
<td>329.3</td>
<td>-1010</td>
<td>-75.4</td>
</tr>
<tr>
<td>Mean ± SD</td>
<td>909.7 ± 472.0</td>
<td>469.2 ± 228.1</td>
<td>-440.8 ± 315.6</td>
<td>-44.0 ± 16.0</td>
</tr>
</tbody>
</table>

L, left; R, right; SD, standard deviation.

a Negative values indicate volumetric bone loss.
Table 2. Bone graft volume in group 2 (maxillary sinuses grafted with bioactive glass mixed with autogenous bone graft 1:1) at 15 days (T1) and 6 months (T2) after maxillary sinus augmentation, and the resorption rate.

<table>
<thead>
<tr>
<th>Maxillary sinus</th>
<th>T1 (mm³)</th>
<th>T2 (mm³)</th>
<th>Difference (mm³)</th>
<th>Resorption (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11L</td>
<td>2204.9</td>
<td>1353.3</td>
<td>-851.6</td>
<td>-38.6</td>
</tr>
<tr>
<td>12R</td>
<td>951.1</td>
<td>581.0</td>
<td>-370.1</td>
<td>-38.9</td>
</tr>
<tr>
<td>12L</td>
<td>3539.4</td>
<td>1973.5</td>
<td>-1565.9</td>
<td>-44.2</td>
</tr>
<tr>
<td>13R</td>
<td>1358.2</td>
<td>877.4</td>
<td>-480.8</td>
<td>-35.4</td>
</tr>
<tr>
<td>14L</td>
<td>1586.3</td>
<td>1678.0</td>
<td>91.7</td>
<td>5.8</td>
</tr>
<tr>
<td>15R</td>
<td>1908.9</td>
<td>1290.5</td>
<td>-618.4</td>
<td>-32.4</td>
</tr>
<tr>
<td>16R</td>
<td>799.7</td>
<td>374.1</td>
<td>-425.6</td>
<td>-53.2</td>
</tr>
<tr>
<td>17R</td>
<td>1074.5</td>
<td>398.1</td>
<td>-676.4</td>
<td>-63.0</td>
</tr>
<tr>
<td>17L</td>
<td>897.4</td>
<td>529.1</td>
<td>-368.3</td>
<td>-41.0</td>
</tr>
<tr>
<td>Mean ± SD</td>
<td>1591.2 ± 874.0</td>
<td>1006.1 ± 589.7</td>
<td>-585.1 ± 451.3</td>
<td>-37.9 ± 18.9</td>
</tr>
</tbody>
</table>

L, left; R, right; SD, standard deviation.

*a*Negative values indicate volumetric bone graft loss.

Table 3. Bone graft volume in group 3 (maxillary sinuses grafted with autogenous bone graft) at 15 days (T1) and 6 months (T2) after maxillary sinus augmentation, and the resorption rate.

<table>
<thead>
<tr>
<th>Maxillary sinus</th>
<th>T1 (mm³)</th>
<th>T2 (mm³)</th>
<th>Difference (mm³)</th>
<th>Resorption (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18R</td>
<td>367.7</td>
<td>280.3</td>
<td>-87.4</td>
<td>-23.8</td>
</tr>
<tr>
<td>19L</td>
<td>336.1</td>
<td>325.1</td>
<td>-11.0</td>
<td>-3.3</td>
</tr>
<tr>
<td>20R</td>
<td>1294.2</td>
<td>804.8</td>
<td>-489.4</td>
<td>-37.8</td>
</tr>
<tr>
<td>20L</td>
<td>1374.8</td>
<td>718.5</td>
<td>-656.3</td>
<td>-47.7</td>
</tr>
<tr>
<td>21L</td>
<td>1579.9</td>
<td>673.7</td>
<td>-906.2</td>
<td>-57.4</td>
</tr>
<tr>
<td>22R</td>
<td>1770.6</td>
<td>923.2</td>
<td>-847.4</td>
<td>-47.9</td>
</tr>
<tr>
<td>23R</td>
<td>1247.1</td>
<td>523.9</td>
<td>-723.2</td>
<td>-58.0</td>
</tr>
<tr>
<td>24R</td>
<td>1396.4</td>
<td>368.2</td>
<td>-1028.2</td>
<td>-73.6</td>
</tr>
<tr>
<td>25R</td>
<td>1103.1</td>
<td>507.1</td>
<td>-596.0</td>
<td>-54.0</td>
</tr>
<tr>
<td>25L</td>
<td>1115.1</td>
<td>626.3</td>
<td>-488.8</td>
<td>-43.8</td>
</tr>
<tr>
<td>26R</td>
<td>453.4</td>
<td>274.8</td>
<td>-178.6</td>
<td>-39.4</td>
</tr>
<tr>
<td>27L</td>
<td>816.1</td>
<td>313.7</td>
<td>-502.4</td>
<td>-61.6</td>
</tr>
<tr>
<td>Mean ± SD</td>
<td>1071.2 ± 477.8</td>
<td>528.3 ± 221.2</td>
<td>-542.9 ± 321.7</td>
<td>-45.7 ± 18.5</td>
</tr>
</tbody>
</table>

L, left; R, right; SD, standard deviation.

*a*Negative values indicate volumetric bone graft loss.

in group 1, 0.19 mm in group 2, and 0.38 mm in group 3 (P > 0.05). The trabecular numbers (Tb.N) for the biomaterials evaluated were 2.70/mm, 2.86/mm, and 2.04/mm for groups 1, 2, and 3, respectively. Trabecular separation (Tb.Sp) was 0.13 mm in group 1, 0.18 mm in group 2, and 0.38 mm in group 3 (Table 4). Statistically significant differences in Tb.N were found between groups 1 and 3 (P = 0.02) and between groups 2 and 3 (P = 0.01); furthermore, a significant difference was also found between groups 1 and 3 for Tb.Sp (P = 0.02) (Fig. 2). Thus, hypothesis H1 was accepted.

Discussion

Bioactive glass is an osteoconductive biomaterial that has been used as a bone substitute for periodontal defects, alveolar filling, and in apical resections. However, few prospective clinical studies have demonstrated the behaviour of this material in maxillary sinus augmentation with a sufficiently large number of patients. Reconstruction of the posterior maxilla was a challenge for oral surgeons during the first studies on dental implants. Although advances have been made in surgical procedures and the development of bone substitutes, the final result has to offer new bone formation and, in particular, sufficient volume to allow the placement of implants. Thus, studies evaluating the bone volume resorption and the new bone microarchitecture in maxillary sinus bone augmentation are required to determine the ideal amount of bone graft to be inserted.

Arasawa et al. demonstrated that the autogenous bone graft undergoes progressive resorption following maxillary sinus augmentation. Although this material is the ‘gold standard’ for the restoration of bone defects, the occurrence of volumetric changes due to bone remodelling is con-
siderable. Nevertheless, the use of non-resorbable biomaterials alone in these surgical procedures is questionable. Thus, some authors have proposed the combination of autogenous bone graft and synthetic biomaterials to improve the new bone formation and osseointegration, and to decrease bone shrinkage.\(^{30-42}\)

In a study by Cosso et al., hydroxyapatite added to autogenous bone graft in maxillary sinus lifting presented resorption of 25.8% compared to 42.3% for autogenous bone graft alone.\(^{40}\) This is due to the low resorption of hydroxyapatite.\(^{43}\) When demineralized bovine bone mineral was used alone for maxillary sinus lifting, Gultekin et al. found a lower resorption rate of just 8.14%.\(^{44}\) Similar results were reported by Jensen et al., who demonstrated that the addition of Bio-Oss to autogenous bone graft in different proportions reduced the resorption of the grafted bone.\(^{45}\) Moreover, Lee et al. demonstrated a bone volume augmentation of 1.70 cm\(^3\) with the same biomaterial, confirming that this biomaterial maintains a reliable volume after the healing period.\(^{46}\)

In the present study, Biogran (bioactive glass) presented a similar resorption rate to autogenous bone graft in maxillary sinus augmentation. However, a combination of the two biomaterials in a 1:1 ratio demonstrated a lower rate of volumetric reduction; there was even a 5.8% bone augmentation in a single case. Similar results were found with the use of beta-tricalcium phosphate added to autogenous bone graft in a 1:1 ratio.\(^{47}\) Thus, these results demonstrate that bioactive glass alone, or in combination with autogenous bone graft 1:1, shows the same volumetric change behaviour as autogenous bone graft, making both options favourable bone substitutes.

The use of micro-CT to evaluate bone samples allows 3D morphological measurements and has a high correlation with 2D analysis, even though it is not possible to show the cells.\(^{48}\) As well as allowing the 3D assessment of trabecular bone morphology, it allows a non-destructive evaluation of the biopsy specimen and more rapid measurement compared to histological analysis.\(^{49}\) Caubet et al. evaluated the bone morphometric parameters of Bio-Oss and BoneCeramic in maxillary sinus augmentation.\(^{24}\) At 6–8 months, the BV/TV using Bio-Oss was 48.2% and using BoneCeramic was 43.2%. Higher BV/TV values were found in both bioactive glass

\[\text{Table 4. Micro-computed tomography outcomes for the three bone substitutes used for maxillary bone augmentation evaluated after 6 months of bone graft healing.}\]

<table>
<thead>
<tr>
<th>Variables</th>
<th>Abbreviations (units)</th>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone volume fraction</td>
<td>BV/TV (%)</td>
<td>52.06 (A)</td>
<td>57.04 (A)</td>
<td>57.19 (A)</td>
</tr>
<tr>
<td>Trabecular thickness</td>
<td>Tb.Th (mm)</td>
<td>0.14 (A)</td>
<td>0.19 (A)</td>
<td>0.38 (A)</td>
</tr>
<tr>
<td>Trabecular number</td>
<td>Tb.N (1/mm)</td>
<td>2.70 (A)</td>
<td>2.86 (AB)</td>
<td>2.04 (C)</td>
</tr>
<tr>
<td>Trabecular separation</td>
<td>Tb.Sp (mm)</td>
<td>0.13 (A)</td>
<td>0.18 (AB)</td>
<td>0.38 (B)</td>
</tr>
</tbody>
</table>

\(^{*}\)No statistically significant difference between data with the same letters in each row (\(P > 0.05\)).

Fig. 2. Graphs demonstrating the trabecular bone microarchitecture in human maxillary sinus augmentation with Biogran (bioactive glass), Biogran in combination with autogenous bone graft 1:1, and autogenous bone graft, after 6 months: (A) bone volume fraction (BV/TV); (B) trabecular thickness (Tb.Th); (C) trabecular number (Tb.N); (D) trabecular separation (Tb.Sp).
groups in the present study, particularly in group 2. Lower BV/TV values have been reported in the literature with the use of beta-tricalcium phosphate as the bone substitute in maxillary sinus augmentation11. Thus, the groups tested in this study (groups 1 and 2) presented more reliable 3D bone microarchitecture parameters than cases in which other biomaterials were used to re-establish bone height in the posterior maxilla. Both bone substitutes showed positive results and similar values for trabecular thickness and trabecular separation. Nevertheless, when Bio-gran was mixed with autogenous bone graft in a 1:1 ratio, an increase in trabecular number occurred and consequently an improvement in bone volume fraction.

In conclusion, the findings of this study showed that Bio-gran has similar outcomes compared to autogenous bone graft in maxillary sinus bone augmentation. Nevertheless, the mixture of Bio-gran and autogenous bone graft in a 1:1 ratio decreased the resorption volume and improved the trabecular bone microarchitecture. Further studies are necessary to demonstrate the cellular activity and the osteogenic potential of these biomaterials.

Funding
None declared.

Competing interests
None declared.

Ethical approval
This study followed the ethical principles for human experimentation of the Araçatuba Dental School, UNESP, and was approved by the institutional ethics committee (number 47711015.4.0000.5420).

Patient consent
Not required.

Acknowledgement. We thank CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) for financial support, which enabled the authors to develop this study.

References

Address:
Rodrigo dos Santos Pereira
Zefreiro Street 243
Mesquita
Rio de Janeiro 26551-081
Brazil
Tel.: +55 021 96937 5841
E-mail: dr.pereira@live.com