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a b s t r a c t 

Statistical properties for recurrent and non recurrent escaping particles in an oval billiard with holes in 

the boundary are investigated. We determine where to place the holes and where to launch particles in 

order to maximize or minimize the escape measurement. Initially, we introduce a fixed hole in the bil- 

liard boundary, injecting particles through the hole and analyzing the survival probability of the particles 

inside of the billiard. We show there are preferential regions to observe the escape of particles. Next, 

with two holes in the boundary, we obtain the escape basins of the particles and show the influence of 

the stickiness and the small chains of islands along the phase space in the escape of particles. Finally, we 

discuss the relation between the escape basins boundary, the uncertainty about the boundary points, the 

fractal dimension of them and the so called Wada property that appears when three holes are introduced 

in the boundary. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

A billiard is a dynamical system where a point-like particle

oves with constant speed along straight lines confined to a piece-

ise and smooth boundary where it experiences specular reflec-

ions [1] . This implies that the incidence angle must be equal

o the reflection angle [1] . The study of billiards started in 1927

hen Birkhoff [2] investigated the motion of particles along man-

folds. After many years this scientific research has grown leading

o progress in nonlinear dynamics as well as in statistical mechan-

cs. The modern investigations of billiards are linked to the works

f Sinai [3] and Bunimovich and Sinai [4,5] who made mathemat-

cal demonstrations in the topic. The billiards theory may be used

o describe many different kinds of physical systems such as ex-

eriments on superconductivity [6] , waveguides [7] , microwave bil-

iards [8,9] , confinement of electrons in semiconductors by electric

otentials [10,11] , plasma physics [12] and many others. 

The combination of the billiard parameters leads the phase

pace to exhibit three possible kinds of classification including: (i)

egular/integrable; (ii) ergodic and; (iii) mixed. For the first case,

he circular billiard is a typical example since its dynamics is inte-

rable due to the conservation of energy and angular momentum

1] . The phase space is filled with straight lines (quasi periodic or-
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its) or a set of points (periodic orbits). Another example of such

 system is the elliptical billiard in which energy and the angular

omenta about the two foci are preserved [13] . Case (ii) corre-

ponds to systems containing zero measure stable periodic orbits

ence dominated by chaotic dynamics. The Bunimovich stadium

4] as well as the Sinai billiard [3] represent well this class. Finally

n (iii) the phase space is composed by Kolmogorov–Arnold–Moser

KAM) islands surrounded by a chaotic sea which is limited by a

et of invariant spanning curves [14,15] . The oval billiard [13] rep-

esents this class. 

Berry [13] discussed a family of billiards of the oval-like shapes.

he radius in polar coordinates has a control parameter ε which

eads to a smooth transition from a circumference with ε = 0 (in-

egrable) to a deformed form with ε � = 0. For sufficiently small ε a

pecial set of invariant spanning curves exists in the phase space

orresponding to the so called whispering gallery orbits. They are

rbits moving around the billiard close to the border with either

ositive (counterclockwise dynamics) or negative (clockwise dy-

amics) angular momentum. As soon as the parameter reaches

 critical value [16] , the invariant spanning curves are destroyed

ence destroying the whispering gallery orbits. 

Billiards can be considered for the study of recurrence of parti-

les [17] , particularly related to the Poincaré recurrence [18] . The

ecurrence can be measured from the injection and hence from

he escape of an ensemble of particles by a hole introduced in

he boundary. The dynamics is made in the following way. A par-

icle injected through the hole is allowed to move inside the bil-

https://doi.org/10.1016/j.chaos.2017.11.036
http://www.ScienceDirect.com
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Fig. 1. Illustration of the angles involved in the billiard. 
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liard suffering specular reflections with the boundary until it hits

the hole. In this situation the particle escapes from the billiard.

The number of collisions that the particle has before escaping is

computed and another particle with different initial condition is

introduced in the system. The dynamics is repeated until a large

ensemble of particles is exhausted. For the recurrence the known

results are that for a totally chaotic dynamics, the survival proba-

bility (probability that a particle survives inside of the billiard after

a number of collisions with the boundary) is described by an ex-

ponential function [19,20] . However, if there are stable islands, it is

possible to observe a different behavior for the survival probabil-

ity. In this case, we may observe some chaotic orbits very close to

stability island, and these orbits can be trapped around the islands

for a long time influencing the survival probability. Therefore the

survival probability is changed to a lower decay, as conjectured in

Ref [18] ., to be described by a power law of universal scaling with

an exponent from the order of � −2 . 57 . 

The knowledge of the structure and properties of the invariant

manifolds, chaotic saddles, escape basins and their boundaries are

important for the understanding and description of the anomalous

transport of particles in chaotic motion for several different dy-

namical systems. The procedure can be applied and hence gener-

alized to other systems including study of transport in open/closed

Hamiltonian systems such as magnetically confined plasmas [21] ,

the standard map [22] and many others. In our work, the infor-

mation obtained from the investigation of escape of particles may

help to give an answer, at least partially, to an open problem about

the maximization or minimization of the escape of particles in

billiards, see Ref. [19] . It must be emphasized that the knowledge

about these structures and properties may be used in many phys-

ical applications beyond transport including applied problems in

fluids [23] . 

In this paper we study some escaping properties for an ensem-

ble of particles in the static oval billiard and our main goal is to

understand the relation between the position of the hole in the

billiard boundary and the region where the particles are injected,

hence searching for a condition to maximize or minimize the es-

cape through the hole. It is known there are preferential regions

in the phase space since the density is not constant [24] and we

are interested to know what are the requirements to obtain an op-

timization or non optimization for the escape. We then introduce

a hole in the billiard boundary and studied the survival probabil-

ity of particles in different positions of the hole and the region of

injection of particles. It allows us to known what combinations be-

tween the position of the hole and region of the injection leads to

the escape maximization. With the knowledge of the best place to

get a faster escape of particles we introduce other holes in the bil-

liard and look at the escape basin for such holes. 

This paper is organized as follows. In Section 2 we discuss the

model and the equations that describe the dynamics of the system.

The properties of the escape are presented in Section 3 . The escape

of particles and the properties of the escaping basins are discussed

in Section 4 while the dependence of the boundary is studied in

Section 5 . Our final remarks are presented in Section 6 . 

2. The static oval billiard 

We start discussing how to obtain the equations that describe

the dynamics of the system. The radius of the boundary in polar

coordinate is given by 

R (θ, ε, p) = 1 + ε cos (pθ ) , (1)

where θ is the polar coordinate, ε corresponds to a perturbation

parameter of the circle and p > 0 is an integer number. For ε = 0

the system is integrable. The phase space is foliated [1] and only

periodic and quasi-periodic orbits are observed. For ε � = 0 the phase
pace is mixed containing both periodic, quasi-periodic and chaotic

ynamics. When ε reaches the critical value [16] εc = 1 / (1 + p 2 )

he invariant spanning curves, corresponding to the whispering

allery orbits are destroyed and only chaos and periodic islands are

bserved. This happens when the boundary is concave for ε < εc 

nd is not observed for ε > εc when the boundary exhibits seg-

ents that are convex. 

The dynamics is described by a two dimensional nonlinear

apping relating the variables A (θn , αn ) → (θn +1 , αn +1 ) where θ
enotes the polar angle to where the particle collides and α rep-

esents the angle that the trajectory of the particle makes with a

angent line at the collision point. Fig. 1 illustrates the angles and

he trajectory of one particle. 

For an initial condition ( θn , αn ) the Cartesian coordinates

f the position of the particle is written as X(θn ) = [1 +
cos (pθn )] cos (θn ) and Y (θn ) = [1 + ε cos (pθn )] sin (θn ) . The an-

le of the tangent vector at the polar coordinate θn is φn =
rctan [ Y 

′ (θn ) 
X ′ (θn ) 

] , where X ′ (θ ) = d X(θ ) /d θ and Y ′ (θ ) = dY (θ ) /dθ . Be-

ause there are no forces acting on the particle from collision to

ollision it moves along a straight line. 

The trajectory is given by 

 (θn +1 ) − Y (θn ) = tan (αn + φn )[ X (θn +1 ) − X (θn )] , (2)

here θn +1 is obtained numerically and corresponds to the new

olar coordinate of the particle when it hits the boundary. The an-

le αn +1 gives the slope of the trajectory of the particle after a

ollision and is calculated as 

n +1 = φn +1 − (αn + φn ) . (3)

The final form of the mapping is then given as 

 : 

{ 

F (θn +1 ) = Y (θn +1 ) − Y (θn ) − tan (αn + φn ) 
×[ X (θn +1 ) − X (θn )] , 

αn +1 = φn +1 − (αn + φn ) , 
(4)

here θn +1 is obtained numerically from F (θn +1 ) = 0 and the an-

le of the tangent vector at the polar coordinate θn +1 is φn +1 =
rctan [ 

Y ′ (θn +1 ) 

X ′ (θn +1 ) 
] . 

In Fig. 2 (a) we show an example of the boundary and collisions

or a chaotic orbit from the chaotic sea of the phase space, shown

n Fig. 2 (b), while Fig. 2 (c) corresponds to a periodic orbit of a par-

icle inside of the stability island of Fig. 2 (b). The control parame-

ers used were p = 3 and ε = 0 . 08 < εc . 

. The relation between injection and escaping region 

In this section we discuss some statistical properties for the es-

ape of particles considering two holes placed on the boundary,

ith constant angular aperture size of h = 0 . 20 measured in the
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Fig. 2. (a) Trajectory of the particle collisions in the billiard for the chaotic orbit 

shown in (b) while (c) shows a period three orbit inside the stability island in the 

lower chain seen in (b). 

Fig. 3. Illustration of the positions of the holes h 1 and h 2 , with ε = 0 . 08 and p = 3 . 
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o  

t  
olar angle θ . The position for the holes are h 1 ∈ (3.04, 3.24) corre-

ponding to a region with chaotic and regular areas (mixed struc-

ure) and h 2 ∈ (3.95, 4.15) located at a completely chaotic region as

hown in Fig. 3 . There is an interesting difference about the es-

ape rate for the holes h 1 and h 2 . There are preferential regions

o place a hole along the boundary to observe escape of particles

aster than the others. The escape rate of particles when the hole

s placed in chaotic regions is larger than those placed in regions

here stability islands are present [24] . Therefore h 2 leads to a

aster escape as compared to h 1 . 

To give convincing arguments on that, we first keep h 1 open

hile h 2 is closed. An ensemble of 10 4 particles from h 1 is injected

nd the dynamics of each particle is running to, at most, 10 6 colli-

ions with the boundary using mapping (4) . The initial conditions

re uniformly distributed in a window of 10 2 θ0 values in the in-

erval (3.04, 3.24) or (3.95, 4.15) and 10 2 α0 values in the interval

0, π ). Our statistics are made in terms of the number of collisions

 of each particle until it escapes. Every time an initial condition

its h 1 ( h 2 ), the particle escapes, we interrupt the simulation and

ther initial condition is initialized. The process is repeated until

he whole ensemble is exhausted. We compute the survival proba-

ility P ( n ), that corresponds to the number of particles that do not

scape through the hole until collision n . The survival probability

s given by 

 (n ) = 

1 

N 

N surv (n ) , (5)

here N is the number of initial conditions and N surv is the num-

er of the particles that survived until the n th collision. Fig. 4 (a)

hows the results of the survival probability obtained for ε = 0 . 08 ,

= 0 . 1 , ε = 0 . 12 and p = 3 and for an ensemble of 10 4 different

articles. The decay of the survival probability is exponential and
an be described by 

 (n ) = P 0 e 
nδ, (6)

here P 0 is a constant, δ is the slope of the decay and n is

he number of collisions with the boundary. For such configura-

ion an exponential fitting obtained P ( n ), as shown in Fig. 4 (a),

ives δh 1 → h 1 
= −0 . 0188(7) . When the process above is repeated,

ut now, with h 1 closed and h 2 open, the average decay of P ( n )

s faster as compared to the earlier case, as shown in Fig. 4 (b). An

xponential fit for this case gives δh 2 → h 2 
= −0 . 0437(3) confirming

he faster escape from h 2 while compared to h 1 . Although the size

f the holes h 1 and h 2 are the same in polar angle, their corre-

ponding arc length S 1 and S 2 has ratio S 1 / S 2 ∼= 

0.87, which does

ot produce qualitative modifications in the approach used in the

resent configuration of the model. 

We notice the importance of the position of the hole for the

aximization or minimization of the escape of particles. Our re-

ults confirm that injecting particles through a hole placed in a

haotic region leads to a faster escape rate while compared to the

articles injected through a hole placed in a region with mixed

tructures. The two questions we want to address: Are there pref-

rential regions to inject the particles to maximize or minimize the

scape? Are there a relation among the injection regions and the

ositions to place the holes for a faster or lower escape rates? 

To answer these questions, we inject particles from h 2 (a

haotic region) and allow the particles to escape only from h 1 (re-

ion that represents a mix structure). The procedure to inject the

articles, the number of initial conditions and the number of colli-

ions that each particle is allowed to live are the same as described

efore. Fig. 4 (c) shows the survival probability P ( n ) for such con-

guration. The average fitting gives δh 2 → h 1 
= −0 . 0183(4) which is

uite close to δh 1 → h 1 
= −0 . 0188(7) as obtained earlier. If the par-

icles are injected from h 1 and the escape is measured from h 2 a

ignificant change in the survival probability is observed as shown

n Fig. 4 (d). The survival probability P ( n ) does not decay to zero

nymore. It rather decays for n about n � 10 2 and then converges

o a constant plateau, which can be explained by two reasons: (1)

nitial conditions inside of the periodic islands that are forbidden

o escape and; (2) very long stickiness observed for orbits visiting

egions very close to the stability islands. It is interesting to no-

ice the number of particles that remain in the plateau decreases

hen the parameter ε is increased. The size of the islands in such

egion decreases indicating that less initial conditions have been

aken into the regions near the islands. As soon as the parameter ε
s changed the structure of the phase space changes, therefore, the

ize of the islands change, islands and the whispering gallery orbits

ay be destroyed. Even considering all of these possible changes

he behavior of the survival probability apparently does not suffer

hanges when we study the escape of particles in regions totally

haotic or with mixed structure. 

An immediate conclusion is that a faster escape is produced by

onditions where particles are injected in the chaotic sea while

he hole is also placed in the chaotic sea. Therefore the position

f the hole for the escape of particles has important influence to

he maximization or minimization of the escape of particles. How-

ver, the determining factor is the region of injection of particles.

s we show, the best results for the escape of particles comes with

he choice of the chaotic regions to inject the particles. 

We stress that no connection between the hole h 1 and h 2 ex-

sted. Interested reader can see results of connected holes in [25] . 

. Escape basins investigation 

In this section we discuss the escape of particles in the static

val billiard in the presence of two holes in the boundary starting

he dynamics in the best scenario of escape, i.e., in the chaotic sea.
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Fig. 4. Plot of the survival probability for: (a) the particles are injected through the hole h 1 ; (b) the particles are injected through the hole h 2 ; (c) when the particles are 

injected from the region of h 2 and escape through h 1 and (d) when the particles are injected from the region of h 1 and escape through h 2 . The parameters used are p = 3 

and ε = 0 . 08 , ε = 0 . 1 and ε = 0 . 12 . 
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Fig. 5. (a) The escape basins for the particles that escape through the hole h 1 (red color), h 2 (blue color) and for the particles that do not escape (white color); (b) the same 

escape basin of (a), but with the color scale with the number of collisions until escape. The used parameters are ε = 0 . 08 and p = 3 . (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 
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We inject an ensemble of 4 × 10 6 particles from the chaotic sea

evolving the dynamics of each particle up to 10 6 collisions with

the boundary. The initial conditions were uniformly distributed in

a window of 2 × 10 3 for θ0 ∈ (2.0, 2.2) and 2 × 10 3 for α0 ∈ (0, π ).

We keep two holes in the boundary placed at h 1 ∈ (0.1, 0.3) and

h 2 ∈ (3.95, 4.15). The idea is to construct the basin of escape for

each initial condition. Given an initial condition, as soon as its orbit

escapes the following information is obtained: to what hole the

escape happened, if h 1 or h 2 and the number of collisions at the

escape. After a particle escapes a new initial condition is started

and so on until all the ensemble is exhausted. If an orbit does not

escape, this information is also retained. 

Fig. 5 (a) shows a plot of the configuration α v s. θ where each

point denotes the initial condition. The color identifies to what

hole the injected orbit escape through. A escape through h 1 is

painted red while blue identifies escape through h 2 . White color

implies no escape up to 10 6 collisions. This plot corresponds to

a basin of escape. We notice from Fig. 5 (a) that, there are some

regions where the particles do not escape through any hole, for
xample, near the region (θ, α) = (2 . 1 , 0 . 75) . Immediate questions

re: what is the reason for such behavior? What kind of phe-

omenon could be acting in this region? To answer these questions

e analyze the basin of escape using a color scaling to have an in-

ight of the number of collisions with the boundary each particle

pent until escaping, as shown in Fig. 5 (b). We constructed again

he basin of escape but now using as maximum length of num-

er of collisions 80. We see that the majority of particles escape

ery fast, namely before 40 collisions with the boundary. Some of

hem live longer and a small amount survive until 80 collisions. A

agnification of the red region of Fig. 5 (b) is shown in Fig. 6 (a).

s soon as the initial conditions get apart from the red region, the

scape gets faster. The initial conditions in the red regions suffer

wo types of dynamics. Some of them are indeed inside a periodic

sland, therefore are forbidden to escape such region. If the hole

s placed outside of the island, the escape never takes place. The

ther set of initial conditions are outside of the island, but very

lose to it. They suffer strong influence of the stickiness staying

rapped near it for long time, as shown in Fig. 6 (b). The particles
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Fig. 6. (a) Magnification of the chain of islands in the plane α v s. θ ; (b) The rep- 

resentation of the chain of islands in the phase space; (c) Observation of the sticki- 

ness phenomenon around the islands. The parameters used are ε = 0 . 08 and p = 3 . 

(For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 
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ndergo a large number of collisions until they get rid of the stick-

ness. Fig. 6 (c) shows a magnification of Fig. 6 (b). 

We see from Fig. 6 (a) there are chains along the plane α v s. θ
o where the particles move and that they resemble to manifolds.

hen we investigate the behavior of stable and unstable manifolds

rom a saddle fixed point. An unstable (stable) manifold is a set of

oints that moves away (approaches) to the saddle fixed point un-

er the forward (backward) iterations of the map, as time goes to

nfinity. To construct the manifolds we used a numerical technique

alled as sprinkler method [26,27] . The method consists in split-

ing the phase space along the region of interest into a fine grid

f points and iterate each point n times. After a certain number of

ollisions each point leaves the grid and starts to follow the mani-
ig. 7. (a) Plot of the unstable manifold of the saddle point ( θ ∗ ≈ 2.0522, α∗ ≈ 0.9997); (b

sed are ε = 0 . 08 and p = 3 . 
old hence giving a good approximation of the stable and unstable

anifolds. Fig. 7 (a) and (b) shows plots of the unstable and sta-

le heteroclinic manifolds for the saddle fixed point ( θ ∗ ≈ 2.0522,
∗ ≈ 0.9997) (purple point) indicated in the figure. 

A chaotic saddle is defined as a set of points (that has zero

ebesgue measure [28] ) form by the intersection of the stable

nd unstable manifolds from the saddle fixed points. The points

hat belong to the chaotic saddle remain there for all iterations of

he map. When initial conditions start closer to the chaotic sad-

le, they wander along the unstable manifold in an almost erratic

ay approaching arbitrarily close to the unstable manifold in the

haotic saddle. Therefore if an initial condition injected in the dy-

amics lives near a chaotic saddle it shall undergoes a large num-

er of collisions until finding a route to escape through the holes. 

To elucidate the influence of the chaotic saddle in the escape

f particles we made a magnification of Fig. 5 (b) considering the

arger time of dynamics as 200 collisions as shown in Fig. 8 (a). We

otice many points undergo around 50 collisions with the bound-

ry and when we compare these regions with the chaotic saddle,

s shown in Fig. 8 (b), the position of many points that undergo

ore collisions with the boundary are very close to the chaotic

addle. This is indeed the reason why some points undergo more

ollisions with the boundary than others to escape, hence reinforc-

ng the influence of stickiness close to the chains and the chaotic

addle. 

. Escape basins properties 

In the previous section we saw the intricate relation of the

scaping basin containing many intertwined chains as shown in

ig. 5 (a) for the escape basins of the holes h 1 and h 2 . To investigate

he uncertainty of the initial condition to what hole it escapes in

ig. 5 (a), we used the so called uncertain fraction method [29,30] .

he method consists of taking an initial condition ( θ0 , α0 ) and fol-

owing it in time checking to what hole it escaped. Then a small

erturbation ζ is added to the initial condition along the range

(θ0 + ζ , α0 ) and (θ0 − ζ , α0 ) . From there we follow the evolution

f such initial condition and seek if the escaping hole is the same

r not as the initial condition without perturbation. 

The process is repeated for a large number of initial conditions

 T where the index T identifies total initial conditions. Defining N u 

s the number of uncertain initial conditions we obtain a fraction

f uncertain initial conditions as f ( ζ ) ≈ N u / N T . For different values

f ζ , we notice the uncertain fraction scales with ζ as a power

aw f ( ζ ) ∼ ζμ where μ is the uncertainty exponent of the escape

asin boundary. If the boundary is smooth, f ( ζ ) ∼ ζ since the un-

ertain conditions occupy a strip of width 2 ζ in the boundary.

owever for fractal boundaries, the uncertainty exponent scales

ith f ( ζ ) ∼ ζμ, where 0 < μ< 1 is the uncertainty exponent. 
) Plot of the stable manifold for the same saddle fixed point of (a). The parameters 
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Fig. 8. (a) Amplification of Fig. 5 (b) with a largest escape time of 200 collisions. (b) 

Chaotic saddle influence: particles near stable (orange) and unstable (black) man- 

ifold crossings have a higher scape time. The parameters used are ε = 0 . 08 and 

p = 3 . (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 
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Fig. 9. (a) Plot of f (ζ ) v s. ζ . A power law fitting gives the uncertain exponent μ = 0 . 12

μ = 0 . 1201(5) for backward iterations; (c) the relation between the uncertainty exponen

plot after a transformation h −→ h/ε. The parameters used are p = 3 and ε = 0 . 08 , ε = 0
The results for the uncertainty exponent, are shown in Fig. 9 (a)

nd (b) as a function of different values of ζ . For the forward itera-

ions (when (θ0 + ζ , α0 ) ) we obtained μ = 0 . 1203(5) while for the

ackward iterations (for (θ0 − ζ , α0 ) ) we found μ = 0 . 1201(5) . The

ncertainty exponent μ can be related to the box-counting bound-

ry dimension D 0 via the relation μ = D − D 0 , where D is the di-

ension of the phase space, in our case D = 2 . Using the uncertain

xponent for forward iterations we obtained that the escape basin

oundary dimension is D 0 = 1 . 8797(5) while for backward itera-

ions is D 0 = 1 . 8799(5) . Therefore the escape basin boundary has

 fractal dimension from the order of D 0 = 1 . 8798(5) . 

To better understand the behavior of the boundaries of the es-

ape basins we analyze how the uncertainty exponent behaves

hen the size of the holes h 1 and h 2 are increasing/decreasing. In

ig. 9 (c) we see that μ obeys a power law of the hole size. Smaller

oles lead to smaller values of μ. The opposite is also observed, as

arger the hole size is, larger the value of μ will be. This behavior

hows that when the holes are small the boundaries of the escape

asins become very complicate which will give a fractal dimension

 0 ≈ 2. In other words, when the size of the holes became large,

he fractal dimension D 0 approaches the unity, leading the bound-

ries of the escape basins to a less complicated form, say smother ,

here the boundaries begin to approach their simplest form. 

After considering a transformation in Fig. 9 (c) ( h −→ h/ε) all

urves are overlapped onto each other onto a single curve, that is

escribed by a power law μ∼ h ρ , as shown in Fig. 9 (d). The slope

btained, by a power law fit, was ρ = 0 . 9658(1) . 

When a third hole is introduced in the boundary the so called

ada property [29,31] can be explored. The property shows there

re points in the basin boundary that belong to the three escape

asins. To introduce a mathematical definition of Wada property

see Refs. [32,33] ) we initially consider that a point P is a boundary

oint of an escape basin β if every open neighborhood of P inter-

ects the basin β and at least another basin. The basin boundary is

he set of all boundary point of that basin. The boundary point P

s a Wada point if every open neighborhood of P intersects at least

hree different basins. A basin boundary exhibits Wada property if
03(5) for forward iterations; (b) Plot of f (ζ ) v s. ζ with the uncertainty exponent 

t and the size h of the hole and (d) the overlap onto a single and hence universal 

 . 1 and ε = 0 . 12 . 
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very boundary point of β is a Wada point, such that boundary of

uch a basin is a Wada basin boundary [26,27] . 

To observe the Wada property we need first to introduce one

ore hole in the boundary. We place it at h 3 ∈ (6.0, 6.2) along

he chaotic sea. Fig. 10 (a) shows how the escaping basins are dis-

ributed in the phase space. Escape from h 3 is represented in green

olor. 

The Wada property warrants the stripes of all basins coexist in

n increasingly finer scale as shown in Fig. 10 (b) and (c). This Il-

ustration of the Wada property does not guarantee the existence

f the property. To have a confirmation of the Wada property an

nstable manifold of an unstable periodic point P must intersects

very basin of escape. This can be seen in Fig. 10 (d) where the un-

table manifold intersects the three escape basins. If an unstable

anifold of a periodic orbit P belongs to any escape basin and in-

ersects all the escape basins then the Wada property is satisfied. 

. Discussion and conclusions 

As a short summary, we study the behavior of the escape of

articles in an oval static billiard with holes on the boundary. We

nvestigated the behavior of the survival probability of the parti-

les. This gives us information about the number of particles that

emain inside of the billiard after a number of collisions among the

articles and the boundary in different scenarios of injection. We

oticed, when both the injected particles and hole are placed in

he chaotic sea, a maximization of escape is observed when com-

ared to any other configuration of injection or hole position. This

nformation helps to understand how to get or not an escape max-

mization. Even in the best scenario of escape of particles the exis-

ence of stickiness and chaotic saddle may influence some particles
nd make their escape lower than others. With two holes in the

oundary we proved that the basins boundary are very complex

nd through the uncertainty in the initial conditions, we found a

ractal dimension for the escape basins boundaries. The presence

f three holes in the boundary leads to the Wada property to be

bserved in initial configuration space. 
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