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Abstract

Using Takagi–Sugeno (TS) fuzzy modelling, sufficient conditions to ensure ultimate boundedness of solutions of nonlinear 
switched systems are given. The sufficient conditions are given in terms of properties of invariant sets and of an auxiliary system 
formed by a convex combination of the switching subsystems. By exploring the results of this paper, estimates of the attractor and 
domain of attraction can be found even when (i) the derivative of an auxiliary function V, which plays the same role of a Lyapunov 
function, attains positive values in some sets and (ii) the solutions of each subsystem of the switched system are not necessarily 
ultimately bounded. The sufficient conditions are formulated as a problem of checking the feasibility of linear matrix inequalities 
(LMIs). Indeed, these LMIs provide a systematic procedure that can help to find auxiliary scalar Lyapunov-like functions for a class 
of switched nonlinear systems. A numerical example illustrates the effectiveness of the proposed approach in estimating attractors 
of nonlinear dynamic switched systems.
© 2018 Elsevier B.V. All rights reserved.
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1. Introduction

Switched nonlinear systems arise in practice when modelling the operation of many engineering systems [1–4]. 
Although switching is not a new concept in engineering, in the past decade, the theory of switched systems has 
attracted the attention of many researchers. As a consequence, the stability theory for switched nonlinear systems has 
significantly developed in this period and in particular the stability theory of a common equilibrium of all subsystems 
has been addressed by many researchers [5–7]. However, some switched systems do not exhibit a stable equilibrium 
point, although they are practically stable in the sense that their trajectories enter and stay in a bounded set. As 
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a consequence, there has been interest in studying the asymptotic behaviour and, in particular, ultimately bounded 
properties of solutions.

Lyapunov-like functions are often used to analyse the asymptotic behaviour of system solutions. A key property is 
the non-positiveness of the derivative of the Lyapunov-like function along solutions. Finding Lyapunov-like functions, 
satisfying all the assumptions of Lyapunov stability theorems, is usually a difficult task for many nonlinear dynamical 
systems.

Takagi–Sugeno (TS) fuzzy modelling is useful to help to assess the stability of nonlinear systems and to find 
Lyapunov-like functions. A large number of approaches for stability analysis and controller synthesis have been 
developed for TS fuzzy models [1,8–13]. Non-quadratic Lyapunov functions, for example, have been used to study 
local stability of TS fuzzy systems [9,14,15]. However, in these results, the proposed LMIs are established in terms 
of bounds on the membership functions time derivatives. In [16–18], the proposed LMIs are formulated without the 
use of bounds on the membership functions time derivatives by exploring properties of membership functions. These 
results are for asymptotic stability and the derivative of the Lyapunov function along the solution of the nonlinear 
system is required to be negative.

In the last years the interest to study switched TS fuzzy systems has grown [19–23]. For instance, sufficient condi-
tions for quadratic asymptotic stability and state dependent switching conditions can be found in [19] for a common 
Lyapunov function, in [20] for a piecewise Lyapunov function and in [21–23] for a fuzzy Lyapunov function.

It is well known that certain switched linear systems with unstable subsystems can be stabilized by a proper 
switching law [24]. For general nonlinear switched systems, a similar result, where the concept of stability is parallel 
to the concept of ultimately bounded solutions, is expected.

In this paper, sufficient conditions to ensure the existence of a switching law to guarantee that solutions of a 
nonlinear system are ultimately bounded are derived even for the case the switched system has subsystems that are 
not practically stable (no ultimately bounded solutions). These conditions are given in terms of properties of an 
auxiliary dynamic system, formed by a convex combination of subsystems of the switched system, and in terms of 
properties of positively invariant sets. The results are first developed for a class of nonlinear switched system and 
this is accomplished by allowing the value of an auxiliary non-quadratic function V , along the solutions of a convex 
combination of the subsystems, to increase in some sets. In the sequence, the results are applied to switched TS fuzzy 
systems converting the problem of checking the existence of a switching law, which ensures practical stability, that is, 
the existence of a bounded attractor for the nonlinear switched system, into a problem of checking properties of some 
sets and the feasibility of a set of LMIs. The new results are based on the Finsler Lemma [9], which includes a slack 
matrix variable to reduce the conservativeness of the LMIs conditions and do not impose upper bounds on the time 
derivative of membership functions which were converted into an equivalent problem of finding positively invariant 
sets. Estimates of the attractor and stability region (area of attraction) of switched systems described by TS fuzzy 
systems are obtained, with the results of this paper, in the form of invariant level sets of the auxiliary scalar function.

Throughout this paper, �̄ denotes the closure and �c the complement of set �, respectively, the notation P � 0
(P � 0) indicates that P is a real symmetric and positive definite (semi-definite) matrix and the notation P ≺ 0 (P � 0) 
indicates that P is a symmetric and negative definite (semi-definite) matrix, the symbol “�” within a matrix represents 
the symmetric terms of the matrix and ei denotes a vector with one at entry i and zeros elsewhere, that is, ei =
[0 · · · 0 1︸︷︷︸

i-th

0 · · · 0]′ ∈ R
n where ′ denotes the transposed vector, ∂Z denotes the boundary of set Z, and finally, inf

and sup denote the infimum and supremum of a subset, respectively.

2. Switched systems

Let us consider the following switched nonlinear system

ẋ(t) = fσ (x(t)) (1)

where x(t) ∈ R
n is the state vector, σ is a function called switching law with domain being a subset of the real 

numbers, or a subset of the space state or both with image P = {1, 2, · · · , N} where N is the number of subsystems 
and fp is a complete C1 vector field of Rn for every p ∈P . When convenient, arguments of x(t) will be omitted. Let 
σ : I × X → P , with I ⊂ R a time interval and X ⊆ R

n a subset of the state space, be a switching law depending on 
the time and state, which we call mixed switching signal and in the case the switching signal is only state dependent 
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we simply write σ(x). We call ϕσ (t, x0) the solution of (1) starting at x0 at time t = 0 under the mixed switching 
law σ .

Since classical solutions of (1) under a state dependent switching may fail to exist, generalized solutions have been 
developed. We admit the switching laws are measurable and thus we consider solutions in the sense of Krasowskii 
(see [25] and references therein for other notions of solutions).

Definition 1. (Krasowskii solution) If fσ (x) is a measurable vector field of Rn we say that an absolutely continuous 
curve x(t) : I → R

n is a Krasowskii solution of (1) in the interval I if it satisfies the differential inclusion

ẋ(t) ∈ Kf (x(t))

for t ∈ I , with Kf (x) =
⋂
δ>0

co{f (B(x, δ))} where f (x) = fσ (x), co{.} denotes the convex hull and B(x, δ) the open 

ball of radius δ and centre x.

If σ(x) is measurable, then f σ (x) is measurable [25]. Thus, for each initial condition x0, system (1) admits at 
least one Krasowskii solution on t ∈ [0, tf ) with 0 < tf ≤ +∞. Moreover, if the Krasowskii solution is bounded then 
t = +∞.

We say that a switched solution ϕσ (t, x0) of (1) is attracted to a compact set M if for each ε > 0 there exists a time 
T > 0 such that

ϕσ (t, x0) ∈ B(M, ε) for t ≥ T (2)

where B(M, ε) =
⋃

a∈M
B(a, ε) and B(a, ε) = {x ∈ R

n : d(x, a) < ε}, with x, a ∈ R
n and d(x, a) a distance function. 

Equivalently, ϕσ (t, x0) is attracted to M if and only if

lim
t→∞d(ϕσ (t, x0),M) = 0. (3)

2.1. A stabilizing switching signal

In this section, a sufficient condition for the existence of a stabilizing switching law for system (1) will be inves-
tigated. This condition is given in terms of properties of an auxiliary system, whose vector field is not switched but 
formed by a convex combination of all vector fields fp, p ∈ P of the subsystems of the switched system (1). To this 
end, consider the set

M = {α ∈R
N : αp ≥ 0,∀p ∈ P and

N∑
p=1

αp = 1} (4)

with α = (α1 · · · αN)′ and constants αp defining the convex combination of the subsystems fp for all p ∈P . We thus 
consider the auxiliary system of the form

ẋ = f (x,α) :=
N∑

p=1

αpfp(x) (5)

where f (x, α) depends on the choice of α ∈ M , and a C1 function V :Rn → R. Note that system (5) is not a switched 
system but a family of continuous dynamic systems with a vector field that is a convex combination of the vector 
fields of the subsystems of (1).

Proposition 1. Let B be a compact subset of Rn. Suppose the existence of a function V : Rn → R and α ∈ M such 
that

∇V (x)

⎡
⎣ N∑

p=1

αpfp(x)

⎤
⎦ < 0 (6)
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for all x ∈ B. Then, there exists a state dependent switching law σ(x) such that for every switched solution ϕσ (t, x0)

of (1), if x(t) ∈ B for all t ∈ [t0, tf ], then V (x(t)) is a decreasing function on [t0, tf ].

Proof. Let V be a C1 function and consider α ∈ M such that (6) is satisfied. Then, for each x(t) ∈ B there exists at 
least one p ∈P such that

∇V (x)fp(x) < 0. (7)

Therefore, there exists a choice for a switching law σ(x) such that ∇V (x)fσ (x) < 0. Since B is compact, then there 
exists η > 0 such that

∇V (x)fσ (x) < −η, ∀x ∈ B (8)

and function V decreases along the switched solution of system (1) while ϕσ (t, x0) ∈ B. As in [26], number η can be 
found by solving −η = max

x∈B
min
p∈P

∇V (x)fp(x). �
Proposition 1 differs from the results given in [7] which ensure that a stabilizing switching signal σ(x) can be 

designed for the case B = R
n. Proposition 2 following offers one choice of a switching law that ensures V (x(t) is a 

decreasing function while x(t) ∈ B.

Proposition 2. A switching law given by

σ(x) =
⎧⎨
⎩

1, if x ∈ �1

p, if x ∈ (�p \ (
⋃
k<p

�k)) (9)

where �p = {x ∈ B : ∇V (x)fp(x) < 0 and ∇V (x)fp(x) ≤ ∇V (x)fk(x), ∀k ∈ P − {p}} satisfies Proposition 1 and 
is measurable.

Proof. The switching law given by (9) satisfies Proposition 1 due to the construction of sets �p . Thus, the switching 
law given by Propositions 2 ensures that

∇V (x)fσ (x) < −η, ∀x ∈ B (10)

which guarantees V (x) decreases along the switched solution of (1).
Now, we will prove that the switching law (9) is measurable. Consider σ : B →P , Hp = {x ∈ B : σ(x) = p} which 

satisfies Hi ∩ Hj = ∅ for any i �= j ∈ P and 
⋃
p∈P

Hp = B. Let the Borel σ -algebra �1 and �2 be formed by subsets 

of B and P , respectively, then

σ−1(p) = �p \ (
⋃
k<p

�k) = Hp, ∀p ∈ �2. (11)

Since �p ∈ �1 and Hp =
⎛
⎝⋃

k<p

�k

⎞
⎠c ⋂

�p ∈ �1 for each k and p where the first term of the equality is the comple-

mentary of set 

⎛
⎝⋃

k<p

�k

⎞
⎠, the switching signal σ(x) is a measurable function. �

Therefore, by Definition 1, for all x0 ∈ B there exists at least a Krasowskii solution of (1) such that V decreases 
along this solution while ϕσ (t, x0) ∈ B.

Corollary 1. If B = R
n in Propositions 1 and 2, then the switching law σ(x) is a stabilizing one, that is, all the 

solutions tend to the origin as t → ∞.
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3. Ultimately bounded solutions of switched systems

In this section, we explore the results of Section 2 and invariance properties of level sets of an auxiliary scalar 
function V to prove that solutions of the switched system (1) are ultimately bounded under the switching law given 
in Proposition 2. To this end, we admit a measurable switching law outside a level set of an auxiliary function V and 
the switching signal can be designed to guarantee the solutions will enter this level set. However, inside this level set, 
there can be no choice of switching signal that can guarantee V will be a decreasing function. In spite of that, using 
an arbitrary but a measurable switching law inside of this level set of V , we guarantee the solutions will be ultimately 
bounded.

Consider V : Rn →R and assume the level set

�c = {x ∈R
n : V (x) < c} (12)

is bounded. Define the compact set �L,
 = �̄L \ �
. Also, define the following set:

Cα = {x ∈R
n : ∇V (x)f (x,α) > 0}. (13)

Set Cα denotes the set in Rn where the derivative of the scalar function V along the solution of the auxiliary system 
(5) is positive. Lemma 1 explores the auxiliary system (5) and a scalar function V associated with (5) to study the 
asymptotic behaviour of solutions of the switched system (1).

Lemma 1. Consider the switched system (1) and let V : Rn → R be a C1 function. Let α ∈ M , 
, L be real numbers 
satisfying sup

x∈Cα

V (x) < 
 < L < ∞ and suppose that �L is bounded. If x0 ∈ �L then there exists a mixed measurable 

switching law σ(t, x), obeying the switching law of Proposition 2 in the set �L,
, such that:

(i) the solution ϕσ (t, x0) ∈ �L, ∀t ≥ 0
(ii) there exists T ≥ 0 such that ϕσ (t, x0) ∈ �̄
, ∀t > T .

Proof. (i) Consider x0 ∈ �L such that x0 /∈ �
. Since set Cα ⊂ �
 then, while the solution ϕσ (t, x0) ∈ �L,
, inequal-
ity (6) is satisfied and for this a measurable switching law can be chosen according to the state dependent switching 
signal given in Proposition 2. This choice of switching law ensures that function V decreases along the Krasowskii 
solution of (1) for all t ≥ 0 while x ∈ �L,
. Moreover, since �L,
 is a compact set, then there exists η > 0 such that 
−η = max

x∈�L,


min
p∈P

∇V (x)fp(x). Thus, the switching law of Proposition 2 ensures that ∇V (x)fσ (x) < −η, ∀x ∈ �L,
, 

which guarantees not only that ϕ(t, x0) stays inside �L for all t ≥ 0, but also ensures the existence of a finite time 
T ≥ 0 such that V (ϕσ (T , x0)) < 
. (ii) Start the proof assuming x1 = ϕσ (T , x0) ∈ �
. Suppose the existence of a time 
instant t̃ > T such that ϕσ (t̃, x0) /∈ �̄
. Then, by the continuity of V and ϕ(t, x0) and the fact that V (ϕ(t, x0)) > 
,

∀t ∈ [t̄ , ̃t] there exists t̄ ∈ (T , ̃t) such that V (ϕ(t̄, x0)) = 
. Since Proposition 2 is satisfied outside of �
 then V de-
creases along the switched solution of system (1) in �L,
 leading to a contradiction, thus ϕσ (t, x0) ∈ �̄
 for all t ≥ T

and the proof is complete. �
In Lemma 1, sets �
 and �L, respectively, are estimates of the attractor and basin of attraction in the sense that 

the attractor is contained in �
 and �L is entirely contained in the attraction domain. Lemma 1 admits that a suitable 
choice of a switching law can be done outside �
 to guarantee the solutions are ultimately bounded. Inside �


dissipativeness cannot be guaranteed and a stabilizing switching law may not exist but a measurable switching signal 
is sufficient to guarantee that the solutions exist and do not leave �̄
.

3.1. Switched TS fuzzy systems

A TS fuzzy model is based on a set of fuzzy rules to describe a nonlinear system in terms of a set of local linear 
models which are smoothly connected by fuzzy membership functions. This modelling is able to approximate any 
smooth nonlinear functions to any degree of accuracy in a convex compact region [8]. Moreover, TS fuzzy modelling 
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drastically reduces the number of fuzzy rules to describe complex nonlinear systems than conventional fuzzy tech-
niques [10] and provides a basis for development of systematic approaches to stability analysis and controller design 
in the framework of LMIs which can be efficiently solved by convex programming techniques [27].

In this section, a TS fuzzy modelling is used to obtain sufficient LMI-based conditions for the existence of an 
auxiliary function V (x) and constants α, 
 and L satisfying the conditions of Lemma 1 and therefore ensuring the 
solution is attracted to an invariant set.

The results of this section consider a subclass of the subsystems appearing in (1) given by:

ẋ(t) = Fp(x(t))x(t) (14)

where x(t) ∈ R
n is the state vector, Fp ∈ R

n×n is a matrix of nonlinear functions, for all p ∈ P . Here, the nonlinear 
system (14) is exactly represented by a TS fuzzy model using the concept of sector non-linearities, as in [8,28], in the 
following subset of the state space

Sp := {x ∈R
n : |xυ | ≤ x̄pυ, υ ∈ T and p ∈ P} (15)

where T = {1, 2, · · · , q}, q ≤ n, and x̄pυ is a positive real number for all υ ∈ T , p ∈P .
The blending of the models of the subsystem p of the switched nonlinear system (14) can be described as:

ẋ(t) =
∑

k∈Rp

hpk(x(t))Apkx(t) (16)

where hpk(x(t)) are nonlinear functions with Rp = {1, 2, · · · , 2rp } with Apk the matrices of the local linear system 
(14) in the set Sp, ∀p ∈ P and rp is the number of the non-constant terms in Fp.

Remark 1. If no constraints on the state are needed for some p, then Sp =R
n.

From the properties of membership functions we have:

hpk(x(t)) ≥ 0 and
∑

k∈Rp

hpk(x(t)) = 1 (17)

for all p ∈P and k ∈Rp . Using (17), it follows that⎛
⎜⎜⎝ ∑

k∈Rβ

hβk(x(t)) − 1

N − 1

∑
p∈P
p �=β

∑
k∈Rp

hpk(x(t))

⎞
⎟⎟⎠

⎛
⎝∑

p∈P

∑
k∈Gp

hpk

⎞
⎠ = 0 (18)

with β ∈P . When convenient, arguments of hpk(x(t)) will be omitted.

3.2. Main results

Suppose system (1) can be written in the form of (14). Now, if we represent each subsystem in (14) by a TS fuzzy 
model (16), we have that function (5) assumes the following form:

f (x,α) =
∑
p∈P

αp

⎛
⎝ ∑

k∈Rp

hpkApk

⎞
⎠x. (19)

Define the following sets:

Z =
{
x ∈R

n : |xυ | ≤ x̄υ ,∀υ ∈ {1,2, ..., n} where x̄υ = min
p∈P

x̄pυ,∀υ ∈ T
}

(20)

Zv = {
x ∈ Z : e′

vx = x̄v

}⋃{
x ∈ Z : e′

vx = −x̄v

}
,∀v ∈ {1,2, · · · , n} (21)

�
 = {x ∈ Z : V (x) < 
} and (22)

D =
⎧⎨
⎩x ∈ Z : x ′

⎡
⎣∑

p∈P

∑
k∈G

ḣpk(x)Ppk

⎤
⎦x > 0

⎫⎬
⎭ , with ḣpk(x) = ∇hpk(x)f (x,α). (23)
p



94 M.C. Valentino et al. / Fuzzy Sets and Systems 361 (2019) 88–100
The next results are developed using a scalar non-quadratic function V : Z →R given by:

V (x) = x′Pz(x)x (24)

where

Pz(x) =
∑
p∈P

∑
k∈Gp

hpkPpk, (25)

and Gp is a subset of Rp for all p ∈ P , which is previously chosen. When convenient, arguments of Pz(x) will be 
omitted.

Local stability of fuzzy systems under a non-quadratic Lyapunov function has been studied in [9,14,15]. The main 
drawback of these results is that the LMIs conditions for stability are obtained imposing bounds on the membership 
functions time derivatives, such as |ḣpk| ≤ φpk, p ∈ P, k ∈ Rp with φpk design parameters. As a consequence, the 
choice of φpk, p ∈ P, k ∈ Rp affects the estimates of the attraction domain of TS fuzzy systems. To overcome this 
drawback, in [16,17] properties of membership functions were explored to obtain less conservative LMI conditions 
for asymptotic stability of TS fuzzy systems.

Here, the problem related with the bounds on the membership functions time derivative was converted to the 
problem of finding a positively invariant set �
 which contains D for system (16). The results explores properties of 
membership functions to obtain a scalar function V which can attain positive time derivative in some sets, relaxing the 
stability conditions of Lyapunov theory. In this case, it is only necessary to verify if the set where the time derivative 
of function V assume positive values is bounded. The LMI conditions use a matrix transformation due to [29] and the 
Finsler Lemma to decouple the matrices of the auxiliary function (24) from the fuzzy system matrices, reducing the 
conservativeness on the numerical solution [9].

Theorem 1. Consider the switched system (1) with fp described by the TS fuzzy model (16) in set Z. If for given μ > 0
and α ∈ M , there exist matrices Ppk = P′

pk ∈ R
n×n, M ∈ R

2n×2n, Lpk ∈ R
n×n, Rpk ∈ R

n×n satisfying (26)–(35)

and real numbers 
, a > 0 such that, sup
x∈D

V (x) < 
 < a < min
x∈∂Z

∑
p∈P

∑
k∈Gp

hpk . Then, every solution ϕσ (t, x0) of (1), 

with x0 ∈ �a , possessing a mixed switching law σ(t, x) obeying Proposition 2 while x(t) ∈ �a,
 is attracted to �̄
. 
Moreover, �a can be enlarged as close as possible to the boundary of set Z.

ϒβk_βk + Q ≺ 0, k ∈ Gβ (26)

ϒβk_ij + Q ≺ 0, k ∈ Rβ − Gβ, i ∈P, j ∈ Gi (27)

ϒβk_βj + ϒβj_βk + 2Q ≺ 0, j, k ∈ Gβ, j < k (28)

ϒpk_pk − 1

N − 1
Q ≺ 0, p ∈ P − {β}, k ∈ Gp (29)

ϒpk_ij − 1

N − 1
Q ≺ 0, p ∈P − {β}, k ∈Rp − Gp, i ∈ P, j ∈ Gi (30)

ϒpk_pj + ϒpj_pk − 2

N − 1
Q ≺ 0, p ∈P − {β}, k, j ∈ Gp, j < k (31)

ϒpk_ij + ϒij_pk − 2

N − 1
Q ≺ 0, p, i ∈ P − {β}, p < i, k ∈ Gp, j ∈ Gi (32)

ϒβk_ij + ϒij_βk + N − 2

N − 1
Q ≺ 0, k ∈ Gβ, i ∈P − {β}, j ∈ Gi (33)

1

x̄2
v

eve
′
v < Ppk,∀v ∈ {1,2, ..., n},p ∈P, k ∈ Gp (34)

Ppk ≤ μI, ∀p ∈P, k ∈ Gp, (35)

where Q =
∑
p∈P

∑
k∈(Rp−Gp)

ϒpk_pk + M and ϒpk_ij =
[

αi(LpkAij + A′
ij L′

pk) �

Ppk − L′
pk + αiRpkAij −Rpk − R′

pk

]
.
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Proof. Following the same idea of [30], if (34) is feasible then∑
p∈P

∑
k∈Gp

hpk

1

x2
v

eve
′
v < Pz,∀x ∈ Z,v ∈ {1,2, ..., n}. (36)

Since a < min
x∈∂Z

∑
p∈P

∑
k∈Gp

hpk , from (36) and the definition of Zv we have that 
⋃

v∈{1,2,...,n}
Zv = ∂Z and

V (x) = xT Pzx >
∑
p∈P

∑
k∈Gp

hpkx
T (

1

x̄2
v

eve
′
v)x =

∑
p∈P

∑
k∈Gp

hpk

x̄2
v

x̄2
v

=
∑
p∈P

∑
k∈Gp

hpk > a, ∀x ∈ Zv.

Then, for all x ∈ ∂Z, V (x) /∈ �a , thus the level set �a is contained in Z and ∂�a ∩ ∂Z = ∅.
Now, if (26)–(33) are feasible with α ∈ M , then multiplying (26) by h2

βk , (27) by hβkhij , (28) by hβkhβj , (29) by 

h2
pk , (30) and (32) by hpkhij , (31) by hpkhpj , (33) by hβkhij and adding all terms we obtain:∑

k∈(Rβ−Gβ)

∑
i∈P

∑
j∈Gi

hβkhij

(
ϒβk_ij + Q

) +
∑
k∈Gβ

∑
j∈Gβ

j<k

hβkhβj (ϒβk_βj + ϒβj_βk + 2Q)

+
∑
p∈P
p �=β

∑
k∈Gp

h2
pk

(
ϒpk_pk − 1

N − 1
Q
)

+
∑
p∈P
p �=β

∑
k∈(Rp−Gp)

∑
i∈P

∑
j∈Gi

hpkhij

(
ϒpk_ij − 1

N − 1
Q
)

+
∑
k∈Gβ

h2
βk

(
ϒβk_βk + Q

) +
∑
p∈P
p �=β

∑
k∈Gp

∑
i∈P
i �=β
i>p

∑
j∈Gi

hpkhij

(
ϒpk_ij + ϒij_pk − 2

N − 1
Q
)

+
∑
p∈P
p �=β

∑
k∈Gp

∑
j∈Gp

j<k

hpkhpj

(
ϒpk_pj + ϒpj_pk − 2

N − 1
Q
)

+
∑
k∈Gβ

∑
i∈P
i �=β

∑
j∈Gi

hβkhij

(
ϒβk_ij + ϒij_βk + N − 2

N − 1
Q
)

=
∑
p∈P

∑
k∈Gp

∑
i∈P

∑
j∈Gi

hpkhijϒpk_ij +

⎛
⎜⎜⎝ ∑

k∈Rβ

hβk − 1

N − 1

∑
p∈P
p �=β

∑
k∈Rp

hpk

⎞
⎟⎟⎠

⎛
⎝∑

p∈P

∑
k∈Gp

hpk

⎞
⎠Q ≺ 0. (37)

Replacing (18) in (37) we have that[
L(h)A(α,h) + A(α,h)′L(h)′ �

P(h) − L(h)′ + R(h)A(α,h) − R(h) − R(h)′
]

≺ 0 (38)

where L(h) =
∑
p∈P

∑
k∈Gp

hpkLpk , R(h) =
∑
p∈P

∑
k∈Gp

hpkRpk and A(α, h) =
∑
p∈P

∑
k∈Rp

αphpkApk . Pre-multiplying and 

post-multiplying (38) by the vector [x ′ x′A(α, h)′] and its transpose, respectively, it yields

x′{A(α,h)′P(h) + P(h)A(α,h)
}
x ≺ 0. (39)

The time-derivative of function (24) along the trajectories of (19) is given by

∇V (x)f (x,α) = x′
⎧⎨
⎩∑

p∈P

∑
k∈G

ḣpkPpk

⎫⎬
⎭x + x′ {A(α,h)′P(h) + P(h)A(α,h)

}
x. (40)
p
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From (39) we have that the second part of (40) is negative, then we conclude that x′
⎧⎨
⎩∑

p∈P

∑
k∈Gp

ḣpkPpk

⎫⎬
⎭x is the only 

term that can make (40) positive and we conclude that the set Cα for x ∈ Z is contained in D, that is, Cα ⊆ D. Since 

 < a, that is, D ⊂ �
, by Lemma 1 every solution ϕσ (t, x0) of (1) with x0 ∈ �a possessing a measurable mixed 
switching law satisfying Proposition 2 for all t > 0 while x(t) ∈ �a,
 is attracted to �
. Moreover, if (35) holds, then 
x′ ∑

p∈P

∑
k∈Gp

hpkPpkx ≤
∑
p∈P

∑
k∈Gp

hpkx
′μx. Therefore, the set {x ∈ Z : x′x ≤ a

Mμ
} ⊆ �a with M = max

x∈Z

∑
p∈P

∑
k∈Gp

hpk , 

and thus minimizing μ makes �a to be maximized. Since �a ⊂ Z, the boundary of �a is enlarged as close as possible 
to the boundary of Z. �

Observing (16) we verify that the origin is a common equilibrium point shared by all subsystems p ∈P . In spite of 
that, it might be difficult, in some cases to prove asymptotically stability due to the presence of subsystems that have 
ultimately bounded solutions. Theorem 1 relaxes the negativeness property of the derivative of scalar function V to 
facilitate the search for a solution of the LMIs. As a trade-off, we do not prove stability of the equilibrium but that the 
solutions are ultimately bounded and converge to a bounded set.

3.3. Example

In this example, we find an auxiliary function for a switched system using Theorem 1 and an estimate of a positively 
invariant set for the solutions. We consider a switched system with P = {1, 2} and

f1(x) =
[ x1

50 (−6x2
1 − 6x2

2 + 50)

x2

]
, f2(x) =

[
−10x1 + 30

25x3
2 − 15x2

−3x2

]
. (41)

The solution of subsystem p = 1 of the switched system is not ultimately bounded. Instead of searching for a can-
didate Lyapunov-like function satisfying the hypothesis of Lemma 1, we explore the systematic procedure given by 
Theorem 1 to analyse the solution of a switched system with f1(x) and f2(x) given by (41). For this, let f1(x) and 
f2(x) be locally described as a TS fuzzy model [8]. Therefore, the switched nonlinear subsystems is described as the 
overall fuzzy subsystem (16) with local models:

A11 =
[

1 0
0 1

]
, A12 =

[ −5 0
0 1

]
(42)

A21 =
[ −10 15

0 −3

]
, A22 =

[ −10 −15
0 −3

]
,

and membership functions

h11 = 50 − x2
1 − x2

2

50
, h12 = 1 − h11

h21 = x2
2

25
, h22 = 1 − h21 (43)

in the set Z = {x ∈ R
2 : |x1| ≤ 5 and |x2| ≤ 5}. Let G1 = {2} and G2 = {1}, using MATLAB toolboxes YALMIP [31]

and SeDuMi [27] to solve (26)–(35) with fixed parameters α1 = 0.6, α2 = 0.4, β = 1 and μ = 0.19 for all p ∈ P and 
k ∈Rp , we obtain the following matrices:

P11 =
[ −0.0069 −0.0020

−0.0020 −0.0526

]
, P12 =

[
0.0413 0.0075
0.0075 0.1820

]

P21 =
[

0.0403 0.0000
0.0000 0.1876

]
, P22 ≈ 0. (44)

Set D is given by

D = {
x ∈ Z : x ′ [ḣ12(x)P12 + ḣ21(x)P21

]
x > 0

}
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Fig. 1. Phase portrait with x01 = [−3 −1] and x02 = [3.5 0.8] illustrating the level sets �a, �
 and the region �φ obtained with LMIs established 
with bounds on the membership functions.

Fig. 2. Switching solution and switching signal σ(t, x) for initial condition x0 = [−3 − 1].

with

∇h12f (x,α) =
x1

[
α1

x1
50 (−6x2

1 − 6x2
2 + 50) + α2(−10x1 + 30

25x3
2 − 15x2)

]
+ x2(α1x2 − 3α2x2)

25

∇h21f (x,α) = 2x2(α1x2 − 3α2x2)

25
.

Choosing 
 = 0.13 and a = 0.491 such that sup
x∈D

V (x) < 
 < a < min
x∈∂Z

∑
p∈P

∑
k∈Gp

hpk = 1/2, Fig. 1 shows sets D (dotted 

region), �
, �a for xT x < a
2μ

, μ = 0.19, and the switching solution for initial conditions x01 = [−3 − 1] and x02 =
[3.5 0.8]. Thus, by Theorem 1, every bounded solution ϕσ (t, x0) of (1) with x0 ∈ �a possessing a mixed switching 
σ(t, x) satisfying Proposition 2, while x(t) ∈ �a,
, is attracted to �̄
. For comparison purposes, we included the area 
of attraction obtained with the LMIs established in terms of bounds on the membership functions time derivatives 
given in [23, Theorem 1]. The area of attraction denoted �φ was obtained considering the bounds |ḣpk| ≤ 5.1, p = 1, 2
and k = 1, 2. Note that in Fig. 1, �φ ⊂ �a . As a matter of fact, LMIs (34) and (35) succeeded in maximizing the 
bounded attraction domain in set Z. Figs. 2, 3 and 4 illustrate the time-domain simulation, the mixed switching 
law σ(t, x) and function V , respectively, for initial condition x01 while Figs. 5, 6 and 7 show the same for initial 
condition x02 .
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Fig. 3. Function V along the switched system solution with initial condition x0 = [−3 − 1].

Fig. 4. Function h12(x(t)) and h21(x(t)) for initial condition x0 = [−3 − 1].

Fig. 5. Switching solution and switching signal σ(t, x) for initial condition x0 = [3.5 0.8].

Remark 2. Note that, using a fuzzy TS approach, Theorem 1 provides a function V = x′(h12P12 + h21P21)x, with 
h12, h21 given by (43) and P12, P21 given by (44), satisfying the hypothesis of Lemma 1 in the set Z as with 
 = 0.13
and L = a = 0.491 we have Cα ⊂ D ⊂ �
 ⊂ �a for x ∈ Z. Therefore, with the function V found, it is possible to 
obtain �
 and �a as estimates of the attractor and area of attraction of switched systems, respectively.
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Fig. 6. Function V along the switched system solution with initial condition x0 = [3.5 0.8].

Fig. 7. Function h12(x(t)) and h21(x(t)) for initial condition x0 = [3.5 0.8].

4. Conclusion

The LMI conditions derived in this paper ensure the existence of a switching law that guarantees practical stability 
of nonlinear switched systems on the sense that trajectories are ultimately bounded and consequently converge to 
a bounded attractor. Estimates of the attractor and of the domain of attraction are obtained with the results of this 
paper in the form of invariant level sets of a Lyapunov-like function. Indeed, the LMIs formulation offers a systematic 
procedure to find auxiliary Lyapunov-like functions for switched nonlinear systems. The LMI conditions were derived 
using TS fuzzy description of each subsystems of the nonlinear switched system. Exploring an auxiliary system, which 
is a convex combination of the subsystems, it was proven that the switching law can be designed to ensure practical 
stability even when some of the subsystems are not practical stable, that is, have no ultimately bounded solutions. In 
comparison with other results in the literature, the proposed approach succeeded in maximizing the bounded attraction 
domain. The limitation of Theorem 1 is that we assume that set D is bounded. Further works in progress include 
checking if the set D is bounded into the LMIs constraints.
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