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Abstract  Rupestrian grasslands are biodiverse, evolutionary old vegetation complexes 
that harbor more than 5000 species of vascular plants and one of the highest levels of plant 
endemism in the world. Growing on nutrient–impoverished soils and under harsh environ-
mental conditions, these mountaintop ecosystems were once spared from major human 
interventions of agriculture and intensive cattle ranching. However, in Brazil, rupestrian 
grasslands have experienced one of the most extreme land use changes among all Brazilian 
ecosystems, suffering from ill policies leading to intense mining activities, uncontrolled 
tourism, and unplanned road construction. Indeed, the discovery of large mineral reserves, 
the adoption of ineffective conservation policies, and, going forward, climate change, are 
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threatening this hyper-diverse ecosystem. Here, we shed light on the severe threats imposed 
by land-use changes in this ecosystem, modeling its future distribution under different sce-
narios. We uncover a catastrophic forecast that, if not halted, will lead to the loss of 82% 
of this unique ecosystem in the future, impacting ecosystem services at regional scales, 
including water and food security potentially affecting more than 50 million persons.

Keywords  Biodiversity · Campo rupestre · Cerrado · Espinhaço mountains · Mining · 
Sustainability

Introduction

Conservation efforts in Brazil should be a matter of discussion across all its biomes, but it 
is undeniable that these efforts have tended to focus on forested ecosystems (Santos et al. 
2011; Overbeck et  al. 2015; Fernandes 2016a). Non-forest areas, such as the rupestrian 
grasslands (“campo rupestre”), remain underappreciated and, consequently, under severe 
anthropogenic threat (Fernandes et al. 2014; Fernandes 2016b). These areas harbor a diver-
sity of organisms that rivals forests in terms of number of species and exceeds them in the 
proportion of endangered flora. Distributed mainly within the Cerrado domain (savanna) 
in the upper parts of the Espinhaço mountain range (the second largest mountain chain 
in South America after the Andes), this highly heterogeneous herbaceous/shrubby vegeta-
tion is a mosaic of rocky outcrops embedded in a matrix of sandy and stony grasslands, 
seasonal wet grasslands, springs, and occasional forest patches on mountaintops (Fig. 1) 
(for a review see Fernandes 2016a). Rupestrian grasslands evolved in ancient landscapes 
(Barbosa and Fernandes 2016) shaped by quartzitic and ferruginous rocks (Schaefer et al. 
2016). These geologically old landscapes and evolutionary ancient vegetation complexes 
cover an area of ca. 83,000 km2 and harbor great biodiversity, which includes more than 
5000 species of vascular plants and one of the highest levels of endemism in the world 
(Alves et al. 2014; Silveira et al. 2016).

Brazilian rupestrian grasslands’ unique biota has long-attracted the attention of several 
scientists. Early in the XIX century, many prominent European naturalists, including Mar-
tius, Spix, Langsdorff, Saint-Hilaire, Lund, and Warming, explored the region covered by 
this ecosystem (Warming 1892; Vasconcelos et al. 2008; Fernandes 2016a; Mügge et al. 
2016; Lüttge 2017). The work by Eugen Warming in the transitional area between cerrado 
and the rupestrian grasslands—a seasonally dry forest transition region (1863–1866) at the 
base of the Espinhaço mountain range—provided the scenario whereby the first books on 
plant ecology (Warming 1892, 1895) were forged. Biodiversity in this ecosystem began 
to be catalogued more intensively by biologists in the 1960s and, although scattered in 
space and time, their assessments compiled a large number of species for the fauna and 
flora of the Espinhaço mountain range, with hundreds of new species being described over 
the past 50 years. The most recent species compilations for the Espinhaço range highlight 
this region as an important center of biological diversity and plant endemism (Giulietti 
et  al. 1997; Echternacht et  al. 2011; Fernandes 2016a; Silveira et  al. 2016), fish (Alves 
et al. 2008), frogs (Leite et al. 2008), birds (Vasconcelos et al. 2008; Chaves et al. 2015), 
galling insects (Fernandes and Santos 2014), and arbuscular mycorrhizal fungi (Carvalho 
et al. 2012; Coutinho et al. 2015), among many other groups.

Even after decades of study, the rate of new species discovery in Brazilian rupestrian 
grasslands is still very high (Fig. 2). For instance, an average of 12 new plant and 4 new 
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animal species were described per year in the Espinhaço mountain range from 2005 to 
2014. At least 118 new plant species in 27 families, and 26 new vertebrate species, com-
prising 11 frogs, 8 lizards, 4 birds, 2 snakes and one mammal, were described within a 
single decade (Tables S1, S2). Two recently described species, the rodent Calassomys api-
calis (Pardiñas et al. 2014) and the ovenbird Cinclodes espinhacensis (Freitas et al. 2012) 
(Fig. S1a), illustrate the singularity of most of the new species described. Also, among the 
11 new arthropods described, the iridescent blue spider, Pterinopelma sazimai (Fig. S1b), 
and the flesh-fly mimicking weevil, Timorus sarcophagoides (Fig. S1c), are particularly 
remarkable. All these species are often rare, associated to mountaintop grasslands, patchily 
distributed and have become known to science under some degree of threat. Recent stud-
ies also indicate that rupestrian grasslands are home to ca. 25% of the world’s described 
species of mycorrhizae (Carvalho et al. 2012) and that 19 new species of these fungi are in 
line to be described to science (Coutinho et al. 2015).

Such high levels of diversity and endemism in rupestrian grasslands have been argued 
to be the result of strong environmental filters, such as nutrient–deprived soils, pronounced 
seasonality, and climatic variability related to wide altitudinal and latitudinal gradients 
(Fernandes et al. 2014; Negreiros et al. 2014; Fernandes 2016c). Indeed, not only new spe-
cies, but also novel interactions are being found in these ecosystems, since harsh conditions 
and poor soils have driven striking adaptations of the endemic organisms. For example, the 
carnivorous plant Philcoxia minensis exhibits a unique prey-capture strategy among plants, 

Fig. 1   Aerial view of rupestrian grasslands on quartzitic soils in Serra do Cipó, southeastern Brazil. The 
landscape is composed of a mosaic of habitats, mostly sandy grasslands, rough terrain with stony grass-
lands, rocky outcrops, and forests on humid slopes and valleys (a). Rocky outcrops are perhaps the most 
prominent habitat with large rocks interspersed with woody vegetation. Their erosion gives rise to the adja-
cent stony or sandy grasslands, dominated by different species (b). Detailed view of the speciose rocky 
grassland habitats, where highly endemic Velloziaceae, Melastomataceae, Eriocaulaceae, forbs and grasses 
thrive (c). A patch of the endemic Paepalanthus robustus (Eriocaulaceae) (d)
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being able to trap and digest nematodes in its underground adhesive leaves (Figs. S1d, S1e) 
(Pereira et al. 2012; see also Oliveira et al. 2016). Additionally, the protocarnivorous plant 
Paepalanthus bromelioides (Fig. S1f) evolved the capacity of its leaves to derive nitro-
gen from both spiders’ prey carcasses and feces, while roots uptake nitrogen from associ-
ated termite mounds (Nishi et  al. 2013). Clearly, mechanisms and processes responsible 
for high species diversity in the Espinhaço range are numerous and vary across taxa (see 
Morellato and Silveira 2018  and references therein). The synergy among environmental 
filters, geographic barriers related to altitudinal variation and species interactions represent 
the most important forces leading to the vast array of adaptations and, likely, speciation in 
its fauna and flora (Fernandes 2016c). Furthermore, the high endemism and species rich-
ness intrinsic to rupestrian grasslands could have been shaped by interglacial microrefugia, 
which might have maintained buffered microclimates derived from topographic idiosyncra-
sies, which prevented extinctions (Barbosa et al. 2015).

Therefore, while representing less than 1% of the Brazilian territory, rupestrian grass-
lands shelter about 17% of the country’s estimated plant biodiversity and ca. 46% of that 
of the Cerrado, the second largest biome in South America (Fernandes et al. 2016a). How-
ever, the unfortunate reality is that, despite its exuberant biodiversity, the rupestrian grass-
lands are experiencing one of the most intense land use alterations among all Brazilian 
ecosystems (Fernandes et al. 2014; Sonter et al. 2014a; Fernandes 2016b; Pena et al. 2017). 
The loss of species and habitats, particularly on mountaintops, is of major relevance due to 
the potentially dire cascading effects that would result in the loss of species interactions, 
ecosystem connectivity and environmental services (Epps et al. 2006; Spehn et al. 2010).

Given the continental relevance of this mountain region and the lack of appropri-
ate protection of its natural heritage, our aim in this paper is to cast some light  on and 
draw attention to the major threats imposed by land use and climate change to rupestrian 

Fig. 2   Rate of new species discovery in Brazilian rupestrian grasslands between 2005 and 2014. See text 
and Table S1 for details
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grasslands. By analyzing the prevailing threats to this ecosystem and then modeling its 
temporal dynamics, we aim to examine its projected distribution and to identify emergent 
patterns of potential future expansion or contraction and to determine climatically stable 
areas important for biodiversity conservation and ecosystem services (i.e., where condi-
tions will remain suitable for the persistence of rupestrian grasslands). Furthermore, we 
analyze changes in landscape metrics to examine possible effects of changes in the habitat 
and on rupestrian grasslands’ biodiversity.

Materials and methods

Identification of priority regions

To delineate priority regions for this study and conservation of rupestrian grasslands we 
used spatially-explicit data points of the location of rupestrian grasslands deemed as con-
servation priority by experts who participated in the 1st Workshop on Biodiversity, Con-
servation, Use and Public Policy in Rupestrian Grasslands, in Belo Horizonte (Brazil), in 
October 2011, focusing on the core area of the Espinhaço mountain range and the Canastra 
mountains (GWF, unpublished data). A total of 300 occurrence points for rupestrian grass-
lands were generated covering the entire “core area” of the Espinhaço mountain range and 
the Canastra mountains. These two regions were chosen because of their strong represen-
tation of this ecosystem (see Fernandes 2016a). Additional coordinates were kindly pro-
vided by M Callisto, AA Conceição, and L Echternacht for localities in the northern part 
of the Espinhaço mountain range, the Canastra mountains and other isolated mountains in 
Goiás, Mato Grosso and Roraima states. In total, we registered 490 points of occurrence 
of rupestrian grasslands in Brazil, which resulted from an extensive discussion during the 
abovementioned workshop between experienced researchers about the distribution of the 
ecosystem.

Environmental data

Bioclimatic variables are commonly used predictors of the impacts of climate change on 
biodiversity (Schrag et  al. 2008). We assumed that such variables would satisfactorily 
determine the distribution of rupestrian grasslands in a historical context, given the strong 
associations of climate with the biotic environment (Carnaval and Moritz 2008; Garcia 
et  al. 2016). Bioclimatic and elevation variables, used in conjunction, were downloaded 
from the WorldClim platform at a spatial resolution of 0.0083° (~ 1  km2) (see Hijmans 
et al. 2005 for further details) for the period of 1950–1990. Aspect and slope data, derived 
from elevation, were generated using the Spatial Analyst Toolbox within the software 
ArcMap® (ESRI, California). Finally, we created a binary variable corresponding to areas 
where the predominant lithology is associated with rupestrian grasslands, such as quartz-
ite formations, sandstone, silts, phyllites, meta-conglomerates, and iron ores (Schaefer 
et  al. 2016; see also Le Stradic et  al. 2014; Barbosa and Fernandes 2016). We assumed 
that this edaphic factor will remain largely unchanged under future climate scenarios. The 
shapefiles relating to the geological classifications for Brazil (scale 1:10,00,000) were 
downloaded from the Brazilian Geological Survey GEOSGB (http://geosg​b.cprm.gov.br/) 
and processed through the software ArcMap® (ESRI, California) at a spatial resolution of 
0.0083° (~ 1 km2).

http://geosgb.cprm.gov.br/
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Bioclimatic variables for year 2050 (averaged from 2041 to 2060) and year 2070 (aver-
aged from 2061 to 2080) were also downloaded from WorldClim and followed the same 
spatial resolution of 0.0083° (Hijmans et al. 2005). We used data from five different cli-
mate models (Table  1), to reduce the uncertainty of predictions resulting from a single 
global circulation model (GCM), in two concentration pathways: RCP 4.5 and RCP 8.5 
(e.g., Khanum et al. 2013). Of these scenarios, the most pessimistic is the RCP 8.5, which 
assumes that global annual greenhouse gases continue to rise throughout the 21st cen-
tury, and the more optimistic is RPC 4.5, which assumes that global annual greenhouse 
gas emissions peak around 2040 with emissions declining substantially thereafter (IPCC 
2014). Other scenarios (e.g., RCP 2.6 and the RCP 6) were tested but not chosen, due 
to unrealistic predictions (a decrease in emissions at the end of this decade), and similar 
results of RCP 8.5, respectively. All models were used in combination, and the main result 
was the mean output.

All variables were clipped to cover the Brazilian territory, encompassing the entire 
known distribution of rupestrian grasslands, including small relict areas. We built a Pear-
son correlation matrix to detect the presence of multicollinearity between variables, and 
among those highly correlated variables (i.e., those with r ≥ 0.8), we opted to keep in the 
model those variables with higher biological relevance. Following this protocol, out of 19 
bioclimatic variables initially selected, only eight were retained in the final model, in con-
junction with the variables “elevation”, “aspect”, “slope” and “lithology” (Table S3).

Predictive modeling

Distribution models were built with the maximum entropy approach (MaxEnt) (Phillips 
et al. 2006; Elith et al. 2011). This algorithm can perform effective analysis even with small 
samples using only presence data (Hernandez et al. 2006). The algorithm was implemented 
by the software MaxEnt, version 3.3.3 (Computer Sciences Department—Princeton Uni-
versity 2004), which was used for the generation of a logistic model for the distribution of 
rupestrian grasslands under baseline climate conditions for the period of 1950–1990 (e.g., 
Phillips et al. 2006). This model was then projected to the future scenarios.

We used tenfold cross-validation for testing model performance (10 replicates) and 
averaged the results. We also used the jackknife procedure and permutation importance 
to estimate the relative influence of different predictor variables. The area under the ROC 
(receiver operating characteristic) curve (AUC) was used to evaluate model performance 
(Swets 1988). In addition, a threshold was selected which enabled us to obtain infor-
mation about future suitable areas, which represent potential priority areas for the con-
servation of rupestrian grasslands. The chosen threshold was the “10 percentile train-
ing presence logistic threshold”, which shows the most realistic result and converts the 

Table 1   Climate models used in the predictions of the rupestrian grassland potential distribution models

Model Name

BCC-CSM1.1 Beijing climate center-climate system model 1.1
CCSM4 Community climate system model 4.0
GISS-E2-R NASA Goddard Institute for Space Studies modelE2
HadGEM2AO Hadley centre global environmental model version 2 

(Atmosphere–Ocean)
MIROC5 Model for interdisciplinary research on climate version 5
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probability distribution derived from the model into a binary map of presence/absence (Liu 
et al. 2005). To avoid erroneous predictions of suitable habitat under future climate sce-
narios for 2050 we used the “fade-by-clamping” option in MaxEnt, which removes heavily-
clamped pixels from the final predictions (e.g., Khanum et al. 2013).

Landscape metrics and land‑use threats/protection

We conducted three analyses on how changes in environmental suitability and land-use will 
affect the biodiversity of rupestrian grasslands in current and future scenarios, given an 
increasingly complex set of assumptions. Firstly, we assessed how changes in environmen-
tal suitability will affect landscape metrics, if all suitable areas are covered by native habi-
tat (overall landscape metrics). The second analysis consisted of overlapping the current 
land-use with present and future areas of suitability under different scenarios, if land-use 
will not change (overall land-use threats and protection). The third analysis deals with the 
effect of mining only, overlapping areas of environmental suitability with areas directly and 
indirectly affected by mining in the current scenario and in a mining expansion scenario.

The analysis assessed changes in area and connectivity for rupestrian grasslands’ spe-
cies in current and future scenarios using Fragstats (McGarigal et  al. 2012). For this 
analysis, we assumed that all suitable areas are covered by native habitats. We assessed 
the following landscape metrics: total habitat area, number of patches, mean patch area, 
mean nearest neighbor (MNN), and proximity indexes. MNN is the average edge-to-edge 
Euclidean distance between a focal patch and the next nearest patch. Proximity is the asso-
ciation between area and inter-patch connectivity. Increasing proximity indices means that 
the landscape is more structurally connected, while low values indicate a decrease in con-
nectivity. We used a 5000 m threshold as a search radius, assuming this is a reasonable 
distance for the dispersion of plants and vertebrates in this time scale.

To measure how much area is being (and will be) affected by intensive use, as well 
as how much area is (and will be) within protected areas, we overlapped current land-use 
with present and future areas of suitability. This analysis assumed that land-use would not 
change with time. Silviculture, intensive agriculture (soybeans, sugar cane, corn, cotton, 
rice, wheat, bean, coffee, orange, tobacco, cocoa, banana, and cassava) and urban areas for 
the entire Brazilian territory at a 30-m resolution were acquired from the Centro de Senso-
riamento Remoto—CSR UFMG and kindly made available by Britaldo Soares-Filho. Maps 
of current mining activities were acquired from the Departamento Nacional da Produção 
Mineral (DNPM) website (http://sigmi​ne.dnpm.gov.br/sad69​/UF.zip, April 2013) and com-
prised areas under different phases of activity development: exploration, licensing, conces-
sion, and exploitation.

We overlapped the current mining maps with predicted areas of suitability in the present 
and future. Assuming that indirect impacts of mining reach 5 km (Durán et al. 2013), we 
built buffers around mines and calculated the proportion of the areas of suitability affected 
both directly and indirectly by mining. Additionally, we created mining expansion (ME) 
scenarios, in which all current areas under licensing or requesting mining authorization 
were considered; which were also overlapped with future areas of suitability. The ME sce-
nario is the best approximation of where future mines will be placed, although this is a 
rather conservative approximation, as many mines could be implemented outside these 
areas. Finally, our models were built considering the following 12 scenarios: (1 and 2) 
current (considering current suitability and mining distribution), (3 and 4) 2050 RCP4.5 
(climatic optimistic and current mine distribution), (5 and 6) 2050 RCP4.5 ME (climatic 
optimistic and mining expansion), (7 and 8) 2050 RCP8.5 (climatic pessimistic and current 

http://sigmine.dnpm.gov.br/sad69/UF.zip
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mining distribution), (9 and 10) 2070 RCP4.5 (climatic optimistic and current mining dis-
tribution) and (11 and 12) 2070 RCP8.5 ME (climatic pessimistic and mining expansion 
scenario).

Results

Predictive modeling

The current area of environmental suitability for rupestrian grasslands in Brazil is approxi-
mately 83,000  km2 (South America Albers Equal Area Conic projection, “10 percentile 
training presence logistic threshold”), surpassing the area previously estimated by Fer-
nandes et al. (2014) and Silveira et al. (2016). In our models, suitability was largely driven 
by topography and climate. Altitude, temperature seasonality, and annual precipitation 
were deemed the most important variables in the model (Table  S3). The model showed 
a satisfactory performance with an AUC value of 0.972 (± 0.003, SD), which indicates a 
high accuracy.

The current distribution of rupestrian grasslands is largely affected by topography/lithol-
ogy and climate and, as such, one could intuitively derive the effects climate change might 
have on its range and its conservation. In fact, under a more optimistic scenario (RCP4.5), 
we estimated a total loss of ca. 57,300 km2 (69%) of suitable areas for rupestrian grass-
lands by 2050 and a loss of ca. 60,000 km2 (72%) of suitable area by 2070. This loss was 
concentrated in the regions of Chapada Diamantina, northeastern parts of the Espinhaço 
and in the south of Minas Gerais and Goiás states (Fig. 3a, c). Additionally, all the isolated 
mountains in northeastern and northern parts of Brazil will lose suitability for rupestrian 
grasslands.

Under the more pessimistic scenario (RCP8.5), the loss of suitable areas would reach 
ca. 60,500 km2 (73%) by around 2050, and ca. 68,380 km2 (82%) in 2070, with areas only 
remaining in the southern part of the Espinhaço and fragmented areas in Chapada Diaman-
tina, in the Iron Quadrangle, and in Serra da Canastra (Fig. 3b, d). More stable regions, 
likely to remain climatically suitable until the end of this century are the mountains of 
southern Minas Gerais, Ouro Preto, Caraça, Serra do Cipó, Canastra, part of the Diaman-
tina plateau and fragments in the northern part of the Espinhaço range (Fig. 3). Currently, 
less than 10% of the distribution of this ecosystem is protected (ca. 7720 km2), which is 
below the 17% target according to the Convention on Biological Diversity (CBD; https​://
www.cbd.int/sp/targe​ts/). Our results show this scenario can worsen in the near future due 
to the loss of suitable areas in the face of climate change. Loss of suitable areas for rupes-
trian grasslands could effectively shrink these conservation units by ca. 40% of the current 
size in 2050, reaching up to 55% in 2070 (Table 2).

Landscape metrics and land‑use threats/protection

Even assuming that rupestrian grasslands will cover all suitable areas predicted by the 
model, the average patch size will decrease by more than half in 2070. More disturbingly, 
patches would be getting smaller and their number will decrease up to four-fold in the 
worst scenario. Due to habitat fragmentation, patches will be more separated as shown by 
a slight increase in the mean nearest neighbor distance. Also, connectivity indices that con-
sider patch area, such as proximity, will be halved in the 2070 pessimistic scenario (Fig. 4).

https://www.cbd.int/sp/targets/
https://www.cbd.int/sp/targets/
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We found that environmentally suitable areas for rupestrian grasslands will decrease 
from 8.3 million ha to less than 2.6 million in any of the future scenarios (Fig. 5a). Assum-
ing that current land-uses will be adhered to, the area under intensive use (i.e., agriculture, 
silviculture, urban and mining) will decrease from the currently 1.2 million hectares to a 

Fig. 3   Projection of environmental suitability for rupestrian grasslands centered around 2050 in an opti-
mistic RCP 4.5 (a) and in a more pessimistic RCP 8.5 scenario (b). Projection of environmental suitability 
for rupestrian grasslands centered around 2070 in an optimistic RCP 4.5 (c) and in a more pessimistic RCP 
8.5 scenario (d)
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number between 0.197 and 0.076 million ha in the future scenarios. This means that, as 
the total area of the rupestrian grasslands shrink, many areas currently under mining and 
agriculture pressure will not be adequate for the biota of rupestrian grasslands in terms of 
bioclimatic variables explaining the decline in total impacted area. Nevertheless, these esti-
mates assume no changes in land-use, which is clearly unrealistic. Additionally, the pro-
portion of the habitat area under intensive pressures is maintained in the future scenarios, 
especially if indirect impacts of mining are considered and in the mining expansion sce-
narios. Therefore, the relative impact of intensive managements remains similar if land-use 
does not change, and probably increase if agricultural and silviculture practices expand.

If the current network of protected areas is maintained, 1.2 million hectares (0.83 mil-
lion hectares of strictly protected and 0.42 million hectares of sustainable uses reserves) 
will fall to a number between 0.71 and 0.53 million hectares in the future scenarios. Cur-
rently, 0.29 million hectares of rupestrian grasslands are under direct effect of mining, 
which is about 3.5% of the total area of suitability (Fig. 5b). If both indirectly and directly 

Table 2   Loss of protected 
areas in rupestrian grasslands 
for the decades centered around 
2050 and 2070, under two 
representative pathways: RCP 4.5 
and RCP 8.5

Year Representative 
pathways

Loss of protected 
areas (%)

Loss of 
protected areas 
(km2)

2050 RCP 4.5 39.19 3025.09
RCP 8.5 40.62 3135.43

2070 RCP 4.5 45.10 3481.10
RCP 8.5 54.84 4232.98

Fig. 4   Landscape metric changes from the current situation to future scenarios according to different land-
scape indices. It was assumed that all suitable areas are covered by natural habitats



2597Biodivers Conserv (2018) 27:2587–2603	

1 3

affected areas are considered, this value rises to about 1.5 million ha, or 17.57% of the 
ecosystem’s distribution. Assuming all mines that are currently under licensing, or in any 
stage of authorization will become effective, the proportional area affected (directly and 

Fig. 5   Area under different land-uses in the current and future scenarios, assuming that land-use is kept 
in current conditions (a). Proportion of suitability areas for rupestrian grasslands indirectly and directly 
affected by mining and according to two mining scenarios (current, and mining expansion - ME) in differ-
ent future scenarios (b)
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indirectly) may be more than 60% in the future scenarios. Because we expect that mines 
will increase beyond areas that are currently under licensing, the actual mined area can be 
even larger than the scenario of mining expansion predicts.

Discussion

While there has been no significant expansion of the distribution of rupestrian grass-
lands since at least the Last Glacial Maximum (ca. 20,000 years B.P.) (Barbosa and Fer-
nandes 2016), future scenario predictions are catastrophic for this ecosystem. All models 
applied here showed extremely negative results in terms of maintenance of suitable areas 
for conservation of rupestrian grasslands under climate change, reaching losses of up to 
82% within the next 50 years. We also showed that a small proportion of protected areas 
become less effective due to the loss of suitability, land-use changes, mining and lack of 
adequate knowledge and policing for its conservation and management (e.g., Fernandes 
2016b). Moreover, more than 50 million people that depend on ecosystem services pro-
vided by rupestrian grasslands (Neves et al. 2016) could be directly or indirectly impacted, 
extending the pressure on an already overexploited land.

Although 10 strictly protected areas were created in rupestrian grasslands in the last 
decade, safeguarding about 116,000 ha (Silva et al. 2008), unique elements of biodiversity 
are likely to be under-represented due to species turnover and high endemism (Fernandes 
2016b; Monteiro et al. 2018). Although the mining industry has acquired several proper-
ties in the Espinhaço range to offset the impacts of mining, most of them have not been 
officially transformed into protected areas yet and, therefore, not included in the analyses 
performed to date (GWF, unpub. data). Although in this region offsetting efforts has rarely 
reduced vegetation loss and are themselves often threatened by future mining (see Sonter 
et al. 2014b), we ought to build spaces and opportunities to create a pact that will lead to a 
more rational use and conservation of the rupestrian grasslands.

The case of Brazilian rupestrian grasslands calls for profound scientific, conservation 
and political consideration due to their unparalleled biodiversity and levels of endemism, 
plus their strategic importance as a source of goods, including water, ornamental species, 
and scenic beauty for sustainable tourism, especially for the densely populated southeast-
ern Brazil (Resende and Fernandes 2013; Resende et  al.  2017). Mountain environments 
in the Cerrado have until recently been relatively free from huge extensive cattle farming 
and habitat-aggressive plantations, such as soybean and sugar cane (Gibbs et  al. 2015). 
However, this situation is not likely to continue, as indicated by uncontrolled habitat con-
version and the disturbances highlighted here. The worsening fate of rupestrian grass-
lands could scale-up both spatially and temporally if we consider the fast pace of biologi-
cal invasions (Barbosa et  al. 2010; Fernandes et  al. 2015), mining activities (Fernandes 
et al. 2014; Sonter et al. 2014a) and afforestation projects (Veldman et al. 2015; Fernandes 
et al. 2016b). The synergy of these strong drivers would result in major land-use change 
leading to strong impacts from which the low-resilience rupestrian grasslands might not 
recover, perhaps leading to novel and much more simplified ecosystems both botanically 
(Fernandes et al. 2014) and zoologically (Dirzo et al. 2014) that are deficient in the provi-
sion of ecosystem services.

Currently, ca. 15% of rupestrian grasslands are subjected to intensive anthropogenic 
impact (areas directly affected by mining, silviculture, urbanization and intensive agricul-
ture). Considering the indirect impacts of mining reach 5 km beyond the mines themselves 
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(a very conservative estimate, Durán et al. 2013), as much as 18% of the ecosystem is cur-
rently under the influence of mining alone (Fig. 5). The projected expansion of the mining 
sector in rupestrian grasslands would lead to an unprecedented cascade of impacts on the 
ecosystem (Fernandes et al. 2014; Fernandes and Ribeiro 2017; Pena et al. 2017). If the 
expansion of mining comes associated with climate change, the direct and indirect effects 
of mining would reach about 60% of the total future distribution of rupestrian grasslands 
under the pessimistic and optimistic 2045 and 2070 climatic scenarios (Fig. 3). This hap-
pens since the distribution of future mines largely overlaps with suitable areas of rupestrian 
grasslands potential distribution.

One anthropogenic threat that disrupts the rupestrian grassland dynamics, not yet men-
tioned or included in our models and predictions, is the occurrence of anthropogenic fires. 
Although rupestrian grassland is a fire-prone vegetation, adapted to natural fires (Warming 
1892; Silveira et al. 2016; Morellato and Silveira 2018), the time, intensity and frequency 
of human-induced fires impose additional stresses to plants, with unforeseen effects on the 
entire ecosystem (e.g, Figueira et  al. 2016; see also Bond and Keeley 2005). Rupestrian 
grasslands are moisture-dependent, fire regime ecosystems, with the ignition influenced 
mostly by the length of the dry season and the rainfall distribution along the season (Alva-
rado et  al. 2017). The effects of changes in fire regime, caused by anthropogenic activi-
ties or indirectly through climate change, are still unknown for this ecosystem and concur 
with mining and other threats. Monitoring of the vegetation recovering post-fire is needed 
(Figueira et al. 2016; Alberton et al. 2017) to evaluate the ecosystem’s potential resilience 
as well as whether the effects of anthropogenic fire regime are positive or negative in the 
areas disturbed by mining and other activities, integrating the management plan of conser-
vation units.

Concluding remarks and future perspectives

Proactive and long-lasting actions are urgently needed to preserve this ecosystem and its 
irreplaceable ecosystem services for future generations. In the next few decades we will not 
just face loss of biodiversity and ecosystems services and processes, but we also risk losing 
an important cultural heritage (Neves et al. 2016; Fernandes and Ribeiro 2017). A first step 
towards effective conservation of rupestrian grasslands is the translation, to all sectors of 
society, of the knowledge and importance of this ecosystem and the magnitude of the loss 
due to its conversion and misuse. For instance, the consequences of the loss of environ-
mental services and of the overexploitation of natural resources leading to deterioration of 
human wellbeing is an aspect that needs to become appreciated (see Biénabe and Hearne 
2006; Resende et al. 2017). Conservation actions, however, are challenged by a number of 
basic limitations, including that the vast majority of the conservation units in the region 
lack planning, personnel, and the engagement of communities. The problem becomes even 
more complex and challenging as conservation plans developed for forested areas, can-
not be transferred by governmental institutions to these grassland ecosystems, and instead 
need to be specifically developed for non-forest landscapes. This is an aspect that needs to 
be assimilated by local governmental institutions if they are to administer one of the most 
diverse and neglected ecosystems of Brazil (Fernandes 2016b). This comes at a time when 
increasing land-use change is accelerating. Last, but not least, while the Brazilian panel of 
climate change (Ambrizzi and Araujo 2014) predicts an increase of ca. 5 °C in temperature 
and a decrease of 35–45% in rainfall by the end of this century in central Brazil, no spe-
cific information has been provided for rupestrian grasslands or the Espinhaço mountain 
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range. The above scenario represents an enormous problem from a conservation perspec-
tive, firstly because this mountain ecosystem holds unique elements of Brazilian biodiver-
sity and ca. 50% of the species of the Cerrado (i.e., the most diverse savanna of the world 
and the second largest biome in South America: Fernandes 2016c), and secondly because 
mountaintops in this region hold the headwaters of major rivers and watersheds (river 
basins occupy an area of 1.21 million km2) that provide water to 50 million people and to 
mining, industry, agriculture, aquaculture, fishing, and transportation in southeastern and 
northeastern Brazil. Clearly, rupestrian grasslands represent a critical conservation agenda.
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