Determination of carbamate pesticide in food using a biosensor based on reduced graphene oxide and acetylcholinesterase enzyme

Martin K.L. da Silva, Heloísa C. Vanzela, Lucas M. Defavari, Ivana Cesarino⁎

Sao Paulo State University (UNESP), School of Agriculture, Botucatu, SP, Brazil

ARTICLE INFO

Keywords:
Reduced graphene oxide
Carbaryl
Acetylcholinesterase enzyme
Biosensor
Food safety

ABSTRACT

Food safety is a major concern for human health and wellbeing all over the world. A novel and sensitive biosensor based on reduced graphene oxide (rGO) and the enzyme acetylcholinesterase (AChE) was developed and applied for the detection of carbaryl in food samples. The glassy carbon/rGO/AChE biosensor was characterized morphologically and electrochemically using scanning electron microscopy and cyclic voltammetry/electrochemical impedance spectroscopy, respectively. Optimum differential pulse voltammetry conditions led to a nanomolar detection limit, and determination of carbaryl in tomato was achieved.

1. Introduction

Carbaryl is an agricultural pesticide from the carbamate class [1]. This pesticide is extensively used in agriculture due to its high insecticidal activity, mostly in tomato, apple, onion and beans [2–5]. Carbamate and organophosphorus pesticides can inhibit acetylcholinesterase (AChE) inhibition; this enzyme is responsible for terminating the transmission of nerve impulses at the synapse [6]. Ingestion of AChE inhibitors might cause several neurological and motorial complications, and might lead to Alzheimer’s disease [7]. Currently, the Brazilian Health Regulatory Agency (ANVISA) states a concentration limit for carbaryl of 0.1 mg/kg for tomato samples and 2.0 mg/kg for apple. However, monitoring such pollutants is a major challenge.

During the past decades, numerous methodologies have been developed for analysis of pesticides in environmental, food and clinical samples [8]. Among them, colorimetry and chromatography techniques such as gas chromatography and high-performance liquid chromatography have been applied for the detection of these hazardous pollutants [3,9–11]. However, this analysis required matrix treatment, expensive equipment, trained staff for operation, and a great amount of solvents and chemicals. Biosensors based on AChE for the detection of carbamate or organophosphorus pesticides emerged in 1980 to overcome some of the limitations of traditional analysis. In the past two decades, there has been continuous development of biosensors for detection of these pollutants. Membrane [12–14], sol–gel [15–17], quantum-dot [18,19] and nanoparticle-based AChE biosensors [20,21] are the main amperometric/electrochemical biosensors developed in the field.

Developing novel, fast and highly sensitive electrochemical biosensors for pesticides and food safety is a major goal for future electroanalysis [22]. Reduced graphene oxide represents a class of carbon-based materials that have been extensively used in electroanalysis for hormones [23,24], antibiotics [25,26] and biosensing [27,28], due to their high electrocatalytic activity, remarkable electronic transport properties and large surface area [29–32]. The main point of this article is to describe the preparation, characterization and application of an electrochemical biosensor based on reduced graphene oxide for the immobilization of AChE, and its application for carbaryl detection in food samples.

2. Methodology

2.1. Chemicals and solutions

All solutions were prepared with water purified using a Millipore ultrapure water system with resistivity ≥18 MΩ cm (Millipore). All reagents used in this study were of analytical grade and were used without further purification. Graphene oxide, AChE from Electrophorus electricus Type VI-S, lyophilized powder, 200–1000 units/mg protein), acetylthiocholine iodide (AChI), carbaryl PESTANAL® and glyphosate PESTANAL® were obtained from Sigma-Aldrich (Germany).

2.2. Electrochemical experiments

For characterization of the biosensor and analysis of the pesticide, cyclic voltammetry (CV)/electrochemical impedance spectroscopy...
proving the reduction of GO by the proposed method. The rGO sheet created by the oxidation wrinkled structure of rGO displays a large amount of topological defects. AChE biocomposite (B), respectively. Fig. 1A reveals that the typical reduction was then centrifuged and cleaned multiple times with pure grade bath (70% amplitude). Then, 8.0 mg of NaBH₄ was added to the solution, and the suspension was sonicated for a further 20 min. The solution was then centrifuged and cleaned multiple times with pure grade ethanol and ultrapure water, and then dried at room temperature.

Concisely, a solution containing 20 mg GO, 15.0 ml of ethanol (pure grade) and 16.0 mg of SDS was sonicated for 20 min in an ultrasonic bath (70% amplitude). Then, 8.0 mg of NaBH₄ was added to the solution, and the suspension was sonicated for a further 20 min. The solution was then centrifuged and cleaned multiple times with pure grade ethanol and ultrapure water. The resultant rGO composite was cast and allowed to dry at room temperature.

For preparation of GC/rGO/AChE biosensors, a solution containing 25.0 μg of rGO and 40.0 μg of AChE was mixed in an Eppendorf tube. On the surfaces of the cleaned GC electrodes, 10 μl of rGO/AChE biocomposite was cast and allowed to dry at room temperature.

2.5. Preparation of the fruit samples for carbaryl analysis

The developed biosensor was applied for the determination of carbaryl pesticide in tomato samples. Briefly, 200 g of tomato samples acquired in local markets was blended in a 0.2 mol L⁻¹ PBS solution pH 7.0. DPV analysis of carbaryl was carried out directly on the extracts of tomato samples using the standard addition method.

3. Results and discussion

3.1. Morphological and electrochemical characterization of the rGO/AChE biocomposite

SEM images of rGO and the rGO/AChE biocomposite were prepared by dropping a significant amount of the material onto a silica plate and drying before analysis. Fig. 1A shows SEM images of rGO (A) and rGO/AChE biocomposite (B), respectively. Fig. 1A reveals that the typical wrinkled structure of rGO displays a large amount of topological defects created by the oxidation–reduction procedure on its surface [24,25,23], proving the reduction of GO by the proposed method. The rGO sheet morphology shows several clusters of topological defects [33]. In Fig. 1B we can see the immobilization of AChE by rGO structural defects. These clusters can incorporate and immobilize enzymes, providing an excellent material for biosensing measurements since no cross-linking agent is needed [28].

The electrochemical response of the GC/rGO/AChE biosensor was investigated in 0.2 mol L⁻¹ of PBS pH 7.0 containing 40.0 μmol L⁻¹ of AChI by CV experiments at a scan rate of 50 mV s⁻¹, as presented in Fig. 2. In the absence of AChI (curve a), no electrochemical process was observed. On the other hand, in the presence of AChI (curve b), the proposed biosensor presented oxidation and reduction processes of dithio-bis-choline at potentials of +222 and +182 mV, respectively, with the mechanism shown in the inset of Fig. 2. The reaction of AChE’s substrate is a two-step reaction. First, the neurotransmitter acetylcholine is hydrolysed, giving thiocholine and acetic acid as products. The subsequent reaction is the formation of the dimer dithio-bis-choline [6].

EIS is the most used technique for probing biomolecular interactions and the conductivity of modified electrodes and understanding chemical reactions, as well as for the investigation of immunosensors, biosensors and DNA/RNA sensors [34–36]. EIS experiments were conducted to characterize the proposed biosensor. Fig. 3 shows the typical Nyquist plots for GC, GC/rGO, GC/rGO/AChE electrodes in a 0.2 mol L⁻¹ PBS pH 7.0 solution containing 0.1 mol L⁻¹ of KCl and 5.0 mol L⁻¹ of the redox couple [Fe(CN)₆]³⁻/⁴⁻ in the range of 0.01–100 kHz. The semicircles correspond to the charge transfer resistance (Rct) limiting process that is associated with the electrode/electrolyte interface. It is possible to observe the following order for the Rct values: Rct (GC/rGO/AChE) > Rct (GC/GO) > Rct (GC/rGO) > Rct (GO). As expected, the bare GC electrode presented a very low Rct.
Fig. 2. CV scans of the GC/rGO/AChE biosensor in 0.2 mol L\(^{-1}\) PBS pH 7.0 in the absence (traced line) and in the presence (solid line) of AChI with a scan rate of 50 mV s\(^{-1}\). Inset: electrochemical process of dithio-bis-choline oxidation with the formation of the respective dimer, dithio-bis-choline.

Fig. 3. Nyquist diagram for: a) GC (\(\bullet\)), b) GC/GO (\(\triangle\)), c) GC/rGO (\(■\)) and GC/rGO/AChE (\(●\)) electrodes recorded in a 0.2 mol L\(^{-1}\) PBS pH 7.0 solution containing 5.0 mmol L\(^{-1}\) of the redox couple [Fe(CN\(_6\))]\(^{3-/4-}\).

Table 1
Fitting values of the equivalent circuit elements.

<table>
<thead>
<tr>
<th>Electrode</th>
<th>(R_c (\Omega))</th>
<th>(R_t (\Omega))</th>
<th>CPE ((\mu)S/cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC</td>
<td>86.4</td>
<td>116</td>
<td>2.06</td>
</tr>
<tr>
<td>GC/GO</td>
<td>84.8</td>
<td>853</td>
<td>44.7</td>
</tr>
<tr>
<td>GC/rGO</td>
<td>68.8</td>
<td>665</td>
<td>28.4</td>
</tr>
<tr>
<td>GC/rGO/AChE</td>
<td>81.8</td>
<td>1120</td>
<td>65.8</td>
</tr>
</tbody>
</table>

\(\sim 107.5 \Omega\) with a close to straight tail line [37,38] (curve a). The GC/GO electrode (curve b) showed an increase in \(R_t\) (\(~852.53\ \Omega\)) due to graphene oxide’s insulator property. Otherwise, GC/rGO (curve c) decreases \(R_t\) drastically (\(~488.08\ \Omega\)); this behaviour is expected due to rGO’s extraordinary electron-transfer properties, which can facilitate the diffusion of electrons at the electrode/electrolyte interface [39]. On the other hand, biomolecules such as AChE are poor electrical conductors at low frequencies and can make the electron-transfer process difficult [3,40]. The GC/rGO/AChE electrode showed an \(R_t\) value of \(~1120 \Omega\), evidence of the successful immobilization of AChE onto the electrode surface. The EIS spectrum for each electrode was fitted using the electrochemical circle fit tool in NOVA 2.0 software, as was the equivalent circuit (inset Fig. 3). The fitting values are summarized in Table 1, including the ohmic resistance of the electrolyte (\(R_s\)), \(R_t\), the constant phase element (CPE) and the Warburg impedance (W).

3.2. Optimization of the GC/rGO/AChE biosensor parameters

To assure the maximum analytical response from the GC/rGO/AChE biosensor electrode, the dependence of the electrochemical oxidation of dithio-bis-choline on pH was studied by DPV experiments at pHs ranging from 5.5 to 8.0 in 0.2 mol L\(^{-1}\) PBS containing 40.0 mmol L\(^{-1}\) AChI, as presented in Fig. 4. The plot of \(I_p\) vs. pH for dithio-bis-choline shows that the anodic peak current increases in the pH range of 5.5 to 7.0, reaching a maximum value at pH 7.0 and slightly decreasing at pH 7.5. As reported, the optimum pH for AChE is 8.0–9.0 [41]; some biosensors based on rGO also report pH 7.0 as an optimum pH for buffer solution [42,43]. Hence, pH 7.0 was chosen for use in subsequent experiments.

Another optimized parameter was the amount of rGO used in the preparation of the biosensor. The quantities of rGO studied were 12.5, 25.0, 50.0, 75.0 and 100.0 \(\mu\)g mL\(^{-1}\) with 40.0 \(\mu\)g of AChE; the results are presented in Fig. 5A. The highest anodic peak current was observed when 10 \(\mu\)L of a suspension containing 25 \(\mu\)g mL\(^{-1}\) of rGO was used in the preparation of the biosensor. An increase of the composite material can block the electron-transfer process through the electrode/electrolyte interface, in that way decreasing the response for AChI substrate. Therefore, this amount of the composite was used in further experiments.

Another important aspect for preparation of the biosensor is the amount of AChE. The concentration of AChE in the composition of the biosensor was optimized in the range of 5.0–80.0 \(\mu\)g mL\(^{-1}\) in 0.2 mol L\(^{-1}\) of PBS pH 7.0 containing 40.0 mmol L\(^{-1}\) of AChI; the results are presented in Fig. 5B. It is possible to observe that the anodic peak current increases considerably up to the amount of 40.0 \(\mu\)g mL\(^{-1}\) of AChE and decreases when a higher concentration of enzyme is used in the preparation of the biocomposite. This behaviour is common for biosensors; a small amount of AChE cannot hydrolyse and catalyse AChI entirely. On the other hand, at higher concentrations, the AChE electron transfer between substrate and electrode is affected negatively, as biomolecules are poor electrical conductors, which can inhibit the anodic response for AChI. Therefore, 40.0 \(\mu\)g mL\(^{-1}\) of AChE enzyme was used in the preparation of the biosensor for the next experiments.

3.3. Analytical curve

For evaluation of the GC/rGO/AChE biosensor for the detection of
carbamate pesticide, DPV voltammograms were recorded in the absence and presence of different carbaryl concentrations, as presented in Fig. 6. We observed a linear response to the inhibition of the thiocholine oxidation process for carbaryl concentrations from 10 to 50 nmol L$^{-1}$ (Fig. 6A) and 0.2 to 1.0 μmol L$^{-1}$ (Fig. 6B), according to Eqs. (1) and (2), respectively:

\[
I(\%) = 12.27 + 1.98 \text{ [carbaryl]} \\
I(\%) = 53.29 + 40.17 \text{ [carbaryl]}
\]

with correlation coefficients of 0.997 (n = 5) and 0.988 (n = 5) for Eqs. (1) and (2), respectively. Inhibition of the thiocholine signal was calculated using the peak currents of the thiocholine before (I_o) and after (I_1) incubation with carbaryl, as described elsewhere [44]. Using the first equation, a detection limit (LOD) of 1.9 nmol L$^{-1}$ was calculated by $3\sigma/$slope, where σ is the standard deviation of 10 current–time measurements of the blank solution. Also, the quantification limit (LOQ) of 6.3 nmol L$^{-1}$ was determined by 100/slope, as recommended by IUPAC methodology [45].

Table 2 shows the comparison of different biosensors and their LOD values. Cesarino et al. [46,47] used an electropolymerization polyaniline film for AChE immobilization on carbon nanotubes. An AChE-e-pGON/GCE was applied for the detection of carbaryl by Li et al. [37]. In addition, multwall carbon nanotubes/graphene oxide nanoribbons [38] and gold electrodes [48] were applied for immobilization of AChE and used as a biosensor for pesticides. We can observe that the GC/rGO/AChE biosensor has the lowest LOD for carbaryl, except for the biosensor in the work presented by Li et al. [37]. The biosensor showed a very similar LOD to that in the work presented by Qiu et al. [17] who developed an AChE–MWCNT/GONR/GCE biosensor. However, the biosensor presented in this work showed good linearity, reproducibility and selectivity for carbaryl pesticide.

The repeatability of 1.3% for the proposed biosensor was evaluated by measuring the current response of 10 DPV voltammograms after 5 min of incubation in 0.2 μmol L$^{-1}$ carbaryl solution. The reproducibility of 2.2% was determined by the standard deviation of 10 sequential voltammograms from five experiments [23]. The favourable electron-transfer kinetics and high sensitivity originate from the good
conductivity and large surface area of rGO favouring immobilization of enzymes [49].

The lifetime of the proposed biosensor was evaluated by DPV experiments in the presence of 40.0 μmol L⁻¹ of AChI. The results are presented in Fig. 7. The GC/rGO/AChE biosensor showed almost the same response for thiocholine oxidation at 3, 7, 14, 21 and 30 days. During the measurements, the biosensor was kept in 0.2 mol L⁻¹ PBS pH 7.0 at 4 °C. As no significant change in the electrochemical response for thiocholine oxidation was observed, the biosensor can be applied within 30 days. The longer lifetime for the biosensor is due to the high stability and longer lifetime of rGO than for other similar commercial sensors. Large surface area, fast response time, lower potential for redox reactions and fewer surface fouling effects have brought attention to graphene-based biosensors [49].

3.4. Interferents and selectivity studies for the GC/rGO/AChE biosensor facing glyphosate pesticide

In order to evaluate interference in the presence of other compounds and the selectivity of the proposed biosensor, DPV experiments were carried out by the following procedure. Firstly, the response to a 40.0 μmol L⁻¹ AChI aliquot was recorded, then the biosensor was incubated for 5 min in a PBS pH 7.0 solution containing 0.2 μmol L⁻¹ carbaryl. After this first step, the biosensor was incubated for 5 min in a PBS solution with 0.1, 0.2 and 0.4 μmol L⁻¹ of glyphosate. The results are shown in Fig. 8.

We observed that the biosensor showed an impressive selectivity for carbaryl pesticide. The carbamate pesticide exclusively inhibited the dithio-bis-choline oxidation process. On the other hand, when analysing various concentrations of glyphosate, the biosensor showed a stable response and no significant change in the thiocholine oxidation process. Since glyphosate does not inhibit AChE enzyme activity, this result was expected. This analyte is not an organophosphate ester but a phosphonoglycine [50].

3.5. Analysis of carbaryl in the tomato samples

The developed biosensor was used for the quantification of carbaryl in tomato samples acquired locally. Carbaryl determinations were performed in triplicate, without any further spiking procedure, using the standard addition method; these showed a good response and linearity. However, the matrix effect of the tomato samples dislocated the anodic peak current response of thiocholine. According to Fig. 9, we can observe that the oxidation of thiocholine was dislocated from 128 to ~219 mV. However, the addition of carbaryl could be performed easily, and no significant change in the determined concentration of carbaryl was noted. The determination of carbaryl in tomato samples was performed in triplicate, with a mean value of 0.47 ± 0.04 μmol L⁻¹ which is very close to the residual limit of carbaryl in tomato, 0.1 mg/kg (0.5 μmol L⁻¹) according to the Brazilian government [2,44].

4. Conclusion

The electrochemical biosensor based on chemically reduced graphene oxide and AChE enzyme was successfully applied for the determination of carbaryl in tomato samples. The present work contributes to the field of biosensors and provides a novel tool for monitoring carbamate pesticides in food samples. SEM images and CV and IES experiments showed that AChE was efficiently immobilized on the rGO surface, providing a low-cost sensor for pesticide analysis.

Acknowledgements

The authors would like to acknowledge the financial support of FAPESP (grant 2015/02136-2) and the LMA-IQ for FEG-SEM facilities.
References

[30] Martin Kássio Leme da Silva received his B.Sc. degree in Chemistry from Sao Paulo State University, Brazil, in 2017. Currently, he is a master student in the Biotechnology. He has experience in analytical chemistry, with emphasis on electroanalysis, acting in the following topics: electrochemical sensor and bio sensor, modified electrode, graphene, metal nanoparticles and enzymes. Supervisor at Laboratorio of Electroanalysis and Nanotechnology (LEN).

[31] Helenia Catharenussi Vanzeula undergraduate student of Bioprocess and Biotechnology Engineering at Sao Paulo State University. Since 2015, has developed works in electroanalytical chemistry at Laboratory of Electroanalysis and Nanotechnology (LEN).

[32] Lucas Menezes Defavari undergraduate student of Bioprocess and Biotechnology Engineering at Sao Paulo State University. Since 2015, has developed works in electroanalytical chemistry at Laboratory of Electroanalysis and Nanotechnology (LEN).
Ivana Cesarino received her B.Sc. degree in Chemistry from Sao Paulo State University, Brazil, in 2003, and Ph.D. in 2009 in Analytical Chemistry from Sao Paulo University, in Brazil. She has been admitted in 2014 as assistant professor at Sao Paulo State University, School of Agriculture. The research areas of interest are related with electroanalysis, mainly, on development and characterization of sensors and biosensors for analysis of environmental and biological interest samples. Head-leader of Laboratory of Electroanalysis and Nanotechnology (LEN). She has published 53 articles and more than 50 participations in conferences. She is a member of the Sociedad Iberoamericana de Electroquimica (SIBAE).