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Abstract This paper investigates the robust control pro-
blem of continuous-time uncertain switched linear systems,
usingonly a switching strategydependingon theplant output.
The proposed method is based on linear matrix inequalities
(LMIs). A set of slack variables is introduced to reduce the
design conservatism, and new sufficient LMI conditions for
the synthesis of the controllers are presented. Two examples
show that the proposed method has an adequate performance
even in situations when the matrices of the linear subsystems

B Edson Italo Mainardi Júnior
edsonitalo@yahoo.com.br

Marcelo Carvalho Minhoto Teixeira
marcelo@dee.feis.unesp.br

Rodrigo Cardim
rcardim@dee.feis.unesp.br

Edvaldo Assunção
edvaldo@dee.feis.unesp.br

Manoel Rodrigo Moreira
manoel.rodrigo@hotmail.com

Diogo Ramalho de Oliveira
diogo_oliveira6@hotmail.com

Alexandre Ataide Carniato
carniato@ifsp.edu.br

1 Instituto Federal de Educação, Ciência e Tecnologia
Catarinense (IFC), Campus Videira, Rodovia SC 135,
Videira, SC 89560-000, Brazil

2 Instituto Federal de Educação, Ciência e Tecnologia de São
Paulo (IFSP), Campus Presidente Epitácio, Av José Ramos
Júnior, 27-50, Presidente Epitácio, SP 19470-000, Brazil

3 Laboratório de Pesquisa em Controle (LPC), Departamento
de Engenharia Elétrica, Faculdade de Engenharia, Univ
Estadual Paulista (UNESP), Campus Ilha Solteira, Avenida
José Carlos Rossi, 1370, Ilha Solteira, SP 15385-000, Brazil

are not Hurwitz and offers a simple and efficient solution for
this control problem.

Keywords Switched linear systems · Quadratic Lyapunov
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1 Introduction

In recent decades, the scientific community has shown a
growing interest in the study of the stability of switched li-
near systems (Geromel and Colaneri 2006; Zhai et al. 2003).
This interest is mainly due to the fact that they usually allow a
better overall performance, namely their applications in prac-
tical systems such as: mechanical control systems, process
control, power systems, aircraft control, automotive indus-
try, power electronics (Yoshimura et al. 2013; Scharlau et al.
2014; Mainardi Júnior et al. 2012a; Cardim et al. 2009;
Deaecto et al. 2010). In general, the theory of switched linear
systems can be divided into two groups, where the first one
occurs when the switching strategy σ(t) is independent of
the system state variables and the second one occurs when
σ(t) is a control variable dependent on the state variables of
the system (Geromel and Colaneri 2006). The main goal of
this paper is to design an appropriate output switching strate-
gy that selects at each instant of time a dynamic subsystem
among a determined number of available subsystems, which
provides asymptotic stability to a given equilibrium point of
the controlled system, with the assurance of an adequate per-
formance (Decarlo et al. 2000; Sun andGe 2005b). Important
results are presented in Lin and Antsaklis (2009) and Liber-
zon (2003). SeeHespanha andMorse (2002) for the synthesis
of controllers that stabilize switched linear systems in a gene-
ral context. In Wicks et al. (1994), the stability problem of
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switched linear systems was studied using a quadratic Lya-
punov function, and it has been shown that if there exists
a Hurwitz convex combination of the subsystem matrices
(where a matrix with all eigenvalues with negative real parts
is obtained), then there exists a state-dependent switching
strategy that stabilizes the switched linear system. Within
this context, in Feron (1996), the author demonstrated that
the condition shown in Wicks et al. (1994) is necessary and
sufficient for two subsystems. Furthermore, in Feron (1996)
an extension of these results, using dynamic output feedback
and based on a quadratic Lyapunov function, was also pre-
sented.

For robust stabilization, in Zhai et al. (2003) a quadratic
stabilizing switching law was designed for polytopic uncer-
tain switched linear systems, based on LMIs. Next, in Ji
et al. (2003) two sufficient conditions were proposed, and
more specifically, the quadratic stabilization of switched li-
near systems consider a switching strategy added to the state
feedback controllers or to the output feedback controllers.
Other results that investigate problems about stability and
stabilizability of continuous-time and discrete-time switched
systems with uncertainties can be found in Lin and Antsak-
lis (2007) and Otsuka and Soga (2010). A brief review and
results on controllability, observability, controller design and
optimal control of switched linear systems can be found in
Sun and Ge (2005a).

In Geromel et al. (2008), stability conditions were ana-
lyzed and a switching strategywas proposed togetherwith the
controller design using dynamic output feedback for a par-
ticular class of matrix inequalities called Lyapunov–Metzler
inequalities, for both continuous-time and discrete-time
plants. Accordingly, Deaecto et al. (2011) presented recent
results considering the H∞ norm for designing controllers
via dynamic output state feedback.

The main reason for this paper is the control design of
uncertain switched linear systems, considering only output
access for the switching strategy design. This is due to the fact
that the design of static control, considering only the output
of the plant, allows a simple practical implementation. In
Iwasaki et al. (1994), an alternativemethodwas presented for
a continuous-time linear system, for designing a stabilizing
static output feedback controller which ensures a specified
linear quadratic (LQ) performance. Next, necessary but not
sufficient conditions were presented inGeromel et al. (1998).
Important results for this system class can be also found in
Syrmos et al. (1994).

Additionally, in the control problem via static output feed-
back, two different LMI-based conditions were proposed in
Daafouz et al. (2001) and Daafouz et al. (2002), based on a
switched quadratic Lyapunov function, where the first one
is classical and the second one is new and uses a slack vari-
able, which makes it useful for designing problems. More
recently, Ding and Yang (2009) describes more relaxed con-

ditions using the Finsler’s lemma and piecewise quadratic
Lyapunov functions. Other important results of controller
designs via static output feedback can be found in Dong and
Yang (2007).

A new static control strategy, for switched linear sys-
tem without uncertainties, was presented in Mainardi Júnior
et al. (2012b), considering available only the plant output. In
Mainardi Júnior et al. (2014), the output static control strate-
gy described in Mainardi Júnior et al. (2012b) was extended
to a class of uncertain switched linear systems. Themain goal
of this paper is to propose another extension of the output sta-
tic control strategy presented inMainardi Júnior et al. (2014),
for a class of uncertain switched linear systems. This proce-
dure allows a practical implementation, significantly simpler
than those available in the literature, because the plant output
is used only for implementing the static switching strategy.
In order to reduce conservatism of the design conditions, new
sufficient LMIs are proposed in the design.

The stability analysis has been reduced to problems
described by LMIs (Boyd et al. 1994) that, when feasible,
are easily solved by some tools available in the literature of
convex programming (Gahinet et al. 1995). The LMI formu-
lation has been used in several engineering problems such as
in the design of regulators for nonlinear systems represented
byTakagi–Sugeno fuzzymodels (Guedes et al. 2013; daCruz
Figueredo et al. 2013). The notation used is described as fol-
lows. For real matrices or vectors, (′) indicates transpose.
The set composed by the first N positive integers {1, . . . , N }
is denoted by IKN . The set of all vectors λ = [λ1 . . . λN ]′
such that λi ≥ 0, i ∈ IKN and λ1 + λ2 + . . . + λN = 1 is
denoted by �. The convex combination of a set of matrices
(A1, . . . , AN ) is denoted by Aλ = ∑N

i=1 λi Ai , whereλ ∈ �.

2 Switched Linear Systems

Consider the switched linear system defined by Geromel and
Colaneri (2006):

{
ẋ(t) = Aσ x(t), x(0) = x0,
y(t) = Cx(t),

(1)

where x(t) ∈ IRn is the state vector, y(t) ∈ IRp is the output,
σ(t) is the switching strategy, x0 is the initial condition, and
C ∈ IRp×n is the output matrix of the system, constant for all
t ≥ 0. Given a known set of constant matrices Ai ∈ IRn×n ,
for i ∈ IKN , then the switching strategy σ(t) is such that

Aσ(t) ∈ {A1, A2, . . . , AN } , (2)

where Aσ(t) must jump from Ai to A j , i �= j , when the
switching occurs from σ(t) = i to σ(t) = j . The control
problem is the following: design a switching law, such that
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the equilibrium point x = 0 of the switched linear system
(1) is globally asymptotically stable.

A sufficient condition for this control problem is the
quadratic stability defined below.

Definition 1 (Otsuka and Soga 2010) The switched linear
system (1) and (2) is said to be quadratically stabilizable, if
only if there exist a Lyapunov function of the form V (x) =
x ′Px , a positive number ε ∈ IR+, and a switching strategy
σ(x, t) such that

V̇ (x) < −εx ′x, (3)

for all trajectory x(t), of the switched linear system (1) and
(2).

Next, an important and known theorem is described, which
presents a necessary and sufficient condition for quadratic
stability of switched linear systems.

Theorem 1 (Feron 1996) Assume N = 2. The switched li-
near system (1) and (2) is quadratically stabilizable if and
only if there exists λ ∈ � such that λ1A1 +λ2A2 is Hurwitz.

Proof See Feron (1996) for details.

In order to generalize Theorem 1, the following important
lemma was presented in Deaecto et al. (2010).

Lemma 1 (Deaecto et al. 2010) Consider the switched li-
near system (1) and (2) and suppose that the state vector
x(t) ∈ IRn is available. If there exists λ ∈ � and a symmetric
positive definite matrix P ∈ IRn×n, such that

A′
λP + PAλ < 0, (4)

then the switching strategy

σ(x) = arg min
i∈IKN

(
x ′PAi x

)
(5)

makes the origin x = 0 of the switched linear system (1) and
(2) a globally asymptotically stable equilibrium point.

Proof The proof of this result uses a quadratic Lyapunov
function V (x) = x ′Px . See Deaecto et al. (2010) for details.
In the next section, the main goal of this study is presented
and sufficient conditions for the control of uncertain switched
linear systems via an output switching strategy are proposed.

3 Robust Output Control of Polytopic Uncertain
Switched Linear Systems

Consider the continuous-time uncertain switched linear sys-
tem defined by the following state-space realization:

{
ẋ(t) = A(α, σ )x(t), x(0) = x0
y(t) = Cx(t),

(6)

where x(t) ∈ IRn is the state vector, y(t) ∈ IRp is the output
with C ∈ IRp×n a constant matrix, and x0 is the initial con-
dition. In the matrix A(α, σ ), the vector α = [α1 α2 . . . αr ]′
represents the polytopic uncertainties (or structural failures)
of the plant and σ(t) is the switching strategy. The matrix
A(α, σ ) ∈ IRn×n can be described by convex combinations
of their vertices, as below:

A(α, σ ) =
r∑

j=1

α j Aσ j ,

r∑

j=1

α j = 1,

α j ≥ 0, σ (t) ∈ IKN , (7)

where r is the number of vertices of the polytopic uncer-
tainties. For more details about polytopic uncertainties, see
Boyd et al. (1994) and Bernussou et al. (1989). Now, the con-
trol problem is the following: Considering that x(t) ∈ IRn is
not available but y(t) ∈ IRp is always available, determine a
switching strategy σ(t), for all t ≥ 0, whichmakes the origin
x = 0 of the polytopic uncertain switched linear system (6)
and (7) a globally asymptotically stable equilibrium point. It
is not considered that each matrix of the linear subsystems
is Hurwitz. A solution for this problem is presented in the
following theorem.

Theorem 2 Mainardi Júnior et al. (2014) Consider the
uncertain switched linear system (6) and (7), and suppose
that the output y(t) ∈ IRp is always available. If there exist
λ ∈ �, symmetric matrices Q0 ∈ IRn×n, Qi ∈ IRp×p and a
symmetric positive definite matrix P ∈ IRn×n, such that

A′
i j P + PAi j < Q0 + C ′QiC, (8)

Q0 + C ′QλC < 0, (9)

for all i ∈ IKN and j ∈ IKr , then the switching strategy

σ(y) = arg min
i∈IKN

(y′Qi y) (10)

makes the origin x = 0 of the uncertain switched linear sys-
tem (6) and (7) a globally asymptotically stable equilibrium
point.

Proof See Mainardi Júnior et al. (2014).

In order to relax the feasibility of the LMIs from Theorem
2, a less conservative condition is proposed in Theorem 3,
considering that the vector α = [α1 α2 . . . αr ]′ defined in (7)
is uncertain and time-invariant.

Theorem 3 Consider the uncertain switched linear system
(6) and (7), and suppose that the output y(t) ∈ IRp is always
available. If there exist λ ∈ �, symmetric matrices Q0 j ∈
IRn×n, Qi ∈ IRp×p and symmetric positive definite matrices
Pk ∈ IRn×n, such that
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1

2
×

(
A′
i j Pk + Pk Ai j + A′

ik Pj + Pj Aik

)

< Q0 j + C ′QiC, k ≤ j, (11)

Q0 j + C ′QλC < 0, (12)

for all i ∈ IKN , j ∈ IKr and k ∈ IKr , then the switching
strategy (10) makes the origin x = 0 of the uncertain
switched system (6) and (7) a globally asymptotically stable
equilibrium point.

Proof Considering the quadratic Lyapunov candidate func-
tion, V (x(t)) = ∑r

k=1 αk x ′Pkx , where k = 1, 2, . . . , r .
From (10), (6) and (12), one has for x �= 0:

V̇ (x) =
r∑

k=1

αk x
′ (Pk A(α, σ ) + A′(α, σ )Pk

)
x

=
r∑

k=1

αk

r∑

j=1

α j x
′ (Pk Aσ j + A′

σ j Pk
)
x

= 1

2

r∑

k=1

αk

r∑

j=1
j≥k

α j x
′ (Pk Aσ j + A′

σ j Pk

+Pj Aσk + A′
σk Pj

)
x

<

r∑

k=1

αk

r∑

j=1

α j x
′(Q0 j + C ′QσC)x

=
r∑

j=1

α j x
′(Q0 j + C ′QσC)x

=
r∑

j=1

α j x
′Q0 j x +

r∑

j=1

α j x
′(C ′QσC)x

=
r∑

j=1

α j x
′Q0 j x + x ′(C ′QσC)x

=
r∑

j=1

α j x
′Q0 j x + min

i∈IKN
(y′Qi y)

≤ x ′
⎛

⎝
r∑

j=1

α j Q0 j + C ′QλC

⎞

⎠ x < 0. (13)

The proof is concluded.

Remark 1 Note that Theorem 2 is a particular case of The-
orem 3, because considering Aik = Ai j and Pk = Pj = P
for all j ∈ IKr and k ∈ IKr , then the conditions given by
Theorems 2 and 3 are equivalents. Thus, if the conditions of
Theorem 2 are feasible, then the conditions of Theorem 3 are
also feasible.

In Theorems 4 and 5, less conservative conditions are
proposed, toward a generalization of the previous results pre-
sented in Mainardi Júnior et al. (2014).

Theorem 4 If there exist λ ∈ �, matrices X1i ∈ IRn×n,
X2i ∈ IRn×n, symmetric matrices Q0 j ∈ IRn×n, Qi ∈ IRp×p

and symmetric positive definite matrices Pj ∈ IRn×n, such
that

[
X1i Ai j + A′

i j X
′
1i Pj − X1i + A′

i j X
′
2i

Pj − X ′
1i + X2i Ai j −X2i − X ′

2i

]

<

[
Q0 j + C ′QiC 0

0 0

]

, (14)

Q0 j + C ′QλC < 0, (15)

for all i ∈ IKN and j ∈ IKr , then the switching strategy (10)
makes the origin x = 0 of the uncertain switched linear sys-
tem (6) and (7) a globally asymptotically stable equilibrium
point.

Proof Consider that (14) and (15) are feasible. Thus, from
(10) and (15), for x �= 0 it follows that:

0 > x ′(Q0 j + C ′QλC)x ≥ x ′Q0 j x + min
i∈IKN

(y′Qi y)

= x ′(Q0 j + C ′QσC)x . (16)

Observe that (16) can be rewritten as:

x(Q0 j + C ′QσC)x = x ′ [ In A′(σ, α)
]

[
Q0 j + C ′QσC 0

0 0

] [
In

A(σ, α)

]

x < 0. (17)

Then, from (14) and (17) note that:

0 > x ′ [ In A′(σ, α)
]
[
Q0 j + C ′QσC 0

0 0

] [
In

A(σ, α)

]

x

> x ′ [ In A′(σ, α)
]

[
X1σ Aσ j + A′

σ j X
′
1σ Pj − X1σ + A′

σ j X
′
2σ

Pj − X ′
1σ + X2σ Aσ j −X2σ − X ′

2σ

]

[
In

A(σ, α)

]

x . (18)

Now, define P(α) = (α1P1 + α2P2 + . . . + αr Pr ). Then,
from (7), multiplying (18) by α j and taking the sum from
j = 1 to j = r , one has:

0 > x ′ [ In A′(σ, α)
]

⎡

⎢
⎣

r∑

j=1

α j (Q0 j + C ′QσC) 0

0 0

⎤

⎥
⎦

[
In

A(σ, α)

]

x

> x ′ [ In A′(σ, α)
]
[
X1σ A(σ, α) + A′(σ, α)X ′

1σ
P(α) − X ′

1σ + X2σ A(σ, α)

P(α) − X1σ + A′(σ, α)X ′
2σ

−X2σ − X ′
2σ

] [
In

A(σ, α)

]

x
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= x ′ [ In A′(σ, α)
]
{[

0 P(α)

P(α) 0

]

+
[
X1σ

X2σ

]
[
A(σ, α) −In

]

+
[
A′(σ, α)

−In

]
[
X ′
1σ X ′

2σ

]
} [

In
A(σ, α)

]

x

= x ′ [ In A′(σ, α)
]
[

0 P(α)

P(α) 0

] [
In

A(σ, α)

]

x . (19)

Considering a Lyapunov function candidate V (x) =
x ′P(α)x , note that from (7), V (x) > 0 for x �= 0 and from
(6) and (19) it follows that V̇ (x) < 0 for x �= 0. The proof
is concluded.

Now, in order to relax the feasibility of the LMIs from
Theorem 4, a less conservative condition is proposed in The-
orem 5, considering also that the vector α = [α1 α2 . . . αr ]′
defined in (7) is uncertain and time-invariant. These new suf-
ficient LMI conditions reduce the conservatism of the results
shown in Theorem 4.

Theorem 5 If there exist λ ∈ �, matrices X1ik ∈ IRn×n,
X2ik ∈ IRn×n, symmetric matrices Q0 jk ∈ IRn×n, Qi ∈
IRp×p and symmetric positive definite matrices Pjk ∈ IRn×n,
such that

1

2
×

[
X1ik Ai j + A′

i j X
′
1ik + X1i j Aik + A′

ik X
′
1i j

Pjk − X ′
1ik + X2ik Ai j + Pkj − X ′

1i j + X2i j Aik

Pjk − X1ik + A′
i j X

′
2ik + Pkj − X1i j + A′

ik X
′
2i j

−X2ik − X ′
2ik − X2i j − X ′

2i j

]

<
1

2
×

[
Q0 jk + Q0k j + 2C ′QiC 0

0 0

]

, k ≤ j, (20)

Q0 jk + C ′QλC < 0, (21)

for all i ∈ IKN , j ∈ IKr and k ∈ IKr , then the switching
strategy (10) makes the origin x = 0 of the uncertain
switched linear system (6) and (7) a globally asymptotically
stable equilibrium point.

Proof Consider that (20) and (21) are feasible. Then, from
(10) and (21), for x �= 0, it follows that:

0 > x ′(Q0 jk + C ′QλC)x ≥ x ′Q0 jk x + min
i∈IKN

(y′Qi y)

= x ′(Q0 jk + C ′QσC)x . (22)

Observe that (22) can be rewritten as:

x ′(Q0 jk + C ′QσC)x =
x ′ [ In A′(σ, α)

]
[
Q0 jk + C ′QσC 0

0 0

] [
In

A(σ, α)

]

x

< 0. (23)

Now, define P(α) = (α1α1P11+α1α2P12+ . . .+αrαr Prr ),
X1(σ, α) = (α1X1σ1+α2X1σ2+ . . .+αr X1σr ), X2(σ, α)=
(α1X2σ1 +α2X2σ2 + . . . + αr X2σr ). Thus, multiplying (23)
by α j × αk and taking the sum from j = 1 to j = r and
k = 1 to k = r , respectively, from (20), note that:

0 >
1

2

r∑

k=1

αk

r∑

j=1
j≥k

α j x
′ [ In A′(σ, α)

]

[
Q0 jk + Q0k j + 2C ′QσC 0

0 0

] [
In

A(σ, α)

]

x

>
1

2

r∑

k=1

αk

r∑

j=1
j≥k

α j x
′ [ In A′(σ, α)

]

[
X1σk Aσ j + A′

σ j X
′
1σk + X1σ j Aσk + A′

σk X
′
1σ j

Pjk − X ′
1σk + X2σk Aσ j + Pkj − X ′

1σ j + X2σ j Aσ j

Pjk − X1σk + A′
σ j X

′
2σk + Pkj − X1σ j + A′

σk X
′
2σ j

−X2σk − X ′
2σk − X2σ j − X ′

2σ j

]

[
In

A(σ, α)

]

x

=
r∑

k=1

αk

r∑

j=1

α j x
′ [ In A′(σ, α)

]

[
X1σk Aσ j + A′

σ j X
′
1σk Pjk − X1σk + A′

σ j X
′
2σk

Pjk − X ′
1σk + X2σk Aσ j −X2σk − X ′

2σk

]

[
In

A(σ, α)

]

x

= x ′ [ In A′(σ, α)
]

[
X1(σ, α)A(σ, α) + A′(σ, α)X ′

1(σ, α)

P(α) − X ′
1(σ, α) + X2(σ, α)A(σ, α)

P(α) − X1(σ, α) + A′(σ, α)X ′
2(σ, α)

−X2(σ, α) − X ′
2(σ, α)

]

[
In

A(σ, α)

]

x

= x ′ [ In A′(σ, α)
]
{[

0 P(α)

P(α) 0

]

+
[
X1(σ, α)

X2(σ, α)

]
[
A(σ, α) −In

]

+
[
A′(σ, α)

−In

]
[
X ′
1(σ, α) X ′

2(σ, α)
]
} [

In
A(σ, α)

]

x

= x ′ [ In A′(σ, α)
]
[

0 P(α)

P(α) 0

] [
In

A(σ, α)

]

x . (24)

Considering a Lyapunov function candidate V (x) =
x ′P(α)x , note that from (7), V (x) > 0 for x �= 0 and from
(6) and (24), it follows that V̇ (x) < 0 for x �= 0. The proof
is concluded.
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The following theoremcompares the conditions fromThe-
orems 3 and 5.

Theorem 6 If the conditions given in Theorem 3 hold, then
the conditions given in Theorem 5 also hold.

Proof Suppose that the conditions (11) and (12) from The-
orem 3 hold for all i ∈ IKN and j , k ∈ IKr . Then, there exist
matrices Q0 j , Qi , Pk and Pj and a small constant ξ ∈ IR,
ξ > 0, such that

1

2
×

{

Fi jk − 2Q0 j − 2C ′QiC

+ ξ(A′
i j + A′

ik)

(
1

4
× ξ−1 In

)

(Ai j + Aik)ξ

}

< 0,

(25)

where Fi jk = A′
i j Pk + Pk Ai j + A′

ik Pj + Pj Aik . Now, using
the Schur complement (Boyd et al. 1994), then (25) is equiva-
lent to

1

2
×

[
Zi jk ξ

(
A′
i j + A′

ik

)

(
Ai j + Aik

)
ξ −4ξ In

]

< 0, (26)

where Zi jk = Fi jk − 2Q0 j − 2C ′QiC .
Observe that, for Q0 jk = Q0k j = Q0 j , Pjk = Pk , Pkj =

Pj , X1ik = Pk , X1i j = Pj , X2i j = ξ In and X2ik = ξ In , for
all k, j ∈ IKr and i ∈ IKN , if the condition (26) holds, then
the condition (20) also holds. The proof is concluded.

Theorem 7 If the conditions given in Theorem 4 hold, then
the conditions given in 5 also hold.

Proof Observe that, for X1ik = X1i , X2ik = X2i and
Q0 jk = Q0 j , for all j ∈ IKr , k ∈ IKr and i ∈ IKN , then

the condition (20) is equivalent to the condition (14). Thus,
if (14) holds then (20) holds. Finally, note that (15) and (21)
are equivalent conditions and the proof is concluded.

Remark 2 The conditions presented in Theorems 2, 3, 4 and
5 are a particular class of BMIs (bilinear matrix inequali-
ties) which contains terms as the product of a scalar by a
matrix. Nowadays to the best of the authors’ knowledge,
there are no solvers that can find solutions for all kinds
of BMIs. However, for the class of BMIs obtained in this
paper, the path-following method has been used to find fea-
sible solutions (Hassibi et al. 1999; Souza et al. 2014). In
Example 1, there is only one bilinear term (λ1 because
λ2 = 1 − λ1). In this case, the feasible region was obtained
for λ1 ∈ {0.05, 0.1, 0.15, ..., 1}. Now in Example 2, there are
two bilinear terms λ1 and λ2 because λ3 = 1−(λ1+λ2). For
this case, were adopted λ1 = 0.1, λ2 = 0.7 and λ3 = 0.2.
A future research in this subject is the use of procedures for
solving BMIs, as presented in (Hassibi et al. 1999; Souza
et al. 2014), for obtaining feasible solutions using the pro-
posed theorems.

4 Illustrative Examples

In this section, two examples are used to illustrate the effec-
tiveness of the control method proposed in this paper. More
specifically the examples show that the proposed Theorem 5
can ensure feasibility and a suitable performance in situations
when the conditions from the proposed Theorems 2, 3 and 4
are not feasible. The simulation results are presented below.
The solver in these designswas the LMIlab from the software
MATLAB interfaced by the YALMIP (Lofberg 2004).

Fig. 1 Feasible regions
obtained with Theorem 2 and
Theorem 3, where the region
obtained with Theorem 2 is
illustrated by filled circle and
the region obtained with
Theorem 3 is illustrated by filled
circle and cross
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Example 1 Consider the uncertain system (6) and (7), with
r = N = 2, i ∈ {1, 2}, j ∈ {1, 2} and the following matrices
given below:

A11 =
⎡

⎣
0 1 0
1 −3 0
1 0 −1

⎤

⎦ , A21 =
⎡

⎣
−1 −1.5 0
−2 −1 0
0 1 −1

⎤

⎦ ,

A12 =
⎡

⎣
h1 1 0
1 −1 0
1 0 −1

⎤

⎦ , A22 =
⎡

⎣
−1 −0.5 0
−2 h2 0
0 1 −1

⎤

⎦ . (27)

Note that the matrices A12 and A22 depend on the parameters
h1 and h2. It is interesting to observe that the matrix A12

is not Hurwitz for all h1 ∈ [−30, − 20] and the matrix
A22 is Hurwitz for all h2 ∈ [0, 1]. Furthermore, note that
the matrices A11 and A21 are not Hurwitz. This example

presents a comparative study of the feasibility, regarding the
conditions of the proposed theorems, for some pairs (h1, h2),
where h1 ∈ [−30, −20] and h2 ∈ [0, 1]. The output matrix
of the uncertain switched linear system is defined by:

C =
[
1 0 0
0 0 1

]

. (28)

In this example, firstwe adoptedλ1 = λ2 = 0.5.Considering
only feasibility, Fig. 1 illustrates a comparison between the
conditions from Theorems 2 and 3.

Note that, in Fig. 1, the feasible region obtained with
Theorem 3 is greater than the feasible region obtained with
Theorem 2.

Remark 3 It is important to highlight that in this example, the
values of λ1 and λ2 were determined based on the feasibility

Fig. 2 Feasible regions
obtained with Theorems 3 and
4, where the region obtained
with Theorem 3 is illustrated by
cross and the region obtained
with Theorem 4 is illustrated by
cross and open circle
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Fig. 3 Feasible regions
obtained with Theorems 4 and 5,
where the region obtained with
Theorem 4 is illustrated by open
circle and the region obtained
with Theorem 5 is illustrated by
open circle and filled circle
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Fig. 4 Feasible regions
obtained with Theorem 4, where
the region obtained with
λ1 = 0.35 is illustrated by filled
circle, with λ1 = 0.5 is
illustrated by filled circle and
cross and with λ1 = 0.65 is
illustrated by filled circle, cross
and open circle
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Fig. 5 Feasible regions
obtained with Theorem 5, where
the region obtained with
λ1 = 0.35 is illustrated by filled
circle, with λ1 = 0.5 is
illustrated by filled circle and
cross and with λ1 = 0.75 is
illustrated by filled circle, cross
and open circle
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regionobtainedbyTheorem2.More specifically, considering
that λ1 belongs to the set [0, 0.05, 0.1, . . . , 0.95, 1], one
obtains feasibility with the conditions from Theorem 2, only
for λ1 = λ2 = 0.5.

Now, for the same parameters defined above, consider h1
and h2 belonging to the sets h1 ∈ [−30,−20] and h2 ∈
[0, 1]. Then, Fig. 2 illustrates a comparison between the
conditions from Theorems 3 and 4.

From Fig. 2, observe that the set of slack variables intro-
duced in Theorem 4 reduces the conservatism and expands
the stability margin.

Figure 3 shows the comparison between Theorems 4 and
5. Note that the proposed condition given by Theorem 5
involves all previous ones with a larger stability region. This
fact illustrates the results presented in Theorem 7.

In order to find the optimal solution based on the para-
meters of the convex combination, λ ∈ �, the feasibility
region of Theorems 4 and 5 is computed considering λi ≥ 0,
i ∈ IKN , such that λ1 + λ2 + . . . + λN = 1. Then, con-
sider h1 and h2 belonging to the sets h1 ∈ [−30,−10]
and h2 ∈ [−2, 3]. In Figs. 4 and 5, are presented three
feasible areas: the λ1 that holds the lesser region of feasi-
bility, the λ1 that ensures the greatest region of feasibility
and the λ1 previously adopted in this example (λ1 = λ2 =
0.5).

From Fig. 4, note that for λ1 = 0.65 and λ2 = 0.35,
Theorem 4 presents the greater feasibility region.

As shown in Fig. 5, observe that the greater feasibility
region for Theorem 5 is obtained with λ1 = 0.75 and λ2 =
0.25. Moreover, in both cases, the simulation results showed
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Fig. 6 Feasible regions
obtained with Theorems 2 and 3,
where the region obtained with
Theorem 2 is illustrated by filled
circle and the region obtained
with Theorem 3 is illustrated by
filled circle and cross
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Fig. 7 Feasible regions
obtained with Theorems 3 and
4, where the region obtained
with Theorem 3 is illustrated by
crossand the region obtained
with Theorem 4 is illustrated by
crossand open circle
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that the minimum value of λ1 that ensures feasibility was
λ1 = 0.35 (λ2 = 0.65).

Example 2 In this example, consider the uncertain system
(6) and (7), with r = 2, N = 3, i ∈ {1, 2, 3}, j ∈ {1, 2} and
the following matrices given below:

A11 =
⎡

⎣
2 1 0
3 −5 0
2 0 −2

⎤

⎦ , A12 =
⎡

⎣
h1 1 0
3 −2 0
2 0 −2

⎤

⎦

A21 =
⎡

⎣
−5 −3 1
−3 −2 0
0 2 −2

⎤

⎦ , A22 =
⎡

⎣
−5 −6 1
−3 h2 0
0 2 −2

⎤

⎦ ,

A31 =
⎡

⎣
0 1 0
1 −2 0
3 0 −3

⎤

⎦ , A32 =
⎡

⎣
0 1 −3
1 −2 0
3 h3 −3

⎤

⎦ . (29)

Note that the matrices A12, A22 and A32 depend on the
parameters h1, h2 and h3, respectively. It is interesting to
observe that the matrices A12 and A32 are not Hurwitz for all
h1 ∈ [−5, −5] and h3 ∈ [−2.5, 27.5], respectively, and the
matrix A22 is Hurwitz for all h2 ∈ [−50, 0]. Furthermore,
note that the matrices A11 and A31 are not Hurwitz and the
matrix A21 is Hurwitz.

This example presents a comparative study of the feasi-
bility, regarding the conditions of the proposed theorems,
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Fig. 8 Feasible regions
obtained with Theorems 4 and 5,
where the region obtained with
Theorem 4 is illustrated by open
circle and the region obtained
with Theorem 5 is illustrated by
open circle and filled circle
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for some pairs (h1, h2, h3), where h1 ∈ [−5, 5], h2 ∈
[−50, 0] and h3 = −(h1 + h2)/2. The output matrix of the
uncertain switched linear system is:

C =
[
0 1 0
0 0 1

]

. (30)

Initially, in this example were adopted λ1 = 0.1, λ2 = 0.7
and λ3 = 0.2. Figure 6 illustrates a comparison between the
conditions fromTheorems2 and3.Note that in thefirst exam-
ple, the feasible region obtained with Theorem 3 is greater
than the feasible region obtained with Theorem 2.

Now, for the same parameters defined above, Fig. 7 illus-
trates a comparison between the conditions from Theorems
3 and 4. Then, observe that the proposed condition given by
Theorem 4 involves all previous ones with a larger stability
region.

Figure 8 shows the comparison between Theorems 4 and
5. From Fig. 8, note that Theorem 5 presents the greater
feasibility region than Theorem 4.

5 Conclusion

This paper proposed a control designmethod for continuous-
timeuncertain switched linear systemsusingonly a switching
strategy that depends on the plant output. The design was
based on quadratic Lyapunov functions and LMIs. New
less conservative conditions were obtained. From Theo-
rems 6 and 7, if the conditions given in Theorems 2, 3
and 4 hold, then the conditions given in Theorem 5 also
hold. This fact was illustrated in the simulations results pre-
sented in examples. However, the simulations showed that
when feasible, the proposed Theorem 5 presented a greater

feasibility region than other theorems. Additionally, from
Example 1, through search results of the optimal λ ∈ �, the
greatest feasibility area with the conditions from Theorem
5 was obtained for λ1 = 0.65 and λ2 = 0.35, show-
ing the effectiveness of proposal control method. A future
research in this subject is the use of the path-following
method in the design procedure, as detailed in Remark 2.
Moreover, aiming to improve the feasibility of the pro-
posed Theorems, the design can be based on minimum-type
Lyapunov functions as presented in Geromel and Colaneri
(2006).
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