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Abstract We present a global dynamical analysis
of the following quadratic differential system
ẋ=a(y−x), ẏ =dy − xz, ż =−bz + f x2+gxy, where
(x, y, z) ∈ R

3 are the state variables and a, b, d, f, g
are real parameters. This system has been proposed as
a new type of chaotic system, having additional com-
plex dynamical properties to the well-known chaotic
systems defined in R

3, alike Lorenz, Rössler, Chen
and other. By using the Poincaré compactification for
a polynomial vector field in R

3, we study the dynam-
ics of this system on the Poincaré ball, showing that
it undergoes interesting types of bifurcations at infin-
ity. We also investigate the existence of first integrals
and study the dynamical behavior of the system on the
invariant algebraic surfaces defined by these first inte-
grals, showing the existence of families of homoclinic
and heteroclinic orbits and centers contained on these
invariant surfaces.
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1 Introduction

In this paper, we perform a global dynamical analysis
of the differential system given by

ẋ = a(y−x), ẏ =dy−xz, ż =−bz+ f x2+gxy,

(1)

where (x, y, z) ∈ R
3 are the state variables and

a, b, d, f, g are real parameters. System (1) has been
proposed in [4] to find out some new kind of dynamics
not found in the well-known Lorenz system, given by
[9]

ẋ = σ(y−x), ẏ = r x − y − xz, ż = −bz + xy,

(2)

nor in the Lorenz-like systems which appear in the lit-
erature (Chen, Rössler, Lü, Rikitake, Shimizu-Morioka
and other).

Since the publication of the seminal paper [9] in
1963, several papers have appeared in the literature
concerning the dynamical properties of the Lorenz and
Lorenz-like systems, as the complex dynamics of their
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solutions and the creation of strange attractors. Fur-
thermore, some quadratic systems similar to system
(2) also appeared, arising from physical models or pro-
posed from an abstract point of view, which are shown
to be chaotic [4,10–12,14–17,19,20]. More recently,
a series of papers have been published which present
global dynamical analysis of Lorenz and Lorenz-like
systems, giving a contribution to the understanding of
these complex kinds of differential systems in R3; see,
for instance [5–8,12,13].

In [4], the authors proposed and studied system (1)
as a new chaotic system differing from the known
systems considered in the literature. They studied by
both rigorous theoretical analysis and numerical sim-
ulations the dynamical properties of system (1) for
a > 0 and f, g ≥ 0, with f + g > 0. In their first
main result, they gave a local description of the quali-
tative behavior of system (1) solutions corresponding to
b < 0, b = 0, b > 0 and varying the other parameters;
in theses cases, they provide the number of equilibrium
points (one or three) and analyzed the local stability
of them, showing the occurrence of Hopf bifurcation,
pitchfork bifurcation and degenerate pitchfork bifur-
cation. They also proved the nonexistence of closed
orbits neither homoclinic orbits and the existence of
two heteroclinic orbits when the parameters satisfy the
conditions a > d and bg > 2a( f + g). Several fig-
ures in the mentioned paper present numerical simula-
tions which corroborate the obtained results and allow
for determining the existence of a chaotic attractor for
(a, b, d, f, g) = (10, 3, 6, 1, 0). All the results pre-
sented in [4] illustrate the complex dynamical behavior
of system (1), which is not topologically conjugated to
the Lorenz system (2).

In this paper, we study some global dynamical
aspects of system (1) aiming to complement the results
stated in [4] and to give a contribution to the under-
standing of its complex dynamics. More precisely we
give a complete description of its phase portrait at infin-
ity via the Poincaré compactification, showing that the
system undergoes interesting bifurcations at infinity as
the parameters f and g are varied, as for instance the
collapse of a center into a singularity with an infinity
of homoclinic orbits. In order to complete the analy-
sis of system (1) for f + g > 0 presented in [4], we
prove that in the case b = 0 and f + g = 0, system
(1) has the family of invariant algebraic surfaces given
by − f x2 − 2az = r, r ∈ R, in which are contained
families of symmetric homoclinic or heteroclinic orbits

surrounding centers, for certain parameter values. Here
we are callinga center inR3 a singularity belonging to a
two-dimensional invariant surface which is surrounded
by an annulus of periodic orbits also contained in this
invariant surface. It is well known that homoclinic and
heteroclinic orbits play a fundamental role on the study
of differential systems in R

3 and their existence are in
general very difficult to be analytically proved. In this
way, the technique used here to prove the existence of
these types of orbits for system (1), via the existence of
invariant algebraic surfaces and the Hamiltonian struc-
ture of system (1) restricted to these surfaces, is a good
tool which may be used to study other differential sys-
tems in R3, especially polynomial differential systems
coming from applied problems in Physics and Engi-
neering.

Beyond to complement the results presented in
[4], the analysis of system (1) presented here makes
part of a program aiming to describe global proper-
ties of quadratic three-dimensional differential systems
defined in R

3, which is being developed by several
authors; see, for instance [5–8,12,13]. It is impor-
tant to observe that these types of systems appear
in the literature as mathematical models for several
natural problems, coming from Physics, Biology and
Engineering mathematical modeling; see, for instance,
[3,5,6,9,13,21] and references therein. Also, one has
recently found that the chaotic dynamics of differ-
ential systems is a very useful tool which has great
potentials for applications in many branches of sci-
ence and technology, such as information and com-
puter science, power system protection, biomedical
system analysis, encryption and communication, elec-
tronic circuits and so on (see [4] and its references).
In this way, it is worth all efforts intended to under-
stand and clarify the complex dynamics of systems
like (1).

The paper is organized as follows. In Sect. 2 for
the sake of completeness, we give a summary of
Poincaré compactification technique for polynomial
vector fields inR3, which will help the reader to under-
stand the other sections. In Sect. 3, we present the
dynamics and bifurcations of system (1) at infinity.
In Sect. 4, we show that for certain parameter values
system (1) has a family of invariant algebraic surfaces
and study its dynamics on these surfaces, proving in
particular the existence of homoclinic and heteroclinic
orbits and centers. Some concluding remarks are given
in Sect. 5.
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Global dynamics of a new Lorenz-like system 705

2 Poincaré compactification in R
3

As any polynomial vector field, system (1) can be
extended to an analytical system defined on a closed
ball B of radius one, whose interior is diffeomorphic
to R

3 and its invariant boundary, the two-dimensional
sphere S2 = {(x, y, z) | x2 + y2 + z2 = 1}, plays the
role of the infinity. This ball is known as the Poincaré
ball, since the technique for doing this extension is
the Poincaré compactification for a polynomial vector
field inRn , which is described in detail, for example, in
[2,18]. The boundary of B is called thePoincaré sphere
and represents the points of R3 at infinity. Poincaré
introduced this compactification for polynomial vector
fields in R

2, and its extension to R
n for n > 2 can be

found in [2,18]. In this section, we present a summary
of the Poincaré compactification for polynomial vector
fields in R

3, which will be used in the next sections in
order to study system (1) at infinity.

Consider in R3 the polynomial differential system

ẋ = P1(x, y, z), ẏ = P2(x, y, z), ż = P3(x, y, z),

or equivalently its associated polynomial vector field
X = (P1, P2, P3). The degree n of X is defined as
n = max{deg(Pi ) : i = 1, 2, 3}. Let S3 = {y =
(y1, y2, y3, y4) ∈ R

4 : ‖y‖ = 1} be the unit sphere in
R
4, S+ = {y ∈ S

3 : y4 > 0} and S− = {y ∈ S
3 :

y4 < 0} be the northern and southern hemispheres of
S
3, respectively. The tangent space to S3 at the point y

is denoted by TyS
3. Then the tangent space

T(0,0,0,1)S
3={(x1, x2, x3, 1)∈R

4 : (x1, x2, x3)∈R
3}

is identified with R
3.

Now consider the central projections

f+ : R3 = T(0,0,0,1)S
3 −→ S+ and f− : R3

= T(0,0,0,1)S
3 −→ S−,

defined by f±(x) = ±(x1, x2, x3, 1)/�x , where�x =(
1 + ∑3

i=1 x2i

)1/2
. Through these central projections,

R
3 is identified with the northern and southern hemi-

spheres. The equator of S3 is S2 = {y ∈ S
3 : y4 = 0}.

Clearly, S2 can be identified with the infinity of R3.
The maps f+ and f− define two copies of X on S3:

one D f+ ◦ X in the northern hemisphere and the other
D f− ◦ X in the southern one. Denote by X the vector
field on S

3 \ S
2 = S+ ∪ S− which restricted to S+

coincides with D f+ ◦ X and restricted to S− coincides
with D f− ◦ X .

Now we can extend analytically the vector field
X(y) to the whole sphere S3 by p(X)(y) = yn−1

4 X(y).
The extended vector field p(X) is called the Poincaré
compactification of X on S

3.
As S3 is a differentiable manifold in order to com-

pute the expression for p(X), we can consider the
eight local charts (Ui , Fi ), (Vi , Gi ), where Ui = {y ∈
S
3 : yi > 0} and Vi = {y ∈ S

3 : yi < 0} for
i = 1, 2, 3, 4 and the diffeomorphisms Fi : Ui →
R
3 and Gi : Vi → R

3 for i = 1, 2, 3, 4 are the
inverses of the central projections from the origin to
the tangent hyperplanes at the points (±1, 0, 0, 0),
(0,±1, 0, 0), (0, 0,±1, 0) and (0, 0, 0,±1), respec-
tively. Let us make the computations on U1. Suppose
that the origin (0, 0, 0, 0), the point (y1, y2, y3, y4) ∈
S
3 and the point (1, z1, z2, z3) in the tangent hyper-

plane to S
3 at (1, 0, 0, 0) are collinear. Then we have

1/y1 = z1/y2 = z2/y3 = z3/y4, and consequently,
F1(y) = (y2/y1, y3/y1, y4/y1) = (z1, z2, z3) defines
the coordinates on U1. As

DF1(y) =
⎛
⎜⎝

−y2/y21 1/y1 0 0

−y3/y21 0 1/y1 0

−y4/y21 0 0 1/y1

⎞
⎟⎠

and yn−1
4 = (z3/�z)n−1, the analytical vector field

p(X) in the local chart U1 becomes

zn
3

(�z)n−1

(
−z1P1 + P2,−z2P1 + P3,−z3P1

)
,

where Pi = Pi (1/z3, z1/z3, z2/z3) and �z =(
1 + ∑3

i=1 z2i

)1/2
.

In a similar way, we can deduce the expressions of
p(X) in U2 and U3. These are

zn
3

(�z)n−1

(
−z1P2 + P1,−z2P2 + P3,−z3P2

)
,

where Pi = Pi (z1/z3, 1/z3, z2/z3) in U2, and

zn
3

(�z)n−1

(
−z1P3 + P1,−z2P3 + P2,−z3P3

)
,

where Pi = Pi (z1/z3, z2/z3, 1/z3) in U3.
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The expression for p(X) inU4 is zn+1
3

(
P1, P2, P3

)
.

The expression for p(X) in the local chartVi is the same
as in Ui multiplied by (−1)n−1, where n is the degree
of

(
P1, P2, P3

)
.

When we work with the expression of the compact-
ified vector field p(X) in the local charts, we usually
omit the factor 1/(�z)n−1. We can do that through a
rescaling of the time variable, since �z > 0.

In what follows we shall work with the orthogo-
nal projection of p(X) from the closed northern hemi-
sphere to y4 = 0, we continue denoting this pro-
jected vector field by p(X). Note that the projection
of the closed northern hemisphere is a closed ball B of
radius one, whose interior is diffeomorphic to R

3 and
whose boundary S

2 corresponds to the infinity of R3.
Of course p(X) is defined in the whole closed ball B
in such a way that the flow on the boundary is invari-
ant. This new vector field on B is usually called the
Poincaré compactification of X , and B is called the
Poincaré ball.

Remark 1 All the points on the invariant sphere S2 at
infinity in the coordinates of any local chart Ui and Vi

have z3 = 0. The points in the interior of the Poincaré
ball, which is diffeomorphic to R

3, are given in the
local charts U1, U2 and U3 by z3 > 0 and in the local
charts V1, V2 and V3 by z3 < 0. See Fig. 1 for an
illustration of the Poincaré sphere and the local charts
Ui and Vi with their orientation. When we perform the
compactification presented in this section, we obtain
six polynomial vector fields defined on the local charts
Ui and Vi , i = 1 . . . 3. Thenwe study these vector fields
using again the Poincaré compactification, now in R

2,
from which we obtain six vector fields defined on the
Poincaré disk, whose border corresponds to the points
at infinity of each local chart Ui and Vi , i = 1 . . . 3.
See Figs. 2, 3, 4 and 5.

3 Dynamics and bifurcations of system (1) at
infinity

In this section, we study the dynamics of system (1)
at infinity by using the Poincaré compactification pre-
sented in Sect. 2.

Compactification in the local charts U1 and V1. From
the results presented inSect. 2,weobtain the expression

x
y

z

z1 z1

z2

z2

z2

U3

U2
U1

z1

Fig. 1 Orientation of the local charts Ui , i = 1, . . . , 3 in the
positive endpoints of the coordinate axis x, y and z, used to draw
the phase portrait of system (1) on the Poincaré sphere at infinity.
The charts Vi i = 1, . . . , 3 are diametrically opposed to Ui , in
the negative endpoints of the coordinate axis

(a)

(c) (d)

(b)

Fig. 2 Phase portrait of system (1) at infinity in the case g = 0
and f �= 0, in the local chartsU1, U2 andU3 (a,b c, respectively)
and the global phase portrait on the Poincaré sphere (d)

of the Poincaré compactification p(X) of system (1) in
the local chart U1, which is given by

ż1 = −z2 + (a + d)z1z3 − az21z3,

ż2 = f + gz1 + (a − b)z2z3 − az1z2z3,

ż3 = az23 − az1z23. (3)

Considering z3 = 0 (which correspond to the points
on the sphere S2 at infinity) system (3) reduces to
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(a) (b)

(d)(c)

Fig. 3 Phase portrait of system (1) on the Poincaré sphere at
infinity in the case f = g = 0. a Chart U1. b Chart U2. c Chart
U3. d Poincaré sphere

(a) (b)

(d)(c)

Fig. 4 Phase portrait of system (1) on the Poincaré sphere at
infinity in the case g < 0. a Chart U1. b Chart U2. c Chart U3. d
Poincaré sphere

ż1 = −z2, ż2 = f + gz1, (4)

which has no singularities if g = 0 and f �= 0. In this
case, the phase portrait of system (4) on the Poincaré
disk is as shown in Fig. 2a. Note that in this case there
is a circle of singularities at infinity and an elliptic sec-
tor formed by infinite orbits homoclinic to the singular
point (−1, 0) on the Poincaré disk. For g �= 0, the sys-
tem has the singularity (z1, z2) = (− f/g, 0) which is

(a) (b)

(d)(c)

Fig. 5 Phase portrait of system (1) on the Poincaré sphere at
infinity in the case g > 0. a Chart U1. b Chart U2. c Chart U3. d
Poincaré sphere

a saddle if g < 0, see Fig. 4a, and a center if g > 0,
see Fig. 5a. For g = f = 0, system (4) has a line of
nonhyperbolic singularities; see Fig. 3a.

We observe that there is a difference between the
phase portraits of system (1) at infinity given in this
paper from the same type of phase portraits given for
instance in [5–8,12,13].Here the phase portrait at infin-
ity in the local charts U1, U2 and U3 is represented in
the Poincaré disk. In this case, the points at infinity in
one of the charts, given by the border S1 of the Poincaré
disk, appear in the other chart. For example, the line of
singularities at infinity of Fig. 2a with its elliptic sector
appears in Fig. 2b as the y-axis. In this way, the global
dynamics at infinity is easier to be represented and to
be understood.

The phase portrait in the local chart V1 is the same
as the phase portrait in the local chart U1 reversing the
time, because the compactified vector field p(X) in V1

coincides with the vector field p(X) in U1 multiplied
by −1 (for details, see Sect. 2).

Compactification in the local charts U2 and V2. Again
using the results stated in Sect. 2, we obtain the expres-
sion of the Poincaré compactification p(X) of system
(1) in the local chart U2 as

ż1 = az3 − (d + a)z1z3 + z21z2,

ż2 = gz1 + f z21 − (d + b)z2z3 + z1z22,

ż3 = −dz23 − z1z2z3. (5)
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708 M. R. A. Gouveia et al.

Taking z3 = 0, system (5) reduces to

ż1 = z21z2, ż2 = gz1 + f z21 + z1z22, (6)

which has a line of singularities given by the z2-axis.
The linear part of system (6) at these singularities has
null eigenvalues. Considering the invariance of z1z2-
plane under the flow of (5), we can completely describe
the dynamics on the sphere at infinity, in the cases g = 0
and f �= 0; f = g = 0; g < 0 and f ∈ R; g > 0 and
f ∈ R, which are shown in Figs. 2b, 3b, 4b and 5b,
respectively.

The flow in the local chart V2 is the same as the flow
in the local chart U2, because the compactified vector
field p(X) in V2 coincides with the vector field p(X)

in U2 multiplied by −1. Hence, the phase portraits on
the chart V2 are the same shown in Figs. 2b, 3b, 4b and
5b, reversing appropriately the time.

Compactification in the local charts U3 and V3. The
expression of the Poincaré compactification p(X) of
system (1) in the local chart U3 is

ż1 = (b − a)z1z3 + az2z3 − f z31 − gz21z2,

ż2 = −z1 + (b + d)z2z3 − f z21z2 − gz1z22,

ż3 = bz23 − f z21z3 − gz1z2z3. (7)

For z3 = 0, system (7) reduces to

ż1 = − f z31−gz21z2, ż2 = −z1− f z21z2−gz1z22, (8)

which also has a line of singularities given by the
z2-axis. Considering the invariance of z1z2-plane, we
study the phase portraits of system (8), which corre-
sponds to the phase portraits of system (1) at infinity
on the chart U3. They are shown in Figs. 2c, 3c, 4c and
5c.

Again the flow at infinity in the local chart V3 is
the same as the flow in the local chart U3, reversing
appropriately the time.

3.1 An interesting bifurcation at infinity: the collapse
of a center into an infinity of petals

Considering the analysis made in the previous sub-
section and gluing the flows obtained in the six stud-
ied charts, shown in Figs. 2, 3, 4 and 5, we have a
global picture of the dynamical behavior of system

g < 0 g = 0 g > 0

Fig. 6 Description of the bifurcation which occurs at infinity for
f �= 0 and the parameter g varying in a neighborhood of zero:
the collapse of a center into an infinity of petals

(1) on the Poincaré sphere at infinity. We can observe
that some bifurcations occur at infinity, when the para-
meters f and g are varied. More precisely, assuming
f �= 0, the following bifurcation occurs. For g > 0, the
two symmetric centers in the equator of the Poincaré
sphere, shown in Fig. 5d, tend to the maximum cycle
of singularities as the parameter g goes to zero and
becomes nonhyperbolic singularities with elliptic sec-
tors, formed by infinitelymany homoclinic orbits, or an
infinity of petals, as shown in Fig. 2d; then for g < 0,
these nonhyperbolic singularities become hyperbolic
saddles (see Fig. 4d). In Fig. 6, we illustrate this inter-
esting type of bifurcation (see also Figs. 2, 4, 5).

It is important to note that in several studies pre-
sented in the literature about the dynamics at infinity
of three-dimensional polynomial vector fields, as, for
example, in the Lorenz system [12], no bifurcations at
infinity occur. It is due to the fact that in the Lorenz
system there is no parameter multiplying the quadratic
terms in the equation, as it occurs with the parameters
f and g of system (1) studied here. In fact, under the
Poincaré compactification technique, only the largest
degree terms of the polynomial vector field affect the
dynamics at infinity. In this way, we can conclude that
system (1) is actually nonequivalent to the Lorenz sys-
tem (2), as stated in [4].

4 Dynamics of system (1) on a family of invariant
algebraic surfaces

In this section, we provide a detailed description of
system (1) dynamics with b = 0 and f +g = 0. In this
case, this system reduces to

ẋ = −ax + ay,

ẏ = dy − xz,

ż = f x2 − f xy. (9)
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System (9) has two lines of singularities given by

{x = 0, y = 0, z = z}, {x = y, y = y, z = d}. (10)

Moreover, the function F(x, y, z) = − f x2 − 2az is
a first integral of system (9), and consequently, it has
− f x2 − 2az = r , with r ∈ R as a family of invariant
algebraic surfaces depending on the real parameter r .
Hence, in order to study the phase portrait of system (9)
we restricted its flow to these surfaces, since the phase
space is folliated by them as the parameter r is varied.
The restricted system is given by

ẋ = −ax + ay,

ẏ = r

2a
x + dy + f

2a
x3. (11)

The divergent of system (11) is d − a, and hence,
fromBendixson’sCriterion it does not have limit cycles
(see [1]). Moreover, if d = a system (11) is a Hamil-
tonian system with Hamiltonian first integral

H(x, y) = axy − a

2
y2 + r

4a
x2 + f

8a
x4. (12)

System (11) has three singularities given by(
±

√− f (r + 2ad)

f
,±

√− f (r + 2ad)

f

)
, (0, 0).

These singularities are obtained by the intersection of
lines (10) with the invariant algebraic surface − f x2 −
2az = r , so the first ones are defined if f < 0 and
r > −2ad, or if f > 0 and r < −2ad.

As system (1) is invariant under the change of vari-
ables (x, y, z) 
→ (−x,−y, z), i.e., it is symmetric
with respect to the z-axis, in order to study the local
stability we can consider only the singularities

(√− f (r + 2ad)

f
,

√− f (r + 2ad)

f

)
, (0, 0). (13)

The eigenvalues of the linear part of system (11) at
the origin are given by

d − a

2
±

√
(d − a)2 − 4(−da − r

2 )

2
. (14)

Then the origin is: a saddle if r > −2ad; a node if

− (a+d)2

2 < r < −2ad; a focus if d �= a and r <

− (a+d)2

2 ; or a center if d = a and r < − (a+d)2

2 =
−2a2.

Now if the trace of the linear part of system (11) at
the origin is not null and its determinant is null, i.e.,
d �= a and r = −2ad, system (11) becomes

ẋ = −ax + ay,

ẏ = −dx + dy + f

2a
x3; (15)

Doing the change of variables (x, y) 
→ ( a
d u+v, u+v)

and introducing the new independent variable given by
dt = (d − a)ds, system (15) becomes

u̇ = u + P(u, v),

v̇ = Q(u, v), (16)

where

P(u, v) = − a2 f

2d2(d − a)2
u3 − 3 f a

2d(a − d)2
vu2

− 3 f

2(a − d)2
uv2 − d f

2a(d − a)2
v3

and

Q(u, v) = a3 f

2d3(d − a)2
u3 + 3a2 f

2d2(d − a)2
vu2

+ 3 f a

2d(d − a)2
uv2 + f

2(d − a)2
v3.

If ϕ(v) is the solution of the equation u + P(u, v) = 0,
then

ϕ(v) = − f d

2a(d − a)2
v3 + O(v4),

and

Q(ϕ(v), v) = f

2(a − d)
v3 + O(v5).

Hence by Theorem 65, page 340 of [1], the origin is
either a node if f

2(d−a)
> 0 or a saddle if f

2(d−a)
< 0.

Moreover, if f = 0 then the straight line y = x is a line
of singularities of system (11). In the case d = 0, the
same Theorem 65 [1] ensures that the origin is either a
node if − f

2a2
> 0 or a saddle if − f

2a2
< 0.

For the case a = d and r = −2ad, i.e., the linear
part of system (11) has trace and determinant equal to
zero, system (15) becomes, after a rescaling of the time
variable,

ẋ = −x + y,

ẏ = −x + y + f

2a2 x3. (17)

Introducing the new variables (u, v) given by (x, y) 
→
(u + v, u + 2v), system (17) becomes

u̇ = v + P̃(u, v),

v̇ = Q̃(u, v), (18)
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where

P̃(u, v) = − f

2a2 u3 − 3 f

2a2 vu2 − 3 f

2a2 uv2 − f

2a2 v3

and

Q̃(u, v) = f

2a2 u3 + 3 f

2a2 vu2 + 3 f

2a2 uv2 + f

2a2 v3.

If ϕ(u) is the solution of the equation v + P̃(u, v) = 0,
then

ϕ(u) = f

2a2 u3 + O(u5), and Q̃(u, ϕ(u))

= f

2a2 u3 + O(v5).

Hence, as the divergent of system (18) is null, by The-
orem 66, page 357 of [1], the origin is either a saddle
if f > 0 or a center if f < 0. Moreover, as a �= 0, if
f = 0 then the straight line y = x is a line of singular-
ities of system (11).

The eigenvalues of the linear part of system (11) at

the singularity
(√− f (r+2ad)

f ,
√− f (r+2ad)

f

)
are given

by

d − a

2
±

√
(d − a)2 − 4(r + 2ad)

2
. (19)

For f > 0 and r < −2ad, this singularity is a saddle.
For f < 0, r > −2ad and a �= d then the singularity

is either a node if r ≤ (d−a)2

4 − 2ad or a focus if

r >
(d−a)2

4 − 2ad. When a = d the singularity is a
center, because the divergent of system (11) is zero,
i.e., the system is integrable.

We can summarize the above discussion in the fol-
lowing theorems, which give a complete characteriza-
tion of the phase portraits of system (11), which is the
restriction of system (1) with b = 0 and f = −g on the
invariant algebraic surfaces − f x2 − 2az = r, r ∈ R.

Theorem 1 Consider system (11) with f = 0. Then
the invariant algebraic surfaces reduce to the planes
2az = −r, r ∈ R and the following results hold.

(i) If d �= a, then:

(a) the origin is the unique singularity of system
(11) which is a saddle if r > −2ad (see
Fig. 7a);

(b) the origin is the unique singularity of system

(11) which is a node if − (a+d)2

2 ≤ r < −2ad
(see Fig. 7b);

(b) (c)(a)

Fig. 7 Phase portraits of system (11)with f = 0 on the invariant

algebraic plane −2az = r : a r > −2ad; b − (a+d)2

2 ≤ r <

−2ad; and c r < − (a+d)2

2

(a) (b)

Fig. 8 Phase portraits of system (11)with f > 0 on the invariant

algebraic surface − f x2 − 2az = r : a r > − (a+d)2

2 or r =
− (a+d)2

2 and d �= a; b r < − (a+d)2

2 and d �= a

(c) the origin is the unique singularity of system

(11) which is a focus if r < − (a+d)2

2 (see
Fig. 7c);

(ii) If r = −2ad then the straight line y = x is a line
of singularities of system (11).

Theorem 2 Consider system (11) with f > 0. The
following results hold.

(i) If r > −2ad, then the origin is the unique singu-
larity which is a saddle (see Fig. 7a);

(ii) If r < −2ad, then the singularities
(
±

√− f (r+2ad)
f ,

±
√− f (r+2ad)

f

)
are saddles and

(a) the origin is a node if either r > − (a+d)2

2 or

r = − (a+d)2

2 and d �= a (see Fig. 8a);

(b) the origin is a focus if r < − (a+d)2

2 and d �= a
(see Fig. 8b);

(iii) If a − d > 0, d �= 0 and r = −2ad, then the
origin is the unique singularity which is a node
(see Fig. 7b);

(iv) If a − d < 0, d �= 0 and r = −2ad, then the
origin is the unique singularity which is a saddle
(see Fig. 7a);

(v) If d = 0 and r = 0, then the origin is the unique
singularity which is a saddle (see Fig. 7a);
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(a) (b)

Fig. 9 Phase portraits of system (11)with f < 0 on the invariant

algebraic surface− f x2−2az = r : a−2ad < r ≤ (d−a)2

4 −2ad;

b r >
(d−a)2

4 − 2ad

Theorem 3 Consider system (11) with f < 0. The
following results hold.

(i) If −2ad < r ≤ (d−a)2

4 − 2ad, then the origin

is a saddle and the singularities
(
±

√− f (r+2ad)
f ,

±
√− f (r+2ad)

f

)
are nodes (see Fig. 9a);

(ii) If r >
(d−a)2

4 − 2ad, then the origin is a saddle
and the singularities

(
±

√− f (r + 2ad)

f
,±

√− f (r + 2ad)

f

)

are foci (see Fig. 9b);
(iii) If r < −2ad, then the origin is the unique singu-

larity, which is

(a) a node if either r > − (a+d)2

2 or r = − (a+d)2

2
and d �= a (see Fig. 7b);

(b) a focus if d �= a and r < − (a+d)2

2 (see Fig. 7c);

(v) If d �= 0 and r = −2ad, then the origin is the
unique singularity which is a node if a − d < 0
(see Fig. 7b) and a saddle if a − d > 0 (see
Fig. 7a);

(vi) If d = 0 and r = 0, then the origin is the unique
singularity which is a node (see Fig. 7b);

Now, due to the fact that for a = d system (11) is
Hamiltonian, using the properties of the Hamiltonian
first integral (12) and the discussion made above about
the stability of singularities of this system, we can state
the following theorem.

Theorem 4 Consider system (11) with a = d. In this
case, the system has the Hamiltonian first integral (12)
and the following results hold.

(i) If f = 0, then the invariant algebraic surface
reduces to the plane 2az = −r and the origin is the
unique singularity of system (11) which is a center

(a) (b) (c)

Fig. 10 Phase portraits of system (11) with f = 0 on the invari-
ant algebraic surface− f x2 −2az = r : a the origin is a center; b
the existence of heteroclinic orbits; c the existence of homoclinic
orbits

if r < −2a2 (see Fig. 10a) or a saddle if r > −2a2

(see Fig. 7a);
(ii) If f > 0 and r < −2a2, then the origin is a center

and there exist two heteroclinic orbits connecting

the singularities

(
±

√
− f (r+2a2)

f ,±
√

− f (r+2a2)
f

)
,

which are saddles (see Fig. 10b);
(iii) If f > 0 and r ≥ −2a2, then the origin is the

unique singularity which is a saddle (see Fig. 7a);
(iv) If f < 0 and r > −2a2, then the origin is a saddle,

the singularities
(

±
√− f (r + 2a2)

f
,±

√− f (r + 2a2)

f

)

are centers and there are two symmetric homoclinic
orbits to the origin, surrounding these centers (see
Fig. 10c);

(v) If f < 0 and r ≤ −2a2, then the origin is the
unique singularity, which is a center (see Fig. 10a).

Remark 2 (i) The homoclinic and heteroclinic connec-
tions of system (11) described in statements (ii) and (iv)
of Theorem 4 and shown in Fig. 10b, c are defined by
the zero-level curves of the Hamiltonian function

H(x, y) = axy − a

2
y2 + r

4a
x2 + f

8a
x4,

in each corresponding case. The saddles are determined
by the maximum points, while the centers are deter-
mined by the minimum points of H .

(ii) From the results stated in Theorem 4, we can
draw the bifurcation diagram of system (11), depend-
ing on the parameters a and r , according to the signal
of f and the parabola r = −2a2, which is shown in
Fig. 11.

(iii) In Fig. 12, we present some numerical simu-
lations showing the family of symmetric homoclinic
orbits contained on the invariant algebraic surfaces
− f x2 − 2az = r .
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Fig. 11 Bifurcation
diagram of system (11)
depending on the
parameters a and r : a
f < 0; b f = 0; c f > 0

(a) (b) (c)

Fig. 12 a Symmetric
homoclinic orbits of system
(9) contained on the
invariant algebraic surfaces
− f x2 − 2az = r and their
projections: b on the plane
xz; c on the plane xy

5 Concluding remarks

In this paper, we studied the dynamics and bifurcations
of system (1) at infinity using the Poincaré compactifi-
cation for a polynomial vector field inR3.We show that
it undergoes interesting types of bifurcations at infinity
as the parameters f and g are varied, different from the
Lorenz and other chaotic systems, which has no these
types of bifurcations [5–8,12,13]. This confirms that
system (1) is actually a new chaotic quadratic Lorenz-
like system, which is not equivalent to the Lorenz sys-
tem.Wealso prove that in the case b = 0 and f +g = 0,
system (1) has the family of invariant algebraic surfaces
given by− f x2 −2az = r, r ∈ R. We give a complete
description of system (1) dynamics restricted to this

family of invariant surfaces for different ranges of the
parameter values.While in [4] the authors show that for
a > d and bg > 2a( f + g) system (1) has no periodic
nor homoclinic orbits and has only two heteroclinic
orbits, here using the Hamiltonian structure of system
(1) restricted to the invariant surfaces − f x2 − 2az =
r, r ∈ R, we prove that for b = 0, a = d and f +g = 0
there exist families of symmetric homoclinic and het-
eroclinic orbits surrounding centers, contained in such
invariant surfaces.We observe that, in this case, system
(1) does not present chaotic dynamics, since the phase
space is folliated by the invariant parabolic cylinders
− f x2 − 2az = r, r ∈ R, and hence, the dynamics
is essentially two-dimensional. The results obtained in
this work complement the ones presented in [4], where
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Global dynamics of a new Lorenz-like system 713

the same system (1) was studied, since beyond the
dynamics and bifurcations at infinity studied here we
also consider different ranges of variation for the para-
meters, not considered in [4] and for which different
and interesting types of dynamics occur.
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