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Abstract—This paper presents a novel method for estimating the
spatial distribution in geographical space of the nontechnical losses
over time. The method progresses in two stages: in the first stage,
a generalized additive model is used to generate a map of current
loss probabilities. The second stage employs the Markov chain to
generate a map that indicates possible future changes in loss prob-
abilities. The method yields an assessment of the location of the
nontechnical losses now and in the future at the city subarea level,
even indicating the variables that have greater statistical correla-
tion with the nontechnical losses. We apply the method to a city
with approximately 81000 consumers, and the results are com-
pared with those obtained through inspections carried out by a
Brazilian power utility. The detection rate surpasses 78% in in-
spected subareas. The method we propose offers improved estima-
tion of distribution of the nontechnical losses in urban regions.

Index Terms—Electricity theft, generalized additive models,
nontechnical losses, spatial-point pattern analysis.

I. INTRODUCTION

ONTECHNICAL losses (NTLs) are present in almost all

electric power distribution systems and are the source of
considerable expenses for many power utilities [1]. The intro-
duction of smart grids and smart meters may contribute to a sig-
nificant reduction in such costs by eliminating some types of
losses [2]. However, the development of such technological ad-
vances often progresses more slowly in developing countries
(particularly those with high rates of NTLs). For these reasons,
a real need exists for further research on more efficient NTLs
evaluation techniques.

This paper seeks to answer the following questions: where,
why, and when do NTLs occur? The methodology we present
here differs from that proposed in other NTLs studies in that
ours considers the spatial distribution of socioeconomic charac-
teristics and electrical infrastructure in the city subareas where
the losses occur. From these spatial distributions, two loss prob-
ability maps are produced: one representing the present, which
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is devised through a generalized additive model (GAM), and an-
other representing the future via the Markov chain. These loss
probability maps indicate the city subareas vulnerable to NTLs.

The task of detecting NTLs is one of the most challenging in
the field of power systems and, as such, NTLs detection remains
a primary focus in a lot of current research. Recently in [1], a
state estimation-based approach to the load estimation of distri-
bution transformers was exploited to detect meter tampering and
provide quantitative evidence of NTLs. In the literature, several
techniques in the area of intelligent systems, or soft computing,
have been employed, some of which are: multiple classifiers
and wavelet coefficients [3]; fuzzy logic [4], [5]; text mining
[6]; Bayesian networks [7]; the pattern-recognition technique
via optimum path forest [8]; data mining [9]; data mining using
support vector machines [10]; using extreme leaning machines
[11]; and using generalized rule induction [12] and fuzzy infer-
ence systems [13].

The aforementioned references detect consumer units (CUs)
with NTLs without considering the characteristics of the geo-
graphic areas in which they occur. However, such characteri-
zation can improve the detection of regions with loss and may
clarify why they are more concentrated in certain areas of the
city. The detection of the geographic regions where there is
greater loss probabilities is useful because it enables a series of
combat and prevention actions for NTLs. The loss probability
maps for the present and future, using spatial temporal estima-
tion, enable the visualization of geographical regions with the
highest loss probabilities. These maps can be used as a general
guide to the power utilities for all actions to treatment and re-
duction of the NTLs in low-voltage (LV) CUs with meters that
belong.

There are other problems in power systems that can be ben-
efit from spatial-temporal estimations. For example, in [14], a
spatial-point pattern analysis to determine the input data for a
spatial-temporal simulation of the load growth is explained and
in [15], a spatial-temporal approach for estimating the load de-
mand of battery electric vehicles charging in small residential
areas was proposed.

In [16], a qualitative approach is presented where socioe-
conomic aspects that provide a favorable environment for the
emergence of the NTLs are analyzed. One-hundred-two coun-
tries were evaluated from 1980 to 2000. NTLs are associated
with governmental and social weaknesses, such as: political in-
stability, government ineffectiveness, high levels of corruption,
poverty, high birth rate, low human development index, etc. It
appeared that the socioeconomic characteristics of the subareas
where NTLs occurred were relevant, and they will be consid-
ered in this paper.
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In this study, a method for identifying the regions vulnerable
to NTLs is presented, and the corresponding variables that con-
tribute most significantly to the emergence of these losses are es-
tablished. The method results are probability maps of the emer-
gence of losses in the present and future. We apply the method
in a Brazilian city with approximately 81 000 CUs. The maps
are compared with inspections conducted by the power utility,
showing a loss identification rate of more than 78%. The main
contribution of the proposed method is the estimation of the spa-
tial variation of the NTLs by city subarea over time.

This paper is organized as follows. In Section II-A, it has
been discussed how to determine the loss probabilities in the
present via spatial-point pattern analysis. Section II-B includes
the Case-Control study, and how to determine the current loss
state of each subarea through GAM is presented in Sections I1-C
and D. In Section III, the future loss state of each subarea via
a Markov chain is determined (Sections III-A and B). In Sec-
tion IV, the proposed methodology by comparing the loss states
provided with real data from inspections in a Brazilian city is ap-
plied and validated (Sections IV-A and IV-B). In Section IV-C,
the variables that have the greater statistical correlation with the
NTLs are identified. The concluding remarks are presented in
Section V.

II. VULNERABILITY TO NTLS IN THE PRESENT

This section contains techniques used to estimate, at present,
the NTLs vulnerability in each city subarea.

A. Spatial-Point Pattern Analysis

Spatial analysis enables incorporating space and revealing the
characteristics of the subareas where the NTLs occur. It com-
prises a set of tools to explore and model processes that are
expressed through a spatial distribution known as geographic
phenomena. Spatial analysis measures properties and relation-
ships in order to explicitly consider the spatial location of the
phenomenon under study [17].

A point process is a statistical process in which some events
of interest within a limited region A are observed. The location
of events generated by a point process in the area of study is
called a point pattern [18].

The main interest of the spatial analysis of point events is
to analyze the point patterns and determine whether they show
any systematic pattern. If a pattern of point events shifts signif-
icantly compared to a stochastic distribution (usually a Poisson
distribution), this is an indication of a spatial distribution other
than complete randomness that should be the subject of further
analysis [19].

In this paper, the CUs are represented by points in space
(point events). The term “event” refers to any type of phenom-
enon localizable space by geographic coordinates.

In order to determine the spatial variation of the NTLs, we
performed a Case-Control study.

B. Case-Control Study

One of the epidemiology applications in others areas is to as-
sociate contagious diseases with crimes, because the occurrence
of diseases and crimes follows a similar pattern [20].
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In this context, we consider a case-control study [21], [22].
In public health, for example, sick people (cases) are compared
to healthy people (controls). It is assumed that all cases and
controls have been exposed to risk factors for the disease.

According to [18], the distribution of cases is influenced by
the heterogeneous distribution of the risk population. Therefore,
it is necessary to estimate their spatial distribution and compare
it to existing cases. The control set represents the spatial varia-
tion of the risk population. In this paper, the entire risk popula-
tion is regular CUs, because the NTLs can appear in any regular
CU of the city.

The location of CUs with NTLs (cases) and the CUs with no
loss (controls) are the input data for the GAM. Then, the GAM
is used to obtain the probabilities of finding cases (CUs with
NTLs) in city subareas.

C. Generalized Additive Model

The GAM is a semiparametric model that enables inclusion
of distribution network variables, socioeconomic variables, and
others as a function of the city subareas [23].

The inclusion of the effects of variables in the model is af-
fected according to [22] and is shown in (1). In (1), = is the
vector of variables, 3 are coefficients of the variables, and g(s)
is a smooth function of the spatial coordinates s to model other
information that is not available

P(s,x)

logit{P(s,2)} = log { 1- P(s,x)

} = Br+gls) (1)

In (1), a probability surface P(s,z) is estimated, where a
linear effect of the = variables and a residual spatial variation
represented by g(s) are considered. Moreover, (1) has a logistic
regression model extended by an additive component g(s),
which is smoothly varying in space and is independent of the x
variables.

The procedure for estimating 3 and g(s) is based on the
usual iterative methods for the GAM [23]. These parameters are
calculated simultaneously during the iterative process for the
GAM. After several experiments, we observe that the influence
of these parameters in the method efficiency depends on the
spatial distribution of the input data.

Applying (1) to each location or point belonging to the base
GAM input data obtains a probability P(s, z) of the emergence
of NTLs at the spatial location s.

D. Determining the Present Loss State

The vulnerability for the NTLs in subareas is represented by
three loss states: regular, attention, and critical. These states
indicate that vulnerability to losses are low, intermediate, and
high, respectively.

After execution of the GAM, every point of the case-controls
database is associated with a probability P(s,z) € [0, 1] of the
emergence of NTLs. The current loss state of each city subarea
is determined by means of grouping and sorting of the probabil-
ities contained in each subarea.

Let us consider m points from the case-control database con-
tained in a particular subarea. The objective is to determine
the percentage of these m points that are in each of the loss
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Fig. 1. Map of the southern part of a city highlighting one of its subareas (in
black) that contains three points from a case-control database and 14 neigh-
boring subareas (in gray).

states: regular, attention, and critical. These percentages repre-
sent a probability for each loss state and are placed in a vector
(%Pr  %Ps %Pc i 5. This vector is associated with each
subarea A. The terms %Pr, %P4, and %P represent the per-
centage of the m probabilities contained in the subarea A, which
are in states of regular, attention, and critical losses, respec-
tively. Modal class determines the current loss state in the sub-
area, that is, the loss state in which the probabilities are most
frequent.

There is a lower bound (LB) and an upper bound (UB) to
each of the three loss states such that P(s,2) € [LB,UB]. The
LB and UB are specific to each under analysis region. They are
calibrated for each loss state after an exploratory analysis on
the GAM probabilities. Techniques as standard deviation, nat-
ural boundaries, quantiles, equal intervals, among others, can
be used for determining the class limits of the loss state, as ex-
plained in [19].

For illustrative purposes, the southern area of a city parti-
tioned by the respective subarea, as shown in Fig. 1, is consid-
ered. The subarea in black contains three locations of CUs, rep-
resented by points from the case-control database (m = 3). Itis
assumed that the bounds for each loss state such that P(s, z) €
[LB,UB] are P(s,z) € [0,1/3] in the regular state; P(s,x) €
(1/3,2/3] in the attention state, and P(s,z) € (2/3,1] in the
critical state. It is assumed also that the probabilities associated
with each point, resulting from the implementation of the GAM,
are 0.02 (regular state), 0.09 (regular state), and 0.38 (attention
state). Therefore, probabilities of 2/3 and 1/3 are in the regular
and attention states, respectively, and 0/3 is in the critical state.
The current loss probabilities for each loss state for the black
subarea of Fig. 1 are [2/3 1/3 0]. It can be concluded that
the subarea is in the state of regular loss, because the GAM prob-
abilities are more frequent in this loss state. The subarea in black
has common boundaries with 14 other subareas (highlighted in

gray).

III. VULNERABILITY TO NTLS IN THE FUTURE

In this section, the Markov chain is used to estimate the sub-
areas vulnerable to NTLs in the future.

The Markov chain is a mathematical model used to describe
stochastic processes [24]. The outputs are the probabilities of
occurrence of each one of the discrete states as discrete-time
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functions. It is an empirical method that focuses on the relation-
ships among its variables, assuming the relationships of the past
will remain in the near future, per

11y = Plly, (2)
where L) is the system state at time ¢, Il;11) is the system
state after an interval of (¢ + 1), and P is the transition ma-
trix among states. The transition matrix represents the proba-
bility of a state i to stay the same or change to a state 7 during
the time interval ¢. The conditional probabilities P{X (t341) =
2g+1| X (tr) = z1}, called transition probabilities, represent the
state probability X (tx+1) to be @11 at time 514 if the state
X (tx) is @), at time ty. The transition probabilities are obtained
from samples at a time interval [24].

A stochastic process is considered a Markov process of the
first order if the future state depends only on the present state and
not on past states. This methodology does not ignore the past;
however, it assumes that all past information is concentrated in
the present state. The transition probabilities do not change with
time, which characterizes a stationary process.

According to [19], there is no single solution to model dy-
namic spatial phenomena. In this paper, some considerations are
made to enable the use of the Markov chain to model the spatial
variation of the NTLs. For a short-term horizon, the NTLs are
approximately stationary. The losses are influenced by the so-
cioeconomic conditions of the city, which change slowly. Thus,
the process is approximately stationary, and states in the recent
past resemble the present states.

A. Transition Matrix

The probability is usually defined as (3). The probability
P(E) of an event FE is the relative frequency at which this
event occurs in a series of attempts under constant conditions

)

where Ng is the number of times that event £ occurs in n
trials. The occurrence of an event E in a particular observa-
tion is entirely uncertain; however, the relative frequency with
which it occurs in repeated observations has stable properties.
If not, probability theory may not apply [25]. Ng represents the
number of CUs with NTLs found in a total of n CUs inspected
by teams in city subareas.

For a fixed time interval, the loss probability is obtained from
(4) after adjusting (3). Given that Pﬁ is the annual estimated loss
probability related to the subarea A in the year y

Number of CUs with NTLs @
Number of CUs Inspected /

PY(Losses) = (

Having determined the current loss state of each city subarea,
the transition matrices are used to estimate the future loss state.

Fig. 2 presents the general structure of the transition matrix
with all of its elements. F;; is the probability for a subarea to
remain in the same loss state (for # = j) or change state (for
i # j) after a fixed transitional period of one year.

The transition matrix of each subarea is obtained from the
number of annual changes in loss state (or lack thereof) for each
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States of Losses | Regular (R) | Attention (A) | Critical (C)
Regular (R) Prr Pra Pre
Attention (A) Pag Paa Py
Critical (C) Py Py Per

Fig. 2. Loss state transition matrix by city subarea.

subarea and its neighbors. The loss state is defined from the loss
probabilities in (4).

The goal is to obtain the elements of the transition matrices
for all subareas. In this example, the LB and UB boundaries of
each of the three loss states are the same as in the previous ex-
ample, that is, P (s, z) € [0,1/3] in the regular state; P(s,z) €
(1/3,2/3] in the attention state; and P(s,z) € (2/3,1] in the
critical state. The building of the transition matrix related to the
subarea highlighted in black in Fig. 1 is considered in detail. At
the beginning, all of the elements of the matrix are null. This
subarea has loss probabilities that are defined in (4), with 0.05
(regular state), 0.08 (regular state), and 0.37 (attention state) in
2009, 2010, and 2011, respectively. So, in two possible annual
transitions (from 2009 to 2010 and from 2010 to 2011), one reg-
ular state remained regular (2009 to 2010); in another possible
transition (2010 to 2011), the regular state changes to attention
state. Therefore, a unit in the elements of the transition matrix
Prr (probability of the regular state remain in this same state
the next year) and Pra (probability of the regular state changes
to the attention state in the next year) is increased. This process
is repeated for the other 14 neighboring subareas of the subarea,
highlighted in black in Fig. 1, to obtain the full transition matrix.

In the example of Fig. 1, 15 subareas (the subarea highlighted
in black and 14 neighboring subareas it) each contain two tran-
sitions (from 2009 to 2010 and from 2010 to 2011), resulting in
30 transitions. The number of transitions in which loss state i
remained the same or changed to loss state j is calculated after
each fixed transition period of one year.

In (5), we present the transition matrix I for the subarea high-
lighted in black in Fig. 1 after normalization of the amount of
changes in the loss state (or lack thereof). It is worth mentioning
that the sum of each transition matrix line is unitary [24]
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B. Determining the Future Loss State

The forecast of the future loss state is obtained by multiplying
the current loss state vector matrix by the transition matrix for
the subarea. The result is a 1 x 3 vector containing the future
loss states' probabilities. The most probable resulting vector de-
termines the loss state predicted for the evaluated subarea.

In (6), the future loss state of the subarea highlighted in black
in Fig. 1 is estimated considering the loss probability vector
and the transition matrix shown in Sections II-D and III-A,
respectively
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Note that the probability for the subarea to be in the states
of regular, attention, and critical loss in 2012 is 6/15, 1/15, and
8/15, respectively. Therefore, it is concluded that the loss state
for this subarea will change from regular (current loss state) to
critical (future loss state).

The method proposed here can be summarized as follows.

Step 1) Build the Case-Control database.

A database is constructed from georeferenced in-
spections and the power utility customer base. This
base is associated with socioeconomic variables
from the census and is the input data for the GAM.

Step 2) Execute the GAM in (1) and construct the probability
map.

Step 3) Determine the current loss state of each subarea

using the probabilities calculated in the previous
step.
The current loss state of each subarea is determined
based on the percentage of the probability map that
is contained in each area and the loss state it is in:
regular, attention, or critical. The current loss state of
the subarea is determined by the loss state in which
the GAM probabilities are most frequent.

Step 4) Estimate the transition matrix P for each subarea.
Matrix P is constructed from (4) by evaluating the
annual transitions in the loss state for subareas and
their neighbors.

Step 5) Forecast the future loss state.

The future loss state forecast is obtained through
matrix multiplication between the vector of current
loss states (Step 3) and the transition matrix (Step 4).
The result is a vector containing the probabilities of
each subarea being in each of the three possible fu-
ture loss states. The loss state with the greatest prob-
ability in the resulting vector determines the fore-
casted loss state for the evaluated subarea.

IV. CASE STUDY: APPLICATION IN A BRAZILIAN CITY

In this section, the application of the methodology proposed
here is examined in detail. All simulations were performed on R
software version 2.15.3. The libraries used are as follows: mgcv,
spatial, spatstat, and splancs. The mgcv library is employed to
execute the GAM [26]. This library implements the nonpara-
metric estimator, as in [22].

A. Input Data

In the present study, actual data from georeferenced inspec-
tions provided by a Brazilian power utility and data from the
latest Brazilian census are used [27], [28].

The inspected CUs belong to an LV network of a medium-
sized city in the State of Sdo Paulo, Brazil, with approximately
200 000 inhabitants. Inspections conducted in 301 subareas of
the urban area are used.

The power utility inspected 9278 CUs as 2463, 1103, 3777,
and 1935 in 2009, 2010, 2011, and 2012, respectively. Inspec-
tion teams found 1133 CUs with NTLs as 165, 88, 454, and 426
from 2009 to 2012, respectively.

The inspections are commonly performed in the form of cam-
paigns; that is, officials inspect all CUs in a city subarea in which
there may be a high number of NTLs.
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Fig. 3. Thematic maps of the total number of CUs inspected annually by sub-
areas for the years 2009, 2010, 2011, and 2012, which are (a), (b), (¢), and (d),
respectively.

In Figs. 3-5, the information from inspections has been rep-
resented graphically by city subareas.

Fig. 3 shows the number of annual inspections by subareas.
Those in dark red were targeted inspection campaigns.

Fig. 4 shows the number of CUs with NTLs by subareas.
Equation (4) is employed to calculate the annual loss probabil-
ities for the subareas in Fig. 5.

The CUs of the loss database are not georeferenced. There-
fore, in order to apply the method proposed here, they are
grouped by the transformers to which they are connected; the
distribution network transformers are georeferenced, unlike the
CUs.

1) Case-Control Database Construction: The input data are
sampled according to the case-control study. The set of cases
consists of all irregular CUs from 2009 to 2011 (the year 2012
is reserved to validate the proposed methodology). The set of
controls is a random sampling of regular CUs for which loss
has not occurred.

The database is built with a (9:1) sampling scheme; that is, for
each irregular CU that belongs to the set of cases, there are nine
regular CUs belonging to the set of controls. The cases contain
all 707 CUs that are found to be guilty of irregularities, and the
controls contain 6363 regular CUs, randomly selected from all
of the CUs inspected; both from 2009 to 2011.

Fig. 6 displays the distribution of CUs in the case-control
database on the map of the urban area. The central region (in-
scribed in the circle) has the largest number of inspections and
CUs with NTLs.

It is noteworthy that the sampling scheme (9:1) represents the
real situation of field inspections of Brazilian utilities; on av-
erage, every ten inspections reveals one irregular CU. In this
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Fig. 5. Thematic maps related to annual loss probabilities by subareas for the
years 2009, 2010, 2011, and 2012, which are (a), (b), (c), and (d), respectively.

paper, for example, on average, there is an irregular CU for
every 8.2 inspections.

2) Description of the GAM Variables: In the GAM, 11 x
variables are used as in (1). These variables are described in
Table I and characterize the socioeconomic aspects, the power
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# Irregular CUs (Cases)
* Regular CUs (Controls)

Fig. 6. Spatial distribution of CUs in the case-control database in the urban
area of the city from 2009 to 2011. The CUs are classified into irregular (cases)
and regular (controls).

TABLE I
DESCRIPTION OF THE VARIABLES USED IN THE GAM

Variables Description
Average Number of Average number of residents in permanent
Residents households
Average Income Nominal average monthly income of persons
8 10 years of age or older (with and no income)
Q %Rented .
£e Residency” Percentage of leased private households
S 3@ %Residency Percentage of private households with water
§ 5 with Water" supply
'g ~ %Residency with Percentage of private households with garbage
A Garbage Collection” collection service
%Residency with Percentage of private households with pave-
Pavement" ment in surrounding areas
o Literates’ Percentage of literate people five years of age
or older
LOSSTRAFO Percentage of irregular CUs by transformer
~ @
S= LOSSAREA Percentage of irregular CUs in the subarea
S8
= T
§ S NTRAFO Number of transformers in the subarea
CAMPAIGN Binary Vanab_le 1nd1<;atlng whether there were
campaign actions in the subarea

“ Percentage with respect to total residency in the subarea.
® Percentage with respect to the total number of individuals in the subarea.

grid, and the concentration of the NTLs by city subarea. These
variables are grouped into two groups: 1) socioeconomic vari-
ables (those from the census) and 2) technical variables (those
from the power utility). They were chosen after an exploratory
analysis in accordance with the recommendations of the power
utility experts.

Among the socioeconomic variables available in census data
by subarea, seven were selected: Average Number of Residents,
Average Income, % Rented Residency, % Residency with Water,
% Residency with Garbage Collection, % Residency with Pave-
ment, and % Literate. The other variables were taken from in-
spections; LOSSTRAFO and LOSSAREA are related to the con-
centration of irregular CUs by transformer and by subarea, re-
spectively; NTRAFO is linked to the extension of the distribu-
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tion network, and CAMPAIGN indicates whether there were a
high number of CUs inspected (more than 30); all variables are
related to the subarea.

B. Validation of the Methodology

The method was validated by comparing the forecast to in-
spections for the year 2012.

For the application of the proposed method, the bounds for
each loss state such that P(s,x) € [LB,UB] are P(s,x) €
[0,0.15] in the regular state; P(s,x) € (0.15,0.35] in the at-
tention state; and P(s,x) € (0.35,1] in the critical state. Now
we can evaluate the loss probabilities in the present and future
and define the loss states in each city subarea.

In order to validate the estimated loss state, the loss state for
each subarea was determined again from the number of NTLs
in 2012. A subarea is considered to be in regular or critical state
if the number of NTLs is less than three or greater than eight,
respectively. If these conditions are not met, the subarea is in
the attention state.

Fig. 7 shows the result of applying the proposed method-
ology. Fig. 7(a) and (b) presents the current loss state of each
subarea (via GAM) and the forecasted loss states (via Markov
chain), respectively. As noted before, in order to validate the
method, the subareas are again categorized into one of three loss
states according to the number of NTLs in 2012 and compared
to the forecast obtained in Fig. 7(b). In a total of 301 subareas
in the urban area, 280 subareas were evaluated. Among these,
there were 219 hits (78.2%) and 61 errors (21.8%). The states
of 21 subareas were not forecasted due to a lack of data.

We observed that although the proposed method has not prop-
erly recognized subareas in the critical state, the proposal de-
tects subareas which do not change the state [see Fig. 7(c)],
considering a conservative approach, that is, the largest possible
margin of error for each loss state. In addition, the proposal iden-
tifies the locations that should not be visited.

C. Variables With Statistical Significance

In addition to being essential for the construction of the prob-
ability map, the GAM indicates that the variables have statistical
relevance and, therefore, influence the NTLs. Table II presents
the estimates, standard deviations, and statistical significance
for the GAM « variables in (1).

The p-value corresponds to a significance for which the hy-
pothesis Hy (null hypothesis) cannot be rejected. Hy is the hy-
pothesis in which the variables are not relevant. I is rejected if
the p-value is less than or equal to the predefined level of signif-
icance. In this paper, the significance level is fixed to o = 0.1.

In this context, the significant variables (boldface in
Table II), that is, those that influence the NTLs in the ana-
lyzed city, are LOSSTRAFO (p-value < 2.10~ 1), LOSSAREA
(p-value 5.92.107%), CAMPAIGN (p-value < 2.107'6),
NTRAFO (p-value < 6.07.10~%), and Average Income (p-value
4.81.10~%). The significance of LOSSTRAFO and LOSSAREA
indicates a higher concentration of the NTLs in transformers
and in subareas with a high percentage of irregular CUs,
respectively. The significance of NTRAFO indicates a higher
concentration of NTLs in subareas with more transformers,
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m Critical (07)

o No Data (21)

= Regular (264)
m Attention (11)
m Critical (05)

O No Data (21)

(b)

m Correct Forecast (219)
m Errors (61)
o No Data (21)

(©)
Fig. 7. (a) and (b) Current loss state (obtained via GAM) and forecasted loss
state (obtained via Markov chain), respectively, by the subarea of the urban area.
(c) Validation methodology by comparison between the forecasted loss state in
(b) and the number of NTLs, by subarea, in 2012.

while the significance of Average Income indicates the concen-
tration of NTLs in subareas with average income that is higher
than the average income of the city. Finally, the significance of
CAMPAIGN demonstrates that there are more NTLs in targeted
subareas of the inspection campaigns.

From Fig. 3, in each year, there are subareas of the central
region that are targets for many inspections. This fact explains
the increased amount of NTLs found in this area, as can be seen
in Fig. 4. Moreover, the central region, in accordance with the
result of the GAM, has a high population density and an exten-
sive distribution network.

We must emphasize that it is not possible to state conclu-
sively that variables without statistical significance have no in-
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TABLE II
ESTIMATES, STANDARD DEVIATION AND STATISTICAL
SIGNIFICANCE OF THE GAM VARIABLES

Variables Estimates ]S)tx]}gg;ﬁ p-value
Avemlfe Number of 2010250 0.25620 0.68922
esidents
Average Income -0.00024 0.00007 0.00048
Y6Rented -1.29400 1.07800 0.22998
Residency
%Residency
ey -0.79650 1.16100 0.49257
PoResidency with Garbage | 3 1490 2.14800 0.14264
Collection
%Re}f’de”cy with -0.33760 0.86280 0.69558
avement
%Literates 1.37600 1.87800 0.46367
LOSSTRAFO 13.20000 0.89600 0.00000
LOSSAREA 6.43700 1.42100 0.00000
NTRAFO -0.02196 0.00640 0.00061
CAMPAIGN -1.13700 1.17600 0.00000

fluence on the presence of the NTLs. Statistical significance
must be interpreted with discretion upon exploratory analysis
of the problem [19]. Moreover, the significance of each vari-
able is modified to the extent that the variables of the analysis
are included (or excluded). Significance is also influenced by a
sample of the case-control database.

The residual term of splines’ smoothing function is sig-
nificant (p-value 0.073). This means that there may be some
residual spatial variation not explained by the variables associ-
ated with the GAM.

The proposed methodology is easily implementable in statis-
tical analysis tools. It was applied in our database, and the re-
quired computational time was 5 s on a personal computer with
an Intel Core TM 17 processor at 2.8-GHz frequency and 4 GB
of RAM.

V. CONCLUSIONS

In this paper, a method to estimate the vulnerability of NTLs
in city subareas presently (via GAM) and in the future (via
Markov chain) was shown.

The regional spatial-temporal behavior of the NTLs is repre-
sented by the loss state of each area, which is determined from a
probability map. This map is obtained via GAM and considers
socioeconomic variables from census data and the power grid.
The Markov chain is used to model the dynamics of the losses;
that is, to check for changes in the loss state by subarea. The
method was validated with existing inspection data, and it has
been proved feasible to forecast the loss of each subarea with an
accuracy rate of 78.2%.

The main contributions of the methodology we propose here
are to regard the place where the NTLs occur and estimating the
spatial variation of the NTLs by city subarea over time. Through
it, three fundamental questions were answered: 1) where the
losses are located, that is, which are the critical subareas; 2) what
the causes of loss are, that is, which variables create a favorable
environment for losses in certain city areas; and 3) finally, where
the losses will be located; in other words, what subareas will be
critical in the future.
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